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Abstract—Generalizing control policies to novel embodiments
remains a fundamental challenge in enabling scalable and trans-
ferable learning in robotics. While prior works have explored this
in locomotion, a systematic study in the context of manipulation
tasks remains limited, partly due to the lack of standard-
ized benchmarks. In this paper, we introduce a benchmark
for learning cross-embodiment manipulation, focusing on two
foundational tasks—reach and push—across a diverse range of
morphologies. The benchmark is designed to test generalization
along three axes: interpolation (testing performance within a
robot category that shares the same link structure), extrapo-
lation (testing on a robot with a different link structure), and
composition (testing on combinations of link structures). On the
benchmark, we evaluate the ability of different RL policies to
learn from multiple morphologies and to generalize to novel ones.
Our study aims to answer whether morphology-aware training
can outperform single-embodiment baselines, whether zero-shot
generalization to unseen morphologies is feasible, and how consis-
tently these patterns hold across different generalization regimes.
The results highlight the current limitations of multi-embodiment
learning and provide insights into how architectural and training
design choices influence policy generalization. Project page:
https://princeton-vl.github.io/anybody.

I. INTRODUCTION

Generalizing control policies across diverse embodiments
is a fundamental challenge in robotics, with broader impli-
cations for building agents that exhibit general intelligence.
Humans naturally exhibit this ability—we can easily infer
how to operate tools and machines of various shapes and
functionalities, from robotic arms and mobile manipulators
to coffee machines, cars, and arcade claw machines. This
capacity to reason over varied action spaces and control diverse
embodiments is a key aspect of general intelligence.

Alongside its role in general intelligence, cross-embodiment
learning has practical benefits in terms of scalability and
transferability. It allows scaling up robot training by lever-
aging large-scale, heterogeneous datasets (e.g., Open-X et. al.
[7], DROID et. al. [8]) to enable deployment across different
lab environments or robotic platforms without the need for
extensive retraining.

Despite these advantages, a central factor in cross-
embodiment learning—robot morphology—is often over-
looked. In many large-scale training setups, explicit morphol-
ogy information is excluded from the inputs, leaving open
questions about the potential benefits. In particular, incorpo-
rating morphology could enable zero-shot generalization to
unseen embodiments as in Gupta et al. [11], Patel and Song
[23], Yang et al. [35], offering an alternative to the common

reliance on fine-tuning (Kim et al. [19], Team et al. [31]).
While several works explore morphology-aware approaches,
such as Chen et al. [5], Patel and Song [23], Hu et al. [16],
their evaluations are often tailored to the specific methods, or
focus specifically on locomotion (Gupta et al. [11], Sferrazza
et al. [28], Kurin et al. [20], Wang et al. [33]). The absence
of standardized evaluations makes it difficult to measure
progress and compare cross-embodiment learning methods in
manipulation.

Evaluation setups in existing methods often involve only a
limited number of robots (7 in Chen et al. [5], and 4 in Hu et al.
[16], Yang et al. [34]) and typically focus on morphologies
with similar affordances, such as variations of robotic arms or
multi-fingered hands Patel and Song [23]. To enable more rig-
orous evaluation of cross-embodiment learning, a benchmark
should (a) include a broad range of robot morphologies with
clearly defined train and test splits, and (b) reflect the core
challenge of reasoning about morphology and the affordances
it enables.

To address this need, we introduce AnyBody, a suite of sim-
ulated environments designed to evaluate policy generalization
across diverse robot morphologies. The benchmark focuses
on two core manipulation tasks— reach and push—which
have been widely used in prior works of Chen et al. [5], Hu
et al. [16], Yu et al. [36]. We find that these tasks are
challenging and well-suited for assessing the generalization
we aim to study.

AnyBody includes both simple and complex robots that cap-
ture a wide range of morphological diversity and affordances
(Figure 1). Simple robots test a model’s ability to learn basic
capabilities, while complex robots assess its ability to handle
richer, multi-joint control like reaching. This range ensures
methods can generalize across affordances and scale with
morphological complexity, while avoiding bias toward high-
DOF arms by including minimal, abstract morphologies that
challenge agents to reason from first principles.

Framed as a multi-task learning problem, the benchmark
evaluates a method’s ability to learn from multi-embodiment
data and generalize to novel morphologies. It tests gener-
alization along three axes: interpolation, extrapolation, and
composition (see Figure 2). In the interpolation setting, agents
are trained and tested on robots within the same category, but
with geometrical variations. In the extrapolation setting, agents
are trained on multiple robot categories and evaluated on a
robot with a different link structure. Finally, in the composition
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Fig. 1: We introduce AnyBody, a benchmark suite for evaluating policy generalization across diverse robot morphologies. It
consists of 18 robot variations: 8 procedurally generated robot categories and 10 based on real-world robots. The benchmark
tasks comprise two manipulation tasks —reach and push— two scene variations (with and without obstacles), and two input
types—state-based and point cloud-based.

Fig. 2: Three categories of benchmark tasks. We aim to test the
zero-shot generalization ability of a multi-embodiment policy
π(s) on unseen morphologies.

setting, the test morphology is composed of components seen
during training but assembled in a new configuration. This
setting tests whether agents can reason about the functionality
of individual parts and combine them to infer the behavior
of the whole robot—a key aspect of general intelligence. The
composition setting, in particular, is underexplored and intro-
duces a new dimension for evaluating policy generalization.

On these benchmark tasks, our evaluations with
RL agents aim to investigate several critical aspects:
whether morphology-aware training can outperform
single-embodiment baselines, the feasibility of zero-shot
generalization to unseen morphologies, and how these
patterns hold across different generalization regimes. The
study highlights key challenges in multi-embodiment learning
and offers insights into how architectural and training design
choices affect policy generalization.

Our key results confirm that the benchmark includes tasks
of varying difficulty, enabling fine-grained analysis of cross-
embodiment generalization along the morphology axis. Fur-
ther, we show that while in-distribution generalization is feasi-
ble, zero-shot generalization in extrapolation and composition
settings remains challenging.

In summary, our key contributions are:

1) We introduce AnyBody, a benchmark for evaluating the
generalizability of robotic manipulation policies to novel
embodiments. With the benchmark, we provide an open-
source codebase that extends IsaacSim with multi-task
training capabilities—a feature not currently supported
by the IsaacLab wrapper Mittal et al. [22].

2) We present a systematic evaluation of RL agents on
this benchmark, identifying key challenges and effective
design choices for multi-embodiment learning.

II. RELATED WORKS

Cross-Embodiment Datasets. Large-scale cross-embodiment
datasets, such as et. al. [7, 8], contain data collected across
various embodiments. Several works et. al. [7], Bjorck et al.
[1], Black et al. [2], Kim et al. [18], Team et al. [31]
have trained large-scale vision-language-action models on
these cross-embodiment datasets, achieving impressive few-
shot and even zero-shot performance on unseen embodiments.
However, since the evaluation robots are typically included
in the pretraining datasets, it becomes difficult to assess the
models’ true generalization capabilities. In addition, methods
such as Yang et al. [35], Bousmalis et al. [3], Reed et al. [24],
trained on a diverse range of robots, often introduce perception
challenges. Our benchmark aims to address these limitations



TABLE I: Benchmark tasks across three categories.

Benchmark Tasks Train Environments Test Environment

Interpolation Arm-3 Arm-3 (10 parametric variations) Arm3 (unseen)
Panda Panda (10 parametric variations) Panda

Composition EE Arm Prims-plane, Prims-Cylinder, UR5-Planar, UR5-Ez,
UR5-Sawyer

UR5-Stick

EE-Task Prims-Plane (push), UR5-Stick (reach) UR5-Planar (push)

Extrapolation Primitives Stick, NLink, Prims Chain
Robot Arms UR5-stick, UR5-Ez, Panda, Kinova, Jaco, XArm,

LWR, Yumi, Arm5
WidowX

and systematically test agents’ ability to generalize to different
morphologies.

Simulation Benchmarks. The robotics community has de-
veloped several simulation benchmarks, ranging from simple
manipulation skills–Gu et al. [9], Ehsani et al. [6], James et al.
[17], Zhu et al. [39], Yu et al. [36], Heo et al. [14], Han et al.
[13]–to complex, long-horizon tasks Li et al. [21], Srivastava
et al. [29], Szot et al. [30], and even humanoid robots Sferrazza
et al. [27]. However, these benchmarks typically focus on a
limited set of robots with minimal variation in morphology
Zhu et al. [39], and often aim to study general skill learning.
In contrast, our benchmark focuses on learning skills across a
range of robot morphologies. Gupta et al. [10] has been used
in morphology-aware learning, leading to works such as Gupta
et al. [11], Sferrazza et al. [28]; however, it is specifically for
evaluating locomotion ability of agents, while we focus on
learning manipulation skills.

Morphology-aware Learning. Several works, such as Gupta
et al. [11], Kurin et al. [20], Wang et al. [33], Hong et al.
[15], Zhang et al. [38], study morphology-aware learning
and typically use a multitask learning framework to train
universal policies. We adopt a similar approach but focus on
manipulation tasks. Research works Patel and Song [23], Chen
et al. [5], Hu et al. [16], Yang et al. [34] also use morphology
information to learn manipulation from multi-embodiment
data. However, their evaluations involve only a limited set of
robot variations. In contrast, our benchmark consists of diverse
robots and systematically tests cross-embodiment generaliza-
tion across three axes of morphology variations.

III. BENCHMARK

AnyBody aims to evaluate methods on their ability
to perform manipulation tasks across a wide range of
robot morphologies, and to test their generalization abil-
ity to unseen morphologies. We focus on two fundamen-
tal tasks—reach and push—which capture both spatial
understanding and physical interaction, and are common in
prior works Chen et al. [5], Hu et al. [16], Yu et al. [36].
Broadly, reach involves controlling a robot’s joints to move
its end-effector to a randomly designated target position. The
push task involves controlling the robot’s joints to move a
block from left to right.

We next describe the different benchmark tasks and the prob-

lem formulation for evaluating multi-embodiment learning.

A. Design

Our benchmark design aims to capture:
1) A diverse set of robot morphologies, capturing a range of

structural and functional variations.
2) Allow testing generalization on three regimes: interpo-

lation, composition, and extrapolation– each of which
provides a different difficulty level to benchmark models.

Figure 1 illustrates the different robot categories and task
configurations. Table I summarizes the different benchmark
tasks in AnyBody. Below, we describe each of these tasks in
more detail.

1. Interpolation: Generalization Within a Morphology
Category. This setting tests whether agents can generalize to
new morphologies that share the same morphological structure
as the training robots but differ in geometry. We evaluate both
reach and push in this category.

• Arm3: A 3-DOF arm with varying link lengths and
widths generated procedurally. The test is a held-out
morphological variation of Arm3.

• Panda: Modified versions of the Franka Panda arm with
scaled link dimensions. We use the original Franka arm
for testing.

2. Composition: Generalization via Recombination of
Known Components. This setting tests whether agents can
reason about individual robot components and generalize to
new combinations, signifying a compositional understanding
of morphology.

• EE-Arms: Train robots consist of standard arms and
various end-effectors (e.g., gripper, stick, plane). The test
robot combines an arm with a novel end-effector from
the train set, but unseen as a whole.

• EE-Task Transfer: A more challenging multi-
embodiment, multi-task setup. Agents are trained on
prims-plane for push and ur5-stick for reach. At
test time, the robot is ur5-plane, requiring the agent
to combine the pushing ability of the plane with the
control capabilities of the UR5.

3. Extrapolation: Generalization Across Morphology Cat-
egories. This setting evaluates whether agents trained on mul-
tiple morphology variations (possibly different link structures)
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Fig. 3: Cosine similarity of test morphologies with those in
the train set.

can generalize to a novel robot structure. Both reach and
push are used to evaluate this category.

• Primitives: Consists of simplified morphologies—such
as stick, n-link, and prims—used during training. The test
robot, chain, is structurally more complex, combining
elements of the training robots (e.g., chain-like structure
similar to n-link robots, and joint structure of stick, and
built from spherical primitives geometry).

• Robot Arms: Includes several arms from the real world
with differing link structures and joint types. The test
robot is another real-world arm with a previously unseen
configuration.

Cosine similarity. Figure 3 showcases the cosine similarity
cos(vtest, vtrain) where vtest and vtrain are the vector rep-
resentations (discussed in next section) of the test and train
morphologies, respectively. From the cosine similarities, we
can observe that in the interpolation category, the test robot is
closer to the train robots (and within the two interpolations,
one is slightly harder than the other). For composition, some
of the train robots have high similarity with the test robot, and
for extrapolation, we observe that the test robot is farther from
the train robots.

B. Modeling

Following prior works Gupta et al. [11], Chen et al.
[5], Kurin et al. [20], we model the different robotic en-
vironments as sets of infinite horizon, discounted Markov
Decision Processes (MDPs) M = {M1,M2, · · · ,Mn} where
Mi represents the MDP for the i-th robot. Each MDP Mi is
defined as Mi = (Si, Ai, Ri, Ti, H, γ), where Si is the state
space, Ai the action space, Ti the transition dynamics, and
Ri the reward function for the i-th robot. The horizon H and
discount factor γ are shared across all MDPs. We aim to train
a policy π that produces actions at = π(st) where st is the
observation at time step t.

State Space. The full observation at time t, denoted as st, can
be expressed as:

st = [(sr)t, (oe)t,gr]

where: (sr)t represents the robot’s state at time t, and (oe)t
represents the environment observation at time t. We allow
for both state-based and point cloud-based representations oe

for environment objects (excluding the robot). For reach, a

Fig. 4: Robot morphology is represented by a sequence of
links. We approximate the link geometries by the shape
parameters of a fitted primitive.

goal token gr is appended to the input sequence alongside the
robot and environment states. This token is not used in push.

Robot state. The robot state is represented as a sequence of
links, starting from the base link (L0) and followed by the sub-
sequent robot links (Li). The state of each link i is described
by its geometry information, the joint information (with which
the link is attached to its parent), and the corresponding joint
value qi (see Figure 4). This can be expressed as:

sr = [L0,L1, . . . ,Ln]

Action Space. We use joint-space control as the action space,
where the policy outputs joint position changes ∆q. Control
interfaces such as, end-effector control Yang et al. [34] or
unified action spaces Yang et al. [35], are restrictive:(a) such
a control interface ignores the collisions that may happen with
the environment and robot body, (b) the end-effector link may
not be the only link capable of causing good interaction with
objects. An agent predicts ∆q for all joints (including fixed
joints), and we apply an action mask to select values for
movable links only.

Environment. For each of the benchmark tasks, the environ-
ments can optionally contain obstacles, which allows us to
increase the difficulty of the task along the skill learning axis
(learning a skill becomes harder in the presence of obstacles).
For experiments, we only consider the obstacles variation for
the Arm3 benchmark task. It is worth noting that the codebase
is modular, allowing for the study of any combination of
train-test robots, with or without obstacles, and the choice of
observation space.

See Appendix II for details on state space, rewards, and
termination conditions.

IV. BASELINES

Setup We evaluate RL agents on our benchmark suite,
trained using the Isaac-Sim simulator. Agents are trained with
morphology-conditioned PPO Schulman et al. [25] (and also
goal-conditioned for reach), aiming to maximize the average
return across all training environments. We found PPO to
be performing considerably better than other RL algorithms
of SAC and TRPO (likely due to its lower sensitivity to



hyperparameter tuning). For each robot morphology, the return
is the discounted sum of rewards, Ri =

∑H
t=0 γ

tr
(i)
t , where

r
(i)
t is the reward at time t for robot i.

Morphology-aware training. We focus on two agent cate-
gories: single-embodiment (SE) and multi-embodiment (ME).
SE agents are trained separately for each morphology using
a dedicated actor-critic network. While they can’t generalize
to unseen morphologies, they serve as references to gauge the
performance of ME agents. ME agents, in contrast, use a single
actor-critic network trained across all training morphologies,
enabling potential generalization. They collect experience
from all train morphologies and compute combined policy
and value loss for clipped updates, optimizing the average
joint returns. To avoid any single morphology dominating the
objective due to reward scale differences, we also experiment
with task reweighting.

Policy architecture. We evaluate two ME agent variations:
MLP and Transformer Vaswani et al. [32]. In both cases,
each robot link and environment object is projected to a d-
dimensional feature space. For the MLP, we flatten these fea-
tures and output an action vector of size equal to the maximum
number of links across embodiments. For the Transformer,
we input the d-dimensional tokens, along with an observation
mask (to ignore unavailable links), to the encoder. The encoder
processes the sequence and outputs a feature vector for each
link, which is then projected into scalar action values. These
designs follow prior work Gupta et al. [11], and we refer to
them as ME-MLP and ME-Tf.

A. Training Considerations
While many areas remain open for improvement—such

as extracting real robot link features or balancing learning
across embodiments—we focus on two key challenges in the
learning pipeline: improving training stability and addressing
manipulation-specific needs.

Symlog and critic updates. For tasks such as reach, the
reward may depend on the end-effector’s distance to the
goal, the distribution of which varies across morphologies.
Additionally, rewards increase sharply when the agent EE
stays at the goal, causing reward scales to shift during training
and destabilize critic learning. To address this, we adopt the
symlog transformation from DreamerV3 Hafner et al. [12],
to predict symlog of returns, and use its inverse (symexp) to
compute target critic values. To further stabilize critic learning,
we also experiment with slow critic updates, by doing an
exponential moving average of weights.

Discrete vs continuous actions. Training agents with contin-
uous action outputs often leads to jittery motion and slower
convergence. While reward engineering can help mitigate
jitter, it is generally expensive and morphology dependent.
Since we predict ∆q, we use discrete actions that simplify
learning zero outputs. This also aligns with prior works that
train on cross-embodiment data and discretize the action space
Kim et al. [18], Brohan et al. [4]. The discrete variant of agents

predicts logits over exponentially spaced bins around zero.

V. EXPERIMENTS

We design experiments to answer the following ques-
tions: (1) Can morphology-aware training outperform single-
embodiment baselines? (2) Is zero-shot generalization to un-
seen morphologies feasible? (3) How do these trends vary
across different tasks? and (4) How significantly do policy
architectures and learning choices affect these outcomes? And
finally, we examine the broader implications of our findings.

A. Experiment Setup

RL Agents. We train RL agents for both multi-embodiment
(ME) and single-embodiment (SE) environments. In all ex-
periments, we keep the same model size and training hy-
perparameters. For reach, we use the discrete version of
the Transformer architecture. For push, we use the default
continuous version. We train all agents for at most 1M steps
and report the best performance during training. See Appendix
III for further details on RL training.

Evaluation. For reach, the score is the average end-effector-
to-goal (EE-goal) reward over 10k evaluation steps, relative to
a random agent. The EE-goal reward penalizes distance from
the goal and rewards proximity. For push, the score is the
push success rate: the proportion of episodes where the agent
successfully pushes a block to the correct side, averaged over
10k evaluation steps. Please refer to the appendix for more
details. We report Multi-task Score (MT), i.e., average score
of all training morphologies, and Zero-shot Score (ZS), i.e.,
average score of unseen testing morphologies. The MT score
reflects an agent’s ability to optimize the learning objective,
while the ZS score tests its generalization capability.

B. Results

Q1. Can morphology-aware ME training outperform the
SE baseline? We focus on multi-task (MT) scores (Figure
5) and observe that ME agents achieve comparable, or out-
perform, SE agents in most cases (except Panda and Arms
experiments). When using the same backbone, the perfor-
mance gain is small for interpolation. In others, ME performs
worse. However, the Transformer-based ME agent consistently
outperforms SE agents by a large margin in nearly all tasks.

We believe that ME training provides a regularizing effect,
leading to more stable learning and reducing the chance of
convergence to poor local minima. This can be seen in Figure
6 Panda-push task, where ME agents show smoother learning
curves. It is to note that unlike large-scale foundation model
works that rely on extensive pretraining datasets, our setup
controls for total environment interaction, isolating the impact
of morphological diversity.

Q2. Can multi-robot training lead to better ZS generaliza-
tion than training on a single robot? Figure 7 shows that ME
agents can outperform SE agents in zero-shot generalization,
for Arm3 interpolation tasks, but have low success rates for
the others.
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Fig. 5: MT score for (a) reach, and (b) push. The agents
are: Single-Embodiment MLP Transformer

Fig. 6: Panda-push RL training with curriculum.

Current transformer-based agents used for morphology-
aware learning lag far behind single-embodiment baselines on
extrapolation and composition tasks, even when trained with
∼100M interactions. For instance, in the Arms-push task,
ME agents essentially fail with 0% success rate. These results
highlight the challenge of zero-shot generalization.
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Fig. 7: ZS score for (a) reach, and (b) push. The agents
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Agent Avg MT ZS

Rand 0.0 0.0
Individual 33.36 25.63

Mlp 32.79 24.34
Tf 8.83 12.26
Tf + Sl 32.84 23.97
Tf + Sl + Dis 64.15 61.91
Tf + Sl + Dis + TRW 55.27 52.22

TABLE II: Ablation study for reach in Arm3 interpolation
environment. Mlp: MLP, Tf: transformer backbone, Sl: symlog
returns, Dis: discrete actions, TRW: task re-weighting

Fig. 8: Ablation: Train curves for different variations. A
discrete action space leads to faster convergence.

Q3. How does agent performance compare across different
tasks and benchmark categories? Results highlight that
Arm3 is a simple environment, with multi-embodiment agents
achieving high MT and ZS scores. In the same category, Panda
represents a more challenging task for both reach and push,
due to a more complex link structure. Composition tasks
are harder than interpolation, with large performance gaps
between SE and ME agents. Within composition, we observe
that EE-Arm is more challenging than EE-task, because of
the added inter-task complexity. In the extrapolation category,
Prims is an easier task than Arms, though still challenging for
push; and Arms is the most challenging for both reach and
push.

Across the manipulation tasks, reach is easier with simple
morphologies (as higher complexity makes joint control chal-
lenging for precise goal reaching), while push tasks seem less
affected by complexity. Specifically, EE-Arm struggles with
reach but performs well in push, while Prims shows the
opposite behavior.

Q4. How does architecture and policy design impact
performance? Table II shows that learning symlog of returns
and using slow critic updates greatly benefits the ME-Tf agent,
resulting in 4x and 2x performance for MT and ZS metrics,
respectively. Additionally, training in a discrete action space is
advantageous for the reach task, where precise goal-reaching
is essential, leading to faster convergence (Figure 8).

While random task re-weighting isn’t necessary for tasks
like Arm3, we retain it to handle significant reward varia-
tions in other tasks, to prevent any single morphology from



dominating the objective. Finally, the results for the Arm3
task demonstrate that combining both Symlog and Discrete
variation is crucial for ME-Tf agent to outperform SE agents.

C. Discussion

The experiments highlight a key challenge: while Trans-
former agents match single-embodiment baselines in multi-
task performance, they struggle with zero-shot generalization,
especially in extrapolation and composition tasks. This indi-
cates that optimizing for multi-embodiment performance alone
cannot achieve strong generalization to out-of-distribution
(OOD) morphologies. Consequently, as new robots with di-
verse morphologies enter the market, foundation models may
struggle to adapt effectively. Our experiments demonstrate that
simple multi-embodiment training fails to provide the crucial
ability for agents to reason over morphologies and adapt to
unseen robots. Further, the requirements for effective fine-
tuning remain unclear.

In our fine-tuning experiments on test morphologies (see
Appendix IV), we tested both 10k and 30k interaction steps.
While fine-tuning shows significant improvements over train-
ing from scratch, even 30k steps of fine-tuning falls short
compared to single-embodiment learning. This highlights the
need for better multi-embodiment learning methods. Future
research in this area should explore different policy architec-
tures, better morphology representations, and applications of
multi-task learning approaches to multi-embodiment learning
(see Appendix V for further discussion).

VI. CONCLUSION

We propose AnyBody, a benchmark suite for evaluat-
ing morphology generalization across three key axes: in-
terpolation, extrapolation, and composition. Our experiments
on multi-embodiment RL agents show that while multi-
embodiment training improves in-distribution performance, it
struggles with zero-shot generalization to novel morphology
structures. Our experiments also demonstrate the importance
of design choices like action space representation and learning
stability techniques in achieving good performance. This work
opens possibilities for future research to build robotic systems
capable of true morphological generalization.

LIMITATIONS

First, we have focused on controlling and understanding the
use of diverse embodiments in this paper, and have chosen
to largely ignore the visual variation in benchmark tasks.
However, the use of visual variations, and RGB inputs is a
common setting of works in robotic manipulation, including
methods such as Hu et al. [16], or Yuan et al. [37]. We consider
these types of methods as complementary to our benchmark,
as they focus on how to align vision inputs, while we assume
that we have already separated embodiment from environment
information. Further, training policies without visual inputs is
faster and less compute intensive, and almost complementary
to advances in computer vision.

Second, while we aim to bring RL benchmarks close to
real robot tasks, our tasks are still quite simple and basic.
Our ongoing work aims to add more tasks to the benchmark:
articulate object manipulation, including doors, drawers, and
knobs.

Finally, training RL policies for the different variations and
different benchmark tasks requires a pretty significant GPU
training. We hope that future methods can focus on efficient
adaptation methods to improve learning.
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APPENDIX

I. BENCHMARK DETAILS

A. Benchmark Tasks

Table III shows the statistics for train morphologies in the
benchmark tasks. The number of movable joints (till EE) is
more relevant for reach, where we are controlling to make
EE reach the goal, and does not aim to control joints beyond
EE, for example, finger joints.

B. Manipulation Tasks

a) reach task: In reach environments, the objective is
to move the EE to a given goal position by controlling the
joint positions while avoiding obstacles. For each benchmark
task, we generate 100 end-effector goals per robot by randomly
sampling joint positions that result in non-colliding configura-
tions and computing the corresponding EE pose. At the start
of each episode during training, a goal is uniformly selected
from the pre-generated EE poses.

b) push task: The block starts at a position with y <
−15.0cm and must be pushed towards the positive side of the
y-axis until its center crosses y = 20cm.

II. ENVIRONMENT MODELING

A. State space

a) Robot State: Each link in the robot state is represented
by a 48-dimensional vector, with its components detailed in
Table IV.

b) Link Geometry: For artificial robots, the geometry is
directly encoded as they are made of primitive shapes. For
real robots, we use the Trimesh library to obtain the best-fit
box, sphere, and cylinder, selecting the one with the lowest fit
error (volume overlap).

B. Reward

The total reward for reach is computed as a weighted sum
of four components:

R = w1rjoint-limits + w2rjoint-acc + w3ree-goal + w4rvicinity,

where wi are scalar weights corresponding to each reward
term. These reward terms are detailed in Table V.

The total reward for push is a weighted sum of three
components:

R = w1rjoint-limits + w2robj-dist + w3rtermination,

where wi are scalar weights for each reward term. The reward
terms are described in Table VI.

https://openreview.net/forum?id=jart4nhCQr


TABLE III: Statistics about benchmark tasks.

Benchmark Tasks Avg # links Avg # movable joints # movable joints (till EE) Cosine similarity

Interpolation Arm-3 10 9 4 0.80
Panda 11 9 7 0.76

Composition EE Arm 8.5 5.9 5.6 0.47
EE-Task 7.75 5.25 - 0.49

Extrapolation Primitives 6.60 4.60 4.60 0.45
Robot Arms 14.70 8.5 6.6 0.42

TABLE IV: Each link is encoded as a 48-dimensional vector, capturing information about the link, its joint, and joint value.

Link Information Dimension Description

Link Index 1 Index of the given link.
Parent Index 1 Index of the parent link.
EE flag 4 One-hot encoded indicator for whether the link is an end-effector

(repeated 4x).
Geometry type 6 One-hot encoding of the shape type (3 dimensions for different types)

& 3 dimensions for shape parameters along the [x, y, z] axes.
Link origin 7 3D position [x, y, z] and orientation as a quaternion.

Joint axis 3 Unit vector representing the axis of rotation or translation of the joint.
Joint origin 7 3D position [x, y, z] and orientation as a quaternion.
Joint type 3 One-hot encoded vector indicating the type of joint: [prismatic, revo-

lute, fixed].

Joint pos (q) 16 Sinusoidal encoding of the joint value q.

Total 48 -

C. Termination Criterion

Termination conditions vary depending on the task:
• Reach task: We use a fixed time horizon. If the EE

reaches the goal early, this ensures it remains at the
target position, encouraging stable and precise control
rather than briefly touching the target.

• Push task: Early termination is enabled, the episode
ends as soon as the object crosses the goal-side bound-
ary. This signals successful task completion and avoids
unnecessary steps afterward.

The different termination criteria represent the fact that
success detection is straightforward in the push task, allowing
the robot to stop immediately once the goal is reached. In
contrast, for the reach task, even if the end-effector reaches
the goal accurately, the robot often retains residual velocity,
making it difficult to stop instantly.

III. EXPERIMENT SETUP

a) PPO Agent.: We implement a wrapper around the
SKRL implementation by Serrano-Muñoz et al. [26] to en-
able agents to work in our multi-morphology setting. During
training, we spawn 1280 parallel environments in Isaac-sim,
equally divided across the morphologies being trained. For
example, when training multi-embodiment baselines with 10
morphologies, each morphology has 128 parallel environ-
ments. For single-embodiment training, all 1280 environments
belong to the same morphology. This ensures a consistent
number of interactions across all baselines. We perform 128
rollout steps before each update, followed by four learning

epochs with 16 mini-batches. The PPO clip ratio is set to 0.2,
and the agent optimizes the average discounted return with
γ = 0.99.

b) Curriculum.: The push environment has sparser re-
wards compared to the reach environment. This is because,
often, the robot swings freely without receiving strong feed-
back for solving the task. When it does interact with the block,
it may push the block in the opposite direction, hindering
learning. To simplify learning across multiple morphologies,
we apply a curriculum to the push task by gradually increas-
ing the goal’s y-value threshold.

c) Compute: We train all policies on single GPUs (a
mix of 3090s and L40s). For 1M steps, MLP policies take
approximately 1 day to train, while Transformer policies take
around 4 days.

d) Evaluation.: For the reach task, the score is the av-
erage task reward over 10k evaluation steps. The task reward,
rtask, is defined as the sum of the EE-to-goal distance penalty
ree-goal and the vicinity reward rvicinity). The final reported score
for reach in a given morphology is relative to a random
agent: R = ragent, task − rrand, task. For the push task, the
reported score is the success rate–the proportion of episodes
where the agent successfully pushes a block to the correct
side, averaged over 10k evaluation steps.

IV. FINE-TUNING RESULTS

Figure 9 and 10 show the results, including the fine-
tuning performance (fine-tuning for 10k steps, each ME agent).
We observe that for Arm3 benchmark tasks, the zero-shot



TABLE V: Reward terms for reach task.

Reward Term Expression

rjoint-limits rjoint-limits = −max(0, q − qupper, qlower − q)

This term penalizes the robot’s joint positions q if they violate predefined soft
upper (qupper) or lower (qlower) limits. The penalty increases with the extent of
the violation.

rjoint-acc rjoint-acc = −q̈

This term discourages high joint accelerations q̈, promoting smoother and
more energy-efficient movements.

ree-goal ree-goal = −dist(EE, goal)

This term provides a continuous reward inversely proportional to the Euclidean
distance between the robot’s EE and the target goal position. Minimizing this
distance maximizes the reward.

rvicinity rvicinity =

{
1.0, if dist(EE, goal) < threshold
0, otherwise

This term offers a discrete, positive reward of 1.0 when the end-effector is
within a specified distance threshold of the goal. It encourages the robot to
reach the close vicinity of the target.

TABLE VI: Reward terms for push task.

Reward Term Expression

rjoint-limits rjoint-limits = −max(0, q − qupper, qlower − q)

same as reach

robj-dist robj-dist = −dist(object, goal)

This term provides a continuous reward that is inversely proportional to
the Euclidean distance between the manipulated object and the target goal
position. Minimizing this distance maximizes the reward.

rtermination rtermination =

{
1.0, if dist(object, goal) < threshold
0, otherwise

This term offers a one-time, positive reward of 1.0 if the distance between
the manipulated object and the goal position falls below a specified threshold,
signaling the successful completion of the task. Otherwise, the reward is 0.

performance of ME agents already surpasses the SE perfor-
mance, and fine-tuning isn’t necessarily needed. However, in
high-dimensional scenarios, fine-tuning does lead to further
improvements.

In more complex robot scenarios, fine-tuning is particularly
beneficial, though the improvements still remain relatively
small in many cases. For reach tasks—such as Panda (In-
terpolation), EE-Arm (Composition), and Arms (Extrapola-
tion)—we also tested fine-tuning for 30,000 steps to better
understand how performance changes with the number of fine-
tuning steps. The trend is shown in Figure 11. While fine-
tuning proves to be much more efficient than training from
scratch, suggesting that multi-embodiment training helps the
model learn more general control, a significant performance
gap remains even after 30k steps of fine-tuning. This indicates
that the approach of learning morphology-conditioned policies
has not yet fully achieved its goal of being able to control any
body.

Note that the performance of agents saturates in the Arm3
environments. These environments are designed to be simple,

both to test models on simpler morphologies and to allow a
faster train-test cycle. And while the performance of Arm3
agents converges quickly, the rate of convergence may still
vary significantly, as shown in Figure 8 of the main paper. On
the other hand, tasks with complex robots highlight the room
for improvement in multi-embodiment learning methods.

V. FUTURE DIRECTIONS

Future works can focus on the following areas to improve
agent learning.

Different Policy Architectures. Our baseline architectures
are generic architectures of an MLP and a transformer. How-
ever, it is possible to develop specialized architectures that
process morphologies in meaningful chunks. Transformers
treat each token independently, while MLP concatenates all
tokens together. Specialized architectures could break down
the morphology into smaller, more relevant sub-units, which
might lead to better learning and performance, rather than
treating the entire morphology as a single unit.
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Different Morphology Representation. We currently approx-
imate link geometries in real robots using basic primitive
shape parameters. This approximation might limit the model’s
performance. A more accurate representation of morphology
could improve the model’s effectiveness.

Efficient Morphology-Aware Training. Our current multi-
task objective treats all morphologies equally. However, this
approach might not provide the most valuable or optimal
information for learning, slowing down the model’s learning.
Instead, the model should learn to weigh morphologies that
are more informative, possibly improving training efficiency
and reducing computational costs in reinforcement learning.

Cross-Embodiment and Multi-Task The problem of general-
izing to unseen morphologies is addressed using a multi-task
objective. It would be interesting to explore whether multi-
task learning methods could directly benefit multi-embodiment
learning as well.
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