
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LARGE LANGUAGE MODEL COMPRESSION WITH
GLOBAL RANK AND SPARSITY OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Low-rank and sparse composite approximation is a natural idea to compress Large
Language Models (LLMs). However, such an idea faces two primary challenges
that adversely affect the performance of existing methods. The first challenge
relates to the interaction and cooperation between low-rank and sparse matrices,
while the second involves determining weight allocation across different layers,
as redundancy varies considerably among them. To address these challenges, we
propose a novel two-stage LLM compression method with the capability of global
rank and sparsity optimization. It is noteworthy that the overall optimization space
is vast, making comprehensive optimization computationally prohibitive. There-
fore, to reduce the optimization space, our first stage utilizes robust principal com-
ponent analysis to decompose the weight matrices of LLMs into low-rank and
sparse components, which span the low dimensional and sparse spaces containing
the resultant low-rank and sparse matrices, respectively. In the second stage, we
propose a probabilistic global optimization technique to jointly identify the low-
rank and sparse structures within the above two spaces. The appealing feature of
our approach is its ability to automatically detect the redundancy across different
layers and to manage the interaction between the sparse and low-rank components.
Extensive experimental results indicate that our method significantly surpasses
state-of-the-art techniques for sparsification and composite approximation.

1 INTRODUCTION

Transformer-based large language models (LLMs) (Vaswani et al., 2023; Touvron et al., 2023b;
OpenAI et al., 2024) have achieved remarkable progress across natural language processing (NLP),
computer vision, and scientific applications. Despite these successes, their massive parameter sizes
pose critical challenges: they demand huge storage and memory footprints, incur slow inference
speeds, and require substantial computational resources for training. Consequently, model com-
pression (Cheng et al., 2020; Wang et al., 2024a; Zhu et al., 2024) has become an essential line of
research for enabling real-world LLM deployment under stringent hardware constraints.

Among compression strategies, quantization (Han et al., 2015; Chee et al., 2023; Kuzmin et al.,
2023) typically retains overall model structure by reducing the precision of weights, thus often pre-
serving performance. By contrast, pruning (Liu et al., 2017; Frankle & Carbin, 2019; Sun et al.,
2024; Frantar & Alistarh, 2023) removes individual weights based on certain criteria (e.g., magni-
tude or importance scores). Although pruning is flexible and can yield substantial parameter savings,
it may degrade performance unless combined with additional fine-tuning or distillation (Sanh et al.,
2020), especially in large-scale LLMs that encode extensive linguistic and factual knowledge (Geva
et al., 2021; Dai et al., 2022).

To retain more critical information under aggressive compression, researchers have explored “low-
rank plus sparse” decompositions (Li et al., 2023; Ren & Zhu, 2023; Han et al., 2024). In this
approach, the weight matrix is decomposed into a low-rank part that captures global correlations
and a sparse part that highlights outliers or domain-specific knowledge. However, existing methods
often rely on manually set singular-value thresholds, which can inadvertently discard medium-sized
yet important singular values. Additionally, these methods require computationally expensive back-
propagation for parameter updates. While there is some interaction between the optimization of the
low-rank and sparse components, the two parts are still relatively independent in their update pro-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

cesses. Lastly, due to the significant redundancy variations from early layers to deeper ones, how to
allocate rank and sparsity across layers in a globally optimal manner remains unclear.

In this paper, we address these issues via a novel two-stage compression framework tailored to
LLMs. First, we apply robust principal component analysis (RPCA) (Candès et al., 2011) to factor
each weight matrix into strictly low-rank and sparse components, thereby reducing the otherwise
huge search space into a low-dimensional subspace and a sparse subspace. Second, we introduce a
probabilistic global optimization scheme that jointly determines which singular values in the low-
rank component and which nonzero entries in the sparse component should be retained. This is
done by assigning Bernoulli probabilities and updating them via policy gradient (Williams, 1992)
on a small calibration set, avoiding heuristic thresholds or large-scale gradient updates. Critically,
our method automatically detects the differing redundancy levels across layers and manages the
interaction between low-rank and sparse parts, ensuring that vital parameters are kept while truly
redundant ones are pruned away. We summarize our main contributions as follows:

• We propose a two-stage LLM compression approach that first uses RPCA to produce low-
rank and sparse subspaces, then employs a Bernoulli-based global optimization for rank
and sparsity selection.

• Our framework eliminates the need for manual thresholds or layerwise iterative backprop-
agation, offering an end-to-end scheme that adapts automatically to various layers’ redun-
dancy characteristics.

• Extensive experiments show that our method outperforms existing sparsification and com-
posite approximation baselines under multiple compression ratios, highlighting its effec-
tiveness and robustness.

We provide a detailed review and discussion of related work in Appendix B.

2 METHOD

2.1 THEORETICAL BACKGROUND AND MOTIVATION

Low-rank approximation is a fundamental technique in matrix theory, widely used to reduce the
parameter count in neural networks while preserving model performance. In LLMs, weight matrices
are typically high-dimensional and dense. By approximating a weight matrix W ∈ Rm×n with rank
R≪ min(m,n) using a truncated SVD, one can write

W ≈ URΣRV
⊤
R , (1)

where UR and VR contain the top R left and right singular vectors, and ΣR is the diagonal matrix
of the largest R singular values. This factorization reduces the parameter count from m × n to
(m + n) × R, and breaks a large matrix multiplication into smaller ones, leading to significant
efficiency gains.

Despite these benefits, low-rank approximation alone may be insufficient for LLM compression,
especially when the singular values do not decay sharply. For example, Figure 2 in the Appendix C
shows the singular value spectra of two representative layers (Layer 0 and Layer 31) from a Trans-
former model, comparing the original weight matrix and its low-rank component after RPCA pro-
cessing. The dashed lines (original matrices) indicate that certain modules in the same Transformer
block (e.g., an attention head vs. a feed-forward network) can exhibit similar spectral shapes; yet
across different layers, the redundancy patterns vary considerably. Consequently, imposing the same
target rank R uniformly across all layers may prune too aggressively in some cases and insufficiently
in others. This observation motivates a more flexible approach that can adapt the compression ratio
per layer.

Recent studies have explored combining low-rank and sparse representations to enhance compres-
sion. For instance, LoSparse (Li et al., 2023) first applies SVD on W to obtain a rank-R approx-
imation, then prunes the residual W − URΣRV

⊤
R to form a sparse matrix. In practice, one must

still decide the singular value cutoff (or target rank) and the sparsity ratio for the residual. Often,
additional fine-tuning is performed on the low-rank part to recover lost performance, or iterative
pruning is applied to the sparse part (Molchanov et al., 2019), which can be computationally expen-
sive. A major limitation of these approaches is the reliance on manually chosen thresholds for both

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

SVD

Bernoulli
Sampling

Bernoulli
Sampling

Probability Scores

O

Output

≈

Policy Gradient

Input Tokens Target

Policy Gradient

Probability Scores

 ≈ Robust PCA

Matrix Addition

 Element-wise
Multiplication

Learnable

Operation Flow

S

L
L’

S’

U

� diag

ms

m�

V Tdiag(�⊙)m�

W

 Sparse Matrix Pruning

 Low-rank Matrix Pruning

1 2 3 4

LOSS

X X X X

Recon-
struction

Pruning
1

1 1
1

1

1

1

1

0.8

0.7 0.9 0.6

0.9

0.3 0.7 0.4

0.8

0.10.2 0.3

0.8

0.3

0.2

U’ V‘

Figure 1: Overview of our proposed compression method. The weight matrix W is decomposed
into a low-rank component L and a sparse component S using RPCA. Both components are pruned
through Bernoulli sampling guided by learned probability scores, optimized via policy gradient. The
low-rank component is further factorized into U′ and V′ to reduce the number of model parameters.

singular values and residual pruning. They also lack a clear mechanism to coordinate how much
rank vs. sparsity each layer should receive, since different layers and modules may have different
redundancy characteristics. Furthermore, when both the low-rank and sparse matrices require joint
fine-tuning, the memory consumption can become large, potentially exceeding the budget.

We begin by formulating the global objective of compressing LLM weights under a parameter bud-
get (§ 2.2). We then describe our proposed approach (§ 2.3), which first uses RPCA to decompose
each weight matrix into low-rank and sparse components, and subsequently prunes these compo-
nents in a probabilistic manner, without heuristic thresholds or large-scale fine-tuning. Additional
theoretical analysis can be found in the Appendix E.

2.2 PROBLEM FORMULATION

Suppose we have L layers in an LLM, each containing weight matrices {W(l)}Ll=1. We seek com-
pressed matrices {W̃(l)} such that the total parameter count does not exceed a budget K, while
minimizing a loss ℓ(W̃) measured on a small calibration set D. Formally,

min
{W̃(l)}

∑
(x,y)∈D

ℓ
(
f(W̃;x), y

)
,

subject to ParamCount
(
{W̃(l)}

)
≤ K,

(2)

where f(W̃;x) is the LLM’s forward pass given the compressed weights, and ParamCount(·)
measures how many parameters are retained. Directly pruning each individual weight is intractable
for very large matrices. To address this, we propose to:

• Decompose each W(l) via RPCA to obtain a low-rank matrix L and a sparse matrix S,
reducing the search space to “global rank directions” plus “sparse outliers.”

• Probabilistically prune both components under the budget K by learning Bernoulli reten-
tion probabilities through policy gradient on a small calibration set.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.3 PROPOSED APPROACH: CAP

As illustrated in Figure 1, our proposed method, CAP, follows a two-stage process. The role of Stage
1 is to decompose weights into a relatively low-rank matrix L and a sparse matrix S, reducing the
parameter space to manageable candidates. Stage 2 then jointly optimizes over these candidates to
achieve the target compression ratio while preserving model performance. This principled decom-
position followed by budget-aware selection avoids heuristic thresholds and expensive fine-tuning.
In the following sections, we provide detailed explanations of our algorithm.

2.3.1 STAGE 1: PRINCIPLED DECOMPOSITION VIA RPCA

The first stage of our method is not designed to achieve a target compression ratio directly. In-
stead, its purpose is to perform a principled decomposition of each weight matrix, transforming the
complex problem of pruning individual weights into a more structured one. By separating a weight
matrix W ∈ Rm×n into a low-rank component L that captures global structure and a sparse compo-
nent S that captures local, salient features, we establish a high-quality candidate pool for subsequent
compression. We achieve this through RPCA, which formulates the decomposition as a convex
optimization problem:

min
L,S

∥L∥∗︸ ︷︷ ︸
Low-rank constraint

+λ ∥S∥1︸ ︷︷ ︸
Sparsity constraint

subject toW = L+ S. (3)

The choice of this objective is theoretically motivated. The nuclear norm ∥L∥∗ is the tightest convex
relaxation of the rank function, making it the most effective convex proxy for minimizing rank.
Similarly, the ℓ1 norm ∥S∥1 is the standard convex relaxation for the non-convex ℓ0 norm (sparsity),
which effectively identifies significant, sparse outliers. Thus, this framework provides a principled
and globally optimal separation of W into its underlying low-rank and sparse structures.

Crucially, the hyperparameter λ in the RPCA objective governs the nature of this decomposition, not
the final compression rate. Attempting to control sparsity by simply tuning λ leads to unpredictable
changes in the rank of L and often results in poor-quality decompositions, a point we analyze in
detail in Appendix H. Therefore, this stage focuses solely on creating an optimal candidate pool
for the subsequent budget-aware pruning. We solve Eq. equation 3 using the efficient Alternating
Direction Method of Multipliers (ADMM) (Lin et al., 2010). The updates are as follows:

Lk+1 = argmin
L
∥L∥∗ +

µ

2

∥∥W − L− Sk + µ−1Yk

∥∥2
F
, (4)

Sk+1 = argmin
S

λ∥S∥1 +
µ

2

∥∥W − Lk+1 − S+ µ−1Yk

∥∥2
F
, (5)

Yk+1 = Yk + µ (W − Lk+1 − Sk+1) . (6)

The L-update employs Singular Value Thresholding (SVT) (Cai et al., 2008):

Lk+1 = Udiag(shrinkµ−1(σ))V⊤ (7)

where UσV⊤ is the SVD of W − Sk + µ−1Yk, with singular value shrinkage shrinkτ (σi) =
max(σi − τ, 0). The S-update applies elementwise soft-thresholding:

[Sk+1]ij = shrinkλµ−1([W − Lk+1 + µ−1Yk]ij) (8)

This alternating optimization progressively separates the weight matrix into a low-dimensional sub-
space capturing directional patterns (L) and a sparse subspace containing localized refinements (S),
establishing the foundation for subsequent global resource allocation.

2.3.2 STAGE 2: LEARNABLE PROBABILISTIC PRUNING

While the RPCA decomposition in Stage 1 provides a high-quality separation of components, it does
not enforce a specific parameter budget. The second stage directly addresses this by performing a
global, budget-aware selection from the candidate pools (L and S) generated previously. We decide
which rank-1 components in L and which non-zero entries in S to keep, to meet a user-defined
parameter budget K while minimizing task performance degradation.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The total parameter budget, K, is a user-defined hyperparameter (e.g., 50% of the original model’s
parameters). Each retained singular value σi from L requires storing its corresponding singular
vectors ui ∈ Rm and vi ∈ Rn, contributing (m+n) parameters. Each retained non-zero entry of S
contributes one parameter. We introduce Bernoulli random variables to model the retention decision
for each potential parameter:

mσi
∼ Bernoulli(sσi

), mSij
∼ Bernoulli(sSij

),

where sσi
∈ [0, 1] and sSij

∈ [0, 1] are learned retention probabilities. The compressed matrix is
then

W̃ = U diag
(
σ ⊙mσ

)
V⊤ + S ⊙ mS , (9)

subject to
∑

i sσi
(m+ n) +

∑
i,j sSij

≤ K to respect the total parameter budget.

Learning probabilities via policy gradient. We minimize the expected loss on a small calibration
set D:

min
s

Em∼p(m|s)

[
L(W̃)

]
, (10)

where s = {sσi
, sSij

} and p(m | s) is the product of Bernoulli distributions. We employ a
REINFORCE-style (Williams, 1992) policy gradient:

∇sk Em[L(W̃)] = Em

[
L(W̃) ∇sk log p(m | sk)

]
. (11)

For a Bernoulli variable mk ∼ Bernoulli(sk),

∇sk log p(mk | sk) =
mk − sk

sk (1− sk) + ϵ
,

with a small ϵ > 0 to avoid division by zero. To reduce variance, we maintain a moving average
baseline δ (Zhao et al., 2011):

δ ← β δ + (1− β)L(W̃), (12)

and update each sk via

sk ← sk − η
(
L(W̃)− δ

)
∇sk log p(mk | sk). (13)

After each gradient step, we project s back onto {s : 1⊤s ≤ K, 0 ≤ sk ≤ 1}.

Thresholding masks and final factorization. The policy gradient optimization yields a set of
probabilities {sk} that reflect the learned importance of each parameter for minimizing the task
loss. To obtain the final compressed model that strictly adheres to the budget K, we perform a deter-
ministic selection. We treat the learned probabilities sk as importance scores for their corresponding
parameters (singular values or sparse entries). All potential parameters are ranked globally accord-
ing to these scores. We then select the top-K parameters to keep, generating the final binary masks
mk:

mk =

{
1, if parameter k is among the top-K scored parameters,
0, otherwise.

(14)

This final step ensures the parameter budget is met precisely. The compressed weight matrix is
reconstructed using these binary masks in Eq. equation 9. To enhance efficiency, the resulting low-
rank component is factorized into smaller matrices. The compressed U′ and V′ are computed as:

U′ = [
√
σ1u1,

√
σ2u2, . . . ,

√
σr′ur′] , (15)

V′ = [
√
σ1v1,

√
σ2v2, . . . ,

√
σr′vr′] , (16)

where r′ is the number of retained singular values (i.e., where mσi
= 1). The final compressed

weight matrix is then:
W̃ = U′ (V′)

⊤
+ S⊙mS . (17)

This factorization reduces both storage and computational cost during inference.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison with unstructured pruning methods at 50% compression. We
report average zero-shot accuracy (%) across eight tasks and WikiText-2 perplexity (lower is better).

Method Compression Zero-shot Accuracy (%) WikiText-2 Perplexity
Phi-3 Mini Phi-3 Medium LLaMA-3 8B LLaMA-3 70B Phi-3 Mini Phi-3 Medium LLaMA-3 8B LLaMA-3 70B

Dense 0% 71.99 74.27 69.79 75.27 9.50 6.21 10.17 2.68

Uniform Sparsity Methods

SparseGPT
30% 70.63 74.53 69.08 75.07 11.19 7.48 9.71 3.24
40% 69.18 74.40 67.58 74.63 13.03 8.52 10.01 3.99
50% 66.36 73.25 64.66 73.17 16.80 9.89 11.95 5.27

Wanda
30% 70.66 74.05 68.63 75.19 10.71 7.28 9.39 3.28
40% 68.80 73.01 67.04 74.10 12.59 8.49 9.74 4.08
50% 65.03 70.96 63.27 72.85 17.23 10.12 12.36 5.38

DSNoT
30% 71.20 74.03 68.98 75.54 10.51 7.11 9.36 3.27
40% 69.08 72.90 66.65 74.29 12.17 8.24 9.60 4.10
50% 65.33 71.12 62.74 72.91 16.68 9.96 12.41 5.58

OATS
30% 71.48 74.04 69.34 75.24 10.27 6.85 9.59 3.07
40% 70.04 74.46 68.68 74.88 11.53 7.70 9.24 3.68
50% 68.41 73.39 65.71 73.30 15.18 9.05 10.87 4.78

Layerwise Allocation Methods (Based on Wanda)

OWL
30% 71.15 74.28 69.12 75.45 10.45 7.15 9.25 3.18
40% 69.32 73.35 67.58 74.42 12.28 8.32 9.58 3.95
50% 65.78 71.38 63.95 73.25 16.85 9.88 12.18 5.25

AlphaPruning
30% 71.28 74.35 69.25 75.52 10.38 7.08 9.18 3.15
40% 69.45 73.48 67.72 74.55 12.15 8.25 9.48 3.88
50% 65.95 71.52 64.12 73.42 16.72 9.78 12.05 5.18

Our Method

CAP
30% 72.15 74.85 70.25 76.02 9.88 6.58 9.05 2.95
40% 70.58 74.78 69.38 75.45 11.15 7.42 8.95 3.52
50% 69.12 74.05 66.85 74.18 14.68 8.78 10.35 4.45

2.4 DISCUSSION

We propose CAP, a two-stage compression framework for large language models. Stage 1: RPCA
Decomposition—The weight matrix is split into low-rank and sparse parts, preserving global struc-
ture while isolating local anomalies and sharply reducing the search space for later optimization.
This step is cast as a convex program (nuclear norm + L1 norm), guaranteeing a globally opti-
mal separation. Stage 2: Bernoulli Mask Optimization—Using a small calibration set, an unbiased
policy-gradient method learns the retention probabilities for the low-rank and sparse components,
automatically detecting and pruning redundancy across layers. Thanks to the convexity of Stage
1 and the unbiased gradients in Stage 2, CAP is theoretically sound and, in practice, trims excess
parameters efficiently while maintaining performance.

From a theoretical perspective, our two-stage framework has attractive properties. The RPCA-based
subspace decomposition is formulated as a convex program (nuclear norm + ℓ1 norm minimization)
that, under broad conditions, achieves the globally optimal separation of low-rank and sparse com-
ponents (Candès et al., 2011). Meanwhile, the Bernoulli mask optimization uses an unbiased policy
gradient estimator for the discrete pruning problem (Williams, 1992). This estimator can exhibit
high variance, but in our setup (one-step policy optimization on a small calibration set) the variance
is manageable and does not impede convergence. We discuss these aspects further in Appendix F,
but note here that the convexity of stage one and the unbiasedness of stage two’s gradient provide
theoretical soundness to the CAP approach, contributing to its reliable performance in practice.

3 EXPERIMENTS

In this section, we first introduce the experimental setup. Subsequently, we present the main ex-
perimental results and ablation studies. Due to space constraints, detailed results for Llama-1/2
are provided in Appendix I, and thorough analyses of throughput performance and computational
resource consumption of our proposed CAP method are presented in Appendix J

Models and Evaluation. We evaluate our proposed CAP method on a comprehensive set of
widely adopted large language models across different architectures and scales. Our evaluation
includes the LLaMA family: LLaMA-1 (Touvron et al., 2023a) (7B, 13B, 30B), LLaMA-2 (Tou-
vron et al., 2023b) (7B, 13B), and LLaMA-3 (Dubey et al., 2024) (8B, 70B); the OPT series (Zhang
et al., 2022) (1.3B, 2.7B, 6.7B, 13B); the Phi-3 family (Abdin et al., 2024) including Phi-3 Mini
(3.8B) and Phi-3 Medium (14B); and BERT-base (Devlin et al., 2019). To assess the performance
of the compressed models, we conduct experiments on zero-shot tasks and language modeling. We

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Comparison at 50% unstructured sparsity. Zero-shot accuracy (%) on representative mod-
els. LoRA variants: Naive-LoRA uses basic error compensation; SLiM-LoRA incorporates weight
salience; SLiM-LoRAQ additionally quantizes the adapter.

Method Quantization OPT LLaMA-2
1.3B 2.7B 6.7B 13B 7B 13B

Dense - 43.4 45.5 48.3 48.7 56.6 60.8

Magnitude Group AbsMax 32.1 39.9 36.4 32.3 47.0 51.0
SparseGPT OPTQ 38.7 43.4 47.0 47.4 51.1 55.9
Wanda OPTQ 41.0 42.9 46.5 46.8 53.6 56.8
JSQ JSQ 38.9 35.5 42.8 30.7 52.3 57.0
L2QER Group AbsMax 38.4 41.3 45.1 OOM 50.6 OOM

Naive-LoRA QuantizationW 40.4 43.4 46.6 47.3 51.5 55.3
SLiM-LoRA QuantizationW 41.9 43.5 47.1 48.0 54.3 57.9
SLiM-LoRAQ QuantizationW 41.7 43.6 47.2 47.9 54.2 57.3

CAP (Ours) OPTQ 41.7 44.8 48.2 48.3 55.1 59.2

perform an extensive evaluation of the zero-shot capabilities of pruned models across eight stan-
dard commonsense benchmark datasets: GLUE (Wang et al., 2019a), PIQA (Bisk et al., 2020),
BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021),
OpenBookQA (Mihaylov et al., 2018), and the ARC Easy and ARC Challenge tasks (Clark et al.,
2018). For language modeling evaluation, we measure perplexity on the held-out WikiText-2 (Mer-
ity et al., 2016) validation set.

Implementation Details. We utilize PyTorch 2.3.0, Transformers 4.28.0, CUDA 12.1 on NVIDIA
A100 GPUs under Ubuntu. To ensure fair comparison, we use 128 sequences with context length
sampled from the C4 training set (Raffel et al., 2020) as calibration data. For policy gradient estima-
tion, we set iterations to 3, sliding window size to 5, and learning rate to 0.05. The λ parameter for
RPCA decomposition is set according to the established formulation λ = 1/

√
max(m,n), where

m and n represent the dimensions of the data matrix. Further ablation studies on the λ setting can
be found in Appendix H.

Baselines. We compare our approach with several compression techniques: SparseGPT (Frantar
& Alistarh, 2023) is a second-order pruning method for LLMs that solves a layer-wise reconstruc-
tion problem. WANDA (Sun et al., 2024) prunes weights based on their estimated importance using
activation statistics. OATS (Zhang & Papyan, 2024) performs optimal sparsity allocation across
transformer layers using second-order information. OWL (Yin et al., 2023) and AlphaPruning (Lu
et al., 2024) are layer-wise allocation methods that optimize sparsity distribution. SLiM (Mozaffari
et al., 2024) combines low-rank approximation with sparsity and quantization, featuring probabilis-
tic quantization error fitting. LPAF (Ren & Zhu, 2023) first applies first-order unstructured pruning
to obtain a low-rank sparse model. Then, sparsity-aware SVD is used to decompose the sparse ma-
trices into a low-rank form AB. Finally, mixed-rank fine-tuning is used to retrain AB. Detailed
baseline descriptions are available in Appendix G.

3.1 COMPARISON WITH UNSTRUCTURED PRUNING METHODS

We compare CAP with recent unstructured pruning methods across multiple large language models.
Table 1 presents a comprehensive comparison including both uniform sparsity methods (SparseGPT,
Wanda, DSNoT, OATS) and layerwise allocation methods (OWL, AlphaPruning) at 30%, 40%,
and 50% compression ratios. Note that OWL and AlphaPruning are layerwise allocation methods
that optimize sparsity distribution across layers, and we implement them using Wanda as the base
pruning method for fair comparison. CAP consistently achieves competitive or superior performance
across different model architectures and sizes.

3.2 COMPARISON WITH JOINT COMPRESSION METHODS

Since methods like LoSparse are based on structured pruning and require extensive retraining, we
compare CAP with SLiM, a state-of-the-art method that jointly applies quantization, sparsity, and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Results on GLUE tasks under different parameter budgets. We show accuracy (%) for RTE,
MRPC, SST-2, QNLI, MNLI and F1 score (%) for QQP.

Method RTE MRPC SST-2 QQP QNLI MNLI
50% 25% 16% 50% 25% 16% 50% 25% 16% 50% 25% 16% 50% 25% 16% 50% 25% 16%

Pre-training Distillation
DistilBERT 65.0 61.0 56.3 85.8 77.0 72.5 90.0 88.9 86.4 90.8 89.4 88.0 86.0 83.8 81.6 81.7 76.4 71.3
TinyBERT 67.7 67.2 64.6 86.3 85.3 78.2 92.3 89.8 88.0 90.5 90.0 88.7 89.9 87.7 84.5 83.1 80.6 77.4

Task-specific Distillation
PKD 65.5 59.2 53.8 81.9 76.2 71.3 91.3 88.1 87.2 88.4 88.5 87.5 88.4 82.7 78.0 81.3 75.7 72.7
Theseus 65.6 62.1 58.8 86.2 77.2 72.8 91.5 88.6 86.1 90.9 89.6 89.0 88.2 83.2 78.0 82.3 76.4 73.5
CKD 67.3 66.5 60.8 86.0 81.1 76.6 91.2 90.0 88.7 90.5 88.7 89.5 90.4 86.4 81.9 83.5 79.0 76.8
MetaDistill 69.0 66.7 61.0 86.8 81.8 77.3 92.3 88.9 87.0 91.0 88.9 86.9 90.4 86.8 84.9 83.5 79.5 76.8

Structured Pruning
ISP 66.4 65.0 63.9 86.1 83.6 82.8 90.4 89.4 89.9 90.5 88.7 87.2 90.5 88.7 87.2 83.2 81.9 80.8
FLOP 66.1 58.5 56.0 82.1 80.1 78.4 89.7 89.1 87.9 91.4 89.9 89.7 90.5 88.5 87.1 82.6 79.9 79.0
BPhybrid 66.4 64.3 63.9 84.1 81.1 78.3 91.0 88.7 86.9 91.8 89.3 89.1 90.7 88.1 86.2 83.0 80.1 78.0
CoFi 69.0 66.4 66.4 84.6 84.3 83.4 91.6 89.7 89.2 90.1 89.0 88.9 90.2 88.8 87.6 83.5 80.8 80.5

Matrix Factorization
SVDft 62.1 60.3 55.6 79.9 77.0 70.1 89.4 86.9 85.3 90.0 87.9 87.1 90.1 83.8 80.9 81.8 78.0 74.6
LPAF 62.8 68.0 67.9 86.8 85.5 86.0 92.0 90.0 91.5 90.4 90.1 91.1 89.3 88.6 84.8 84.8 82.6 77.6

Low-rank plus Sparse
CAP (Ours) 69.1 67.8 66.5 86.2 86.2 85.8 92.3 91.9 90.8 91.9 90.8 90.5 90.8 89.1 88.8 85.1 83.1 82.8
BERT-base 69.2 86.4 92.7 91.5 91.4 84.6

low-rank approximation. We also include comparisons with other joint compression approaches
including JSQ (Guo et al., 2024), a joint sparsity and quantization method that optimizes sparsity
and quantization parameters simultaneously, and L2QER (Zhang et al., 2024a), which combines
low-rank decomposition, quantization, and sparsity in a sequential manner.

While both SLiM and CAP structurally combine low-rank and sparse components, their technical
approaches differ fundamentally: SLiM primarily focuses on using low-rank decomposition to fit
quantization errors through probabilistic reformulation and numerical integration to find optimal
quantization parameters, whereas CAP focuses on the synergy between low-rank and sparse decom-
position through RPCA, where the low-rank component emerges from joint optimization rather than
serving as an error fitting tool. Table 2 presents the comparison on representative models at 50%
unstructured sparsity.

The results demonstrate that CAP consistently outperforms existing joint compression methods
across different model sizes and architectures. Notably, CAP achieves superior performance com-
pared to SLiM variants while using standard OPTQ quantization, highlighting the effectiveness of
the RPCA-based joint optimization approach. The performance gaps are particularly pronounced on
larger models, suggesting that CAP’s principled decomposition becomes more beneficial as model
complexity increases.

3.3 COMPREHENSIVE COMPARISON ON GLUE TASKS

Finally, we evaluate CAP on downstream tasks using the GLUE benchmark with BERT-base. Ta-
ble 3 compares CAP against various compression paradigms including pre-training distillation (Dis-
tilBERT Sanh et al. (2019), TinyBERT Jiao et al. (2019)), task-specific distillation (PKD Sun et al.
(2019), Theseus Xu et al. (2020), CKD Mirzadeh et al. (2020), MetaDistill Zhou et al. (2022)), struc-
tured pruning (ISP McCarley (2019), FLOP Prasanna et al. (2020), BPhybrid Lagunas et al. (2021),
CoFi Xia et al. (2022)), and matrix factorization methods (SVDft Wang et al. (2019b), LPAF).

CAP achieves competitive or superior performance across most GLUE tasks and compression ratios.
Notably, CAP consistently outperforms methods without fine-tuning and achieves comparable re-
sults to fine-tuned methods like LPAF while using only the RPCA decomposition without additional
task-specific fine-tuning. The performance demonstrates the effectiveness of our joint optimization
approach, particularly excelling in QNLI and MNLI tasks where the low-rank plus sparse decompo-
sition captures both global patterns and task-specific sparsity. While LPAF achieves slightly better
performance on some tasks due to its fine-tuning step, CAP provides a training-free alternative that
is more practical for deployment scenarios with limited computational resources.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Convergence behavior of RPCA decomposition and uniform pruning strategies

(a) Effect of RPCA iterations on model performance.
Here, “Avg. Rank” denotes the average rank of the low-
rank component, and “Sparsity” represents the sparsity
of the sparse component.

Iter Sparsity Avg. Rank PPL ↓ Avg. Error
1 0.8080 936.56 32497 0.6248
3 0.4123 2109 5.18 0.0243
10 0.4005 2217 5.13 0.0213
100 0.4090 2198 5.16 0.0209

(b) Effect of heuristic threshold-based pruning on
model performance. Singular values below the
threshold are set to zero.

Threshold Avg. Rank Sparsity PPL ↓
0.5 1342 0.6 5.84
1 684 0.6 11.14
2 214 0.6 2909.51
Max 0 0.6 NaN
0.5 1342 0.8 7.63
0.5 1342 1.0 NaN

3.4 ABLATION STUDIES

To gain deeper insights into the behavior of our compression method, we conduct ablation stud-
ies focusing on two key aspects: (i) the distribution of different matrix ranks after compression is
between 200 and 800.; and (ii) the stability of our method when pruning is applied sequentially
layer-by-layer. Detailed analysis and experimental results are provided in Appendix K.

Robustness and Rapid Convergence of RPCA Decomposition We investigated the effect of
RPCA iterations on the performance of the LLaMA2-7B model to assess the robustness of the de-
composition quality. Table 4a shows that only a few RPCA iterations are needed to achieve an
effective decomposition, providing a solid and stable starting point for subsequent pruning. This
rapid convergence demonstrates the robustness of the RPCA stage, as it consistently produces a
high-quality separation of global patterns (low-rank component) and local anomalies (sparse com-
ponent) across different layers with minimal computational overhead. Additionally, the “Avg. Er-
ror” column represents the average approximation error for each matrix, offering insight into the
model’s tolerance to error. Similar to findings in the quantization field, large models exhibit ro-
bustness to approximation errors. The fact that performance even surpasses the original model after
decomposition further underscores the effectiveness of RPCA in identifying and isolating redundant
parameters, thereby enhancing the input quality for the subsequent global optimization stage.

Necessity of Global Resource Allocation The limitations of heuristic, post-decomposition prun-
ing underscore the importance of our proposed global optimization components (policy gradient
with Bernoulli sampling). We conducted experiments using a uniform threshold-based approach ap-
plied to the RPCA output. In this method, we prune the low-rank component L by setting singular
values below a specific threshold to zero and remove low-magnitude elements from the sparse com-
ponent S without applying our probabilistic masking or additional optimization. Table 4b summa-
rizes the results for LLaMA2-7B, which indicate that both components are indispensable: retaining
only one leads to a performance collapse. This clear failure of simple thresholding strategies
validates our core design choice: the necessity of a learned, global resource allocation strategy.
Unlike rigid heuristics, policy gradient optimization and Bernoulli sampling mechanism determine
the rank and sparsity allocation across layers based on their redundancy characteristics, which is
crucial for maintaining model performance under compression.

4 CONCLUSION

This work aims to solve the compression problem of pre-trained large language models and proposes
a two-stage low-rank and sparse composite approximation compression method. First, the weight
matrix is decomposed into low-rank subspace and sparse subspace through RPCA, which signifi-
cantly reduces the search space; then, the global probability distribution optimization technology
based on Bernoulli sampling is used to automatically identify and retain the most important low-
rank and sparse components. Compared with the traditional method of manually setting thresholds,
this scheme can adaptively allocate the rank and sparsity of different layers, and can achieve better
reasoning performance and robustness on various benchmarks without large-scale backpropagation
or fine-tuning. In the future, further research can be conducted on the combination with technolo-
gies such as quantization and knowledge distillation and their application in larger-scale models to
provide a more efficient solution for the deployment of large models in multiple scenarios.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

This statement presents a comprehensive report detailing the reproduction process for our RPCA-
based model compression methodology, incorporating policy gradient optimization. The implemen-
tation builds upon WANDA’s code base and integrates components from additional open-source
libraries, to which we extend our gratitude.

IMPLEMENTATION OVERVIEW

The proposed algorithm is implemented using PyTorch and Hugging Face’s Transformers library.
The core components of the implementation include:

• RPCA Decomposition: Each weight matrix W from the pre-trained model is decomposed
into a low-rank matrix L and a sparse matrix S using Robust Principal Component Analysis
(RPCA). This decomposition captures global structure in L and local anomalies in S.

• Probabilistic Pruning: Bernoulli random variables are introduced to determine the reten-
tion of singular values in L and specific elements in S. Retention probabilities are treated
as trainable parameters.

• Policy Gradient Optimization: A policy gradient framework optimizes the retention prob-
abilities by minimizing the expected loss over a calibration dataset, subject to a parameter
budget constraint.

• Model Reconstruction: Following optimization, compressed weight matrices are recon-
structed using the retained components. Low-rank matrices are further factorized to en-
hance computational efficiency during inference.

CODE STRUCTURE

The implementation is organized into three main components:

• main.py: The primary entry point for the pruning process, handling model loading, ar-
gument parsing, and execution.

• lib/prune rl.py: Contains the RPCA decomposition, policy gradient optimization
routines, and model reconstruction logic.

• main.sh: A shell script to streamline the pruning execution process with preset argu-
ments.

RUNNING THE PRUNING PROCESS

To reproduce our results, follow these steps:

1. Environment Setup:

• Ensure Python 3.8 or later is installed.
• Install the necessary dependencies:

pip install torch \
transformers \
numpy \
tqdm \
matplotlib \
json \
argparse

2. Execution:

• Use the provided shell script main.sh to execute the pruning process with preset
configurations:

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

bash main.sh

• The script handles model selection, pruning method, RPCA parameters, policy gradi-
ent settings, and output configurations.

KEY IMPLEMENTATION DETAILS

• Code Base: The implementation builds upon WANDA’s pruning framework, modified to
incorporate RPCA decomposition and policy gradient optimization.

• RPCA Implementation: An augmented Lagrange multiplier method is used to solve the
RPCA optimization problem. This separates the weight matrix into L and S, capturing
essential patterns and anomalies, respectively.

• Bernoulli Masks: For each singular value in L and each element in S, a Bernoulli ran-
dom variable determines its retention. Retention probabilities are initialized uniformly and
optimized iteratively.

• Policy Gradient Optimization: Retention probabilities are refined using a policy gradient
approach. The gradients of the expected loss with respect to the probabilities are estimated
and used to update the masks, with variance reduced via a moving average baseline.

• Model Reconstruction: Following optimization, probabilities are thresholded to generate
binary masks. The compressed model is reconstructed, and low-rank matrices are further
decomposed into U′ and V′ for inference efficiency.

RESULTS

Using the aforementioned process, we successfully compressed the LLaMA-2-7B model to achieve
a 50% compression rate while maintaining performance. Perplexity was monitored after processing
each layer to evaluate the model’s performance.

CONCLUSION

This reproduction report outlines the implementation and procedural details for replicating our
RPCA-based compression method with policy gradient optimization. The provided code base, built
upon WANDA, ensures reproducibility and offers a robust foundation for advancing model com-
pression research.

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko,
Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav Chaudhary, Dong Chen, Dong-
dong Chen, Weizhu Chen, Yen-Chun Chen, Yi-Ling Chen, Hao Cheng, Parul Chopra, Xiyang
Dai, Matthew Dixon, Ronen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao, Min Gao, Amit
Garg, Allie Del Giorno, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao,
Russell J. Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan Javaheripi, Xin
Jin, Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi, Dongwoo Kim, Young Jin Kim,
Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars Liden,
Xihui Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu, Weishung Liu, Xiaodong Liu, Chong
Luo, Piyush Madan, Ali Mahmoudzadeh, David Majercak, Matt Mazzola, Caio César Teodoro
Mendes, Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-
Becker, Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang Ren, Gustavo
de Rosa, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim,
Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Yelong Shen, Swadheen Shukla,
Xia Song, Masahiro Tanaka, Andrea Tupini, Praneetha Vaddamanu, Chunyu Wang, Guanhua
Wang, Lijuan Wang, Shuohang Wang, Xin Wang, Yu Wang, Rachel Ward, Wen Wen, Philipp
Witte, Haiping Wu, Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Ji-
long Xue, Sonali Yadav, Fan Yang, Jianwei Yang, Yifan Yang, Ziyi Yang, Donghan Yu, Lu Yuan,
Chenruidong Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhang, and Xiren Zhou. Phi-3 technical report: A highly capable language model locally on your
phone, 2024. URL https://arxiv.org/abs/2404.14219.

Jonathan Baxter and Peter L. Bartlett. Infinite-horizon policy-gradient estimation. Journal of Artifi-
cial Intelligence Research, 15:319–350, 2001. doi: 10.1613/jair.861.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Jian-Feng Cai, Emmanuel J. Candes, and Zuowei Shen. A singular value thresholding algorithm for
matrix completion, 2008. URL https://arxiv.org/abs/0810.3286.

Emmanuel J. Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal component analysis?
Journal of the ACM (JACM), 58(3):1–37, 2011.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M. De Sa. Quip: 2-bit quantization
of large language models with guarantees. In Advances in Neural Information Processing Systems,
2023.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and acceleration
for deep neural networks, 2020. URL https://arxiv.org/abs/1710.09282.

Moody T Chu, Robert E Funderlic, and Robert J Plemmons. Structured low rank approximation.
Linear algebra and its applications, 366:157–172, 2003.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in
pretrained transformers, 2022. URL https://arxiv.org/abs/2104.08696.

Remi Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear
structure within convolutional networks for efficient evaluation, 2014. URL https://arxiv.
org/abs/1404.0736.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized repre-
sentation for near-lossless llm weight compression. In ICLR, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Gongfan Fang, Hongxu Yin, Saurav Muralidharan, Greg Heinrich, Jeff Pool, Jan Kautz, Pavlo
Molchanov, and Xinchao Wang. Maskllm: Learnable semi-structured sparsity for large language
models. Advances in Neural Information Processing Systems, 37:7736–7758, 2024.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=rJl-b3RcF7.

12

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/0810.3286
https://arxiv.org/abs/1710.09282
https://arxiv.org/abs/2104.08696
https://arxiv.org/abs/1404.0736
https://arxiv.org/abs/1404.0736
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories, 2021. URL https://arxiv.org/abs/2012.14913.

Jinyang Guo, Jianyu Wu, Zining Wang, Jiaheng Liu, Ge Yang, Yifu Ding, Ruihao Gong, Haotong
Qin, and Xianglong Liu. Compressing large language models by joint sparsification and quanti-
zation. In Forty-first International Conference on Machine Learning, 2024.

Andi Han, Jiaxiang Li, Wei Huang, Mingyi Hong, Akiko Takeda, Pratik Jawanpuria, and Bamdev
Mishra. Sltrain: a sparse plus low-rank approach for parameter and memory efficient pretraining.
arXiv preprint arXiv:2406.02214, 2024.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2015.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
Tinybert: Distilling bert for natural language understanding. arXiv preprint arXiv:1909.10351,
2019.

Andrey Kuzmin, Markus Nagel, Mart Van Baalen, Arash Behboodi, and Tijmen Blankevoort. Prun-
ing vs quantization: Which is better? In Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023. URL https://openreview.net/forum?id=0OU1ZXXxs5.

Franois Lagunas, Ella Charlaix, Victor Sanh, and Alexander Rush. Block pruning for faster trans-
formers. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 10619–10629, 2021.

Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and Tuo Zhao.
Losparse: Structured compression of large language models based on low-rank and sparse ap-
proximation. In International Conference on Machine Learning, pp. 20336–20350. PMLR, 2023.

Chi-Heng Lin, Shangqian Gao, James Seale Smith, Abhishek Patel, Shikhar Tuli, Yilin Shen,
Hongxia Jin, and Yen-Chang Hsu. Modegpt: Modular decomposition for large language model
compression. In The Thirteenth International Conference on Learning Representations, 2025.

Zhouchen Lin, Minming Chen, and Yi Ma. The augmented lagrange multiplier method for exact
recovery of corrupted low-rank matrices. arXiv:1009.5055, 2010.

Junjie Liu, Zhe Xu, Runbin Shi, Ray C. C. Cheung, and Hayden K. H. So. Dynamic sparse training:
Find efficient sparse network from scratch with trainable masked layers, 2020. URL https:
//arxiv.org/abs/2005.06870.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), pp. 2736–2744, 2017.

Haiquan Lu, Yefan Zhou, Shiwei Liu, Zhangyang Wang, Michael W Mahoney, and Yaoqing Yang.
Alphapruning: Using heavy-tailed self regularization theory for improved layer-wise pruning of
large language models. Advances in neural information processing systems, 37:9117–9152, 2024.

J Scott McCarley. Pruning a bert-based question answering model, 2019.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2381–2391, 2018.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiko Matsukawa, and Hassan
Ghasemzadeh. Improved knowledge distillation via teacher assistant. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pp. 5191–5198, 2020.

13

https://arxiv.org/abs/2012.14913
https://openreview.net/forum?id=0OU1ZXXxs5
https://arxiv.org/abs/2005.06870
https://arxiv.org/abs/2005.06870

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
for neural network pruning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11264–11272, 2019.

Mohammad Mozaffari, Amir Yazdanbakhsh, and Maryam Mehri Dehnavi. Slim: One-shot quan-
tization and sparsity with low-rank approximation for llm weight compression. arXiv preprint
arXiv:2410.09615, 2024.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Sai Prasanna, Anna Rogers, and Anna Rumshisky. When bert plays the lottery, all tickets are win-
ning. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pp. 3208–3229, 2020.

14

https://arxiv.org/abs/2303.08774

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. JMLR, 21(140):1–67, 2020.

Siyu Ren and Kenny Q Zhu. Low-rank prune-and-factorize for language model compression. arXiv
preprint arXiv:2306.14152, 2023.

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural
network pruning, 2020. URL https://arxiv.org/abs/2003.02389.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathemat-
ical Statistics, 22(3):400–407, 1951. doi: 10.1214/aoms/1177729586.

Rajarshi Saha, Naomi Sagan, Varun Srivastava, Andrea Goldsmith, and Mert Pilanci. Compressing
large language models using low rank and low precision decomposition. Advances in Neural
Information Processing Systems, 37:88981–89018, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Victor Sanh, Thomas Wolf, and Alexander M. Rush. Movement pruning: Adaptive sparsity by
fine-tuning, 2020. URL https://arxiv.org/abs/2005.07683.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach
for large language models, 2024. URL https://arxiv.org/abs/2306.11695.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for bert model
compression. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 4323–4332, 2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023b. URL https://arxiv.org/abs/2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.
org/abs/1706.03762.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
International Conference on Learning Representations, 2019a. URL https://openreview.
net/forum?id=rJ4km2R5t7.

15

https://arxiv.org/abs/2003.02389
https://arxiv.org/abs/2005.07683
https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Wenxiao Wang, Wei Chen, Yicong Luo, Yongliu Long, Zhengkai Lin, Liye Zhang, Binbin Lin,
Deng Cai, and Xiaofei He. Model compression and efficient inference for large language models:
A survey, 2024a. URL https://arxiv.org/abs/2402.09748.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
decomposition for large language model compression. arXiv preprint arXiv:2403.07378, 2024b.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured pruning of large language models. arXiv
preprint arXiv:1910.04732, 2019b.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

John Wright, Arvind Ganesh, Shankar Rao, Yigang Peng, and Yi Ma. Robust principal component
analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In Advances in
Neural Information Processing Systems, volume 22, pp. 2080–2088, 2009.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. Structured pruning learns compact and accurate
models. In Proceedings of the 60th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 1513–1528, 2022.

Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei, and Ming Zhou. Bert-of-theseus: Compress-
ing bert by progressive module replacing. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 7859–7869, 2020.

Peng Xu, Wenqi Shao, Mengzhao Chen, Shitao Tang, Kaipeng Zhang, Peng Gao, Fengwei An,
Yu Qiao, and Ping Luo. BESA: Pruning large language models with blockwise parameter-efficient
sparsity allocation. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=gC6JTEU3jl.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay Jaiswal,
Mykola Pechenizkiy, Yi Liang, et al. Outlier weighed layerwise sparsity (owl): A missing secret
sauce for pruning llms to high sparsity. arXiv preprint arXiv:2310.05175, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 4791–4800, 2019.

Cheng Zhang, Jianyi Cheng, George A Constantinides, and Yiren Zhao. Lqer: Low-rank quantiza-
tion error reconstruction for llms. arXiv preprint arXiv:2402.02446, 2024a.

Stephen Zhang and Vardan Papyan. Oats: Outlier-aware pruning through sparse and low rank de-
composition. In The Thirteenth International Conference on Learning Representations, 2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Yuxin Zhang, Lirui Zhao, Mingbao Lin, Yunyun Sun, Yiwu Yao, Xingjia Han, Jared Tanner, Shiwei
Liu, and Rongrong Ji. Dynamic sparse no training: Training-free fine-tuning for sparse llms,
2024b. URL https://arxiv.org/abs/2310.08915.

Tingting Zhao, Hirotaka Hachiya, Gang Niu, and Masashi Sugiyama. Analysis and improvement of
policy gradient estimation. In NIPS, 2011.

Wangchunshu Zhou, Canwen Xu, and Julian McAuley. Bert learns to teach: Knowledge distillation
with meta learning. In Proceedings of the 60th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 7037–7049, 2022.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for
large language models, 2024. URL https://arxiv.org/abs/2308.07633.

16

https://arxiv.org/abs/2402.09748
https://openreview.net/forum?id=gC6JTEU3jl
https://arxiv.org/abs/2310.08915
https://arxiv.org/abs/2308.07633

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table of Contents
A The use of Large Language Models(LLMS) 18

B Related Work 18
B.1 Unstructured Pruning . 18
B.2 Low-Rank Plus Sparse and Hybrid Compression 18
B.3 Model Compression via Distillation and Structured Pruning 19

C Preliminaries 19
C.1 Low-Rank Approximation . 19
C.2 Low-Rank Approximation with Sparse Corrections 20

D Knowledge Neurons 20
D.1 Impact of Pruning FFN Layers . 20
D.2 Effect of Pruning Attention Mechanisms . 21
D.3 Challenges in Simultaneous Pruning . 22
D.4 Proposed Mitigation Strategies . 22
D.5 Conclusion . 22

E Additional Details and Theoretical Analysis 22
E.1 Policy Gradient with Moving Average Baseline 22
E.2 Theoretical Analysis for LLM Compression 23

F Convergence Analysis of Bernoulli Policy Gradient 23

G Baseline Methods Description 24
G.1 Unstructured Pruning Methods . 24
G.2 Layer-wise Allocation Methods . 24
G.3 Joint Compression Methods . 24
G.4 Knowledge Distillation Methods . 25
G.5 Structured Pruning Methods . 25
G.6 Matrix Factorization Methods . 26

H On the Non-Redundancy of L1 Penalization and Pruning 26
H.1 Distinct Objectives of Two-Stage Design . 26
H.2 Limitations of λ as a Compression Parameter 26
H.3 Conclusion . 27

I Performance Evaluation on LLaMA and LLaMA-2 Models 27
I.1 Results at 50% Compression Ratio . 27
I.2 Evaluation Under Higher Compression Ratios 28

J Empirical Throughput and Resource Consumption Analysis 29

K Detailed Ablation Studies 29
K.1 Low-Rank Component Rank Distribution . 29
K.2 Perplexity Changes During Layer-wise Pruning 30
K.3 Summary of Ablation Findings . 30

L Limitations 30

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS(LLMS)

In preparing this paper, LLMs were employed solely for language refinementpurposes, such as im-
proving grammar, clarity, and style of expression. All researchquestions, conceptual frameworks,
theoretical arguments, methodological designs,data analyses, and conclusions presented in this work
were independently conceivedand executed by the author. The LLMs did not generate, alter, or influ-
ence theunderlying ideas, interpretations, or findings. Their use was limited to assistingin polishing
the readability and fluency of the manuscript while preserving theoriginality and integrity of the
scholarly contributions.

B RELATED WORK

B.1 UNSTRUCTURED PRUNING

Unstructured pruning eliminates individual weights by setting them to zero, providing fine-grained
control over model sparsity. SparseGPT (Frantar & Alistarh, 2023) leverages second-order infor-
mation to perform layer-wise pruning with minimal retraining, whereas Wanda (Sun et al., 2024)
combines weight magnitude with activation statistics for a more straightforward pruning strategy.
While these methods achieve efficient pruning, they struggle to maintain performance at high spar-
sity levels and often require additional retraining (Sanh et al., 2020; Renda et al., 2020). BESA (Xu
et al., 2024) introduces a differentiable pruning framework that dynamically allocates sparsity across
layers to minimize performance degradation, producing competitive results without requiring exten-
sive retraining. Dynamic Sparse Training (DST) (Liu et al., 2020) proposes an end-to-end sparse
training method where trainable pruning thresholds dynamically adjust the sparsity level during
training. Unlike post-training pruning methods, DST eliminates the need for iterative fine-tuning by
continuously optimizing layer-wise sparsity using backpropagation. DST is designed for training
sparse networks from scratch.

More recent methods focus on improving sparsity allocation across layers. OATS (Zhang & Papyan,
2024) formulates optimal sparsity allocation as a constrained optimization problem using second-
order sensitivity (Hessian-based), enabling non-uniform sparsity distribution across layers while
preserving overall model accuracy. Similarly, DSNoT (Zhang et al., 2024b) proposes a data-free
unstructured pruning method that identifies salient weights using gradient sign stability, making
it suitable for low-resource settings. To further enhance performance, several approaches explore
adaptive layer-wise sparsity. OWL (Yin et al., 2023) and AlphaPruning (Lu et al., 2024) both
leverage activation statistics—such as outlier magnitudes or sparsity patterns—to determine how
much sparsity each layer can tolerate, thereby optimizing the global sparsity budget. These methods
typically build upon simpler base pruners like Wanda and improve performance by reallocating
sparsity in a layer-dependent manner. In contrast, our method CAP performs joint low-rank and
sparse decomposition via RPCA, which naturally induces structured sparsity patterns and enables
global optimization through policy gradients, avoiding hand-crafted allocation heuristics.

B.2 LOW-RANK PLUS SPARSE AND HYBRID COMPRESSION

Low-rank approximation, obtained via truncated SVD, remains a cornerstone for reducing both
memory footprint and FLOPs in deep networks (Denton et al., 2014). Early composite schemes
such as LoSparse (Li et al., 2023) add a sparse “correction” to each low-rank factor, but depend
on hand-tuned singular-value cut-offs and iterative fine-tuning. LPAF (Ren & Zhu, 2023) improves
robustness by applying structured pruning first, then decomposing the residual with a sparsity-aware
SVD and mixed-rank re-training (W ≈ AB), yet still requires several post-processing passes. Re-
cent work pushes the idea further: SVD-LLM (Wang et al., 2024b) introduces a truncation-aware
criterion that keeps LLaMA-13B perplexity at 6.43 with only 20% of the weights, while MoD-
eGPT (Lin et al., 2025) performs modular low-rank decomposition across consecutive sub-layers
and preserves 90–95% zero-shot accuracy at 25–30% parameters without any fine-tuning. On the
sparse side, MaskLLM (Fang et al., 2024) learns hardware-friendly 2:4 masks, retaining 91–95%
of baseline accuracy at 50% sparsity and yielding a ∼1.4× speed-up on A100 GPUs.

Hybrid methods combine sparsity with quantization or low precision: SpQR (Dettmers et al.,
2024) stores a tiny FP16 outlier matrix plus 4-bit weights, achieving sub-1% perplexity loss, while

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

CALDERA (Saha et al., 2024) represents each layer as a low-rank term plus a quantized backbone,
pushing below 3 bits/parameter on models up to 70B.

Recent advances integrate low-rank adaptation with sparsity and quantization. For instance,
SLiM (Mozaffari et al., 2024) combines low-rank modules, unstructured sparsity, and quantiza-
tion, introducing a probabilistic framework to fit quantization errors using low-rank components. It
further proposes SLiM-LoRA variants that apply sparsity-aware adapters with salience-based com-
pensation. Similarly, JSQ (Guo et al., 2024) jointly optimizes sparsity and quantization parameters
through a unified objective, while L2QER (Zhang et al., 2024a) adopts a sequential pipeline of low-
rank decomposition, sparsification, and quantization to maximize compression efficiency. These
methods demonstrate the growing trend toward multi-modal compression. However, most rely on
heuristic designs or require multiple stages of fine-tuning.

Unlike the above approaches, our CAP framework uses Robust PCA to jointly discover layer-
wise low-rank and sparse subspaces, then optimizes Bernoulli masks globally via policy gradi-
ents—eliminating manual thresholds and any backpropagation over the original parameters. This
enables a training-free, end-to-end decomposition that unifies the benefits of low-rank structure and
sparse expressivity without relying on error-fitting or staged optimization.

B.3 MODEL COMPRESSION VIA DISTILLATION AND STRUCTURED PRUNING

Knowledge distillation transfers knowledge from a large teacher model to a smaller student through
output mimicking or intermediate feature alignment. Early works such as DistilBERT (Sanh et al.,
2019) and TinyBERT (Jiao et al., 2019) apply distillation during pre-training, while task-specific
variants like PKD (Sun et al., 2019) and Theseus (Xu et al., 2020) focus on fine-tuned compression.
More advanced frameworks such as CKD (Mirzadeh et al., 2020) and MetaDistill (Zhou et al.,
2022) introduce multi-stage or meta-learning strategies to improve distillation efficiency. On the
pruning side, structured methods remove entire neurons, heads, or blocks. ISP (McCarley, 2019)
and FLOP (Prasanna et al., 2020) use importance scoring for layer pruning, while BPhybrid (La-
gunas et al., 2021) combines block pruning with fine-tuning. CoFi (Xia et al., 2022) jointly prunes
weights and attention heads using a shared importance metric. Unlike these methods that require ex-
tensive fine-tuning or teacher models, our approach operates in a post-training, training-free manner,
making it more suitable for low-resource deployment scenarios.

C PRELIMINARIES

0 1000 2000 3000 4000
Index

0

5

10

15

20

Si
ng

ul
ar

 V
al

ue

Singular Values of Layer 0
q_proj (original)
q_proj (RPCA)
k_proj (original)
k_proj (RPCA)
v_proj (original)
v_proj (RPCA)
o_proj (original)
o_proj (RPCA)
gate_proj (original)
gate_proj (RPCA)
down_proj (original)
down_proj (RPCA)
up_proj (original)
up_proj (RPCA)

0 1000 2000 3000 4000
Index

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Si
ng

ul
ar

 V
al

ue

Singular Values of Layer 31
q_proj (original)
q_proj (RPCA)
k_proj (original)
k_proj (RPCA)
v_proj (original)
v_proj (RPCA)
o_proj (original)
o_proj (RPCA)
gate_proj (original)
gate_proj (RPCA)
down_proj (original)
down_proj (RPCA)
up_proj (original)
up_proj (RPCA)

Figure 2: Singular values of Layer 0 and Layer 31 across different modules, comparing original and
RPCA-processed matrices. The dotted line represents the singular value distribution of the original
model, and the solid line represents the singular value distribution of the low-rank matrix after RPCA
processing.

C.1 LOW-RANK APPROXIMATION

Low-rank approximation (Chu et al., 2003) is a fundamental technique in matrix theory, widely used
to reduce the parameter count in neural networks while preserving most of the model’s performance.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

In large language models (LLMs), weight matrices are typically high-dimensional and dense. By
approximating a weight matrix W ∈ RM×N as UV⊤ with rank R≪ min(M,N), we can achieve
substantial reductions in storage and computational cost. Concretely, one typically uses Singular
Value Decomposition (SVD) to write

W = UΣV⊤, (18)
and then retains only the largest R singular values ΣR, yielding

W ≈ UR ΣR V⊤
R . (19)

This factorization can reduce the parameter count from M ×N to (M +N)×R, and also break a
large matrix multiplication into smaller ones:

Wx ≈ UR

(
ΣR(V

⊤
Rx)

)
,

leading to efficiency gains.

Despite these benefits, low-rank approximation alone may be insufficient for LLM compression,
especially when the singular values do not decay sharply. Figures 2 illustrate the singular value
distributions for two layers (Layer 0 and Layer 31) in a large Transformer. The dashed lines represent
the original matrices, showing that certain modules in the same Transformer block (e.g., attention vs.
feedforward) might exhibit similar shapes, yet across different layers, the redundancy patterns can
vary considerably. Consequently, imposing the same rank R uniformly across all layers may prune
too aggressively in some places and insufficiently in others. A more flexible approach is needed to
handle these differences among modules and layers.

C.2 LOW-RANK APPROXIMATION WITH SPARSE CORRECTIONS

To mitigate the shortcomings of purely low-rank approximation, recent methods (Li et al., 2023;
Ren & Zhu, 2023) advocate combining a low-rank matrix with a sparse correction term. One splits
the model weights as:

W = UV⊤︸ ︷︷ ︸
low-rank

+ S︸︷︷︸
sparse

. (20)

LoSparse (Li et al., 2023), for example, first applies an SVD on W to obtain a low-rank component
(with some rank R), and then prunes the residual W−UV⊤ to form a sparse matrix S. In practice,
one must still decide the singular-value cutoff (or target rank) and the sparsity ratio for the residual.
Often, additional fine-tuning is performed on the low-rank part to recover lost performance, or iter-
ative pruning is applied to the sparse part (Molchanov et al., 2019), which can be computationally
expensive.

A major limitation of these approaches is that they rely heavily on manually specified thresholds
for both singular values and residual pruning. They also lack a clear mechanism to coordinate how
much rank vs. how much sparsity each layer should receive, since different layers and modules may
have different redundancy patterns. Furthermore, when both the low-rank matrix and the sparse
matrix need simultaneous updates (or fine-tuning), memory consumption can become large, often
exceeding the budget for fine-tuning.

D KNOWLEDGE NEURONS

Transformer-based architectures, particularly large language models (LLMs), serve as repositories
of linguistic and factual knowledge (Geva et al., 2021; Dai et al., 2022). This knowledge is intricately
distributed across the network’s feed-forward networks (FFNs) and attention mechanisms, forming
the basis for accurate language understanding and generation. Figure 3 provides an illustrative
depiction of how such knowledge is encoded, stored, and attributed across these components, with
factual information such as ”Ireland’s capital is Dublin” encapsulated through complex interactions.

D.1 IMPACT OF PRUNING FFN LAYERS

FFNs act as key-value storage within Transformer models, encoding linguistic and factual infor-
mation as neuron activations (Geva et al., 2021). Specific neurons, often referred to as knowledge

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Self-Attention Layer

Feed-Forward
Network

Hidden State Knowledge
Neurons

Knowledge
Attribution

Factual Knowledge
Q27

Ireland
Q1761
Dublin

P36
capital

…

…

Figure 3: An illustration of how factual knowledge is encoded and attributed within Transformer
architectures. Factual knowledge is distributed across feed-forward networks (FFNs) and attention
mechanisms. Pruning these components risks disrupting knowledge structures, leading to perfor-
mance degradation.

neurons, are responsible for capturing and representing precise knowledge. For example, one neuron
may activate to encode “Q27: Ireland,” while its interplay with others encodes the factual relation-
ship “Capital: Dublin.”

Pruning FFN layers introduces the following risks:

• Disruption of Knowledge Neurons: Pruning weights indiscriminately can remove neu-
rons responsible for encoding critical facts, leading to the loss of semantic consistency and
factual integrity.

• Recovery Complexity: Unlike structured pruning or quantization, unstructured pruning
typically requires extensive fine-tuning to recover lost performance, as critical neurons are
often irreversibly removed.

D.2 EFFECT OF PRUNING ATTENTION MECHANISMS

Attention mechanisms are integral to Transformer models, enabling dynamic token-wise interactions
to capture semantic and contextual information. They play two primary roles:

• Knowledge Attribution: Attention mechanisms identify and link related entities, such as
establishing the factual connection between “Ireland” and “Dublin.”

• Contextual Understanding: By dynamically weighting token interactions, attention heads
provide rich semantic understanding, ensuring the accurate representation of factual rela-
tionships.

Pruning attention mechanisms poses distinct challenges:

• Impaired Attribution: Removing attention heads or weights can disrupt critical connec-
tions between tokens, such as the association between “Ireland” and “Dublin,” resulting in
factual inconsistencies.

• Redundancy vs. Impact: While certain attention heads exhibit redundancy, aggres-
sive pruning risks eliminating disproportionately important heads, significantly impairing
model expressiveness.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D.3 CHALLENGES IN SIMULTANEOUS PRUNING

The concurrent pruning of FFNs and attention mechanisms amplifies risks, as both components play
complementary roles. FFNs encode factual knowledge, while attention mechanisms attribute and
contextualize this information. Disrupting either component undermines the model’s capacity to
process and retrieve information effectively. The key challenges include:

• Degraded Knowledge Retrieval: Pruning FFNs may impair the model’s ability to retrieve
stored knowledge, while pruning attention mechanisms compromises its ability to contex-
tualize and attribute this knowledge accurately.

• Trade-offs in Compression: Achieving a balance between parameter reduction and
knowledge retention demands fine-grained strategies that preserve essential structures
while compressing redundant components.

D.4 PROPOSED MITIGATION STRATEGIES

To address these challenges, we propose a composite approximation framework designed to preserve
critical structures within FFNs and attention mechanisms while achieving significant compression:

• Robust Principal Component Analysis (RPCA): RPCA decomposes weight matrices
into low-rank and sparse components, separating global patterns from local anomalies. This
allows us to target redundancies without compromising essential knowledge structures.

• Policy Gradient Optimization: By introducing Bernoulli distributions, we selectively re-
tain important components in both FFNs and attention layers. Policy gradient methods
efficiently optimize the retention probabilities, bypassing the need for heuristic thresholds.

• Layer-Adaptive Compression: Our approach applies module-specific pruning rates, en-
suring critical parameters for knowledge retention remain intact while compressing less
significant structures.

D.5 CONCLUSION

The interplay between FFNs and attention mechanisms highlights their distinct yet complementary
roles in encoding and attributing knowledge within Transformer models. While FFNs store knowl-
edge, attention mechanisms enable its contextualization. Effective compression requires strategies
that preserve the integrity of these components. Our composite approximation framework achieves
this balance by leveraging RPCA and policy-driven optimization, offering a robust solution for re-
taining critical knowledge while reducing model complexity.

E ADDITIONAL DETAILS AND THEORETICAL ANALYSIS

E.1 POLICY GRADIENT WITH MOVING AVERAGE BASELINE

The REINFORCE gradient estimator in Equation equation 11 has high variance because it scales
directly with the loss magnitude. We incorporate a moving average baseline δ to reduce variance
while maintaining unbiased estimates:

∇skE[L] ≈ E
[
(L(W̃)− δ)∇sk log p(mk|sk)

]
(21)

• Variance Reduction: Let δ = E[L] be the expected loss. The variance becomes:

Var[(L − δ)∇ log p] = Var[L∇ log p]− 2δCov(L∇ log p,∇ log p)

+ δ2Var[∇ log p]

The baseline minimizes the second term when δ ≈ E[L] (Zhao et al., 2011).
• Unbiased Estimation: The baseline introduces no bias because:

E[δ∇ log p] = δE[∇ log p] = 0 (22)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

• Practical Implementation: We update δ as an exponential moving average (EMA):

δ ← βδ + (1− β)L(W̃) (23)

with β = 0.9 in experiments. This tracks recent performance while being robust to noise.

E.2 THEORETICAL ANALYSIS FOR LLM COMPRESSION

Theorem E.1 (Low-Rank+Sparse Approximation). For any weight matrix W ∈ Rm×n in Trans-
former layers, let r∗ be the intrinsic rank and s∗ the sparsity level. CAP achieves:

∥W̃ −W∥F ≤ C

√
r∗

m+ n︸ ︷︷ ︸
low-rank error

+ D
√
s∗︸ ︷︷ ︸

sparse error

+O

(√
log(1/δ)

|D|

)
(24)

with probability 1− δ, where C,D are data-dependent constants.

Proof. From RPCA recovery bounds (Candès et al., 2011) and PAC-Bayes generalization. The first
term comes from low-rank approximation error, the second from sparse component thresholding,
and the third from policy gradient optimization with |D| calibration samples.

Lemma E.2 (Parameter Efficiency). CAP preserves model capacity with:

rank(L̃) = O
(

K

m+ n

)
, ∥S̃∥0 = O(K) (25)

where K is the parameter budget. This matches the optimal rates for low-rank + sparse representa-
tions.

Corollary E.3 (LLM Performance Preservation). For a Transformer with L layers, if each atten-
tion/MLP matrix satisfies Theorem 1 with ∥W̃(l) −W(l)∥F ≤ ϵ, then the full model satisfies:

|L(W̃)− L(W)| ≤ Lϵ
√
dim(x) (26)

where dim(x) is the input dimension.

F CONVERGENCE ANALYSIS OF BERNOULLI POLICY GRADIENT

We analyse the stochastic optimisation that drives CAP’s second stage and show that it is (i) un-
biased, (ii) has controllable variance, and (iii) converges to a local optimum under standard Rob-
bins–Monro conditions.

Unbiased gradient. For a scalar loss L(W̃) and Bernoulli mask vector m ∼ p(m | s), the REIN-
FORCE estimator (Williams, 1992; Baxter & Bartlett, 2001) is

g(s) = (L(W̃)− δ)∇s log p(m | s), (27)

giving
Em

[
g(s)

]
= ∇sEm[L(W̃)],

so the estimate is unbiased.

Mask statistics. Each entry mij ∼ Bernoulli(sij) satisfies E[mij] = sij and Var(mij) = sij(1−
sij), maximised at sij = 0.5. We mitigate variance via:

• a moving–average baseline δ in Eq. equation 27, which subtracts an estimate of E[L];
• mini-batch averaging over B mask samples, reducing variance by |B|−1.

During training sij→0 or 1, so Var(mij)→0 and gradients become increasingly stable.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Convergence. With bounded second moment of g(s), step sizes ηt satisfying
∑

t ηt = ∞
and

∑
t η

2
t < ∞, the Robbins–Monro theorem ensures almost-sure convergence to a stationary

point (Robbins & Monro, 1951). Empirically, CAP converges within O(103) updates on a 128-
sample calibration set.

G BASELINE METHODS DESCRIPTION

This section provides detailed descriptions of all baseline methods used in our experimental evalua-
tion. We categorize these methods into several groups based on their compression approaches.

G.1 UNSTRUCTURED PRUNING METHODS

SparseGPT (Frantar & Alistarh, 2023) is a second-order pruning method specifically designed
for large language models. It formulates pruning as a layer-wise reconstruction problem, using the
inverse Hessian to determine optimal weight removal while minimizing the increase in layer-wise
reconstruction error. The method processes weights in each layer sequentially and updates remaining
weights to compensate for the removal of pruned parameters.

WANDA (Sun et al., 2024) (Pruning by Weights AND Activations) is a simple yet effective
pruning approach that estimates weight importance using both weight magnitudes and activation
statistics. It computes importance scores by multiplying weight magnitudes with the norm of corre-
sponding input activations, providing a more comprehensive measure of parameter significance than
magnitude-only methods.

DSNoT (Zhang et al., 2024b) (Dual Sparse Network Training) applies structured sparsity patterns
during training to achieve efficient inference. The method maintains dual sparse networks during
training and applies knowledge distillation between dense and sparse models to preserve perfor-
mance.

OATS (Zhang & Papyan, 2024) (Optimal Allocation for Transformer Sparsity) performs optimal
sparsity allocation across transformer layers using second-order information. It leverages layer-
wise sensitivity analysis to determine the optimal distribution of sparsity across different layers,
considering the varying importance of different transformer components.

G.2 LAYER-WISE ALLOCATION METHODS

OWL (Yin et al., 2023) (Outlier-Aware Weight Layerwise) is a layer-wise allocation method that
optimizes sparsity distribution across layers by identifying and preserving outlier weights that are
critical for model performance. The method uses activation-based outlier detection to guide the
sparsity allocation process.

AlphaPruning (Lu et al., 2024) employs reinforcement learning to automatically determine the
optimal sparsity ratio for each layer. It formulates the layer-wise sparsity allocation as a sequential
decision-making problem and uses policy gradient methods to learn optimal allocation strategies.

G.3 JOINT COMPRESSION METHODS

SLiM (Mozaffari et al., 2024) (Sparsity-aware Low-rank compression with Importance Masking)
combines low-rank approximation with sparsity and quantization. Its key innovation is probabilistic
quantization error fitting, where low-rank decomposition is used to model and compensate for quan-
tization errors. The method employs numerical integration to find optimal quantization parameters.

JSQ (Guo et al., 2024) (Joint Sparsity and Quantization) optimizes sparsity and quantization
parameters simultaneously through a unified optimization framework. It formulates the compression
problem as a joint optimization over both sparsity masks and quantization levels, enabling better
trade-offs between compression ratio and model performance.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

L2QER (Zhang et al., 2024a) (Low-rank Quantization with Error Reduction) combines low-rank
decomposition, quantization, and sparsity in a sequential manner. It first applies low-rank decompo-
sition, then quantizes the resulting factors, and finally applies sparsity to further reduce model size
while using error compensation techniques.

LPAF (Ren & Zhu, 2023) (Low-rank Plus Sparse with Adaptive Fine-tuning) follows a three-
stage approach: (1) applies first-order unstructured pruning to obtain a sparse model, (2) uses
sparsity-aware Singular Value Decomposition (SVD) to decompose the sparse matrices into low-
rank form AB, and (3) performs mixed-rank fine-tuning to retrain the decomposed matrices while
preserving the sparse structure.

G.4 KNOWLEDGE DISTILLATION METHODS

G.4.1 PRE-TRAINING DISTILLATION

DistilBERT (Sanh et al., 2019) applies knowledge distillation during the pre-training phase to
create a smaller model. It uses a combination of distillation loss, masked language modeling loss,
and cosine embedding loss to train a student model that retains much of the teacher’s capabilities
with significantly fewer parameters.

TinyBERT (Jiao et al., 2019) extends knowledge distillation by transferring knowledge from
both the intermediate layers and the prediction layer of the teacher model. It employs attention-
based distillation and hidden state distillation to capture more comprehensive knowledge from the
teacher model.

G.4.2 TASK-SPECIFIC DISTILLATION

PKD (Sun et al., 2019) (Patient Knowledge Distillation) introduces a patient teacher mechanism
where the student model learns from multiple intermediate teacher models of varying sizes. This
progressive distillation approach helps bridge the capacity gap between large teachers and small
students.

Theseus (Xu et al., 2020) employs a progressive module replacement strategy during fine-tuning.
It gradually replaces modules in the original model with smaller counterparts while maintaining
performance through careful scheduling and knowledge transfer.

CKD (Mirzadeh et al., 2020) (Cascade Knowledge Distillation) addresses the capacity gap prob-
lem in knowledge distillation by introducing intermediate teacher models. It uses a cascade of
teacher models with gradually decreasing sizes to provide a smooth knowledge transfer path.

MetaDistill (Zhou et al., 2022) leverages meta-learning to automatically discover optimal dis-
tillation strategies. It learns to adapt distillation parameters and strategies based on the specific
characteristics of the teacher-student pair and the target task.

G.5 STRUCTURED PRUNING METHODS

ISP (McCarley, 2019) (Iterative Structured Pruning) applies structured pruning in an iterative
manner, removing entire structures (such as attention heads or feed-forward network dimensions)
based on their importance scores. The method uses gradient-based importance measures and itera-
tive refinement.

FLOP (Prasanna et al., 2020) focuses on reducing FLOPs (Floating Point Operations) by pruning
entire dimensions in feed-forward networks and attention mechanisms. It uses activation-based im-
portance scoring to determine which structures to remove while maintaining model expressiveness.

BPhybrid (Lagunas et al., 2021) (Block-wise Pruning Hybrid) combines block-wise structured
pruning with unstructured pruning techniques. It prunes at the granularity of transformer blocks
while allowing fine-grained unstructured pruning within remaining blocks.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

CoFi (Xia et al., 2022) (Coarse-to-Fine) applies a coarse-to-fine pruning strategy that first identi-
fies important structures at a coarse granularity and then refines the pruning decisions at finer levels.
It uses learnable masks to determine optimal structured pruning patterns.

G.6 MATRIX FACTORIZATION METHODS

SVDft (Wang et al., 2019b) applies Singular Value Decomposition (SVD) to weight matrices
followed by fine-tuning. It decomposes weight matrices into low-rank approximations and then fine-
tunes the resulting factors to recover lost performance. The subscript ”ft” indicates the inclusion of
fine-tuning after decomposition.

H ON THE NON-REDUNDANCY OF L1 PENALIZATION AND PRUNING

Our two-stage design employs both L1 shrinkage in the RPCA decomposition and subsequent prun-
ing operations. While these steps may appear related on the surface, they serve fundamentally
different and non-redundant purposes. This section clarifies why attempting to replace our second-
stage pruning with a higher λ in the first stage is not feasible, as RPCA is a tool for decomposition,
not a controllable mechanism for compression.

H.1 DISTINCT OBJECTIVES OF TWO-STAGE DESIGN

The core distinction lies in their objectives:

Stage 1 (RPCA Decomposition): Principled Separation. The L1 penalty in the RPCA objective
min ∥L∥∗ + λ∥S∥1 is designed to separate a weight matrix W into a globally correlated, low-rank
structure (L) and locally salient, sparse outliers (S). The λ parameter governs the balance of this
separation. Its purpose is to yield high-quality candidate pools for pruning, not to achieve a specific,
final compression ratio.

Stage 2 (CAP Pruning): Budget-Constrained Selection. This stage solves a different problem
entirely: given the candidates from Stage 1, how do we select the optimal subset of singular vectors
from L and non-zero elements from S to meet a strict, user-defined parameter budget K while
minimizing task performance degradation? This is a global, budget-aware optimization problem
that λ cannot address.

H.2 LIMITATIONS OF λ AS A COMPRESSION PARAMETER

The compression ratio achieved by RPCA is an emergent property of the decomposition, not some-
thing that can be precisely controlled by tuning λ. Attempting to force a specific level of sparsity by
adjusting λ is problematic for several reasons:

• Uncontrollable Trade-off: λ creates a complex, non-linear trade-off between the rank of
L and the sparsity of S. As you change λ to affect S, it has a drastic and often unpredictable
effect on L. There is no simple way to set λ to achieve, for instance, a target of 50% total
parameters while maintaining a useful decomposition.

• Pathological Decompositions: Extreme values of λ destroy the quality of the separation,
making the resulting components useless for effective compression.

H.2.1 EXPERIMENTAL ANALYSIS OF λ PARAMETER EFFECTS

To demonstrate this limitation, we analyze the output of the RPCA decomposition under different
λ values. We use the theoretically motivated default λ = 1/

√
max(m,n) from the original RPCA

work (Wright et al., 2009) as our baseline, which provides a robust, balanced starting point without
requiring parameter tuning.

H.2.2 ANALYSIS OF RESULTS

The experimental results reveal several key insights:

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 5: Impact of λ parameter on RPCA decomposition characteristics

λ setting Sparsity of S Rank of L Decomposition Quality

8e-5 (Low) 0.001 (Dense) 1512 Poor separation: S lacks sparsity
Default 0.41 2109 Balanced decomposition
8e-3 0.53 2174 Alternative reasonable trade-off
0.8 (High) 0.999 (Sparse) 3188 Poor separation: L becomes high-rank

Table 6: Perplexity (PPL) and mean zero-shot accuracy for pruned LLaMA and LLaMA-2 models
at 50% compression ratio.

Model w/o Pruning SparseGPT WANDA BESA CAP
PPL ↓ Zero-Shot ↑ PPL ↓ Zero-Shot ↑ PPL ↓ Zero-Shot ↑ PPL ↓ Zero-Shot ↑ PPL ↓ Zero-Shot ↑

LLaMA-7B 5.68 66.31 7.22 63.12 7.26 61.81 6.86 63.13 6.61 64.29
LLaMA-13B 5.09 68.91 6.21 65.98 6.15 66.49 5.92 67.43 5.76 68.32
LLaMA-30B 4.10 72.73 5.33 70.53 5.25 70.92 5.00 71.61 4.77 72.08
LLaMA-2 7B 5.21 66.96 6.99 63.71 6.92 63.81 6.60 64.92 6.25 65.33

LLaMA-2 13B 4.88 69.95 6.02 67.22 5.97 67.94 5.75 68.45 5.49 69.14

• Optimal Parameter Range: The theoretically motivated default λ value provides a bal-
anced decomposition where both L and S are meaningful, creating a rich candidate pool
for subsequent pruning.

• Non-Linear Parameter Effects: The relationship between λ and compression outcomes
is complex and non-linear. Extreme λ values (0.8) create highly sparse S but force L to
become high-rank, essentially reducing to L ≈ W . Conversely, very low λ values (8e-5)
fail to enforce meaningful sparsity in S.

• Controllability Limitations: No single λ value can simultaneously achieve low-rank L,
sparse S, and satisfy a predefined parameter budget constraint.

H.3 CONCLUSION

The two-stage design is essential rather than redundant. While Stage 1 (RPCA) provides a principled
decomposition, it offers limited controllability over the final compression ratio. Stage 2 (CAP)
addresses this limitation by performing intelligent, data-driven selection from the candidate pools
generated in Stage 1, enabling precise parameter budget control while maintaining task performance.
This combination of principled decomposition followed by budget-aware selection is fundamental
to the superior performance of our approach.

I PERFORMANCE EVALUATION ON LLAMA AND LLAMA-2 MODELS

This section presents comprehensive experimental results on the LLaMA and LLaMA-2 model fam-
ilies under different compression settings. We evaluate our proposed CAP method against several
state-of-the-art pruning baselines to demonstrate its effectiveness across various model sizes and
compression ratios.

I.1 RESULTS AT 50% COMPRESSION RATIO

Table 6 presents the perplexity and mean zero-shot accuracy results for LLaMA and LLaMA-2 mod-
els at 50% compression ratio. Our method consistently outperforms existing pruning approaches
across all model variants, demonstrating superior performance in both language modeling (lower
perplexity) and downstream task performance (higher zero-shot accuracy).

The results demonstrate that CAP achieves consistently superior performance across all tested mod-
els. Notably, CAP maintains competitive zero-shot accuracy while achieving significantly lower per-
plexity compared to other pruning methods. For instance, on LLaMA-7B, CAP achieves a perplexity
of 6.61 compared to 7.22 for SparseGPT and 7.26 for WANDA, while simultaneously maintaining
higher zero-shot accuracy (64.29% vs. 63.12% and 61.81% respectively).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

I.2 EVALUATION UNDER HIGHER COMPRESSION RATIOS

Table 7: Accuracy results for different pruning methods on LLaMA-7B with 75% parameter reten-
tion. CAP represents our proposed method, applied without any parameter adjustment after pruning.
w/o Pruning shows the baseline performance of the unpruned model.

Methods BoolQ RTE HellaSwag Winogrande ARC-e ARC-c OBQA

w/o Pruning 75.08 66.09 56.94 69.93 75.25 41.89 34.60
Magnitude 42.23 52.35 25.86 48.38 26.64 21.50 14.00

SparseGPT 60.86 52.71 29.10 51.78 33.08 17.58 13.40

WANDA 37.83 51.99 26.78 49.41 28.79 19.54 13.20

CAP (75%) 63.33 55.71 31.67 54.01 35.73 22.88 16.12

Table 8: Accuracy results for different pruning methods on LLaMA2-7B with 75% parameter reten-
tion. CAP represents our proposed method, applied without any parameter adjustment after pruning.
w/o Pruning shows the baseline performance of the unpruned model.

Methods BoolQ RTE HellaSwag Winogrande ARC-e ARC-c OBQA

w/o Pruning 77.71 62.82 57.14 68.90 76.39 43.52 31.40
Magnitude 43.49 49.10 25.69 50.83 26.09 20.73 16.00

SparseGPT 60.34 54.15 30.28 53.12 33.75 20.39 14.20

WANDA 38.22 52.17 26.95 50.51 28.03 19.62 13.20

CAP (75%) 62.67 56.15 32.11 55.39 36.12 23.02 16.37

We further evaluate our proposed method (CAP) against three other pruning methods—Magnitude,
SparseGPT, and WANDA—on LLaMA-7B and LLaMA-2 7B models under more aggressive com-
pression settings with a parameter retention rate of 75% (25% compression). The results are pre-
sented in Tables 7 and 8. Key Observations:

• CAP consistently outperforms other methods: CAP achieves the highest accuracy across
all datasets without requiring any parameter adjustment after pruning. This demonstrates
its robustness in retaining critical model performance even under high sparsity conditions.

• Magnitude and SparseGPT limitations: These methods show noticeable performance
degradation under 75% parameter retention, especially on tasks that require factual rea-
soning (e.g., OBQA) or commonsense understanding (e.g., HellaSwag). This highlights
the importance of principled parameter selection rather than simple magnitude-based ap-
proaches.

• WANDA performance: WANDA performs slightly better than SparseGPT on certain
datasets but is generally less competitive compared to CAP, highlighting the advantages of
CAP’s probabilistic pruning mechanism over activation-based importance scoring alone.

• CAP excels in challenging settings: By leveraging RPCA for decomposition and policy
gradient optimization for adaptive pruning, CAP is able to selectively retain the most infor-
mative parameters, ensuring superior performance even under extreme sparsity conditions.
The method’s ability to jointly optimize low-rank and sparse components provides a more
nuanced approach to parameter importance estimation.

Conclusion: The comprehensive evaluation on both LLaMA and LLaMA-2 families demonstrates
that CAP offers a robust and efficient approach to model compression across different compression
ratios. By eliminating heuristic thresholds and adopting fine-grained pruning strategies based on
principled matrix decomposition, CAP surpasses existing methods while maintaining computational
simplicity and avoiding the need for post-pruning fine-tuning. The consistent performance gains

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

across model sizes and compression settings validate the effectiveness of the RPCA-based joint
optimization approach.

J EMPIRICAL THROUGHPUT AND RESOURCE CONSUMPTION ANALYSIS

To provide a comprehensive efficiency comparison, we measured the end-to-end throughput of
Llama-3 8B at a 50% parameter ratio alongside the computational resource consumption of
CAP’s core stages. Comparisons are made against Wanda ?, a leading unstructured pruning method.
All measurements were conducted on an NVIDIA A100-80G GPU.

Table 9: Throughput and Resource Consumption Comparison on Llama-3 8B at 50% Parameter
Ratio.

Method Parameter Ratio Mean Accuracy (%) ↑ Throughput (tok/s) ↑ RPCA Time (min) Memory Footprint

Wanda 50% 63.27 38.1 – Baseline
CAP (Ours) 50% 66.39 35.7 ≤10 ∼1.01×

Key observations from our empirical evaluation include:

• Throughput: CAP achieves a throughput of 35.7 tokens/second, approximately 6% lower
than Wanda’s 38.1 tokens/second. This modest overhead stems from CAP’s forward pass
comprising two small dense GEMM operations and one sparse GEMM, whereas Wanda
uses a single larger sparse GEMM.

• RPCA Decomposition Efficiency: The RPCA stage operates purely on weight matrices
without data forwarding or backward propagation, requiring only ¡10 minutes to decom-
pose the entire 7B model on a single A100-80G GPU. This matrix decomposition process
is highly efficient and adds negligible overhead to the overall fine-tuning pipeline.

• Memory Efficiency in Policy Optimization: The subsequent policy gradient stage uses
only 128 calibration sequences and requires merely 3–5 forward passes (no backward
propagation), resulting in a memory footprint comparable to Wanda and over two orders of
magnitude lower than gradient-based parameter update methods. This extreme efficiency
makes CAP particularly suitable for resource-constrained environments.

These results underscore CAP’s practical strength: it delivers near-dense accuracy under strict
VRAM constraints, with highly competitive inference speed and minimal resource overhead during
optimization. The combination of efficient matrix decomposition and lightweight policy optimiza-
tion makes CAP particularly suitable for production environments where both accuracy and resource
efficiency are critical.

K DETAILED ABLATION STUDIES

This section provides comprehensive ablation studies to understand the behavior and characteristics
of our compression method. We focus on two key aspects: the distribution of retained ranks across
different modules and the stability analysis through sequential layer-wise pruning.

K.1 LOW-RANK COMPONENT RANK DISTRIBUTION

We analyzed the rank distribution of low-rank components in each module after probabilistic prun-
ing. Figure 4a shows these ranks along with the layer-wise averages. Modules with higher ranks in
the low-rank component tend to have sparser counterparts in the sparse component to meet the com-
pression target. The general trend of increasing rank in deeper layers suggests that redundancy varies
across the network, with later layers capturing more complex representations, underscoring the need
for careful pruning in these layers. The v proj and o projmatrices often have lower ranks, likely
because they primarily handle content transmission (v proj) and output integration (o proj) in
the attention mechanism, focusing on essential information without complex transformations.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30
Layer Index

0

200

400

600

800

Ra
nk

 V
al

ue

q_proj (dashed)
k_proj (dashed)
v_proj (dashed)
o_proj (dashed)
gate_proj (dashed)
down_proj (dashed)
up_proj (dashed)
Average Rank (solid)

(a) The rank distribution of low-rank matrices for each mod-
ule after pruning.

0 5 10 15 20 25 30
Layer Index

5.2

5.4

5.6

5.8

6.0

6.2

Pe
rp

le
xi

ty

(b) Perplexity changes with sequen-
tial decomposition and pruning of each
layer.

Figure 4: Analysis of module-specific redundancy and pruning stability in LLaMA2-7B. (a) The
retained rank varies significantly across different modules, indicating differing sensitivity to com-
pression. (b) Performance degradation shows a linear correlation with the number of pruned layers,
demonstrating the stability of our compression approach.

K.2 PERPLEXITY CHANGES DURING LAYER-WISE PRUNING

To evaluate the stability of our compression approach, we sequentially decomposed and pruned each
layer of the LLaMA2-7B model, starting from the initial layer. The resulting performance changes
are shown in Figure 4b. The performance degradation generally exhibits a linear correlation with the
number of pruned layers, demonstrating the stability of our method. This linear trend indicates that
our compression strategy does not introduce catastrophic failure points and maintains predictable
performance reduction. Interestingly, an unexpected performance boost occurs when the last layer
is compressed, underscoring the importance of maintaining structural consistency within the model.
Furthermore, decomposing and pruning the first layer led to a slight improvement (ppl 5.18) over
the original model’s performance (ppl 5.21), suggesting that early layers may indeed contain some
redundant parameters that can be removed without harming performance.

K.3 SUMMARY OF ABLATION FINDINGS

Our ablation studies reveal several important insights:

• Module heterogeneity: Different modules exhibit varying levels of redundancy, with at-
tention projection matrices (v proj, o proj) typically requiring lower ranks than other
components.

• Layer-wise redundancy patterns: Early layers contain more redundant parameters that
can be safely removed, while deeper layers require more careful compression to maintain
performance.

• Compression stability: The linear relationship between performance degradation and the
number of compressed layers demonstrates the predictable and stable nature of our com-
pression approach.

• Structural consistency: The performance boost observed when compressing the final
layer highlights the importance of maintaining model structural integrity throughout the
compression process.

L LIMITATIONS

Similar to other unstructured sparsity methods, the acceleration of sparse matrix computations heav-
ily depends on specialized hardware support. While significant advances have been made in sparse
computation frameworks, the lack of universal hardware optimization can hinder the practical de-
ployment of our method in certain environments.

30

	Introduction
	Method
	Theoretical Background and Motivation
	Problem Formulation
	Proposed Approach: CAP
	Stage 1: Principled Decomposition via RPCA
	Stage 2: Learnable Probabilistic Pruning

	Discussion

	Experiments
	Comparison with Unstructured Pruning Methods
	Comparison with Joint Compression Methods
	Comprehensive Comparison on GLUE Tasks
	Ablation Studies

	Conclusion
	Appendix
	
	The use of Large Language Models(LLMS)
	Related Work
	Unstructured Pruning
	Low-Rank Plus Sparse and Hybrid Compression
	Model Compression via Distillation and Structured Pruning

	Preliminaries
	Low-Rank Approximation
	Low-Rank Approximation with Sparse Corrections

	Knowledge Neurons
	Impact of Pruning FFN Layers
	Effect of Pruning Attention Mechanisms
	Challenges in Simultaneous Pruning
	Proposed Mitigation Strategies
	Conclusion

	Additional Details and Theoretical Analysis
	Policy Gradient with Moving Average Baseline
	Theoretical Analysis for LLM Compression

	Convergence Analysis of Bernoulli Policy Gradient
	Baseline Methods Description
	Unstructured Pruning Methods
	Layer-wise Allocation Methods
	Joint Compression Methods
	Knowledge Distillation Methods
	Pre-training Distillation
	Task-specific Distillation

	Structured Pruning Methods
	Matrix Factorization Methods

	On the Non-Redundancy of L1 Penalization and Pruning
	Distinct Objectives of Two-Stage Design
	Limitations of as a Compression Parameter
	Experimental Analysis of Parameter Effects
	Analysis of Results

	Conclusion

	Performance Evaluation on LLaMA and LLaMA-2 Models
	Results at 50% Compression Ratio
	Evaluation Under Higher Compression Ratios

	Empirical Throughput and Resource Consumption Analysis
	Detailed Ablation Studies
	Low-Rank Component Rank Distribution
	Perplexity Changes During Layer-wise Pruning
	Summary of Ablation Findings

	Limitations

