LARGE LANGUAGE MODEL COMPRESSION WITH GLOBAL RANK AND SPARSITY OPTIMIZATION

Anonymous authors

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

025

026

027

028

031

033

034

035

037

038

040

041

042

043

044

046 047

048

051

052

Paper under double-blind review

ABSTRACT

Low-rank and sparse composite approximation is a natural idea to compress Large Language Models (LLMs). However, such an idea faces two primary challenges that adversely affect the performance of existing methods. The first challenge relates to the interaction and cooperation between low-rank and sparse matrices, while the second involves determining weight allocation across different layers, as redundancy varies considerably among them. To address these challenges, we propose a novel two-stage LLM compression method with the capability of global rank and sparsity optimization. It is noteworthy that the overall optimization space is vast, making comprehensive optimization computationally prohibitive. Therefore, to reduce the optimization space, our first stage utilizes robust principal component analysis to decompose the weight matrices of LLMs into low-rank and sparse components, which span the low dimensional and sparse spaces containing the resultant low-rank and sparse matrices, respectively. In the second stage, we propose a probabilistic global optimization technique to jointly identify the lowrank and sparse structures within the above two spaces. The appealing feature of our approach is its ability to automatically detect the redundancy across different layers and to manage the interaction between the sparse and low-rank components. Extensive experimental results indicate that our method significantly surpasses state-of-the-art techniques for sparsification and composite approximation.

1 Introduction

Transformer-based large language models (LLMs) (Vaswani et al., 2023; Touvron et al., 2023b; OpenAI et al., 2024) have achieved remarkable progress across natural language processing (NLP), computer vision, and scientific applications. Despite these successes, their massive parameter sizes pose critical challenges: they demand huge storage and memory footprints, incur slow inference speeds, and require substantial computational resources for training. Consequently, model compression (Cheng et al., 2020; Wang et al., 2024a; Zhu et al., 2024) has become an essential line of research for enabling real-world LLM deployment under stringent hardware constraints.

Among compression strategies, *quantization* (Han et al., 2015; Chee et al., 2023; Kuzmin et al., 2023) typically retains overall model structure by reducing the precision of weights, thus often preserving performance. By contrast, *pruning* (Liu et al., 2017; Frankle & Carbin, 2019; Sun et al., 2024; Frantar & Alistarh, 2023) removes individual weights based on certain criteria (e.g., magnitude or importance scores). Although pruning is flexible and can yield substantial parameter savings, it may degrade performance unless combined with additional fine-tuning or distillation (Sanh et al., 2020), especially in large-scale LLMs that encode extensive linguistic and factual knowledge (Geva et al., 2021; Dai et al., 2022).

To retain more critical information under aggressive compression, researchers have explored "low-rank plus sparse" decompositions (Li et al., 2023; Ren & Zhu, 2023; Han et al., 2024). In this approach, the weight matrix is decomposed into a low-rank part that captures global correlations and a sparse part that highlights outliers or domain-specific knowledge. However, existing methods often rely on manually set singular-value thresholds, which can inadvertently discard medium-sized yet important singular values. Additionally, these methods require computationally expensive back-propagation for parameter updates. While there is some interaction between the optimization of the low-rank and sparse components, the two parts are still relatively independent in their update pro-

cesses. Lastly, due to the significant redundancy variations from early layers to deeper ones, how to allocate rank and sparsity across layers in a globally optimal manner remains unclear.

In this paper, we address these issues via a novel **two-stage compression** framework tailored to LLMs. First, we apply robust principal component analysis (RPCA) (Candès et al., 2011) to factor each weight matrix into strictly low-rank and sparse components, thereby reducing the otherwise huge search space into a low-dimensional subspace and a sparse subspace. Second, we introduce a probabilistic global optimization scheme that jointly determines which singular values in the low-rank component and which nonzero entries in the sparse component should be retained. This is done by assigning Bernoulli probabilities and updating them via policy gradient (Williams, 1992) on a small calibration set, avoiding heuristic thresholds or large-scale gradient updates. Critically, our method automatically detects the differing redundancy levels across layers and manages the interaction between low-rank and sparse parts, ensuring that vital parameters are kept while truly redundant ones are pruned away. We summarize our main contributions as follows:

- We propose a two-stage LLM compression approach that first uses RPCA to produce low-rank and sparse subspaces, then employs a Bernoulli-based global optimization for rank and sparsity selection.
- Our framework eliminates the need for manual thresholds or layerwise iterative backpropagation, offering an end-to-end scheme that adapts automatically to various layers' redundancy characteristics.
- Extensive experiments show that our method outperforms existing sparsification and composite approximation baselines under multiple compression ratios, highlighting its effectiveness and robustness.

We provide a detailed review and discussion of related work in Appendix B.

2 Method

2.1 THEORETICAL BACKGROUND AND MOTIVATION

Low-rank approximation is a fundamental technique in matrix theory, widely used to reduce the parameter count in neural networks while preserving model performance. In LLMs, weight matrices are typically high-dimensional and dense. By approximating a weight matrix $W \in \mathbb{R}^{m \times n}$ with rank $R \ll \min(m,n)$ using a truncated SVD, one can write

$$W \approx U_R \Sigma_R V_R^{\top},\tag{1}$$

where U_R and V_R contain the top R left and right singular vectors, and Σ_R is the diagonal matrix of the largest R singular values. This factorization reduces the parameter count from $m \times n$ to $(m+n) \times R$, and breaks a large matrix multiplication into smaller ones, leading to significant efficiency gains.

Despite these benefits, low-rank approximation alone may be insufficient for LLM compression, especially when the singular values do not decay sharply. For example, Figure 2 in the Appendix C shows the singular value spectra of two representative layers (Layer 0 and Layer 31) from a Transformer model, comparing the original weight matrix and its low-rank component after RPCA processing. The dashed lines (original matrices) indicate that certain modules in the same Transformer block (e.g., an attention head vs. a feed-forward network) can exhibit similar spectral shapes; yet across different layers, the redundancy patterns vary considerably. Consequently, imposing the same target rank R uniformly across all layers may prune too aggressively in some cases and insufficiently in others. This observation motivates a more flexible approach that can adapt the compression ratio per layer.

Recent studies have explored combining low-rank and sparse representations to enhance compression. For instance, LoSparse (Li et al., 2023) first applies SVD on W to obtain a rank-R approximation, then prunes the residual $W-U_R\Sigma_RV_R^{\top}$ to form a sparse matrix. In practice, one must still decide the singular value cutoff (or target rank) and the sparsity ratio for the residual. Often, additional fine-tuning is performed on the low-rank part to recover lost performance, or iterative pruning is applied to the sparse part (Molchanov et al., 2019), which can be computationally expensive. A major limitation of these approaches is the reliance on manually chosen thresholds for both

Figure 1: Overview of our proposed compression method. The weight matrix \mathbf{W} is decomposed into a low-rank component \mathbf{L} and a sparse component \mathbf{S} using RPCA. Both components are pruned through Bernoulli sampling guided by learned probability scores, optimized via policy gradient. The low-rank component is further factorized into \mathbf{U}' and \mathbf{V}' to reduce the number of model parameters.

singular values and residual pruning. They also lack a clear mechanism to coordinate how much rank vs. sparsity each layer should receive, since different layers and modules may have different redundancy characteristics. Furthermore, when both the low-rank and sparse matrices require joint fine-tuning, the memory consumption can become large, potentially exceeding the budget.

We begin by formulating the global objective of compressing LLM weights under a parameter budget (§ 2.2). We then describe our proposed approach (§ 2.3), which first uses RPCA to decompose each weight matrix into low-rank and sparse components, and subsequently prunes these components in a probabilistic manner, without heuristic thresholds or large-scale fine-tuning. Additional theoretical analysis can be found in the Appendix E.

2.2 PROBLEM FORMULATION

Suppose we have L layers in an LLM, each containing weight matrices $\{\mathbf{W}^{(l)}\}_{l=1}^{L}$. We seek compressed matrices $\{\tilde{\mathbf{W}}^{(l)}\}$ such that the total parameter count does not exceed a budget K, while minimizing a loss $\ell(\tilde{\mathbf{W}})$ measured on a small calibration set \mathcal{D} . Formally,

$$\min_{\{\tilde{\mathbf{W}}^{(l)}\}} \sum_{(x,y)\in\mathcal{D}} \ell\Big(f(\tilde{\mathbf{W}};x),y\Big),$$
subject to $\operatorname{ParamCount}(\{\tilde{\mathbf{W}}^{(l)}\}) \leq K,$

where $f(\tilde{\mathbf{W}};x)$ is the LLM's forward pass given the compressed weights, and $\operatorname{ParamCount}(\cdot)$ measures how many parameters are retained. Directly pruning each individual weight is intractable for very large matrices. To address this, we propose to:

- **Decompose** each $\mathbf{W}^{(l)}$ via RPCA to obtain a low-rank matrix \mathbf{L} and a sparse matrix \mathbf{S} , reducing the search space to "global rank directions" plus "sparse outliers."
- **Probabilistically prune** both components under the budget K by learning Bernoulli retention probabilities through policy gradient on a small calibration set.

2.3 PROPOSED APPROACH: CAP

As illustrated in Figure 1, our proposed method, CAP, follows a two-stage process. The role of Stage 1 is to decompose weights into a relatively low-rank matrix ${\bf L}$ and a sparse matrix ${\bf S}$, reducing the parameter space to manageable candidates. Stage 2 then jointly optimizes over these candidates to achieve the target compression ratio while preserving model performance. This principled decomposition followed by budget-aware selection avoids heuristic thresholds and expensive fine-tuning. In the following sections, we provide detailed explanations of our algorithm.

2.3.1 STAGE 1: PRINCIPLED DECOMPOSITION VIA RPCA

The first stage of our method is not designed to achieve a target compression ratio directly. Instead, its purpose is to perform a principled decomposition of each weight matrix, transforming the complex problem of pruning individual weights into a more structured one. By separating a weight matrix $\mathbf{W} \in \mathbb{R}^{m \times n}$ into a low-rank component \mathbf{L} that captures global structure and a sparse component \mathbf{S} that captures local, salient features, we establish a high-quality candidate pool for subsequent compression. We achieve this through RPCA, which formulates the decomposition as a convex optimization problem:

$$\min_{\mathbf{L}, \mathbf{S}} \underbrace{\|\mathbf{L}\|_*}_{\text{Low-rank constraint}} + \lambda \underbrace{\|\mathbf{S}\|_1}_{\text{Sparsity constraint}} \text{subject to} \mathbf{W} = \mathbf{L} + \mathbf{S}.$$
 (3)

The choice of this objective is theoretically motivated. The nuclear norm $\|\mathbf{L}\|_*$ is the tightest convex relaxation of the rank function, making it the most effective convex proxy for minimizing rank. Similarly, the ℓ_1 norm $\|\mathbf{S}\|_1$ is the standard convex relaxation for the non-convex ℓ_0 norm (sparsity), which effectively identifies significant, sparse outliers. Thus, this framework provides a principled and globally optimal separation of \mathbf{W} into its underlying low-rank and sparse structures.

Crucially, the hyperparameter λ in the RPCA objective governs the nature of this decomposition, not the final compression rate. Attempting to control sparsity by simply tuning λ leads to unpredictable changes in the rank of $\mathbf L$ and often results in poor-quality decompositions, a point we analyze in detail in Appendix H. Therefore, this stage focuses solely on creating an optimal candidate pool for the subsequent budget-aware pruning. We solve Eq. equation 3 using the efficient Alternating Direction Method of Multipliers (ADMM) (Lin et al., 2010). The updates are as follows:

$$\mathbf{L}_{k+1} = \arg\min_{\mathbf{L}} \|\mathbf{L}\|_* + \frac{\mu}{2} \|\mathbf{W} - \mathbf{L} - \mathbf{S}_k + \mu^{-1} \mathbf{Y}_k \|_F^2,$$
(4)

$$\mathbf{S}_{k+1} = \arg\min_{\mathbf{S}} \ \lambda \|\mathbf{S}\|_1 + \frac{\mu}{2} \|\mathbf{W} - \mathbf{L}_{k+1} - \mathbf{S} + \mu^{-1} \mathbf{Y}_k \|_F^2, \tag{5}$$

$$\mathbf{Y}_{k+1} = \mathbf{Y}_k + \mu \left(\mathbf{W} - \mathbf{L}_{k+1} - \mathbf{S}_{k+1} \right). \tag{6}$$

The L-update employs Singular Value Thresholding (SVT) (Cai et al., 2008):

$$\mathbf{L}_{k+1} = \mathbf{U}\operatorname{diag}(\operatorname{shrink}_{\mu^{-1}}(\boldsymbol{\sigma}))\mathbf{V}^{\top}$$
(7)

where $\mathbf{U}\boldsymbol{\sigma}\mathbf{V}^{\top}$ is the SVD of $\mathbf{W} - \mathbf{S}_k + \mu^{-1}\mathbf{Y}_k$, with singular value shrinkage shrink $_{\tau}(\sigma_i) = \max(\sigma_i - \tau, 0)$. The S-update applies elementwise soft-thresholding:

$$[\mathbf{S}_{k+1}]_{ij} = \operatorname{shrink}_{\lambda\mu^{-1}}([\mathbf{W} - \mathbf{L}_{k+1} + \mu^{-1}\mathbf{Y}_k]_{ij})$$
(8)

This alternating optimization progressively separates the weight matrix into a low-dimensional subspace capturing directional patterns (\mathbf{L}) and a sparse subspace containing localized refinements (\mathbf{S}) , establishing the foundation for subsequent global resource allocation.

2.3.2 STAGE 2: LEARNABLE PROBABILISTIC PRUNING

While the RPCA decomposition in Stage 1 provides a high-quality separation of components, it does not enforce a specific parameter budget. The second stage directly addresses this by performing a global, budget-aware selection from the candidate pools ($\bf L$ and $\bf S$) generated previously. We decide which rank-1 components in $\bf L$ and which non-zero entries in $\bf S$ to keep, to meet a user-defined parameter budget K while minimizing task performance degradation.

The total parameter budget, K, is a user-defined hyperparameter (e.g., 50% of the original model's parameters). Each retained singular value σ_i from \mathbf{L} requires storing its corresponding singular vectors $\mathbf{u}_i \in \mathbb{R}^m$ and $\mathbf{v}_i \in \mathbb{R}^n$, contributing (m+n) parameters. Each retained non-zero entry of \mathbf{S} contributes one parameter. We introduce Bernoulli random variables to model the retention decision for each potential parameter:

$$m_{\sigma_i} \sim \text{Bernoulli}(s_{\sigma_i}), \quad m_{S_{ij}} \sim \text{Bernoulli}(s_{S_{ij}}),$$

where $s_{\sigma_i} \in [0,1]$ and $s_{S_{ij}} \in [0,1]$ are learned retention probabilities. The compressed matrix is then

$$\tilde{\mathbf{W}} = \mathbf{U}\operatorname{diag}(\boldsymbol{\sigma}\odot\mathbf{m}_{\sigma})\mathbf{V}^{\top} + \mathbf{S}\odot\mathbf{m}_{S}, \tag{9}$$

subject to $\sum_i s_{\sigma_i}(m+n) + \sum_{i,j} s_{S_{ij}} \leq K$ to respect the total parameter budget.

Learning probabilities via policy gradient. We minimize the expected loss on a small calibration set \mathcal{D} :

$$\min_{\mathbf{s}} \mathbb{E}_{\mathbf{m} \sim p(\mathbf{m}|\mathbf{s})} \Big[\mathcal{L}(\tilde{\mathbf{W}}) \Big], \tag{10}$$

where $\mathbf{s}=\{s_{\sigma_i},s_{S_{ij}}\}$ and $p(\mathbf{m}\mid\mathbf{s})$ is the product of Bernoulli distributions. We employ a REINFORCE-style (Williams, 1992) policy gradient:

$$\nabla_{s_k} \mathbb{E}_{\mathbf{m}}[\mathcal{L}(\tilde{\mathbf{W}})] = \mathbb{E}_{\mathbf{m}} \Big[\mathcal{L}(\tilde{\mathbf{W}}) \nabla_{s_k} \log p(\mathbf{m} \mid s_k) \Big].$$
 (11)

For a Bernoulli variable $m_k \sim \text{Bernoulli}(s_k)$,

$$\nabla_{s_k} \log p(m_k \mid s_k) = \frac{m_k - s_k}{s_k (1 - s_k) + \epsilon},$$

with a small $\epsilon > 0$ to avoid division by zero. To reduce variance, we maintain a moving average baseline δ (Zhao et al., 2011):

$$\delta \leftarrow \beta \delta + (1 - \beta) \mathcal{L}(\tilde{\mathbf{W}}),$$
 (12)

and update each s_k via

$$s_k \leftarrow s_k - \eta \left(\mathcal{L}(\tilde{\mathbf{W}}) - \delta \right) \nabla_{s_k} \log p(m_k \mid s_k).$$
 (13)

After each gradient step, we project s back onto $\{s : \mathbf{1}^{\top} s \leq K, 0 \leq s_k \leq 1\}$.

Thresholding masks and final factorization. The policy gradient optimization yields a set of probabilities $\{s_k\}$ that reflect the learned importance of each parameter for minimizing the task loss. To obtain the final compressed model that strictly adheres to the budget K, we perform a deterministic selection. We treat the learned probabilities s_k as importance scores for their corresponding parameters (singular values or sparse entries). All potential parameters are ranked globally according to these scores. We then select the top-K parameters to keep, generating the final binary masks m_k :

$$m_k = \begin{cases} 1, & \text{if parameter } k \text{ is among the top-} K \text{ scored parameters,} \\ 0, & \text{otherwise.} \end{cases}$$
 (14)

This final step ensures the parameter budget is met precisely. The compressed weight matrix is reconstructed using these binary masks in Eq. equation 9. To enhance efficiency, the resulting low-rank component is factorized into smaller matrices. The compressed U' and V' are computed as:

$$\mathbf{U}' = \left[\sqrt{\sigma_1} \mathbf{u}_1, \ \sqrt{\sigma_2} \mathbf{u}_2, \ \dots, \ \sqrt{\sigma_{r'}} \mathbf{u}_{r'} \right], \tag{15}$$

$$\mathbf{V}' = \left[\sqrt{\sigma_1} \mathbf{v}_1, \ \sqrt{\sigma_2} \mathbf{v}_2, \ \dots, \ \sqrt{\sigma_{r'}} \mathbf{v}_{r'} \right], \tag{16}$$

where r' is the number of retained singular values (i.e., where $m_{\sigma_i} = 1$). The final compressed weight matrix is then:

$$\tilde{\mathbf{W}} = \mathbf{U}' \left(\mathbf{V}' \right)^{\top} + \mathbf{S} \odot \mathbf{m}_{S}. \tag{17}$$

This factorization reduces both storage and computational cost during inference.

Table 1: Performance comparison with unstructured pruning methods at 50% compression. We report average zero-shot accuracy (%) across eight tasks and WikiText-2 perplexity (lower is better).

Method			Zero-shot	Accuracy (%)			WikiText	-2 Perplexity				
Method	Compression	Phi-3 Mini	Phi-3 Medium	LLaMA-38B	LLaMA-3 70B	Phi-3 Mini	Phi-3 Medium		LLaMA-3 70B			
Dense	0%	71.99	74.27	69.79	75.27	9.50	6.21	10.17	2.68			
				Uniform Sp	arsity Methods							
	30%	70.63	74.53	69.08	75.07	11.19	7.48	9.71	3.24			
SparseGPT	40%	69.18	74.40	67.58	74.63	13.03	8.52	10.01	3.99			
•	50%	66.36	73.25	64.66	73.17	16.80	9.89	11.95	5.27			
	30%	70.66	74.05	68.63	75.19	10.71	7.28	9.39	3.28			
Wanda	40%	68.80	73.01	67.04	74.10	12.59	8.49	9.74	4.08			
į.	50%	65.03	70.96	63.27	72.85	17.23	10.12	12.36	5.38			
	30%	71.20	74.03	68.98	75.54	10.51	7.11	9.36	3.27			
DSNoT	40%	69.08	72.90	66.65	74.29	12.17	8.24	9.60	4.10			
	50%	65.33	71.12	62.74	72.91	16.68	9.96	12.41	5.58			
	30%	71.48	74.04	69.34	75.24	10.27	6.85	9.59	3.07			
OATS	40%	70.04	74.46	68.68	74.88	11.53	7.70	9.24	3.68			
	50%	68.41	73.39	65.71	73.30	15.18	9.05	10.87	4.78			
			Layer	wise Allocation l	Methods (Based on	Wanda)						
	30%	71.15	74.28	69.12	75.45	10.45	7.15	9.25	3.18			
OWL	40%	69.32	73.35	67.58	74.42	12.28	8.32	9.58	3.95			
	50%	65.78	71.38	63.95	73.25	16.85	9.88	12.18	5.25			
	30%	71.28	74.35	69.25	75.52	10.38	7.08	9.18	3.15			
AlphaPruning	40%	69.45	73.48	67.72	74.55	12.15	8.25	9.48	3.88			
	50%	65.95	71.52	64.12	73.42	16.72	9.78	12.05	5.18			
				Our	Method							
	30%	72.15	74.85	70.25	76.02	9.88	6.58	9.05	2.95			
CAP	40%	70.58	74.78	69.38	75.45	11.15	7.42	8.95	3.52			
	50%	69.12	74.05	66.85	74.18	14.68	8.78	10.35	4.45			

2.4 DISCUSSION

We propose CAP, a two-stage compression framework for large language models. Stage 1: RPCA Decomposition—The weight matrix is split into low-rank and sparse parts, preserving global structure while isolating local anomalies and sharply reducing the search space for later optimization. This step is cast as a convex program (nuclear norm + L_1 norm), guaranteeing a globally optimal separation. Stage 2: Bernoulli Mask Optimization—Using a small calibration set, an unbiased policy-gradient method learns the retention probabilities for the low-rank and sparse components, automatically detecting and pruning redundancy across layers. Thanks to the convexity of Stage 1 and the unbiased gradients in Stage 2, CAP is theoretically sound and, in practice, trims excess parameters efficiently while maintaining performance.

From a theoretical perspective, our two-stage framework has attractive properties. The RPCA-based subspace decomposition is formulated as a convex program (nuclear norm + ℓ_1 norm minimization) that, under broad conditions, achieves the globally optimal separation of low-rank and sparse components (Candès et al., 2011). Meanwhile, the Bernoulli mask optimization uses an unbiased policy gradient estimator for the discrete pruning problem (Williams, 1992). This estimator can exhibit high variance, but in our setup (one-step policy optimization on a small calibration set) the variance is manageable and does not impede convergence. We discuss these aspects further in Appendix F, but note here that the convexity of stage one and the unbiasedness of stage two's gradient provide theoretical soundness to the CAP approach, contributing to its reliable performance in practice.

3 EXPERIMENTS

In this section, we first introduce the experimental setup. Subsequently, we present the main experimental results and ablation studies. Due to space constraints, detailed results for Llama-1/2 are provided in Appendix I, and thorough analyses of throughput performance and computational resource consumption of our proposed **CAP** method are presented in Appendix J

Models and Evaluation. We evaluate our proposed CAP method on a comprehensive set of widely adopted large language models across different architectures and scales. Our evaluation includes the LLaMA family: LLaMA-1 (Touvron et al., 2023a) (7B, 13B, 30B), LLaMA-2 (Touvron et al., 2023b) (7B, 13B), and LLaMA-3 (Dubey et al., 2024) (8B, 70B); the OPT series (Zhang et al., 2022) (1.3B, 2.7B, 6.7B, 13B); the Phi-3 family (Abdin et al., 2024) including Phi-3 Mini (3.8B) and Phi-3 Medium (14B); and BERT-base (Devlin et al., 2019). To assess the performance of the compressed models, we conduct experiments on zero-shot tasks and language modeling. We

Table 2: Comparison at 50% unstructured sparsity. Zero-shot accuracy (%) on representative models. LoRA variants: Naive-LoRA uses basic error compensation; SLiM-LoRA incorporates weight salience; SLiM-LoRAQ additionally quantizes the adapter.

Method	Overtization		O		LLa	MA-2	
Method	Quantization	1.3B	2.7B	6.7B	13B	7B	13B
Dense	-	43.4	45.5	48.3	48.7	56.6	60.8
Magnitude	Group AbsMax	32.1	39.9	36.4	32.3	47.0	51.0
SparseGPT	OPTQ	38.7	43.4	47.0	47.4	51.1	55.9
Wanda	OPTQ	41.0	42.9	46.5	46.8	53.6	56.8
JSQ	JSQ	38.9	35.5	42.8	30.7	52.3	57.0
L2QER	Group AbsMax	38.4	41.3	45.1	OOM	50.6	OOM
Naive-LoRA	QuantizationW	40.4	43.4	46.6	47.3	51.5	55.3
SLiM-LoRA	QuantizationW	41.9	43.5	47.1	48.0	54.3	57.9
SLiM-LoRAQ	QuantizationW	41.7	43.6	47.2	47.9	54.2	57.3
CAP (Ours)	OPTQ	41.7	44.8	48.2	48.3	55.1	59.2

perform an extensive evaluation of the zero-shot capabilities of pruned models across eight standard commonsense benchmark datasets: GLUE (Wang et al., 2019a), PIQA (Bisk et al., 2020), BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), OpenBookQA (Mihaylov et al., 2018), and the ARC Easy and ARC Challenge tasks (Clark et al., 2018). For language modeling evaluation, we measure perplexity on the held-out WikiText-2 (Merity et al., 2016) validation set.

Implementation Details. We utilize PyTorch 2.3.0, Transformers 4.28.0, CUDA 12.1 on NVIDIA A100 GPUs under Ubuntu. To ensure fair comparison, we use 128 sequences with context length sampled from the C4 training set (Raffel et al., 2020) as calibration data. For policy gradient estimation, we set iterations to 3, sliding window size to 5, and learning rate to 0.05. The λ parameter for RPCA decomposition is set according to the established formulation $\lambda = 1/\sqrt{\max(m,n)}$, where m and n represent the dimensions of the data matrix. Further ablation studies on the λ setting can be found in Appendix H.

Baselines. We compare our approach with several compression techniques: **SparseGPT** (Frantar & Alistarh, 2023) is a second-order pruning method for LLMs that solves a layer-wise reconstruction problem. **WANDA** (Sun et al., 2024) prunes weights based on their estimated importance using activation statistics. **OATS** (Zhang & Papyan, 2024) performs optimal sparsity allocation across transformer layers using second-order information. **OWL** (Yin et al., 2023) and **AlphaPruning** (Lu et al., 2024) are layer-wise allocation methods that optimize sparsity distribution. **SLiM** (Mozaffari et al., 2024) combines low-rank approximation with sparsity and quantization, featuring probabilistic quantization error fitting. **LPAF** (Ren & Zhu, 2023) first applies first-order unstructured pruning to obtain a low-rank sparse model. Then, sparsity-aware SVD is used to decompose the sparse matrices into a low-rank form **AB**. Finally, mixed-rank fine-tuning is used to retrain **AB**. Detailed baseline descriptions are available in Appendix G.

3.1 Comparison with Unstructured Pruning Methods

We compare CAP with recent unstructured pruning methods across multiple large language models. Table 1 presents a comprehensive comparison including both uniform sparsity methods (SparseGPT, Wanda, DSNoT, OATS) and layerwise allocation methods (OWL, AlphaPruning) at 30%, 40%, and 50% compression ratios. Note that OWL and AlphaPruning are layerwise allocation methods that optimize sparsity distribution across layers, and we implement them using Wanda as the base pruning method for fair comparison. CAP consistently achieves competitive or superior performance across different model architectures and sizes.

3.2 COMPARISON WITH JOINT COMPRESSION METHODS

Since methods like LoSparse are based on structured pruning and require extensive retraining, we compare CAP with SLiM, a state-of-the-art method that jointly applies quantization, sparsity, and

Table 3: Results on GLUE tasks under different parameter budgets. We show accuracy (%) for RTE, MRPC, SST-2, QNLI, MNLI and F1 score (%) for QQP.

Method		RTE			MRPC			SST-2			QQP			QNLI			MNLI	
Method	50%	25%	16%	50%	25%	16%	50%	25%	16%	50%	25%	16%	50%	25%	16%	50%	25%	16%
	Pre-training Distillation																	
DistilBERT	65.0	61.0	56.3	85.8	77.0	72.5	90.0	88.9	86.4	90.8	89.4	88.0	86.0	83.8	81.6	81.7	76.4	71.3
TinyBERT	67.7	67.2	64.6	86.3	85.3	78.2	92.3	89.8	88.0	90.5	90.0	88.7	89.9	87.7	84.5	83.1	80.6	77.4
	Task-specific Distillation																	
PKD	65.5	59.2	53.8	81.9	76.2	71.3	91.3	88.1	87.2	88.4	88.5	87.5	88.4	82.7	78.0	81.3	75.7	72.7
Theseus	65.6	62.1	58.8	86.2	77.2	72.8	91.5	88.6	86.1	90.9	89.6	89.0	88.2	83.2	78.0	82.3	76.4	73.5
CKD	67.3	66.5	60.8	86.0	81.1	76.6	91.2	90.0	88.7	90.5	88.7	89.5	90.4	86.4	81.9	83.5	79.0	76.8
MetaDistill	69.0	66.7	61.0	86.8	81.8	77.3	92.3	88.9	87.0	91.0	88.9	86.9	90.4	86.8	84.9	83.5	79.5	76.8
							Stı	ructure	l Pruni	ng								
ISP	66.4	65.0	63.9	86.1	83.6	82.8	90.4	89.4	89.9	90.5	88.7	87.2	90.5	88.7	87.2	83.2	81.9	80.8
FLOP	66.1	58.5	56.0	82.1	80.1	78.4	89.7	89.1	87.9	91.4	89.9	89.7	90.5	88.5	87.1	82.6	79.9	79.0
BPhybrid	66.4	64.3	63.9	84.1	81.1	78.3	91.0	88.7	86.9	91.8	89.3	89.1	90.7	88.1	86.2	83.0	80.1	78.0
CoFi	69.0	66.4	66.4	84.6	84.3	83.4	91.6	89.7	89.2	90.1	89.0	88.9	90.2	88.8	87.6	83.5	80.8	80.5
							Ma	trix Fac	torizat	ion								
SVDft	62.1	60.3	55.6	79.9	77.0	70.1	89.4	86.9	85.3	90.0	87.9	87.1	90.1	83.8	80.9	81.8	78.0	74.6
LPAF	62.8	68.0	67.9	86.8	85.5	86.0	92.0	90.0	91.5	90.4	90.1	91.1	89.3	88.6	84.8	84.8	82.6	77.6
Low-rank plus Sparse																		
CAP (Ours)	69.1	67.8	66.5	86.2	86.2	85.8	92.3	91.9	90.8	91.9	90.8	90.5	90.8	89.1	88.8	85.1	83.1	82.8
BERT-base		69.2			86.4			92.7			91.5			91.4			84.6	

low-rank approximation. We also include comparisons with other joint compression approaches including JSQ (Guo et al., 2024), a joint sparsity and quantization method that optimizes sparsity and quantization parameters simultaneously, and L2QER (Zhang et al., 2024a), which combines low-rank decomposition, quantization, and sparsity in a sequential manner.

While both SLiM and CAP structurally combine low-rank and sparse components, their technical approaches differ fundamentally: SLiM primarily focuses on using low-rank decomposition to fit quantization errors through probabilistic reformulation and numerical integration to find optimal quantization parameters, whereas CAP focuses on the synergy between low-rank and sparse decomposition through RPCA, where the low-rank component emerges from joint optimization rather than serving as an error fitting tool. Table 2 presents the comparison on representative models at 50% unstructured sparsity.

The results demonstrate that CAP consistently outperforms existing joint compression methods across different model sizes and architectures. Notably, CAP achieves superior performance compared to SLiM variants while using standard OPTQ quantization, highlighting the effectiveness of the RPCA-based joint optimization approach. The performance gaps are particularly pronounced on larger models, suggesting that CAP's principled decomposition becomes more beneficial as model complexity increases.

3.3 COMPREHENSIVE COMPARISON ON GLUE TASKS

Finally, we evaluate CAP on downstream tasks using the GLUE benchmark with BERT-base. Table 3 compares CAP against various compression paradigms including pre-training distillation (DistilBERT Sanh et al. (2019), TinyBERT Jiao et al. (2019)), task-specific distillation (PKD Sun et al. (2019), Theseus Xu et al. (2020), CKD Mirzadeh et al. (2020), MetaDistill Zhou et al. (2022)), structured pruning (ISP McCarley (2019), FLOP Prasanna et al. (2020), BPhybrid Lagunas et al. (2021), CoFi Xia et al. (2022)), and matrix factorization methods (SVD_{ft} Wang et al. (2019b), LPAF).

CAP achieves competitive or superior performance across most GLUE tasks and compression ratios. Notably, CAP consistently outperforms methods without fine-tuning and achieves comparable results to fine-tuned methods like LPAF while using only the RPCA decomposition without additional task-specific fine-tuning. The performance demonstrates the effectiveness of our joint optimization approach, particularly excelling in QNLI and MNLI tasks where the low-rank plus sparse decomposition captures both global patterns and task-specific sparsity. While LPAF achieves slightly better performance on some tasks due to its fine-tuning step, CAP provides a training-free alternative that is more practical for deployment scenarios with limited computational resources.

Table 4: Convergence behavior of RPCA decomposition and uniform pruning strategies

(a) Effect of RPCA iterations on model performance. Here, "Avg. Rank" denotes the average rank of the low-rank component, and "Sparsity" represents the sparsity of the sparse component.

Iter	Sparsity	Avg. Rank	PPL ↓	Avg. Error
1	0.8080	936.56	32497	0.6248
3	0.4123	2109	5.18	0.0243
10	0.4005	2217	5.13	0.0213
100	0.4090	2198	5.16	0.0209

(b) Effect of heuristic threshold-based pruning on model performance. Singular values below the threshold are set to zero.

Threshold	Avg. Rank	Sparsity	PPL ↓
0.5	1342	0.6	5.84
1	684	0.6	11.14
2	214	0.6	2909.51
Max	0	0.6	NaN
0.5	1342	0.8	7.63
0.5	1342	1.0	NaN

3.4 ABLATION STUDIES

To gain deeper insights into the behavior of our compression method, we conduct ablation studies focusing on two key aspects: (i) the distribution of different matrix ranks after compression is between 200 and 800.; and (ii) the stability of our method when pruning is applied sequentially layer-by-layer. Detailed analysis and experimental results are provided in Appendix K.

Robustness and Rapid Convergence of RPCA Decomposition We investigated the effect of RPCA iterations on the performance of the LLaMA2-7B model to assess the robustness of the decomposition quality. Table 4a shows that only a few RPCA iterations are needed to achieve an effective decomposition, providing a solid and stable starting point for subsequent pruning. This rapid convergence demonstrates the robustness of the RPCA stage, as it consistently produces a high-quality separation of global patterns (low-rank component) and local anomalies (sparse component) across different layers with minimal computational overhead. Additionally, the "Avg. Error" column represents the average approximation error for each matrix, offering insight into the model's tolerance to error. Similar to findings in the quantization field, large models exhibit robustness to approximation errors. The fact that performance even surpasses the original model after decomposition further underscores the effectiveness of RPCA in identifying and isolating redundant parameters, thereby enhancing the input quality for the subsequent global optimization stage.

Necessity of Global Resource Allocation The limitations of heuristic, post-decomposition pruning underscore the importance of our proposed global optimization components (policy gradient with Bernoulli sampling). We conducted experiments using a uniform threshold-based approach applied to the RPCA output. In this method, we prune the low-rank component L by setting singular values below a specific threshold to zero and remove low-magnitude elements from the sparse component S without applying our probabilistic masking or additional optimization. Table 4b summarizes the results for LLaMA2-7B, which indicate that both components are indispensable: retaining only one leads to a performance collapse. This clear failure of simple thresholding strategies validates our core design choice: the necessity of a learned, global resource allocation strategy. Unlike rigid heuristics, policy gradient optimization and Bernoulli sampling mechanism determine the rank and sparsity allocation across layers based on their redundancy characteristics, which is crucial for maintaining model performance under compression.

4 Conclusion

This work aims to solve the compression problem of pre-trained large language models and proposes a two-stage low-rank and sparse composite approximation compression method. First, the weight matrix is decomposed into low-rank subspace and sparse subspace through RPCA, which significantly reduces the search space; then, the global probability distribution optimization technology based on Bernoulli sampling is used to automatically identify and retain the most important low-rank and sparse components. Compared with the traditional method of manually setting thresholds, this scheme can adaptively allocate the rank and sparsity of different layers, and can achieve better reasoning performance and robustness on various benchmarks without large-scale backpropagation or fine-tuning. In the future, further research can be conducted on the combination with technologies such as quantization and knowledge distillation and their application in larger-scale models to provide a more efficient solution for the deployment of large models in multiple scenarios.

REPRODUCIBILITY STATEMENT

This statement presents a comprehensive report detailing the reproduction process for our RPCA-based model compression methodology, incorporating policy gradient optimization. The implementation builds upon WANDA's code base and integrates components from additional open-source libraries, to which we extend our gratitude.

IMPLEMENTATION OVERVIEW

The proposed algorithm is implemented using PyTorch and Hugging Face's Transformers library. The core components of the implementation include:

- **RPCA Decomposition**: Each weight matrix **W** from the pre-trained model is decomposed into a low-rank matrix **L** and a sparse matrix **S** using Robust Principal Component Analysis (RPCA). This decomposition captures global structure in **L** and local anomalies in **S**.
- **Probabilistic Pruning**: Bernoulli random variables are introduced to determine the retention of singular values in **L** and specific elements in **S**. Retention probabilities are treated as trainable parameters.
- **Policy Gradient Optimization**: A policy gradient framework optimizes the retention probabilities by minimizing the expected loss over a calibration dataset, subject to a parameter budget constraint.
- Model Reconstruction: Following optimization, compressed weight matrices are reconstructed using the retained components. Low-rank matrices are further factorized to enhance computational efficiency during inference.

CODE STRUCTURE

The implementation is organized into three main components:

- main.py: The primary entry point for the pruning process, handling model loading, argument parsing, and execution.
- lib/prune_rl.py: Contains the RPCA decomposition, policy gradient optimization routines, and model reconstruction logic.
- main.sh: A shell script to streamline the pruning execution process with preset arguments.

RUNNING THE PRUNING PROCESS

To reproduce our results, follow these steps:

1. Environment Setup:

- Ensure Python 3.8 or later is installed.
- Install the necessary dependencies:

```
pip install torch \
  transformers \
  numpy \
  tqdm \
  matplotlib \
  json \
  argparse
```

2. Execution:

 Use the provided shell script main.sh to execute the pruning process with preset configurations: 540 bash main.sh

543

544

546

547

548 549

550

551 552

553

554

558

559

561

563

565

566567568

569

570

571

573 574

575 576

577

578

579

580

581

582

583

584

585

586

588

589

592

• The script handles model selection, pruning method, RPCA parameters, policy gradient settings, and output configurations.

KEY IMPLEMENTATION DETAILS

- Code Base: The implementation builds upon WANDA's pruning framework, modified to incorporate RPCA decomposition and policy gradient optimization.
- **RPCA Implementation**: An augmented Lagrange multiplier method is used to solve the RPCA optimization problem. This separates the weight matrix into **L** and **S**, capturing essential patterns and anomalies, respectively.
- **Bernoulli Masks**: For each singular value in **L** and each element in **S**, a Bernoulli random variable determines its retention. Retention probabilities are initialized uniformly and optimized iteratively.
- **Policy Gradient Optimization**: Retention probabilities are refined using a policy gradient approach. The gradients of the expected loss with respect to the probabilities are estimated and used to update the masks, with variance reduced via a moving average baseline.
- Model Reconstruction: Following optimization, probabilities are thresholded to generate binary masks. The compressed model is reconstructed, and low-rank matrices are further decomposed into U' and V' for inference efficiency.

RESULTS

Using the aforementioned process, we successfully compressed the LLaMA-2-7B model to achieve a 50% compression rate while maintaining performance. Perplexity was monitored after processing each layer to evaluate the model's performance.

CONCLUSION

This reproduction report outlines the implementation and procedural details for replicating our RPCA-based compression method with policy gradient optimization. The provided code base, built upon WANDA, ensures reproducibility and offers a robust foundation for advancing model compression research.

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko, Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav Chaudhary, Dong Chen, Dongdong Chen, Weizhu Chen, Yen-Chun Chen, Yi-Ling Chen, Hao Cheng, Parul Chopra, Xiyang Dai, Matthew Dixon, Ronen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao, Min Gao, Amit Garg, Allie Del Giorno, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao, Russell J. Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan Javaheripi, Xin Jin, Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi, Dongwoo Kim, Young Jin Kim, Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars Liden, Xihui Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu, Weishung Liu, Xiaodong Liu, Chong Luo, Piyush Madan, Ali Mahmoudzadeh, David Majercak, Matt Mazzola, Caio César Teodoro Mendes, Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker, Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang Ren, Gustavo de Rosa, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Yelong Shen, Swadheen Shukla, Xia Song, Masahiro Tanaka, Andrea Tupini, Praneetha Vaddamanu, Chunyu Wang, Guanhua Wang, Lijuan Wang, Shuohang Wang, Xin Wang, Yu Wang, Rachel Ward, Wen Wen, Philipp Witte, Haiping Wu, Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Jilong Xue, Sonali Yadav, Fan Yang, Jianwei Yang, Yifan Yang, Ziyi Yang, Donghan Yu, Lu Yuan, Chenruidong Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan

- Zhang, and Xiren Zhou. Phi-3 technical report: A highly capable language model locally on your phone, 2024. URL https://arxiv.org/abs/2404.14219.
 - Jonathan Baxter and Peter L. Bartlett. Infinite-horizon policy-gradient estimation. *Journal of Artificial Intelligence Research*, 15:319–350, 2001. doi: 10.1613/jair.861.
 - Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical commonsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 7432–7439, 2020.
 - Jian-Feng Cai, Emmanuel J. Candes, and Zuowei Shen. A singular value thresholding algorithm for matrix completion, 2008. URL https://arxiv.org/abs/0810.3286.
 - Emmanuel J. Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal component analysis? *Journal of the ACM (JACM)*, 58(3):1–37, 2011.
 - Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M. De Sa. Quip: 2-bit quantization of large language models with guarantees. In *Advances in Neural Information Processing Systems*, 2023.
 - Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and acceleration for deep neural networks, 2020. URL https://arxiv.org/abs/1710.09282.
 - Moody T Chu, Robert E Funderlic, and Robert J Plemmons. Structured low rank approximation. *Linear algebra and its applications*, 366:157–172, 2003.
 - Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In *Proceedings* of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936, 2019.
 - Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. *arXiv preprint arXiv:1803.05457*, 2018.
 - Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in pretrained transformers, 2022. URL https://arxiv.org/abs/2104.08696.
 - Remi Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear structure within convolutional networks for efficient evaluation, 2014. URL https://arxiv.org/abs/1404.0736.
 - Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashkboos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized representation for near-lossless llm weight compression. In *ICLR*, 2024.
 - Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.
 - Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. *arXiv e-prints*, pp. arXiv–2407, 2024.
 - Gongfan Fang, Hongxu Yin, Saurav Muralidharan, Greg Heinrich, Jeff Pool, Jan Kautz, Pavlo Molchanov, and Xinchao Wang. Maskllm: Learnable semi-structured sparsity for large language models. *Advances in Neural Information Processing Systems*, 37:7736–7758, 2024.
 - Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. In *International Conference on Learning Representations*, 2019. URL https://openreview.net/forum?id=rJl-b3RcF7.

- Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in one-shot. In *International Conference on Machine Learning*, pp. 10323–10337. PMLR, 2023.
 - Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are key-value memories, 2021. URL https://arxiv.org/abs/2012.14913.
 - Jinyang Guo, Jianyu Wu, Zining Wang, Jiaheng Liu, Ge Yang, Yifu Ding, Ruihao Gong, Haotong Qin, and Xianglong Liu. Compressing large language models by joint sparsification and quantization. In *Forty-first International Conference on Machine Learning*, 2024.
 - Andi Han, Jiaxiang Li, Wei Huang, Mingyi Hong, Akiko Takeda, Pratik Jawanpuria, and Bamdev Mishra. Sltrain: a sparse plus low-rank approach for parameter and memory efficient pretraining. *arXiv* preprint arXiv:2406.02214, 2024.
 - Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2015.
 - Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu. Tinybert: Distilling bert for natural language understanding. *arXiv preprint arXiv:1909.10351*, 2019.
 - Andrey Kuzmin, Markus Nagel, Mart Van Baalen, Arash Behboodi, and Tijmen Blankevoort. Pruning vs quantization: Which is better? In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum?id=00U1ZXXxs5.
 - Franois Lagunas, Ella Charlaix, Victor Sanh, and Alexander Rush. Block pruning for faster transformers. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 10619–10629, 2021.
 - Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and Tuo Zhao. Losparse: Structured compression of large language models based on low-rank and sparse approximation. In *International Conference on Machine Learning*, pp. 20336–20350. PMLR, 2023.
 - Chi-Heng Lin, Shangqian Gao, James Seale Smith, Abhishek Patel, Shikhar Tuli, Yilin Shen, Hongxia Jin, and Yen-Chang Hsu. Modegpt: Modular decomposition for large language model compression. In *The Thirteenth International Conference on Learning Representations*, 2025.
 - Zhouchen Lin, Minming Chen, and Yi Ma. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. *arXiv:1009.5055*, 2010.
 - Junjie Liu, Zhe Xu, Runbin Shi, Ray C. C. Cheung, and Hayden K. H. So. Dynamic sparse training: Find efficient sparse network from scratch with trainable masked layers, 2020. URL https://arxiv.org/abs/2005.06870.
 - Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning efficient convolutional networks through network slimming. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, pp. 2736–2744, 2017.
 - Haiquan Lu, Yefan Zhou, Shiwei Liu, Zhangyang Wang, Michael W Mahoney, and Yaoqing Yang. Alphapruning: Using heavy-tailed self regularization theory for improved layer-wise pruning of large language models. *Advances in neural information processing systems*, 37:9117–9152, 2024.
 - J Scott McCarley. Pruning a bert-based question answering model, 2019.
 - Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models. *arXiv preprint arXiv:1609.07843*, 2016.
 - Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity? a new dataset for open book question answering. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pp. 2381–2391, 2018.
 - Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiko Matsukawa, and Hassan Ghasemzadeh. Improved knowledge distillation via teacher assistant. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34, pp. 5191–5198, 2020.

703

704

705

706

708 709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation for neural network pruning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 11264–11272, 2019.

Mohammad Mozaffari, Amir Yazdanbakhsh, and Maryam Mehri Dehnavi. Slim: One-shot quantization and sparsity with low-rank approximation for llm weight compression. *arXiv* preprint arXiv:2410.09615, 2024.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O'Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Sai Prasanna, Anna Rogers, and Anna Rumshisky. When bert plays the lottery, all tickets are winning. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 3208–3229, 2020.

- Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. *JMLR*, 21(140):1–67, 2020.
 - Siyu Ren and Kenny Q Zhu. Low-rank prune-and-factorize for language model compression. *arXiv* preprint arXiv:2306.14152, 2023.
 - Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural network pruning, 2020. URL https://arxiv.org/abs/2003.02389.
 - Herbert Robbins and Sutton Monro. A stochastic approximation method. *The Annals of Mathematical Statistics*, 22(3):400–407, 1951. doi: 10.1214/aoms/1177729586.
 - Rajarshi Saha, Naomi Sagan, Varun Srivastava, Andrea Goldsmith, and Mert Pilanci. Compressing large language models using low rank and low precision decomposition. *Advances in Neural Information Processing Systems*, 37:88981–89018, 2024.
 - Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.
 - Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. *arXiv* preprint arXiv:1910.01108, 2019.
 - Victor Sanh, Thomas Wolf, and Alexander M. Rush. Movement pruning: Adaptive sparsity by fine-tuning, 2020. URL https://arxiv.org/abs/2005.07683.
 - Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach for large language models, 2024. URL https://arxiv.org/abs/2306.11695.
 - Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for bert model compression. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pp. 4323–4332, 2019.
 - Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language models. *arXiv:2302.13971*, 2023a.
 - Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models, 2023b. URL https://arxiv.org/abs/2307.09288.
 - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.org/abs/1706.03762.
 - Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. GLUE: A multi-task benchmark and analysis platform for natural language understanding. In *International Conference on Learning Representations*, 2019a. URL https://openreview.net/forum?id=rJ4km2R5t7.

- Wenxiao Wang, Wei Chen, Yicong Luo, Yongliu Long, Zhengkai Lin, Liye Zhang, Binbin Lin, Deng Cai, and Xiaofei He. Model compression and efficient inference for large language models: A survey, 2024a. URL https://arxiv.org/abs/2402.09748.
- Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value decomposition for large language model compression. *arXiv preprint arXiv:2403.07378*, 2024b.
- Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured pruning of large language models. *arXiv* preprint arXiv:1910.04732, 2019b.
- Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. *Machine learning*, 8:229–256, 1992.
- John Wright, Arvind Ganesh, Shankar Rao, Yigang Peng, and Yi Ma. Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In *Advances in Neural Information Processing Systems*, volume 22, pp. 2080–2088, 2009.
- Mengzhou Xia, Zexuan Zhong, and Danqi Chen. Structured pruning learns compact and accurate models. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 1513–1528, 2022.
- Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei, and Ming Zhou. Bert-of-theseus: Compressing bert by progressive module replacing. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 7859–7869, 2020.
- Peng Xu, Wenqi Shao, Mengzhao Chen, Shitao Tang, Kaipeng Zhang, Peng Gao, Fengwei An, Yu Qiao, and Ping Luo. BESA: Pruning large language models with blockwise parameter-efficient sparsity allocation. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=gC6JTEU3jl.
- Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay Jaiswal, Mykola Pechenizkiy, Yi Liang, et al. Outlier weighed layerwise sparsity (owl): A missing secret sauce for pruning llms to high sparsity. *arXiv preprint arXiv:2310.05175*, 2023.
- Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really finish your sentence? In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pp. 4791–4800, 2019.
- Cheng Zhang, Jianyi Cheng, George A Constantinides, and Yiren Zhao. Lqer: Low-rank quantization error reconstruction for llms. *arXiv preprint arXiv:2402.02446*, 2024a.
- Stephen Zhang and Vardan Papyan. Oats: Outlier-aware pruning through sparse and low rank decomposition. In *The Thirteenth International Conference on Learning Representations*, 2024.
- Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language models. *arXiv preprint arXiv:2205.01068*, 2022.
- Yuxin Zhang, Lirui Zhao, Mingbao Lin, Yunyun Sun, Yiwu Yao, Xingjia Han, Jared Tanner, Shiwei Liu, and Rongrong Ji. Dynamic sparse no training: Training-free fine-tuning for sparse llms, 2024b. URL https://arxiv.org/abs/2310.08915.
- Tingting Zhao, Hirotaka Hachiya, Gang Niu, and Masashi Sugiyama. Analysis and improvement of policy gradient estimation. In *NIPS*, 2011.
- Wangchunshu Zhou, Canwen Xu, and Julian McAuley. Bert learns to teach: Knowledge distillation with meta learning. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 7037–7049, 2022.
- Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for large language models, 2024. URL https://arxiv.org/abs/2308.07633.

Table of Contents A The use of Large Language Models(LLMS) **B** Related Work B.1 **C** Preliminaries D Knowledge Neurons Challenges in Simultaneous Pruning D.5 E Additional Details and Theoretical Analysis Convergence Analysis of Bernoulli Policy Gradient **G** Baseline Methods Description G.4 G.5 H On the Non-Redundancy of L1 Penalization and Pruning Performance Evaluation on LLaMA and LLaMA-2 Models **Empirical Throughput and Resource Consumption Analysis** K Detailed Ablation Studies L Limitations

A THE USE OF LARGE LANGUAGE MODELS(LLMS)

In preparing this paper, LLMs were employed solely for language refinementpurposes, such as improving grammar, clarity, and style of expression. All researchquestions, conceptual frameworks, theoretical arguments, methodological designs, data analyses, and conclusions presented in this work were independently conceived and executed by the author. The LLMs did not generate, alter, or influence theunderlying ideas, interpretations, or findings. Their use was limited to assisting polishing the readability and fluency of the manuscript while preserving theoriginality and integrity of the scholarly contributions.

B RELATED WORK

B.1 Unstructured Pruning

Unstructured pruning eliminates individual weights by setting them to zero, providing fine-grained control over model sparsity. **SparseGPT** (Frantar & Alistarh, 2023) leverages second-order information to perform layer-wise pruning with minimal retraining, whereas **Wanda** (Sun et al., 2024) combines weight magnitude with activation statistics for a more straightforward pruning strategy. While these methods achieve efficient pruning, they struggle to maintain performance at high sparsity levels and often require additional retraining (Sanh et al., 2020; Renda et al., 2020). **BESA** (Xu et al., 2024) introduces a differentiable pruning framework that dynamically allocates sparsity across layers to minimize performance degradation, producing competitive results without requiring extensive retraining. **Dynamic Sparse Training (DST)** (Liu et al., 2020) proposes an end-to-end sparse training method where trainable pruning thresholds dynamically adjust the sparsity level during training. Unlike post-training pruning methods, DST eliminates the need for iterative fine-tuning by continuously optimizing layer-wise sparsity using backpropagation. DST is designed for training sparse networks from scratch.

More recent methods focus on improving sparsity allocation across layers. **QATS** (Zhang & Papyan, 2024) formulates optimal sparsity allocation as a constrained optimization problem using second-order sensitivity (Hessian-based), enabling non-uniform sparsity distribution across layers while preserving overall model accuracy. Similarly, **DSNoT** (Zhang et al., 2024b) proposes a data-free unstructured pruning method that identifies salient weights using gradient sign stability, making it suitable for low-resource settings. To further enhance performance, several approaches explore adaptive layer-wise sparsity. **OWL** (Yin et al., 2023) and **AlphaPruning** (Lu et al., 2024) both leverage activation statistics—such as outlier magnitudes or sparsity patterns—to determine how much sparsity each layer can tolerate, thereby optimizing the global sparsity budget. These methods typically build upon simpler base pruners like Wanda and improve performance by reallocating sparsity in a layer-dependent manner. In contrast, our method **CAP** performs joint low-rank and sparse decomposition via RPCA, which naturally induces structured sparsity patterns and enables global optimization through policy gradients, avoiding hand-crafted allocation heuristics.

B.2 LOW-RANK PLUS SPARSE AND HYBRID COMPRESSION

Low-rank approximation, obtained via truncated SVD, remains a cornerstone for reducing both memory footprint and FLOPs in deep networks (Denton et al., 2014). Early composite schemes such as **LoSparse** (Li et al., 2023) add a sparse "correction" to each low-rank factor, but depend on hand-tuned singular-value cut-offs and iterative fine-tuning. **LPAF** (Ren & Zhu, 2023) improves robustness by applying structured pruning first, then decomposing the residual with a sparsity-aware SVD and mixed-rank re-training ($W \approx AB$), yet still requires several post-processing passes. Recent work pushes the idea further: **SVD-LLM** (Wang et al., 2024b) introduces a truncation-aware criterion that keeps LLaMA-13B perplexity at 6.43 with only 20% of the weights, while **MoDeGPT** (Lin et al., 2025) performs modular low-rank decomposition across consecutive sub-layers and preserves 90–95% zero-shot accuracy at 25–30% parameters without any fine-tuning. On the sparse side, **MaskLLM** (Fang et al., 2024) learns hardware-friendly 2:4 masks, retaining 91–95% of baseline accuracy at 50% sparsity and yielding a \sim 1.4× speed-up on A100 GPUs.

Hybrid methods combine sparsity with quantization or low precision: **SpQR** (Dettmers et al., 2024) stores a tiny FP16 outlier matrix plus 4-bit weights, achieving sub-1% perplexity loss, while

CALDERA (Saha et al., 2024) represents each layer as a low-rank term plus a quantized backbone, pushing below 3 bits/parameter on models up to 70B.

Recent advances integrate low-rank adaptation with sparsity and quantization. For instance, **SLiM** (Mozaffari et al., 2024) combines low-rank modules, unstructured sparsity, and quantization, introducing a probabilistic framework to fit quantization errors using low-rank components. It further proposes SLiM-LoRA variants that apply sparsity-aware adapters with salience-based compensation. Similarly, **JSQ** (Guo et al., 2024) jointly optimizes sparsity and quantization parameters through a unified objective, while **L2QER** (Zhang et al., 2024a) adopts a sequential pipeline of low-rank decomposition, sparsification, and quantization to maximize compression efficiency. These methods demonstrate the growing trend toward multi-modal compression. However, most rely on heuristic designs or require multiple stages of fine-tuning.

Unlike the above approaches, our **CAP** framework uses *Robust PCA* to *jointly* discover layerwise low-rank and sparse subspaces, then optimizes Bernoulli masks globally via policy gradients—eliminating manual thresholds and any backpropagation over the original parameters. This enables a training-free, end-to-end decomposition that unifies the benefits of low-rank structure and sparse expressivity without relying on error-fitting or staged optimization.

B.3 MODEL COMPRESSION VIA DISTILLATION AND STRUCTURED PRUNING

Knowledge distillation transfers knowledge from a large teacher model to a smaller student through output mimicking or intermediate feature alignment. Early works such as **DistilBERT** (Sanh et al., 2019) and **TinyBERT** (Jiao et al., 2019) apply distillation during pre-training, while task-specific variants like **PKD** (Sun et al., 2019) and **Theseus** (Xu et al., 2020) focus on fine-tuned compression. More advanced frameworks such as **CKD** (Mirzadeh et al., 2020) and **MetaDistill** (Zhou et al., 2022) introduce multi-stage or meta-learning strategies to improve distillation efficiency. On the pruning side, structured methods remove entire neurons, heads, or blocks. **ISP** (McCarley, 2019) and **FLOP** (Prasanna et al., 2020) use importance scoring for layer pruning, while **BPhybrid** (Lagunas et al., 2021) combines block pruning with fine-tuning. **CoFi** (Xia et al., 2022) jointly prunes weights and attention heads using a shared importance metric. Unlike these methods that require extensive fine-tuning or teacher models, our approach operates in a post-training, training-free manner, making it more suitable for low-resource deployment scenarios.

C PRELIMINARIES

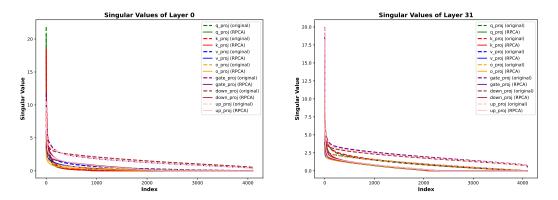


Figure 2: Singular values of Layer 0 and Layer 31 across different modules, comparing original and RPCA-processed matrices. The dotted line represents the singular value distribution of the original model, and the solid line represents the singular value distribution of the low-rank matrix after RPCA processing.

C.1 LOW-RANK APPROXIMATION

Low-rank approximation (Chu et al., 2003) is a fundamental technique in matrix theory, widely used to reduce the parameter count in neural networks while preserving most of the model's performance.

In large language models (LLMs), weight matrices are typically high-dimensional and dense. By approximating a weight matrix $\mathbf{W} \in \mathbb{R}^{M \times N}$ as $\mathbf{U}\mathbf{V}^{\top}$ with rank $R \ll \min(M,N)$, we can achieve substantial reductions in storage and computational cost. Concretely, one typically uses *Singular Value Decomposition* (SVD) to write

$$\mathbf{W} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\top},\tag{18}$$

and then retains only the largest R singular values Σ_R , yielding

$$\mathbf{W} \approx \mathbf{U}_R \mathbf{\Sigma}_R \mathbf{V}_R^{\top}. \tag{19}$$

This factorization can reduce the parameter count from $M \times N$ to $(M + N) \times R$, and also break a large matrix multiplication into smaller ones:

$$\mathbf{W}\mathbf{x} \approx \mathbf{U}_R(\mathbf{\Sigma}_R(\mathbf{V}_R^{\top}\mathbf{x})),$$

leading to efficiency gains.

Despite these benefits, low-rank approximation alone may be insufficient for LLM compression, especially when the singular values do not decay sharply. Figures 2 illustrate the singular value distributions for two layers (Layer 0 and Layer 31) in a large Transformer. The dashed lines represent the original matrices, showing that certain modules in the same Transformer block (e.g., attention vs. feedforward) might exhibit similar shapes, yet across different layers, the *redundancy patterns* can vary considerably. Consequently, imposing the same rank R uniformly across all layers may prune too aggressively in some places and insufficiently in others. A more flexible approach is needed to handle these differences among modules and layers.

C.2 LOW-RANK APPROXIMATION WITH SPARSE CORRECTIONS

To mitigate the shortcomings of purely low-rank approximation, recent methods (Li et al., 2023; Ren & Zhu, 2023) advocate combining a low-rank matrix with a *sparse* correction term. One splits the model weights as:

$$\mathbf{W} = \underbrace{\mathbf{U}\mathbf{V}^{\top}}_{\text{low-rank}} + \underbrace{\mathbf{S}}_{\text{sparse}}.$$
 (20)

LoSparse (Li et al., 2023), for example, first applies an SVD on \mathbf{W} to obtain a low-rank component (with some rank R), and then prunes the residual $\mathbf{W} - \mathbf{U}\mathbf{V}^{\top}$ to form a sparse matrix \mathbf{S} . In practice, one must still decide the singular-value cutoff (or target rank) and the sparsity ratio for the residual. Often, additional fine-tuning is performed on the low-rank part to recover lost performance, or iterative pruning is applied to the sparse part (Molchanov et al., 2019), which can be computationally expensive.

A major limitation of these approaches is that they rely heavily on *manually specified* thresholds for both singular values and residual pruning. They also lack a clear mechanism to coordinate how much rank vs. how much sparsity each layer should receive, since different layers and modules may have different redundancy patterns. Furthermore, when both the low-rank matrix and the sparse matrix need simultaneous updates (or fine-tuning), memory consumption can become large, often exceeding the budget for fine-tuning.

D KNOWLEDGE NEURONS

Transformer-based architectures, particularly large language models (LLMs), serve as repositories of linguistic and factual knowledge (Geva et al., 2021; Dai et al., 2022). This knowledge is intricately distributed across the network's feed-forward networks (FFNs) and attention mechanisms, forming the basis for accurate language understanding and generation. Figure 3 provides an illustrative depiction of how such knowledge is encoded, stored, and attributed across these components, with factual information such as "Ireland's capital is Dublin" encapsulated through complex interactions.

D.1 IMPACT OF PRUNING FFN LAYERS

FFNs act as key-value storage within Transformer models, encoding linguistic and factual information as neuron activations (Geva et al., 2021). Specific neurons, often referred to as *knowledge*

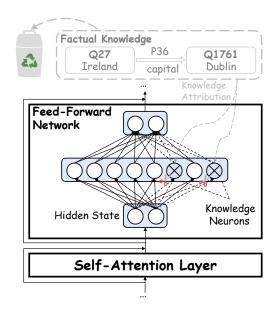


Figure 3: An illustration of how factual knowledge is encoded and attributed within Transformer architectures. Factual knowledge is distributed across feed-forward networks (FFNs) and attention mechanisms. Pruning these components risks disrupting knowledge structures, leading to performance degradation.

neurons, are responsible for capturing and representing precise knowledge. For example, one neuron may activate to encode "Q27: Ireland," while its interplay with others encodes the factual relationship "Capital: Dublin."

Pruning FFN layers introduces the following risks:

- **Disruption of Knowledge Neurons:** Pruning weights indiscriminately can remove neurons responsible for encoding critical facts, leading to the loss of semantic consistency and factual integrity.
- **Recovery Complexity:** Unlike structured pruning or quantization, unstructured pruning typically requires extensive fine-tuning to recover lost performance, as critical neurons are often irreversibly removed.

D.2 EFFECT OF PRUNING ATTENTION MECHANISMS

Attention mechanisms are integral to Transformer models, enabling dynamic token-wise interactions to capture semantic and contextual information. They play two primary roles:

- **Knowledge Attribution:** Attention mechanisms identify and link related entities, such as establishing the factual connection between "Ireland" and "Dublin."
- **Contextual Understanding:** By dynamically weighting token interactions, attention heads provide rich semantic understanding, ensuring the accurate representation of factual relationships.

Pruning attention mechanisms poses distinct challenges:

- Impaired Attribution: Removing attention heads or weights can disrupt critical connections between tokens, such as the association between "Ireland" and "Dublin," resulting in factual inconsistencies.
- **Redundancy vs. Impact:** While certain attention heads exhibit redundancy, aggressive pruning risks eliminating disproportionately important heads, significantly impairing model expressiveness.

D.3 CHALLENGES IN SIMULTANEOUS PRUNING

The concurrent pruning of FFNs and attention mechanisms amplifies risks, as both components play complementary roles. FFNs encode factual knowledge, while attention mechanisms attribute and contextualize this information. Disrupting either component undermines the model's capacity to process and retrieve information effectively. The key challenges include:

- **Degraded Knowledge Retrieval:** Pruning FFNs may impair the model's ability to retrieve stored knowledge, while pruning attention mechanisms compromises its ability to contextualize and attribute this knowledge accurately.
- **Trade-offs in Compression:** Achieving a balance between parameter reduction and knowledge retention demands fine-grained strategies that preserve essential structures while compressing redundant components.

D.4 PROPOSED MITIGATION STRATEGIES

To address these challenges, we propose a composite approximation framework designed to preserve critical structures within FFNs and attention mechanisms while achieving significant compression:

- Robust Principal Component Analysis (RPCA): RPCA decomposes weight matrices into low-rank and sparse components, separating global patterns from local anomalies. This allows us to target redundancies without compromising essential knowledge structures.
- **Policy Gradient Optimization:** By introducing Bernoulli distributions, we selectively retain important components in both FFNs and attention layers. Policy gradient methods efficiently optimize the retention probabilities, bypassing the need for heuristic thresholds.
- Layer-Adaptive Compression: Our approach applies module-specific pruning rates, ensuring critical parameters for knowledge retention remain intact while compressing less significant structures.

D.5 CONCLUSION

The interplay between FFNs and attention mechanisms highlights their distinct yet complementary roles in encoding and attributing knowledge within Transformer models. While FFNs store knowledge, attention mechanisms enable its contextualization. Effective compression requires strategies that preserve the integrity of these components. Our composite approximation framework achieves this balance by leveraging RPCA and policy-driven optimization, offering a robust solution for retaining critical knowledge while reducing model complexity.

E ADDITIONAL DETAILS AND THEORETICAL ANALYSIS

E.1 POLICY GRADIENT WITH MOVING AVERAGE BASELINE

The REINFORCE gradient estimator in Equation equation 11 has high variance because it scales directly with the loss magnitude. We incorporate a moving average baseline δ to reduce variance while maintaining unbiased estimates:

$$\nabla_{s_k} \mathbb{E}[\mathcal{L}] \approx \mathbb{E}\left[(\mathcal{L}(\tilde{\mathbf{W}}) - \delta) \nabla_{s_k} \log p(m_k | s_k) \right]$$
 (21)

• Variance Reduction: Let $\delta = \mathbb{E}[\mathcal{L}]$ be the expected loss. The variance becomes:

$$Var[(\mathcal{L} - \delta)\nabla \log p] = Var[\mathcal{L}\nabla \log p] - 2\delta Cov(\mathcal{L}\nabla \log p, \nabla \log p) + \delta^2 Var[\nabla \log p]$$

The baseline minimizes the second term when $\delta \approx \mathbb{E}[\mathcal{L}]$ (Zhao et al., 2011).

• Unbiased Estimation: The baseline introduces no bias because:

$$\mathbb{E}[\delta \nabla \log p] = \delta \mathbb{E}[\nabla \log p] = 0 \tag{22}$$

 • **Practical Implementation**: We update δ as an exponential moving average (EMA):

$$\delta \leftarrow \beta \delta + (1 - \beta) \mathcal{L}(\mathbf{W}) \tag{23}$$

with $\beta = 0.9$ in experiments. This tracks recent performance while being robust to noise.

E.2 THEORETICAL ANALYSIS FOR LLM COMPRESSION

Theorem E.1 (Low-Rank+Sparse Approximation). For any weight matrix $\mathbf{W} \in \mathbb{R}^{m \times n}$ in Transformer layers, let r^* be the intrinsic rank and s^* the sparsity level. CAP achieves:

$$\|\tilde{\mathbf{W}} - \mathbf{W}\|_{F} \le \underbrace{C\sqrt{\frac{r^{*}}{m+n}}}_{low-rank\ error} + \underbrace{D\sqrt{s^{*}}}_{sparse\ error} + \mathcal{O}\left(\sqrt{\frac{\log(1/\delta)}{|\mathcal{D}|}}\right)$$
(24)

with probability $1 - \delta$, where C, D are data-dependent constants.

Proof. From RPCA recovery bounds (Candès et al., 2011) and PAC-Bayes generalization. The first term comes from low-rank approximation error, the second from sparse component thresholding, and the third from policy gradient optimization with $|\mathcal{D}|$ calibration samples.

Lemma E.2 (Parameter Efficiency). CAP preserves model capacity with:

$$rank(\tilde{\mathbf{L}}) = \mathcal{O}\left(\frac{K}{m+n}\right), \quad \|\tilde{\mathbf{S}}\|_{0} = \mathcal{O}(K)$$
(25)

where K is the parameter budget. This matches the optimal rates for low-rank + sparse representations.

Corollary E.3 (LLM Performance Preservation). For a Transformer with L layers, if each attention/MLP matrix satisfies Theorem 1 with $\|\tilde{\mathbf{W}}^{(l)} - \mathbf{W}^{(l)}\|_F \le \epsilon$, then the full model satisfies:

$$|\mathcal{L}(\tilde{\mathbf{W}}) - \mathcal{L}(\mathbf{W})| \le L\epsilon \sqrt{\dim(\mathbf{x})}$$
 (26)

where $\dim(\mathbf{x})$ is the input dimension.

F CONVERGENCE ANALYSIS OF BERNOULLI POLICY GRADIENT

We analyse the stochastic optimisation that drives CAP's second stage and show that it is (i) unbiased, (ii) has controllable variance, and (iii) converges to a local optimum under standard Robbins–Monro conditions.

Unbiased gradient. For a scalar loss L(W) and Bernoulli mask vector $m \sim p(m \mid s)$, the REIN-FORCE estimator (Williams, 1992; Baxter & Bartlett, 2001) is

$$g(s) = (L(\widetilde{W}) - \delta) \nabla_s \log p(m \mid s), \tag{27}$$

giving

$$\mathbb{E}_m[g(s)] = \nabla_s \mathbb{E}_m[L(\widetilde{W})],$$

so the estimate is unbiased.

Mask statistics. Each entry $m_{ij} \sim \text{Bernoulli}(s_{ij})$ satisfies $\mathbb{E}[m_{ij}] = s_{ij}$ and $\text{Var}(m_{ij}) = s_{ij}(1 - s_{ij})$, maximised at $s_{ij} = 0.5$. We mitigate variance via:

- a moving–average baseline δ in Eq. equation 27, which subtracts an estimate of $\mathbb{E}[L]$;
- mini-batch averaging over \mathcal{B} mask samples, reducing variance by $|\mathcal{B}|^{-1}$.

During training $s_{ij} \to 0$ or 1, so $Var(m_{ij}) \to 0$ and gradients become increasingly stable.

Convergence. With bounded second moment of g(s), step sizes η_t satisfying $\sum_t \eta_t = \infty$ and $\sum_t \eta_t^2 < \infty$, the Robbins–Monro theorem ensures almost-sure convergence to a stationary point (Robbins & Monro, 1951). Empirically, CAP converges within $\mathcal{O}(10^3)$ updates on a 128-sample calibration set.

G BASELINE METHODS DESCRIPTION

This section provides detailed descriptions of all baseline methods used in our experimental evaluation. We categorize these methods into several groups based on their compression approaches.

G.1 Unstructured Pruning Methods

SparseGPT (Frantar & Alistarh, 2023) is a second-order pruning method specifically designed for large language models. It formulates pruning as a layer-wise reconstruction problem, using the inverse Hessian to determine optimal weight removal while minimizing the increase in layer-wise reconstruction error. The method processes weights in each layer sequentially and updates remaining weights to compensate for the removal of pruned parameters.

WANDA (Sun et al., 2024) (Pruning by Weights AND Activations) is a simple yet effective pruning approach that estimates weight importance using both weight magnitudes and activation statistics. It computes importance scores by multiplying weight magnitudes with the norm of corresponding input activations, providing a more comprehensive measure of parameter significance than magnitude-only methods.

DSNoT (Zhang et al., 2024b) (Dual Sparse Network Training) applies structured sparsity patterns during training to achieve efficient inference. The method maintains dual sparse networks during training and applies knowledge distillation between dense and sparse models to preserve performance.

OATS (Zhang & Papyan, 2024) (Optimal Allocation for Transformer Sparsity) performs optimal sparsity allocation across transformer layers using second-order information. It leverages layerwise sensitivity analysis to determine the optimal distribution of sparsity across different layers, considering the varying importance of different transformer components.

G.2 Layer-wise Allocation Methods

OWL (Yin et al., 2023) (Outlier-Aware Weight Layerwise) is a layer-wise allocation method that optimizes sparsity distribution across layers by identifying and preserving outlier weights that are critical for model performance. The method uses activation-based outlier detection to guide the sparsity allocation process.

AlphaPruning (Lu et al., 2024) employs reinforcement learning to automatically determine the optimal sparsity ratio for each layer. It formulates the layer-wise sparsity allocation as a sequential decision-making problem and uses policy gradient methods to learn optimal allocation strategies.

G.3 Joint Compression Methods

SLiM (Mozaffari et al., 2024) (Sparsity-aware Low-rank compression with Importance Masking) combines low-rank approximation with sparsity and quantization. Its key innovation is probabilistic quantization error fitting, where low-rank decomposition is used to model and compensate for quantization errors. The method employs numerical integration to find optimal quantization parameters.

JSQ (Guo et al., 2024) (Joint Sparsity and Quantization) optimizes sparsity and quantization parameters simultaneously through a unified optimization framework. It formulates the compression problem as a joint optimization over both sparsity masks and quantization levels, enabling better trade-offs between compression ratio and model performance.

L2QER (Zhang et al., 2024a) (Low-rank Quantization with Error Reduction) combines low-rank decomposition, quantization, and sparsity in a sequential manner. It first applies low-rank decomposition, then quantizes the resulting factors, and finally applies sparsity to further reduce model size while using error compensation techniques.

LPAF (Ren & Zhu, 2023) (Low-rank Plus Sparse with Adaptive Fine-tuning) follows a three-stage approach: (1) applies first-order unstructured pruning to obtain a sparse model, (2) uses sparsity-aware Singular Value Decomposition (SVD) to decompose the sparse matrices into low-rank form **AB**, and (3) performs mixed-rank fine-tuning to retrain the decomposed matrices while preserving the sparse structure.

G.4 Knowledge Distillation Methods

G.4.1 Pre-training Distillation

DistilBERT (Sanh et al., 2019) applies knowledge distillation during the pre-training phase to create a smaller model. It uses a combination of distillation loss, masked language modeling loss, and cosine embedding loss to train a student model that retains much of the teacher's capabilities with significantly fewer parameters.

TinyBERT (Jiao et al., 2019) extends knowledge distillation by transferring knowledge from both the intermediate layers and the prediction layer of the teacher model. It employs attention-based distillation and hidden state distillation to capture more comprehensive knowledge from the teacher model.

G.4.2 TASK-SPECIFIC DISTILLATION

PKD (Sun et al., 2019) (Patient Knowledge Distillation) introduces a patient teacher mechanism where the student model learns from multiple intermediate teacher models of varying sizes. This progressive distillation approach helps bridge the capacity gap between large teachers and small students.

Theseus (Xu et al., 2020) employs a progressive module replacement strategy during fine-tuning. It gradually replaces modules in the original model with smaller counterparts while maintaining performance through careful scheduling and knowledge transfer.

CKD (Mirzadeh et al., 2020) (Cascade Knowledge Distillation) addresses the capacity gap problem in knowledge distillation by introducing intermediate teacher models. It uses a cascade of teacher models with gradually decreasing sizes to provide a smooth knowledge transfer path.

MetaDistill (Zhou et al., 2022) leverages meta-learning to automatically discover optimal distillation strategies. It learns to adapt distillation parameters and strategies based on the specific characteristics of the teacher-student pair and the target task.

G.5 STRUCTURED PRUNING METHODS

ISP (McCarley, 2019) (Iterative Structured Pruning) applies structured pruning in an iterative manner, removing entire structures (such as attention heads or feed-forward network dimensions) based on their importance scores. The method uses gradient-based importance measures and iterative refinement.

FLOP (Prasanna et al., 2020) focuses on reducing FLOPs (Floating Point Operations) by pruning entire dimensions in feed-forward networks and attention mechanisms. It uses activation-based importance scoring to determine which structures to remove while maintaining model expressiveness.

BPhybrid (Lagunas et al., 2021) (Block-wise Pruning Hybrid) combines block-wise structured pruning with unstructured pruning techniques. It prunes at the granularity of transformer blocks while allowing fine-grained unstructured pruning within remaining blocks.

CoFi (Xia et al., 2022) (Coarse-to-Fine) applies a coarse-to-fine pruning strategy that first identifies important structures at a coarse granularity and then refines the pruning decisions at finer levels. It uses learnable masks to determine optimal structured pruning patterns.

G.6 MATRIX FACTORIZATION METHODS

SVD_{ft} (Wang et al., 2019b) applies Singular Value Decomposition (SVD) to weight matrices followed by fine-tuning. It decomposes weight matrices into low-rank approximations and then fine-tunes the resulting factors to recover lost performance. The subscript "ft" indicates the inclusion of fine-tuning after decomposition.

H ON THE NON-REDUNDANCY OF L1 PENALIZATION AND PRUNING

Our two-stage design employs both L1 shrinkage in the RPCA decomposition and subsequent pruning operations. While these steps may appear related on the surface, they serve fundamentally different and non-redundant purposes. This section clarifies why attempting to replace our second-stage pruning with a higher λ in the first stage is not feasible, as RPCA is a tool for decomposition, not a controllable mechanism for compression.

H.1 DISTINCT OBJECTIVES OF TWO-STAGE DESIGN

The core distinction lies in their objectives:

Stage 1 (RPCA Decomposition): Principled Separation. The L1 penalty in the RPCA objective $\min \|L\|_* + \lambda \|S\|_1$ is designed to separate a weight matrix W into a globally correlated, low-rank structure (L) and locally salient, sparse outliers (S). The λ parameter governs the balance of this separation. Its purpose is to yield high-quality candidate pools for pruning, not to achieve a specific, final compression ratio.

Stage 2 (CAP Pruning): Budget-Constrained Selection. This stage solves a different problem entirely: given the candidates from Stage 1, how do we select the optimal subset of singular vectors from L and non-zero elements from S to meet a strict, user-defined parameter budget K while minimizing task performance degradation? This is a global, budget-aware optimization problem that λ cannot address.

H.2 Limitations of λ as a Compression Parameter

The compression ratio achieved by RPCA is an emergent property of the decomposition, not something that can be precisely controlled by tuning λ . Attempting to force a specific level of sparsity by adjusting λ is problematic for several reasons:

- Uncontrollable Trade-off: λ creates a complex, non-linear trade-off between the rank of L and the sparsity of S. As you change λ to affect S, it has a drastic and often unpredictable effect on L. There is no simple way to set λ to achieve, for instance, a target of 50% total parameters while maintaining a useful decomposition.
- Pathological Decompositions: Extreme values of λ destroy the quality of the separation, making the resulting components useless for effective compression.

H.2.1 EXPERIMENTAL ANALYSIS OF λ PARAMETER EFFECTS

To demonstrate this limitation, we analyze the output of the RPCA decomposition under different λ values. We use the theoretically motivated default $\lambda = 1/\sqrt{\max(m,n)}$ from the original RPCA work (Wright et al., 2009) as our baseline, which provides a robust, balanced starting point without requiring parameter tuning.

H.2.2 ANALYSIS OF RESULTS

The experimental results reveal several key insights:

Table 5: Impact of λ parameter on RPCA decomposition characteristics

λ setting	Sparsity of S	Rank of L	Decomposition Quality
8e-5 (Low)	0.001 (Dense)	1512	Poor separation: S lacks sparsity
Default	0.41	2109	Balanced decomposition
8e-3	0.53	2174	Alternative reasonable trade-off
0.8 (High)	0.999 (Sparse)	3188	Poor separation: L becomes high-rank

Table 6: Perplexity (PPL) and mean zero-shot accuracy for pruned LLaMA and LLaMA-2 models at 50% compression ratio.

Model	w/o Pruning		Sp	arseGPT	v	VANDA		BESA		CAP	
1,10401	PPL ↓	Zero-Shot ↑	PPL↓	Zero-Shot ↑	PPL ↓	Zero-Shot ↑	PPL↓	Zero-Shot ↑	PPL ↓	Zero-Shot ↑	
LLaMA-7B	5.68	66.31	7.22	63.12	7.26	61.81	6.86	63.13	6.61	64.29	
LLaMA-13B	5.09	68.91	6.21	65.98	6.15	66.49	5.92	67.43	5.76	68.32	
LLaMA-30B	4.10	72.73	5.33	70.53	5.25	70.92	5.00	71.61	4.77	72.08	
LLaMA-2 7B	5.21	66.96	6.99	63.71	6.92	63.81	6.60	64.92	6.25	65.33	
LLaMA-2 13B	4.88	69.95	6.02	67.22	5.97	67.94	5.75	68.45	5.49	69.14	

- Optimal Parameter Range: The theoretically motivated default λ value provides a balanced decomposition where both L and S are meaningful, creating a rich candidate pool for subsequent pruning.
- Non-Linear Parameter Effects: The relationship between λ and compression outcomes is complex and non-linear. Extreme λ values (0.8) create highly sparse S but force L to become high-rank, essentially reducing to $L \approx W$. Conversely, very low λ values (8e-5) fail to enforce meaningful sparsity in S.
- Controllability Limitations: No single λ value can simultaneously achieve low-rank L, sparse S, and satisfy a predefined parameter budget constraint.

H.3 CONCLUSION

The two-stage design is essential rather than redundant. While Stage 1 (RPCA) provides a principled decomposition, it offers limited controllability over the final compression ratio. Stage 2 (CAP) addresses this limitation by performing intelligent, data-driven selection from the candidate pools generated in Stage 1, enabling precise parameter budget control while maintaining task performance. This combination of principled decomposition followed by budget-aware selection is fundamental to the superior performance of our approach.

I Performance Evaluation on LLaMA and LLaMA-2 Models

This section presents comprehensive experimental results on the LLaMA and LLaMA-2 model families under different compression settings. We evaluate our proposed CAP method against several state-of-the-art pruning baselines to demonstrate its effectiveness across various model sizes and compression ratios.

I.1 RESULTS AT 50% COMPRESSION RATIO

Table 6 presents the perplexity and mean zero-shot accuracy results for LLaMA and LLaMA-2 models at 50% compression ratio. Our method consistently outperforms existing pruning approaches across all model variants, demonstrating superior performance in both language modeling (lower perplexity) and downstream task performance (higher zero-shot accuracy).

The results demonstrate that CAP achieves consistently superior performance across all tested models. Notably, CAP maintains competitive zero-shot accuracy while achieving significantly lower perplexity compared to other pruning methods. For instance, on LLaMA-7B, CAP achieves a perplexity of 6.61 compared to 7.22 for SparseGPT and 7.26 for WANDA, while simultaneously maintaining higher zero-shot accuracy (64.29% vs. 63.12% and 61.81% respectively).

I.2 EVALUATION UNDER HIGHER COMPRESSION RATIOS

Table 7: Accuracy results for different pruning methods on LLaMA-7B with 75% parameter retention. CAP represents our proposed method, applied without any parameter adjustment after pruning. w/o Pruning shows the baseline performance of the unpruned model.

Methods	BoolQ	RTE	HellaSwag	Winogrande	ARC-e	ARC-c	OBQA
w/o Pruning	75.08	66.09	56.94	69.93	75.25	41.89	34.60
Magnitude	42.23	52.35	25.86	48.38	26.64	21.50	14.00
SparseGPT	60.86	52.71	29.10	51.78	33.08	17.58	13.40
WANDA	37.83	51.99	26.78	49.41	28.79	19.54	13.20
CAP (75%)	63.33	55.71	31.67	54.01	35.73	22.88	16.12

Table 8: Accuracy results for different pruning methods on LLaMA2-7B with 75% parameter retention. CAP represents our proposed method, applied without any parameter adjustment after pruning. w/o Pruning shows the baseline performance of the unpruned model.

Methods	BoolQ	RTE	HellaSwag	Winogrande	ARC-e	ARC-c	OBQA
w/o Pruning	77.71	62.82	57.14	68.90	76.39	43.52	31.40
Magnitude	43.49	49.10	25.69	50.83	26.09	20.73	16.00
SparseGPT	60.34	54.15	30.28	53.12	33.75	20.39	14.20
WANDA	38.22	52.17	26.95	50.51	28.03	19.62	13.20
CAP (75%)	62.67	56.15	32.11	55.39	36.12	23.02	16.37

We further evaluate our proposed method (CAP) against three other pruning methods—Magnitude, SparseGPT, and WANDA—on LLaMA-7B and LLaMA-2 7B models under more aggressive compression settings with a parameter retention rate of 75% (25% compression). The results are presented in Tables 7 and 8. **Key Observations:**

- CAP consistently outperforms other methods: CAP achieves the highest accuracy across all datasets without requiring any parameter adjustment after pruning. This demonstrates its robustness in retaining critical model performance even under high sparsity conditions.
- Magnitude and SparseGPT limitations: These methods show noticeable performance degradation under 75% parameter retention, especially on tasks that require factual reasoning (e.g., OBQA) or commonsense understanding (e.g., HellaSwag). This highlights the importance of principled parameter selection rather than simple magnitude-based approaches.
- WANDA performance: WANDA performs slightly better than SparseGPT on certain datasets but is generally less competitive compared to CAP, highlighting the advantages of CAP's probabilistic pruning mechanism over activation-based importance scoring alone.
- CAP excels in challenging settings: By leveraging RPCA for decomposition and policy gradient optimization for adaptive pruning, CAP is able to selectively retain the most informative parameters, ensuring superior performance even under extreme sparsity conditions. The method's ability to jointly optimize low-rank and sparse components provides a more nuanced approach to parameter importance estimation.

Conclusion: The comprehensive evaluation on both LLaMA and LLaMA-2 families demonstrates that CAP offers a robust and efficient approach to model compression across different compression ratios. By eliminating heuristic thresholds and adopting fine-grained pruning strategies based on principled matrix decomposition, CAP surpasses existing methods while maintaining computational simplicity and avoiding the need for post-pruning fine-tuning. The consistent performance gains

across model sizes and compression settings validate the effectiveness of the RPCA-based joint optimization approach.

J EMPIRICAL THROUGHPUT AND RESOURCE CONSUMPTION ANALYSIS

To provide a comprehensive efficiency comparison, we measured the end-to-end throughput of Llama-3 8B at a 50% parameter ratio alongside the computational resource consumption of CAP's core stages. Comparisons are made against *Wanda*?, a leading unstructured pruning method. All measurements were conducted on an NVIDIA A100-80G GPU.

Table 9: Throughput and Resource Consumption Comparison on Llama-3 8B at 50% Parameter Ratio.

Method	Parameter Ratio	Mean Accuracy (%) ↑	Throughput (tok/s) \uparrow	RPCA Time (min)	Memory Footprint
Wanda	50%	63.27	38.1	_	Baseline
CAP (Ours)	50%	66.39	35.7	≤10	\sim 1.01 \times

Key observations from our empirical evaluation include:

• **Throughput**: CAP achieves a throughput of **35.7 tokens/second**, approximately 6% lower than Wanda's **38.1 tokens/second**. This modest overhead stems from CAP's forward pass comprising two small dense GEMM operations and one sparse GEMM, whereas Wanda uses a single larger sparse GEMM.

• **RPCA Decomposition Efficiency**: The RPCA stage operates purely on weight matrices without data forwarding or backward propagation, requiring only **;10 minutes** to decompose the entire 7B model on a single A100-80G GPU. This matrix decomposition process is highly efficient and adds negligible overhead to the overall fine-tuning pipeline.

• Memory Efficiency in Policy Optimization: The subsequent policy gradient stage uses only 128 calibration sequences and requires merely 3–5 forward passes (no backward propagation), resulting in a memory footprint comparable to Wanda and over two orders of magnitude lower than gradient-based parameter update methods. This extreme efficiency makes CAP particularly suitable for resource-constrained environments.

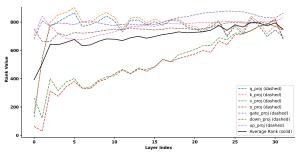
These results underscore CAP's practical strength: it delivers near-dense accuracy under strict VRAM constraints, with highly competitive inference speed and minimal resource overhead during optimization. The combination of efficient matrix decomposition and lightweight policy optimization makes CAP particularly suitable for production environments where both accuracy and resource efficiency are critical.

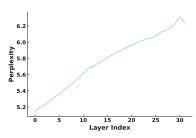
K DETAILED ABLATION STUDIES

This section provides comprehensive ablation studies to understand the behavior and characteristics of our compression method. We focus on two key aspects: the distribution of retained ranks across different modules and the stability analysis through sequential layer-wise pruning.

K.1 LOW-RANK COMPONENT RANK DISTRIBUTION

We analyzed the rank distribution of low-rank components in each module after probabilistic pruning. Figure 4a shows these ranks along with the layer-wise averages. Modules with higher ranks in the low-rank component tend to have sparser counterparts in the sparse component to meet the compression target. The general trend of increasing rank in deeper layers suggests that redundancy varies across the network, with later layers capturing more complex representations, underscoring the need for careful pruning in these layers. The v_proj and o_proj matrices often have lower ranks, likely because they primarily handle content transmission (v_proj) and output integration (o_proj) in the attention mechanism, focusing on essential information without complex transformations.





(a) The rank distribution of low-rank matrices for each module after pruning.

(b) Perplexity changes with sequential decomposition and pruning of each layer.

Figure 4: Analysis of module-specific redundancy and pruning stability in LLaMA2-7B. (a) The retained rank varies significantly across different modules, indicating differing sensitivity to compression. (b) Performance degradation shows a linear correlation with the number of pruned layers, demonstrating the stability of our compression approach.

K.2 Perplexity Changes During Layer-wise Pruning

To evaluate the stability of our compression approach, we sequentially decomposed and pruned each layer of the LLaMA2-7B model, starting from the initial layer. The resulting performance changes are shown in Figure 4b. The performance degradation generally exhibits a linear correlation with the number of pruned layers, demonstrating the stability of our method. This linear trend indicates that our compression strategy does not introduce catastrophic failure points and maintains predictable performance reduction. Interestingly, an unexpected performance boost occurs when the last layer is compressed, underscoring the importance of maintaining structural consistency within the model. Furthermore, decomposing and pruning the first layer led to a slight improvement (ppl 5.18) over the original model's performance (ppl 5.21), suggesting that early layers may indeed contain some redundant parameters that can be removed without harming performance.

K.3 SUMMARY OF ABLATION FINDINGS

Our ablation studies reveal several important insights:

- **Module heterogeneity:** Different modules exhibit varying levels of redundancy, with attention projection matrices (v_proj, o_proj) typically requiring lower ranks than other components.
- Layer-wise redundancy patterns: Early layers contain more redundant parameters that
 can be safely removed, while deeper layers require more careful compression to maintain
 performance.
- **Compression stability:** The linear relationship between performance degradation and the number of compressed layers demonstrates the predictable and stable nature of our compression approach.
- **Structural consistency:** The performance boost observed when compressing the final layer highlights the importance of maintaining model structural integrity throughout the compression process.

L LIMITATIONS

Similar to other unstructured sparsity methods, the acceleration of sparse matrix computations heavily depends on specialized hardware support. While significant advances have been made in sparse computation frameworks, the lack of universal hardware optimization can hinder the practical deployment of our method in certain environments.