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ABSTRACT

Graph neural networks (GNNs) are deep learning models designed specifically
for graph data, and they typically rely on node features as the input node represen-
tation to the first layer. When applying such type of networks on graph without
node feature, one can extract simple graph-based node features (e.g., number of
degrees) or learn the input node representation (i.e., embeddings) when training
the network. While the latter approach, which trains node embeddings, more
likely leads to better performance, the number of parameters associated with the
embeddings grows linearly with the number of nodes. It is therefore impractical
to train the input node embeddings together with GNNs within graphics process-
ing unit (GPU) memory in an end-to-end fashion when dealing with industrial
scale graph data. Inspired by the embedding compression methods developed for
natural language processing (NLP) models, we develop a node embedding com-
pression method where each node is compactly represented with a bit vector in-
stead of a float-point vector. The parameters utilized in the compression method
can be trained together with GNNs. We show that the proposed node embedding
compression method achieves superior performance compared to the alternatives.

1 INTRODUCTION

Graph neural networks (GNNs) are representation learning methods for graph data. When a GNN
model is applied on node classification problems, the model typically learns the node representation
from input node features X and its graph G where the node features X are used as the input node
representation to the first layer of the model and the graph G dictates the propagation of information
(Kipf & Welling, 2016; Hamilton et al., 2017; Zhou et al., 2020). However, the input node features X
may not always be available for certain datasets. In order to apply such type of model on graph
without node features X, we could either 1) extract simple graph based node features (e.g., number
of degrees) from the graph G or 2) use embedding learning methods to learn the node embeddings
as features X (Duong et al., 2019). While both approaches are valid, it has been shown that the
second approach constantly outperforms the first one with a noticeable margin (Duong et al., 2019),
and most recent methods learn the node embeddings jointly with the parameters of GNNs (He et al.,
2017; 2020; Wang et al., 2019).

Learning node features (or embedding) X for graph with small number of nodes may not be much of
a problem for common computer system. But, as the size of the embedding matrix X grows linearly
with the number of nodes, scalability quickly becomes a problem, especially when attempting to
apply such method on industrial grade graph data. For example, if a given graph has 1 billion nodes,
we set the dimension of the learned embedding to 64, and store the embedding X using single-
precision floating-point format, the memory cost for the embedding layer alone is 238 gigabytes,
which is beyond the capability of common graphics processing unit (GPU). To solve the scalability
issue, we adopt the embedding compression idea originally developed for natural language process-
ing (NLP) models (Suzuki & Nagata, 2016; Shu & Nakayama, 2017; Svenstrup et al., 2017; Takase
& Kobayashi, 2020).

Particularly, we study the ALONE method proposed by Takase & Kobayashi (2020) as it only re-
quires single stage of training unlike other methods. ALONE represents each word using a randomly
generated compositional code vector; then a decoder model, which can be trained end-to-end with
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the downstream model1, uncompresses the compositional code vector into a floating-point vector.
The bit size of the compositional code vector is parametrization by c andmwhere c is the cardinality
of each element in the code vector and m is the length of the code vector. For example, if we set
c = 4 andm = 6, one valid code vector is [2, 0, 3, 1, 0, 1] where the length of the vector is 6 and each
element in the vector is within the set {0, 1, 2, 3}. The code vector can be converted to a bit vector
of length m log2 c by representing each element in the code vector as a binary number and concate-
nating the resulting binary numbers2. Continuing the example, the code vector [2, 0, 3, 1, 0, 1] can
be compactly stored as [10 00 11 01 00 01].
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Figure 1: Three coding schemes are tested: 1) random coding/ALONE, 2) hashing-based coding/the
proposed method, and 3) learning-based coding scheme with autoencoder. For GloVe embeddings,
we apply the hashing-based coding method on the pre-trained embedding. For metapath2vec
and metapath2vec++ embeddings, we apply the hashing-based coding method on either the pre-
trained embedding or the adjacency matrix from the graph. The horizontal line labeled with “raw”
shows the performance of the original embeddings’ performance without any compression. The y-
axis of each sub-figure is the performance measurement (the higher the better). See Section 5.1 for
more details.

Using the same conversion trick, it only requires 48 bits to store each word with the parametrization
(c = 64,m = 8, 8 log2 64 = 48 bits) used by Takase & Kobayashi (2020) in their experiments. The
coding scheme can uniquely represent up to 248 words, which is way beyond the number of words
(or sub-words) used in conventional NLP models (Vaswani et al., 2017; Takase & Okazaki, 2019).
However, generating the code vectors in a random fashion hinders the quality of the uncompressed
embedding. One way to quickly benchmark an embedding compression method’s capability is by
evaluating the performance of reconstructed (or uncompressed) pre-trained embeddings. As shown
in Figure 1, when the model compresses more and more embeddings, the performance of the recon-
structed embeddings drops considerably when each entity is represented with a randomly generated
code vector following Takase & Kobayashi (2020) (see lines labeled as “random”). The phenomenon
is observed in our experiments with GloVe word embeddings (Pennington et al., 2014b) on both
word analogy/similarity task and metapath2vec/metapath2vec++ node embeddings (Dong
et al., 2017a) on node clustering task.

In order to solve this performance degradation problem, instead of using a randomly generated code
vector to represent each entity, we adopt an efficient random projection hashing method to generate
a code vector for each entity using auxiliary information such as the adjacency matrix associated
with the graph G or the pre-trained embedding3. The adopted random projection hashing method is

1For the experiments conducted by Takase & Kobayashi (2020), ALONE’s decoder model is trained together
with transformer (Vaswani et al., 2017; Takase & Okazaki, 2019) on machine translation and summarization.

2The conversion mechanism is more space efficient when c is set to a power of 2.
3We only apply the hashing-based coding method on the pre-trained embedding in experiments where the

pre-trained embeddings are available (i.e., Section 5.1). For other experiments, we use the adjacency matrix
provided by the associated graph G.
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a locality-sensitive hashing (LSH) method (Charikar, 2002) because it hashes entities with similar
auxiliary information into similar code vectors. By referring once again to Figure 1, the proposed
method with hashing-based coding scheme (see lines labeled as “hashing”) outperformed the ran-
dom coding scheme in all scenarios. Similar to ALONE, the proposed method does not introduce
additional training stage since it is based on random projection. On top of that, the memory footprint
is identical to ALONE as the proposed method only replaces the coding scheme.

In additional to the proxy tasks of pre-trained embedding reconstruction, we also compare the ef-
fectiveness of different coding schemes where the GNN model and the decoder model are trained
together in an end-to-end fashion. Particularly, we trained the GraphSAGE model (Hamilton et al.,
2017) on three different node classification datasets. We choose to use the GraphSAGE model
(Hamilton et al., 2017) because it is one of the most scalable GNNs in the literature (Ying et al.,
2018). To show that the proposed method also benefits other GNNs/tasks, we present additional ex-
periment results in Appendix B.4 on more GNNs with link prediction task. The experimental results
have confirmed the superb performance of the proposed hashing-based coding scheme comparing
to the random coding scheme used in ALONE under the intended use scenario.

2 RELATED WORK

The embedding compression problem is extensively studied for NLP models because of the memory
cost associated with storing the embedding vectors, and one of the most popular strategy is param-
eter sharing (Suzuki & Nagata, 2016; Shu & Nakayama, 2017; Svenstrup et al., 2017; Takase &
Kobayashi, 2020). For example, Suzuki & Nagata (2016) trains a small set of sub-vectors shared by
all words called “reference vectors” where each word embedding is constructed by concatenating
different sub-vectors together. Both the shared sub-vectors and sub-vector assignments are opti-
mized during the training time. The resulting compressed representation is capable of representing
each word compactly, but the training process is memory costly as it still needs to train the full
embedding matrix to solve the sub-vector assignment problem. Therefore, the method proposed by
Suzuki & Nagata (2016) is not suitable for large-scale data.

Shu & Nakayama (2017) trains a encoder-decoder model (i.e., autoencoder) where the encoder con-
verts a pre-trained embedding into the corresponding compositional code representation and the
decoder reconstructs the pre-trained embedding from the compositional code. Once the encoder
and decoder are trained, all the pre-trained embeddings are converted to the compact compositional
code representation using the encoder; then the decoder can be trained together with the down-
stream models. Because the memory cost associated with the compositional code is much smaller
than the raw embedding and the decoder is shared by all words, the method reduces the overall
memory consumption associated with representing words. However, since it also requires training
the embeddings prior to training the encoder-decoder, the training process still has high memory cost
associated with the conventional embedding training similar to the previous work. In other words,
the method proposed by Shu & Nakayama (2017) is also not applicable to extreme scale data.

Svenstrup et al. (2017) represents each word compactly with a unique integer and k floating-point
values where k is much smaller than the dimension of the embedding. To obtain the embedding from
the compact representation of a word, k hash functions4are used to hash the word’s associated unique
integer to an integer in [0, c) where c is much smaller than the number of words. Next, k vectors are
extracted from a set of c learnable “component vectors” based on the output of hash function. The
final embedding of the word is generated by computing the weighted sum of the k vectors where the
weights are based on the k learnable floating-point values associated with the word. Similar to our
work, Svenstrup et al. (2017) also uses hash functions in their proposed method. But, the role of the
hash function is different: Svenstrup et al. (2017) uses hash functions for reducing cardinality while
we use hash functions to perform LSH. On top of that, as the k learnable floating-point values are
associated with each word in the method proposed by Svenstrup et al. (2017), their method has its
parameter size grown linearly with respect to the vocabulary size which makes the method not ideal
for our application.

The ALONE method proposed by Takase & Kobayashi (2020) represents each word with a ran-
domly generated compositional code, and the embedding is obtained by inputting the compositional

4The hash function used by Svenstrup et al. (2017) is the hash function proposed by Carter & Wegman
(1979) for hashing integers.
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code to a decoder where the number of learnable parameters in the decoder model is independent
of the vocabulary size. The ALONE method checks all the requirements for our application; how-
ever, the performance suffers when the vocabulary size increases comparing to autoencoder-based
approach (Shu & Nakayama, 2017) as demonstrated in Figure 1 (labeled as “learn”). In contrast,
our proposed method has similar performance comparing to autoencoder-based approach (Shu &
Nakayama, 2017) but does not require the additional training phases required by the method pro-
posed by Shu & Nakayama (2017).

3 METHOD

The proposed method consists of two stages: 1) an encoding stage where each node’s compositional
code is generated with a hashing-based method and 2) a decoding stage where the decoder is trained
in an end-to-end fashion together with the downstream model. Figure 2 shows an example forward
pass of the embedding construction process. The binary code is a node’s compositional code gener-
ated by the hashing-based method (Section 3.1). After the binary code is converted to integer code,
the decoder model, which mostly includes m codebooks and a multilayer perceptron (MLP) as de-
scribed in Section 3.2, generates the corresponding embedding. The memory cost of storing both
the compositional codes and the decoder is drastically lower than conventional embedding layer as
we shown in Section 5.2.
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Figure 2: In this toy example, each codebook has 4 vectors (c = 4) and there are 4 distinct
codebooks (m = 4). There are two variants of the adopted decoder models: 1) a light version where
the codebooks are NOT trainable and 2) a full version where the codebooks are trainable. W0 is a
trainable vector for rescaling the intermediate representation (see Section 3.2).

3.1 HASHING-BASED CODING SCHEME

Algorithm 1 outlines the random projection-based hashing method. The first input to our algorithm
is a matrix A ∈ Rn×d containing the auxiliary information of each node where n is the number of
nodes and d is the length of auxiliary vector associated with each node. When the adjacency matrix
is used as the auxiliary information, d is equal to n, and it is preferred to store A as a sparse matrix
in compressed row storage (CRS) format as all the operations on A are row-wise operations. The
other inputs include code cardinality c and code length m. These two inputs dictate the format (and
the memory cost) of the output compositional code X̂. For each node’s associated code vector, c
controls the cardinality of each element in the code vector and m controls the length of the code
vector. The output is the resulting compositional codes X̂ ∈ Bn×m log2 c in binary format where
each row contains a node’s associated code vector where m log2 c is the number of bits required to
store one code vector. We store X̂ in binary format because binary format is more space efficient
comparing to integer format. The binary code vector can be reversed back to integer format before
inputting it to the decoder.

In line 2, the number of bits requires to store each code vector (i.e., m log2 c) is computed and
stored in variable nbit. In line 3, a Boolean matrix X̂ of size n × nbit is initialized for storing
the resulting compositional codes. The default value for the matrix is False. From line 4 to 11,
the compositional codes are generated bit-by-bit in the outer loop and node-by-node in the inner
loops. Generating compositional codes in such order is a more memory efficient way to perform
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Algorithm 1 Encode with Random Projection
Input: auxiliary information A ∈ Rn×d, code cardinality c, code length m

Output: compositional code X̂ ∈ Bn×m log2 c

1 function ENCODE(A, c,m)
2 nbit ← m log2 c

3 X̂← GETALLFALSEBOOLEANMATRIX(n, nbit)
4 for i in [0, nbit) do
5 V ← GETRANDOMVECTOR(d)
6 U ← GETEMPTYVECTOR(n)
7 for j in [0, n) do
8 U [j]← DOTPRODUCT(A[j, :], V )

9 t← GETMEDIAN(U)
10 for j in [0, n) do
11 if U [j] > t then X̂[j, i]← True

12 return X̂

random projection as it only needs to keep a size d random vector in each iteration comparing to the
alternative order. If the inner loop (i.e., line 7 to 8) is switched with the outer loop (i.e., line 4 to
11), it would require us to use a Rnbit×d matrix to store all the random vectors for random projection
(i.e., matrix multiplication).

In line 5, a random vector V ∈ Rd is generated; the vector V is used for performing random pro-
jection. In line 6, an empty vector U ∈ Rn is initialized for storing the result of random projection.
From line 7 to 8, each node’s associated auxiliary vector is projected using the random vector V and
stored in U (i.e., U = AV ). Here, the memory footprint could be further reduced if we only load a
few rows of A during the loop instead of the entire A before the loop. Such optimization could be
important as the size of A could be too large for systems with limited memory. In line 9, the median
of U is identified and stored in t. This is the threshold for binarizing real values in U . From line 10
to 11, using both the values in vector U and the threshold t, the binary code is generated for each
node. Lastly, in line 12, the resulting compositional codes X̂ are returned. The resulting X̂ can be
used for any downstream tasks.

Note, we use the median as the threshold instead of the more commonly seen zero because it re-
duces the number of collisions in the resulting binary code5. Reducing the number of collisions is
important for our case because our goal is to generate unique code vector to represent each node. To
confirm whether using median as the threshold reduces the number of collisions, we have performed
an experiment using pre-trained metapath2vec node embeddings (Dong et al., 2017a). We gen-
erate the compositional codes with random projection-based hashing with either the median or zero
as the threshold. Then, we count the number of collisions in the generated compositional codes.
We repeat the experiment for 100 times under two different experimental settings (i.e., 24 bits/32
bits). The experiment results are summarized in Figure 3 with histogram, setting the threshold to
median instead of zero indeed reduces the number of collisions. We also repeat the experiments
with metapath2vec++ and GloVe embeddings and the conclusion remains the same (see Ap-
pendix B.1).

0 66536number of collisions

24 bits
hashing-zero
hashing-median

0 11656number of collisions

32 bits
hashing-zero
hashing-median

Figure 3: The experiments are performed on metapath2vec for 100 times under two different bit
length settings: 24 bits and 32 bits. The distribution of the 100 outcomes (i.e., number of collisions)
for each method is shown in the figure. The number of collisions is lower for median threshold
comparing to zero threshold.

5The threshold used in the LSH method proposed by Charikar (2002) is zero.
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The memory complexity of Algorithm 1 is O(MAX(nm log2 c, df, nf)) where f is the number of
bits required to store a floating-point number. The nm log2 c term is the memory cost associated
with storing X̂, the df term is the memory cost associated with storing V , and the nf term is the
memory cost associated with storing U . Because f is usually less than m log2 c (i.e., based on
hyper-parameters used in prior works6) and d is usually less than or equal to n, the typical memory
complexity of Algorithm 1 isO(nm log2 c). In other words, the memory complexity of Algorithm 1
is the same as the output matrix X̂ which shows how memory efficient Algorithm 1 is. The time
complexity of Algorithm 1 is O(nm log2 c) for the nested loop7.

3.2 DECODER MODEL DESIGN

We will use the example forward pass presented in Figure 2 to introduce the decoder design. The
input to the decoder is the binary compositional codes generated from the hashing-based coding
scheme introduced in Section 3.1. The input binary code is first converted to integers for using as
indexes for retrieving the corresponding real vector from the codebooks. In our example, the binary
vector [10, 00, 11, 01] is converted to integer vector [2, 0, 3, 1]. Each codebook is a Rc×dc matrix
where c is the number of codes in the codebook (i.e., code cardinality) and dc is the size of each real
vector in the codebook. There are m codebooks in total where m is the code length (i.e., length of
the code after being converted to integer vector from binary vector). Because the code length is 4 in
the example, there are 4 codebooks in Figure 2. Because the code cardinality is 4 (i.e., the number
of possible values in the integer code), each codebook has 4 real vectors.

From each codebook, a real number vector is retrieved based on each codebook’s corresponding
index. In our example, the vector corresponding to index 2 (black) is retrieved from the first code-
book, index 0 vector (green) is retrieved from the second codebook, index 3 vector (red) is retrieved
from the third codebook, and the index 1 vector (blue) is retrieved from the last codebook. The real
vectors (i.e., the codebooks) can either be non-trainable random vectors or trainable vectors. We
refer to the former method as the light method, and the later method as the full method. The former
method is lighter as the later method increases the number of trainable parameters by mcdc. The
full method is desired if the additional trainable parameters (i.e., memory cost) are allowed by the
hardware. Note, despite the full method has higher memory cost, the number of trainable parameters
still does not depend on the number of nodes in the graph.

Next, the retrieved real vectors are summed together. The summed vector is handled differently
for the light and full method. As the codebooks are not trainable for light method, we compute
the element-wise product between the summed vector and a trainable vector W0 ∈ Rdc to rescale
each dimension of the summed vector following Takase & Kobayashi (2020). Such transformation
is not needed for the full method because the full method can capture this kind of transformation
with the trainable parameters in the codebooks. The transformed vector is then fed to a MLP with
ReLU between linear layers. The output of the MLP is the embedding corresponding to the input
compositional code, and the output embedding is fed to the downstream model.

If the number of neurons for the MLP is set to dm, the number of layers for the MLP is set to l,
and the dimension of the output embedding is set to de, the light method has mcdc non-trainable
parameters (which can be stored outside of GPU memory) and dc + dcdm + (l − 2)d2m + dmde
trainable parameters. The full method has mcdc + dcdm + (l− 2)d2m + dmde trainable parameters.
Here, we assume l is greater than or equal to 2. Note, the number of parameters does not grow with
increasing number of nodes for both the light and full methods.

4 INTEGRATION WITH GRAPHSAGE MODEL

Figure 4 shows how the proposed method is integrated with GraphSage model (Hamilton et al.,
2017). The figure depicts a forward pass during training. First, in step 0, a batch of nodes is sampled.
In step 1, for each node in the batch, a number of neighboring nodes (i.e., first neighbors) are

6If single-precision format is used for floating-point numbers, f is 32 bit, and m log2 c is commonly set to
a number larger than 32 bit in prior works (Shu & Nakayama, 2017; Takase & Kobayashi, 2020).

7The median finding algorithm (Blum et al., 1973) in line 9 is O(n) which is the same as the inner loops
(i.e., line 7 to 8 and line 10 to 12.).
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sampled. Because the example model shown in the figure has 2 layers, the neighbors of neighbors
(i.e., second neighbors) are also sampled in step 2. Next, the binary codes associated with each
node’s first and second neighbors are retrieved in step 3 and decoded in step 4 using the system
described in Section 3.2.

0. batch 
of nodes

Neighbor
Sampler

Code 
Lookup

2. 1st and 2nd 
neighbor nodes

Decoder

3. 1st and 2nd 
neighbor codes

Layer 1

4. 1st and 2nd 
neighbor 
embeddings

1. 1st neighbor 
nodes

Layer 2

Aggregate 2

Output 
Layer

5. Prediction

Aggregate 1

Figure 4: The proposed
method can be integrated with
the GraphSage model. The
Code Lookup is used to look
up the corresponding binary
code for each input node. The
Decoder is the system pre-
sented in Figure 2 and con-
verts the input binary codes to
embeddings.

After the embeddings for both the first and second neighbors are re-
trieved, the second neighbor embeddings of each given first neigh-
bor embedding are aggregated with functions like mean or max
in Aggregate 1 layer. Let’s say Hi contains the embeddings
of neighboring nodes for a given node i, the aggregate layer com-
putes the output ĥi with AGGREGATE(Hi). Next, in Layer 1,
for each first neighbor node i, ĥi and xi (i.e., embedding for
node i) are concatenated and processed with a linear layer plus
non-linearity. The process of Layer 1 can be represented with
σ(W · CONCATENATE(ĥi, xi)) where W is the weight associated
with the linear layer and σ(·) is non-linearity like ReLU. Similar
process is repeated in Aggregate 2 layer and Layer 2 to gen-
erate the final representation of each node in the batch. Note, the
concatenation step is omitted in Layer 2 because the node em-
bedding of each node in the batch is not used in GraphSagemodel
(Hamilton et al., 2017). The final prediction is computed by feeding
the learned representation to the output (i.e., linear) layer. All the
parameters in the model are learned end-to-end using the ground
truth labels from the training data.

5 EXPERIMENT

We perform two sets of experiments: 1) pre-trained embedding
reconstruction and 2) training decoder with GraphSage model
jointly. The first set of experiments reveals the difference be-
tween different methods’ compressing capability while the sec-
ond set of experiments provides the performance measurement
on the targeted application. All experiments are conducted in
Python with PyTorch (Paszke et al., 2019). The source code
can be downloaded from: https://www.dropbox.com/s/
1mixmhgbg4wiwtd/release.zip.

5.1 PRE-TRAINED EMBEDDING RECONSTRUCTION

In this set of experiments, we compare the compression capability of different compression methods
by testing the quality of the reconstructed embedding. The tested methods are the random coding
(i.e., baseline method proposed by Takase & Kobayashi (2020)), the learning-based coding (i.e.,
autoencoder similar to the method proposed by Shu & Nakayama (2017)), and the hashing-based
coding (i.e., the proposed method). When applying the hashing-based coding method on the graph
dataset, we feed either the original pre-trained embedding (i.e., hashing (pre-trained) in Figure 1) or
the adjacency matrix from the graph (i.e., hashing (graph) in Figure 1) into Algorithm 1. We vary
the number of compressed entities when testing different methods.

Dataset: Three sets of pre-trained embeddings are used in these experiments: 1) the 300 dimension
GloVe word embedding, 2) the 128 dimension metapath2vec node embedding, and 3) the 128
dimension metapath2vec++ node embedding. The GloVe embeddings are tested with word
analogy and similarity tasks. The performance measurements for word analogy and similarity task
are accuracy and Spearman’s rho, respectively. The metapath2vec/metapath2vec++ em-
beddings are tested with node clustering, and the performance measurement is normalized mutual
information. Please see Appendix A.2 and Appendix A.3 for more details regarding the datasets.

Implementation: We use the full decoding method in this set of experiments. To train the compres-
sion method, we use mean squared error between the input embeddings and the reconstructed em-
beddings as the loss function following Takase & Kobayashi (2020). The loss function is optimized
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with AdamW (Loshchilov & Hutter, 2017) with the default hyper-parameter settings in PyTorch
(Paszke et al., 2019). Because we want to vary the numbers of compressed entities when comparing
different methods, we need to sample from the available pre-trained embeddings. Similar to Takase
& Kobayashi (2020), we sample based on the frequency8. Since different experiments use different
numbers of compressed entities, we only evaluate with the same top 5k entities based on frequency
similar to Takase & Kobayashi (2020), despite there are more than 5k reconstructed embeddings
when the number of compressed entities is greater than 5k. In this way, we have the same test data
across experiments with different numbers of compressed entities. The detailed hyper-parameter
settings are shown in Appendix A.4.

Result: The experiment results are summarized in Figure 1. Note, we use “random” to denote the
baseline method (i.e., ALONE). When the number of compressed entities is low, the reconstructed
embeddings from all compression methods perform similar to using the raw embeddings (i.e., the
original pre-trained embeddings). As the number of compressed entities increases, the reconstructed
embeddings’ performance decreases. The decreasing performance is likely caused by the fact that
the decoder model’s size does not grow with the number of compressed entities. In other words,
the compression ratio increases as the number of compressed entities increases (see Table 3 in Ap-
pendix B.2). When comparing different compression methods, we can observe that the quality of
the reconstructed embeddings from random coding method drops sharply comparing to other meth-
ods (i.e., hashing-based coding and learning-based coding). It is surprising that the hashing-based
coding method works as well as the learning-based coding method even if the learning-based coding
method uses additional parameters to learn the coding function. When we compare both variants of
the proposed coding method (i.e., hashing with pre-trained and hashing with graph, i.e., adjacency
matrix), the performance are very similar. This shows how the adjacency matrix from the graph is
a valid choice for applying the proposed hashing-based coding method. We have also tested other
settings of c and m (see Appendix B.2); the conclusion stays the same.

5.2 NODE CLASSIFICATION

To examine the difference between the compression methods in the intended setup, we perform node
classification where the decoder is trained together with a GraphSAGE model (Hamilton et al.,
2017). Because we assume there is no node feature or pre-trained embedding available in our exper-
iment setup, the autoencoder-based method proposed by Shu & Nakayama (2017) is not applicable
for this set of experiments. We compare the proposed hashing-based coding method (using adja-
cency matrices and Algorithm 1 to generate the code) with two baseline methods: random coding
method and raw embedding method. The raw embedding method explicitly learns the embeddings
together with the GraphSAGE model. The raw baseline method can be treated as the upper bound
in terms of accuracy because the embeddings are not compressed. the performance measurement is
classification accuracy.

Dataset: The experiments are performed on the ogbn-arxiv, ogbn-mag, and ogbn-products datasets
from Open Graph Benchmark (Hu et al., 2020). As we are more interested in modeling attribute-less
graphs, we discard the node features included in the datasets. We convert all the directed graphs to
undirected graphs by making the adjacency matrix symmetry. Please see Appendix A.5 for more
detailed information regarding the datasets.

Implementation: For the downstream model, we use the PyTorch implementation of the
GraphSAGE model (Hamilton et al., 2017; Johnson et al., 2018). Because the node classification
problem is a multiclass classification problem, we use the cross entropy loss to train both the decoder
and the GraphSAGE model together. The loss function is optimized with AdamW (Loshchilov &
Hutter, 2017) with the default hyper-parameter settings in the GraphSAGE implementation (John-
son et al., 2018). We perform the experiments using two different aggregators: mean pooling and
max pooling. The detailed hyper-parameter settings are shown in Appendix A.6.

Result: According to Table 1, the proposed hashing-based coding method outperforms the random
coding method (i.e., ALONE) in all tested scenarios which agrees with our findings presented in
Figure 1. One possible reason for the random coding method’s less impressive performance com-
paring to the result reported on NLP tasks by Takase & Kobayashi (2020) is related to the number

8For GloVe, frequency means the times of a word occurs in the training data. For metapath2vec and
metapath2vec++, frequency means the times of a node occurs in the sampled metapaths.
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of entities compressed by the compression method. In NLP models, embeddings typically represent
sub-words instead of words (Vaswani et al., 2017). For example, the transformer model for machine
translation adopted by Takase & Kobayashi (2020) has 32,000 sub-words, which is much smaller
comparing to even the smallest tested graph dataset (i.e., ogbn-arxiv with 168,390 nodes). In other
words, the proposed hashing-based coding method is more effective for compressing larger set of
entities comparing to the baseline random coding method.

Table 1: The proposed method outperforms the baseline method (more results in Table 6). We use
NC to denote the non-compressed or embedding learning method without compression, Rand to
denote the random coding method (i.e., ALONE), and Hash to denote the proposed hashing coding
method. The numbers presented in the table are classification accuracy.

Aggregator ogbn-arxiv ogbn-mag ogbn-products
NC Rand Hash NC Rand Hash NC Rand Hash

Mean pool 0.6228 0.6045 0.6259 0.3192 0.2989 0.3387 0.7486 0.6327 0.6414
Max pool 0.5884 0.4407 0.6034 0.3083 0.3050 0.3283 0.7294 0.6986 0.7156

In terms of memory usage, the compression method is capable of achieving a considerablely good
compression ratio. For example, since the ogbn-products dataset has 1,871,031 nodes, it requires
456.79 MB to store the raw embeddings in GPU memory. On the contrary, it only takes the pro-
posed method 28.55 MB to store the binary codes in CPU memory, and the corresponding decoder
model only costs 9.13 MB of GPU memory. The compression ratio is 43.75 for the the proposed
method’s less memory efficient setup (i.e., full model) if we only consider GPU memory usage. For
the total memory usage, the compression ratio is 11.74 for the same setup. The complete memory
cost breakdowns for each dataset/method are shown in Appendix B.3. We also repeat this set of
experiments with other GraphSAGE aggregation function, other GNN architectures, and link pre-
diction task. These additional results are presented in Table 10 and Table 11 with the experimental
procedure described in paragraphs accompanying these two tables.

6 CONCLUSION

In this work, we proposed a hashing-based coding scheme which generates compositional codes for
compactly representing nodes in graph datasets. The proposed coding scheme outperforms the prior
embedding compressing method which uses a random coding scheme in almost all experiments.
On top of that, the performance degradation coming from the lossy compression is minimal as
demonstrated in our experiments. Because the proposed embedding compressing method drastically
reduces the memory cost associated with embedding learning, it is now possible to jointly train
unique embeddings for all the nodes with GNN models on industrial scale graph datasets.

Potential Impact and Future Directions: Aside from GNNs, the proposed methods can also be
combined with other kinds of models on tasks that require learning embeddings for a large set of
entities. For example, it is common to have categorical features/variables with high cardinalities in
transaction data, and embeddings are usually used to represent these categorical features (Du et al.,
2019; Yeh et al., 2020a;b). Therefore, the proposed method is well suited for building deep learning
models for transaction data. Determining the most effective auxiliary information for generating
the binary codes should be an interesting direction for transaction data-based fintech applications.
The click-through rate prediction problem (Deng et al., 2021) is another interesting direction to ex-
plore with our proposed lightweight embedding compression method as click-through rate datasets
also contain categorical features with high cardinalities. As a result, the proposed embedding com-
pressing method could potentially address the scalability problems associated with high cardinalities
categorical features in many real world applied machine learning problems. In addition to applying
the method to different models/applications, it is also interesting to explore other types of auxiliary
information from graphs (e.g., higher-order adjacency matrices) for the encoding stage because the
codes generated from richer auxiliary information may provide more information for better embed-
ding compression.

9
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A ADDITIONAL EXPERIMENT DETAILS

Here, we provide more details regarding the experiments we presented in the main text.

A.1 COMPARISON OF DIFFERENT THRESHOLDS FOR HASHING-BASED CODING

We have comparing the difference between different choice of thresholds when binarizing the real
values into binary codes in Section 3.1 with an experiment. Here, we will describe the details of
the experiment. The experiment dataset consists of the first 200,000 pre-trained metapath2vec
or metapath2vec++ node embeddings downloaded from the supplemental web page constructed
by Dong et al. (2017a;b). The dimension of the pre-trained embeddings is 128. Because we repeat
the experiments 100 times, we generate 100 seeds to make sure both method use the same basis
to perform random projection as the only difference between the two tested methods should be the
threshold. In each experimental trial, we first use the seed to generated a random matrix V ∈
R128×nbit . Next, we project the embedding matrix (i.e., the 200,000× 128 embedding matrix) using
V; then, we binarize the result matrix using either zero or the median of each row. With the binary
codes prepared, we count the number of coalitions for each method. Once all 100 trials are done,
the result is presented with a histogram as shown in Figure 3.

A.2 WORD ANALOGY AND SIMILARITY TASKS

The pre-trained GloVeword embeddings are downloaded from the web page created by Pennington
et al. (2014b;a). The word embeddings are trained using Wikipedia 2014 and Gigaword 5 dataset
(total of 6B tokens).

Word analogy: We downloaded a list of word analogy pairs from the repository of word2vec
(Mikolov et al., 2013a;b). The word analogy pairs are categorized into 14 categories, and the 14
categories are shown below. We also provide an example pair for each category.

• capital-common-countries: Athens:Greece::Bangkok:Thailand
• capital-world: Ankara:Turkey::Apia:Samoa
• currency: Japan:yen::Canada:dollar
• city-in-state: Chicago:Illinois::Houston:Texas
• family: stepbrother:stepsister::man:woman
• gram1-adjective-to-adverb: amazing:amazingly::cheerful:cheerfully
• gram2-opposite: acceptable:unacceptable::possible:impossible
• gram3-comparative: fast:faster::strong:stronger
• gram4-superlative: great:greatest::lucky:luckiest
• gram5-present-participle: code:coding::read:reading
• gram6-nationality-adjective: Korea:Korean::Sweden:Swedish
• gram7-past-tense: going:went::paying:paid
• gram8-plural: banana:bananas::monkey:monkeys

12



Under review as a conference paper at ICLR 2021

• gram9-plural-verbs: play:plays::vanish:vanishes

The experiment is performed as described by Mikolov et al. (2013a). Given a word embedding
matrix X and a word analogy pair (e.g., Athens:Greece::Bangkok:Thailand), we first
prepare a query vector Q with X[Greece] − X[Athens] + X[Bangkok]. Next, we use Q to
query X with cosine similarity. The answer is only considered correct if the most similar word is
Thailand. The performance is measured in accuracy. We compute the accuracy for each category;
then, we report the average of the 14 accuracy values as the performance for word analogy.

Word similarity: Thirteen word similarity datasets are downloaded from the repository of MUSE
(Conneau et al., 2017a;b; Lample et al., 2017). Each dataset consists of a list of paired words and
their ground truth similarity scores. We list the 13 datasets below with two example pairs from each
dataset.

• MC-30: car-automobile:3.92, shore-woodland:0.63
• MEN-TR-3k: river-water:49.00, carrot-design:2.00
• MTurk-287: genius-intellect:4.09, session-surprises:1.81
• MTurk-771: agreement-contract:4.48, baby-computer:1.24
• RG-65: gem-jewel:3.94, fruit-furnace:0.05
• RW-STANFORD: hyperlink-link:9.12, radiators-beginning:0.00
• SEMEVAL17: sculpture-statue:3.83, airport-piece:0.08
• SIMLEX-999: simple-easy:9.40, new-ancient:0.23
• VERB-143: makes-produced:0.72, causes-used:0.13
• WS-353-ALL: telephone-communication:7.50, line-insurance:2.69
• WS-353-REL: computer-keyboard:7.62, professor-cucumber:0.31
• WS-353-SIM: tiger-cat:7.35, listing-proximity:2.56
• YP-130: end-terminate:4.00, imitate-highlight:0.167

The experiment is performed as described by Faruqui & Dyer (2014). First, the cosine similarity
between word embeddings for each pair of words in a dataset is computed. Then, the order based
on the cosine similarity is compared with the order based on the ground truth similarity scores. The
comparison of orders are measured with Spearman’s rho. The result Spearman’s rhos from the 13
datasets are averaged and reported.

A.3 NODE CLUSTERING TASK

The pre-trained metapath2vec embeddings, the pre-trained metapath2vec++ embeddings,
the association between nodes (i.e., researchers), and the cluster labels (i.e., research area) are down-
loaded from the web page created by Dong et al. (2017a;b). The node embeddings are trained with
AMiner dataset (Tang et al., 2008). There are total of 246,678 labeled researchers from the down-
loaded dataset. Each researcher is assigned with one of the 8 research areas listed below.

• Computing Systems
• Theoretical Computer Science
• Computer Networks and Wireless Communication
• Computer Graphics
• Human Computer Interaction
• Computational Linguistics
• Computer Vision and Pattern Recognition
• Databases and Information Systems

We use k-means clustering algorithm (Lloyd, 1982) to cluster the embedding associated with each
researcher; then, we measure the clustering performance with normalized mutual information.

A.4 HYPER-PARAMETER SETTING FOR SECTION 5.1

We use the following hyper-parameter settings for the decoders. For GloVe, we use l = 3, dc =
dm = 512, de = 300, c = 2, and m = 128. For metapath2vec/metapath2vec++, we
use l = 3, dc = dm = 512, de = 128, c = 2, and m = 128. Note, the decoder design is the
same across different coding schemes tested on the same dataset. We use different de for different
embeddings because the dimensionality of different pre-trained embeddings is different. The default
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hyper-parameter settings for AdamW (Loshchilov & Hutter, 2017) in PyTorch (Paszke et al., 2019)
are: learning rate = 0.001, β1 = 0.9, β2 = 0.999, and weight decay = 0.01. We train all models
for 1,024 epochs with batch size of 512.

A.5 NODE CLASSIFICATION TASK

In this section, we provide more details regarding how we process the graph datasets used in Sec-
tion 5.2. Given a graph dataset, we first discarded the node features come with the dataset. Next,
for all the directed graphs, we convert them to undirected graphs. Although ogbn-mag dataset is
a heterogeneous graph, we only use the citing relation between paper nodes as the labels are as-
sociated with paper nodes. Because we only use the structure of the graph (i.e., node features are
discarded), we removed validation/test nodes that is not also presented in training data. In other
words, the node classification experiment is performed in semi-supervised learning settings where
the validation/test nodes are presented in the training data without their associated labels. After
aforementioned process, the statistics associated with the datasets are presented in Table 2.

Table 2: The number of nodes in the training/validation/test set of each dataset.

training validate test total
obgn-arxiv 90941 29431 48018 168390
obgn-mag 629571 64481 41706 735758
obgn-products 195639 38483 1636909 1871031

A.6 HYPER-PARAMETER SETTING FOR SECTION 5.2

We use the following hyper-parameter settings for the decoders: l = 3, dc = dm = 512, de = 64,
c = 256, and m = 16. We evaluated both light and full methods for the decoder, and reported the
evaluation accuracy from the method with the best validation accuracy. We use the following hyper-
parameter setting for the GraphSAGE model: number of layers = 2, number of neurons = 128,
activation function = ReLU, and number of neighbors = 15. We use the following hyper-parameter
settings for the AdamW optimizer (Loshchilov & Hutter, 2017): learning rate = 0.01, β1 = 0.9,
β2 = 0.999, and weight decay = 0. These settings are the default hyper-parameter settings from
either the GraphSAGE implementation (Johnson et al., 2018) or PyTorch (Paszke et al., 2019).
We train all models for 10 epochs with batch size of 256, and report the evaluation accuracy from
the epoch with the best validation accuracy.

B ADDITIONAL EXPERIMENT RESULTS

Here, we provide additional experimental results which supplement Section 5.

B.1 COMPARISON OF DIFFERENT THRESHOLDS FOR HASHING-BASED CODING

When we introduce our hashing-based coding method in Section 3.1, we talk about how the choice
of threshold could affect the number of collisions. Specifically, we compare our choice (which
uses the median as the threshold) with the more commonly seen threshold of zero. We demonstrate
that the median threshold has less collisions comparing to the zero threshold with the experiment
presented in Figure 3. Here, we perform additional experiments use metapath2vec node embed-
dings (Dong et al., 2017a). The results for metapath2vec++ are summarized in Figure 5, and
the conclusion is the same: using the median as the threshold for binarization has lower number of
collisions comparing to the zero threshold.

We also perform experiments on GloVe word embeddings. We use the 300 dimension variant
downloaded from the web page created by Pennington et al. (2014b;a). We perform the experiment
under four different bit settings: 20 bits, 24 bits, 28 bits, and 32 bits, and the conclusion agrees with
our finding presented in Figure 3 and Figure 5.
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0 102159number of collisions

24 bits
hashing-zero
hashing-median

0 24535number of collisions

32 bits
hashing-zero
hashing-median

Figure 5: The experiment is performed on metapath2vec++ for 100 times under two differ-
ent bit length settings: 24 bits and 32 bits. The distribution of the 100 outcomes (i.e., number of
collisions) for each method is shown in the figure. The number of collisions is lower for median
threshold comparing to zero threshold.

0 54946number of collisions

20 bits
hashing-zero
hashing-median

0 10401number of collisions

24 bits
hashing-zero
hashing-median

0 1448number of collisions

28 bits
hashing-zero
hashing-median

0 401number of collisions

32 bits
hashing-zero
hashing-median

Figure 6: The experiment is performed for 100 times in four different scenarios with GloVe
embedding: 1) 20 bit code, 2) 24 bit code, 3) 28 bit code, 4) 32 bit code. The distribution of the
100 outcomes (i.e., number of collisions) for each method is shown in the figure. The number of
collisions is lower for median threshold comparing to zero threshold.

B.2 PRE-TRAINED EMBEDDING RECONSTRUCTION

To understand the relationship between the number of compressed entities and the compression
ratio, we construct Table 3 to demonstrate how the compression ratio changes as the number of
compressed entities is increased.

Table 3: Compression ratios for different numbers of compressed entities. The compression ratios
of metapath2vec++ are omitted as the compression ratios are the same as metapath2vec.

# of Entities 5000 10000 25000 50000 100000 200000
GloVe 2.65 5.11 11.60 20.09 31.69 44.55
metapath2vec 1.34 2.57 5.73 9.72 14.91 20.34

Aside from the results presented in Figure 1, we perform additional experiments to compare the
proposed hashing-based coding method with the baseline random coding method under different
settings of c and m while varying the number of compressed entities. The results are presented
in Table 4. The proposed hashing-based coding method almost always performs better than the
baseline random coding method. The performance gap between the two methods increases as the
number of entity compressed by the compression method increases. Because the settings of c and m
also controls the size of the decoder model, c and m affect the compression ratio. Table 5 shows the
compression ratio under different settings of c and m. Generally, settings with a lower compression
ratio have better performance as the potential information loss is less. In the experiments, the bit
size of the binary code is fixed to 128 bits. In other words, both {c = 256,m = 16} and {c =
2,m = 128} uses 128 bit binary codes. The c and m change the compression ratio by changing
the decoder size. When using the {c = 256,m = 16} setting, there will be 4,096 vectors total
stored in 16 codebooks. When using the {c = 2,m = 128} setting, there will be 256 vectors
total stored in 2 codebooks. Because the {c = 256,m = 16} setting has a larger model (i.e.,
lower compression ratio), it usually is the setting that outperformed the other in terms of embedding
quality. To select a suitable setting for {c,m}, we suggest the user compute the potential memory
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usage and compression ratio for different settings of {c,m}, then select the one with the lowest
compression ratio while still meets the memory requirement.

Table 4: Experiment results on pre-trained embeddings with different settings of c and m. We use
random to denote the random coding method (i.e., ALONE), and hashing to denote the proposed
hashing coding method.

Embedding/Task c m Coding Method # of Entities
5000 10000 50000 200000

GloVe (analogy)

2 128 random 0.5783 0.4443 0.0736 0.0048
hashing 0.5798 0.4898 0.3638 0.2878

4 64 random 0.5933 0.4603 0.0952 0.0066
hashing 0.6012 0.4873 0.3204 0.2943

16 32 random 0.6209 0.5359 0.1508 0.0134
hashing 0.6247 0.5001 0.3596 0.2596

256 16 random 0.6708 0.6534 0.4263 0.0837
hashing 0.6683 0.6693 0.4710 0.3138

GloVe (similarity)

2 128 random 0.5435 0.5172 0.3711 0.1056
hashing 0.5442 0.5392 0.5260 0.4110

4 64 random 0.5799 0.5484 0.4298 0.2218
hashing 0.5795 0.5232 0.4837 0.4098

16 32 random 0.5495 0.5814 0.4502 0.1620
hashing 0.5503 0.5302 0.4465 0.4301

256 16 random 0.5743 0.5671 0.5246 0.3613
hashing 0.5744 0.5744 0.5309 0.4346

metapath2vec

2 128
random 0.7730 0.7636 0.7228 0.6026
hashing (pre-trained) 0.7731 0.7650 0.7562 0.7419
hashing (graph) 0.7787 0.7676 0.7468 0.7167

4 64
random 0.7720 0.7690 0.7271 0.6273
hashing (pre-trained) 0.7804 0.7697 0.7511 0.7509
hashing (graph) 0.7769 0.7719 0.7526 0.7167

16 32
random 0.7763 0.7717 0.7366 0.6686
hashing (pre-trained) 0.7757 0.7668 0.7528 0.7403
hashing (graph) 0.7759 0.7786 0.7638 0.7418

256 16
random 0.7790 0.7814 0.7623 0.7263
hashing (pre-trained) 0.7793 0.7767 0.7735 0.7575
hashing (graph) 0.7806 0.7796 0.7601 0.7489

metapath2vec++

2 128
random 0.7549 0.7585 0.7163 0.5799
hashing (pre-trained) 0.7590 0.7567 0.7361 0.7264
hashing (graph) 0.7536 0.7497 0.7335 0.7013

4 64
random 0.7620 0.7480 0.7260 0.6126
hashing (pre-trained) 0.7614 0.7464 0.7380 0.7119
hashing (graph) 0.7593 0.7528 0.7396 0.7025

16 32
random 0.7549 0.7499 0.7151 0.6441
hashing (pre-trained) 0.7648 0.7516 0.7463 0.7312
hashing (graph) 0.7610 0.7561 0.7424 0.7270

256 16
random 0.7628 0.7640 0.7461 0.7055
hashing (pre-trained) 0.7601 0.7664 0.7495 0.7432
hashing (graph) 0.7656 0.7635 0.7471 0.7292

B.3 NODE CLASSIFICATION TASK

In this section, we provide additional results for different hyper-parameter settings (i.e., different
c and m). The results are presented in Table 6. The proposed method outperforms the baseline
random coding method in all tested cases. The effect of c and m is similar to the conclusion draw
from Table 4, and please refer to Appendix B.2 for suggestion on how to select a suitable setting of c
and m for different situations. We also provide the memory cost breakdowns for different datasets.
We need to compute the memory breakdown for different datasets because the number of nodes in
each dataset is different. The breakdowns are shown in Table 7, Table 8, and Table 9. The unit for
memory is megabyte (MB), and the column label “ratio” stands for “compression ratio”.
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Table 5: Compression ratios for different numbers of compressed entities with different settings of
c and m. The compression ratios of metapath2vec++ are omitted as the compression ratios are
the same as metapath2vec.

Embedding c m
# of Entities

5000 10000 50000 200000

GloVe

2 128 2.65 5.11 20.09 44.55
4 64 2.65 5.11 20.09 44.55
16 32 2.15 4.18 17.09 40.60
256 16 0.59 1.18 5.53 18.11

metapath2vec

2 128 1.34 2.57 9.72 20.34
4 64 1.34 2.57 9.72 20.34
16 32 1.05 2.03 8.10 18.42
256 16 0.26 0.52 2.44 7.94

Table 6: The proposed hashing-based coding outperforms the baseline random coding under differ-
ent settings of c and m. The non-compressed is the embedding learning method without compres-
sion. We use random to denote the random coding method (i.e., ALONE), and hashing to denote the
proposed hashing coding method.

Aggregator c m
Coding
Method ogbn-arxiv obgn-mag obgn-products

Mean pool

- - non-compressed 0.6228 0.3192 0.7486

2 128 random 0.2200 0.1402 0.5669
hashing 0.4177 0.3366 0.6678

4 64 random 0.2337 0.0312 0.5694
hashing 0.4233 0.3392 0.6739

16 32 random 0.4375 0.2519 0.6499
hashing 0.5130 0.3292 0.6960

256 16 random 0.6045 0.2989 0.6327
hashing 0.6259 0.3387 0.6414

Max pool

- - non-compressed 0.5884 0.3083 0.7294

2 128 random 0.3802 0.2188 0.5386
hashing 0.4609 0.3138 0.6305

4 64 random 0.3762 0.2299 0.5594
hashing 0.4906 0.3271 0.6381

16 32 random 0.5427 0.2544 0.6047
hashing 0.5845 0.3290 0.6393

256 16 random 0.4407 0.3050 0.6986
hashing 0.6034 0.3283 0.7156

In additional to the more standard mean and max aggregator, we also repeat the experiments
with GraphSage model on a non-standard attention aggregator. For this set of experiments,
we use the following hyper-parameter settings for the decoders: l = 3, dc = dm = 512, and
de = 64. We use validation data to tune the settings of c and m. We use the following hyper-
parameter setting for the GraphSAGE model: number of layers = 2, number of neurons = 128,
activation function = ReLU, and number of neighbors = 15. We use the following hyper-parameter
settings for the AdamW optimizer (Loshchilov & Hutter, 2017): learning rate = 0.01, β1 = 0.9,

Table 7: The memory cost (MB) for models on ogbn-arxiv dataset.

Method CPU GPU CPU+GPU
Binary
Code Decoder Total Decoder or

Embedding GNN Total Ratio Total Ratio

Raw 0.00 0.00 0.00 41.11 1.34 42.45 1.00 42.45 1.00
Hash-Light 2.57 8.00 10.57 1.13 1.34 2.46 17.22 13.03 3.26
Hash-Heavy 2.57 0.00 2.57 9.13 1.34 10.46 4.06 13.03 3.26
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Table 8: The memory cost (MB) for models on ogbn-mag dataset.

Method CPU GPU CPU+GPU
Binary
Code Decoder Total Decoder or

Embedding GNN Total Ratio Total Ratio

Raw 0.00 0.00 0.00 179.63 1.64 181.27 1.00 181.27 1.00
Hash-Light 11.23 8.00 19.23 1.13 1.64 2.77 65.49 21.99 8.24
Hash-Heavy 11.23 0.00 11.23 9.13 1.64 10.77 16.83 21.99 8.24

Table 9: The memory cost (MB) for models on ogbn-products dataset.

Method CPU GPU CPU+GPU
Binary
Code Decoder Total Decoder or

Embedding GNN Total Ratio Total Ratio

Raw 0.00 0.00 0.00 456.79 1.35 458.14 1.00 458.14 1.00
Hash-Light 28.55 8.00 36.55 1.13 1.35 2.47 185.34 39.02 11.74
Hash-Heavy 28.55 0.00 28.55 9.13 1.35 10.47 43.75 39.02 11.74

β2 = 0.999, and weight decay = 0. We train all models for 30 epochs with batch size of 256, and
report the evaluation accuracy from the epoch with the best validation accuracy. The experiment
result is presented in Table 10. The proposed compression method outperforms the ALONE method.

B.4 MORE GNNS AND LINK PREDICTION TASK

We also compare the proposed method with ALONE with other GNNs like Graph
Convolutional Network (i.e., GCN) (Kipf & Welling, 2016), Simplifying Graph
Convolutional Network (i.e., SGC) (Wu et al., 2019), and Graph Isomorphism
Network (i.e., GIN) (Xu et al., 2018). Although the learning process of these GNNs cannot benefit
from the reduced memory provided by both ALONE and the proposed method9, this set of experi-
ment still provides an additional test bed for comparing the two methods similar to the experiment
presented in Section 5.1. We use the following hyper-parameter settings for the decoders: l = 3,
dc = dm = 512, and de = 64. We use validation data to tune the settings of c and m. For
GCN, we use a two layered structure with hidden dimension of 128, self-loop, and skip connec-
tion. For SGC and GIN, we also use a two layered structure with hidden dimension of 128 with
the other hyper parameter set to the default values in the PyG library (Fey & Lenssen, 2019). We
use the following hyper-parameter settings for the AdamW optimizer (Loshchilov & Hutter, 2017):
learning rate = 0.001, β1 = 0.9, β2 = 0.999, and weight decay = 0.00001. We train the network
for 512 epochs.

In additional to the node classification datasets, we also perform experiments on link prediction
datasets (i.e., ogbl-collab and ogbl-ddi) from Open Graph Benchmark (Hu et al., 2020). The experi-
ment result is summarized in Table 11 and it shows the proposed method almost always outperform-
ing the ALONE method.

9GCN cannot benefit from both ALONE and the proposed method because all embeddings need to be decoded
during the learning process at all time unlike the GraphSAGEmodel which only requires decoding embeddings
associated with nodes in the current batch.
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Table 10: The proposed hashing-based coding outperforms the baseline random coding with
GraphSage using non-standard attention aggregator. The non-compressed is the embedding learn-
ing method without compression. We use random to denote the random coding method (i.e.,
ALONE), and hashing to denote the proposed hashing coding method.

Coding
Method ogbn-arxiv obgn-mag obgn-products

raw 0.6063 0.3097 0.7918
random 0.5008 0.2691 0.5981
hashing 0.5662 0.3197 0.6758

Table 11: The proposed hashing-based coding almost always outperforms the baseline random cod-
ing with different GNNs for both node classification and link prediction. The non-compressed is the
embedding learning method without compression. We use random to denote the random coding
method (i.e., ALONE), and hashing to denote the proposed hashing coding method.

task dataset performance
measure

GraphSage (mean)
NC Rand Hash

node
classification

ogbn-arxiv accuracy 0.6228 0.6045 0.6259
ogbn-mag accuracy 0.3192 0.2989 0.3387
ogbn-products accuracy 0.7486 0.6327 0.6414

link
prediction

ogbl-collab hits@50 0.2740 0.1966 0.1956
ogbl-ddi hits@20 0.3277 0.3043 0.3429

task dataset performance
measure

GCN
NC Rand Hash

node
classification

ogbn-arxiv accuracy 0.5251 0.4957 0.5437
ogbn-mag accuracy 0.1815 0.1146 0.3466
ogbn-products accuracy 0.4719 0.3594 0.4914

link
prediction

ogbl-collab hits@50 0.2316 0.1647 0.1898
ogbl-ddi hits@20 0.3697 0.3399 0.3319

task dataset performance
measure

SGC
NC Rand Hash

node
classification

ogbn-arxiv accuracy 0.6690 0.5491 0.5809
ogbn-mag accuracy 0.3523 0.1839 0.3657
ogbn-products accuracy 0.7686 0.3767 0.4966

link
prediction

ogbl-collab hits@50 0.5589 0.4790 0.5116
ogbl-ddi hits@20 0.4841 0.5575 0.5941

task dataset performance
measure

GIN
NC Rand Hash

node
classification

ogbn-arxiv accuracy 0.5546 0.3736 0.5263
ogbn-mag accuracy 0.2728 0.2011 0.3414
ogbn-products accuracy 0.6423 0.4396 0.5706

link
prediction

ogbl-collab hits@50 0.2614 0.2086 0.2475
ogbl-ddi hits@20 0.3216 0.3536 0.3876
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