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ABSTRACT

Low-rank and sparse composite approximation is a natural idea to compress Large
Language Models (LLMs). However, such an idea faces two primary challenges
that adversely affect the performance of existing methods. The first challenge
relates to the interaction and cooperation between low-rank and sparse matrices,
while the second involves determining weight allocation across different layers,
as redundancy varies considerably among them. To address these challenges, we
propose a novel two-stage LLM compression method with the capability of global
rank and sparsity optimization. It is noteworthy that the overall optimization space
is vast, making comprehensive optimization computationally prohibitive. There-
fore, to reduce the optimization space, our first stage utilizes robust principal com-
ponent analysis to decompose the weight matrices of LLMs into low-rank and
sparse components, which span the low dimensional and sparse spaces containing
the resultant low-rank and sparse matrices, respectively. In the second stage, we
propose a probabilistic global optimization technique to jointly identify the low-
rank and sparse structures within the above two spaces. The appealing feature of
our approach is its ability to automatically detect the redundancy across different
layers and to manage the interaction between the sparse and low-rank components.
Extensive experimental results indicate that our method significantly surpasses
state-of-the-art techniques for sparsification and composite approximation.

1 INTRODUCTION

Transformer-based large language models (LLMs) (Vaswani et al., 2023; Touvron et al., 2023b;
OpenAI et al., 2024) have achieved remarkable progress across natural language processing (NLP),
computer vision, and scientific applications. Despite these successes, their massive parameter sizes
pose critical challenges: they demand huge storage and memory footprints, incur slow inference
speeds, and require substantial computational resources for training. Consequently, model com-
pression (Cheng et al., 2020; Wang et al., 2024a; Zhu et al., 2024) has become an essential line of
research for enabling real-world LLM deployment under stringent hardware constraints.

Among compression strategies, quantization (Han et al., 2015; Chee et al., 2023; Kuzmin et al.,
2023) typically retains overall model structure by reducing the precision of weights, thus often pre-
serving performance. By contrast, pruning (Liu et al., 2017; Frankle & Carbin, 2019; Sun et al.,
2024; Frantar & Alistarh, 2023) removes individual weights based on certain criteria (e.g., magni-
tude or importance scores). Although pruning is flexible and can yield substantial parameter savings,
it may degrade performance unless combined with additional fine-tuning or distillation (Sanh et al.,
2020), especially in large-scale LLMs that encode extensive linguistic and factual knowledge (Geva
et al., 2021; Dai et al., 2022).

To retain more critical information under aggressive compression, researchers have explored “low-
rank plus sparse” decompositions (Li et al., 2023; Ren & Zhu, 2023; Han et al., 2024). In this
approach, the weight matrix is decomposed into a low-rank part that captures global correlations
and a sparse part that highlights outliers or domain-specific knowledge. However, existing methods
often rely on manually set singular-value thresholds, which can inadvertently discard medium-sized
yet important singular values. Additionally, these methods require computationally expensive back-
propagation for parameter updates. While there is some interaction between the optimization of the
low-rank and sparse components, the two parts are still relatively independent in their update pro-
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cesses. Lastly, due to the significant redundancy variations from early layers to deeper ones, how to
allocate rank and sparsity across layers in a globally optimal manner remains unclear.

In this paper, we address these issues via a novel two-stage compression framework tailored to
LLMs. First, we apply robust principal component analysis (RPCA) (Candès et al., 2011) to factor
each weight matrix into strictly low-rank and sparse components, thereby reducing the otherwise
huge search space into a low-dimensional subspace and a sparse subspace. Second, we introduce a
probabilistic global optimization scheme that jointly determines which singular values in the low-
rank component and which nonzero entries in the sparse component should be retained. This is
done by assigning Bernoulli probabilities and updating them via policy gradient (Williams, 1992)
on a small calibration set, avoiding heuristic thresholds or large-scale gradient updates. Critically,
our method automatically detects the differing redundancy levels across layers and manages the
interaction between low-rank and sparse parts, ensuring that vital parameters are kept while truly
redundant ones are pruned away. We summarize our main contributions as follows:

• We propose a two-stage LLM compression approach that first uses RPCA to produce low-
rank and sparse subspaces, then employs a Bernoulli-based global optimization for rank
and sparsity selection.

• Our framework eliminates the need for manual thresholds or layerwise iterative backprop-
agation, offering an end-to-end scheme that adapts automatically to various layers’ redun-
dancy characteristics.

• Extensive experiments show that our method outperforms existing sparsification and com-
posite approximation baselines under multiple compression ratios, highlighting its effec-
tiveness and robustness.

We provide a detailed review and discussion of related work in Appendix B.

2 METHOD

2.1 THEORETICAL BACKGROUND AND MOTIVATION

Low-rank approximation is a fundamental technique in matrix theory, widely used to reduce the
parameter count in neural networks while preserving model performance. In LLMs, weight matrices
are typically high-dimensional and dense. By approximating a weight matrix W ∈ Rm×n with rank
R≪ min(m,n) using a truncated SVD, one can write

W ≈ URΣRV
⊤
R , (1)

where UR and VR contain the top R left and right singular vectors, and ΣR is the diagonal matrix
of the largest R singular values. This factorization reduces the parameter count from m × n to
(m + n) × R, and breaks a large matrix multiplication into smaller ones, leading to significant
efficiency gains.

Despite these benefits, low-rank approximation alone may be insufficient for LLM compression,
especially when the singular values do not decay sharply. For example, Figure 2 in the Appendix C
shows the singular value spectra of two representative layers (Layer 0 and Layer 31) from a Trans-
former model, comparing the original weight matrix and its low-rank component after RPCA pro-
cessing. The dashed lines (original matrices) indicate that certain modules in the same Transformer
block (e.g., an attention head vs. a feed-forward network) can exhibit similar spectral shapes; yet
across different layers, the redundancy patterns vary considerably. Consequently, imposing the same
target rank R uniformly across all layers may prune too aggressively in some cases and insufficiently
in others. This observation motivates a more flexible approach that can adapt the compression ratio
per layer.

Recent studies have explored combining low-rank and sparse representations to enhance compres-
sion. For instance, LoSparse (Li et al., 2023) first applies SVD on W to obtain a rank-R approx-
imation, then prunes the residual W − URΣRV

⊤
R to form a sparse matrix. In practice, one must

still decide the singular value cutoff (or target rank) and the sparsity ratio for the residual. Often,
additional fine-tuning is performed on the low-rank part to recover lost performance, or iterative
pruning is applied to the sparse part (Molchanov et al., 2019), which can be computationally expen-
sive. A major limitation of these approaches is the reliance on manually chosen thresholds for both
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Figure 1: Overview of our proposed compression method. The weight matrix W is decomposed
into a low-rank component L and a sparse component S using RPCA. Both components are pruned
through Bernoulli sampling guided by learned probability scores, optimized via policy gradient. The
low-rank component is further factorized into U′ and V′ to reduce the number of model parameters.

singular values and residual pruning. They also lack a clear mechanism to coordinate how much
rank vs. sparsity each layer should receive, since different layers and modules may have different
redundancy characteristics. Furthermore, when both the low-rank and sparse matrices require joint
fine-tuning, the memory consumption can become large, potentially exceeding the budget.

We begin by formulating the global objective of compressing LLM weights under a parameter bud-
get (§ 2.2). We then describe our proposed approach (§ 2.3), which first uses RPCA to decompose
each weight matrix into low-rank and sparse components, and subsequently prunes these compo-
nents in a probabilistic manner, without heuristic thresholds or large-scale fine-tuning. Additional
theoretical analysis can be found in the Appendix E.

2.2 PROBLEM FORMULATION

Suppose we have L layers in an LLM, each containing weight matrices {W(l)}Ll=1. We seek com-
pressed matrices {W̃(l)} such that the total parameter count does not exceed a budget K, while
minimizing a loss ℓ(W̃) measured on a small calibration set D. Formally,

min
{W̃(l)}

∑
(x,y)∈D

ℓ
(
f(W̃;x), y

)
,

subject to ParamCount
(
{W̃(l)}

)
≤ K,

(2)

where f(W̃;x) is the LLM’s forward pass given the compressed weights, and ParamCount(·)
measures how many parameters are retained. Directly pruning each individual weight is intractable
for very large matrices. To address this, we propose to:

• Decompose each W(l) via RPCA to obtain a low-rank matrix L and a sparse matrix S,
reducing the search space to “global rank directions” plus “sparse outliers.”

• Probabilistically prune both components under the budget K by learning Bernoulli reten-
tion probabilities through policy gradient on a small calibration set.

3
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2.3 PROPOSED APPROACH: CAP

As illustrated in Figure 1, our proposed method, CAP, follows a two-stage process. The role of Stage
1 is to decompose weights into a relatively low-rank matrix L and a sparse matrix S, reducing the
parameter space to manageable candidates. Stage 2 then jointly optimizes over these candidates to
achieve the target compression ratio while preserving model performance. This principled decom-
position followed by budget-aware selection avoids heuristic thresholds and expensive fine-tuning.
In the following sections, we provide detailed explanations of our algorithm.

2.3.1 STAGE 1: PRINCIPLED DECOMPOSITION VIA RPCA

The first stage of our method is not designed to achieve a target compression ratio directly. In-
stead, its purpose is to perform a principled decomposition of each weight matrix, transforming the
complex problem of pruning individual weights into a more structured one. By separating a weight
matrix W ∈ Rm×n into a low-rank component L that captures global structure and a sparse compo-
nent S that captures local, salient features, we establish a high-quality candidate pool for subsequent
compression. We achieve this through RPCA, which formulates the decomposition as a convex
optimization problem:

min
L,S

∥L∥∗︸ ︷︷ ︸
Low-rank constraint

+λ ∥S∥1︸ ︷︷ ︸
Sparsity constraint

subject toW = L+ S. (3)

The choice of this objective is theoretically motivated. The nuclear norm ∥L∥∗ is the tightest convex
relaxation of the rank function, making it the most effective convex proxy for minimizing rank.
Similarly, the ℓ1 norm ∥S∥1 is the standard convex relaxation for the non-convex ℓ0 norm (sparsity),
which effectively identifies significant, sparse outliers. Thus, this framework provides a principled
and globally optimal separation of W into its underlying low-rank and sparse structures.

Crucially, the hyperparameter λ in the RPCA objective governs the nature of this decomposition, not
the final compression rate. Attempting to control sparsity by simply tuning λ leads to unpredictable
changes in the rank of L and often results in poor-quality decompositions, a point we analyze in
detail in Appendix H. Therefore, this stage focuses solely on creating an optimal candidate pool
for the subsequent budget-aware pruning. We solve Eq. equation 3 using the efficient Alternating
Direction Method of Multipliers (ADMM) (Lin et al., 2010). The updates are as follows:

Lk+1 = argmin
L
∥L∥∗ +

µ

2

∥∥W − L− Sk + µ−1Yk

∥∥2
F
, (4)

Sk+1 = argmin
S

λ∥S∥1 +
µ

2

∥∥W − Lk+1 − S+ µ−1Yk

∥∥2
F
, (5)

Yk+1 = Yk + µ (W − Lk+1 − Sk+1) . (6)

The L-update employs Singular Value Thresholding (SVT) (Cai et al., 2008):

Lk+1 = Udiag(shrinkµ−1(σ))V⊤ (7)

where UσV⊤ is the SVD of W − Sk + µ−1Yk, with singular value shrinkage shrinkτ (σi) =
max(σi − τ, 0). The S-update applies elementwise soft-thresholding:

[Sk+1]ij = shrinkλµ−1([W − Lk+1 + µ−1Yk]ij) (8)

This alternating optimization progressively separates the weight matrix into a low-dimensional sub-
space capturing directional patterns (L) and a sparse subspace containing localized refinements (S),
establishing the foundation for subsequent global resource allocation.

2.3.2 STAGE 2: LEARNABLE PROBABILISTIC PRUNING

While the RPCA decomposition in Stage 1 provides a high-quality separation of components, it does
not enforce a specific parameter budget. The second stage directly addresses this by performing a
global, budget-aware selection from the candidate pools (L and S) generated previously. We decide
which rank-1 components in L and which non-zero entries in S to keep, to meet a user-defined
parameter budget K while minimizing task performance degradation.
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The total parameter budget, K, is a user-defined hyperparameter (e.g., 50% of the original model’s
parameters). Each retained singular value σi from L requires storing its corresponding singular
vectors ui ∈ Rm and vi ∈ Rn, contributing (m+n) parameters. Each retained non-zero entry of S
contributes one parameter. We introduce Bernoulli random variables to model the retention decision
for each potential parameter:

mσi
∼ Bernoulli(sσi

), mSij
∼ Bernoulli(sSij

),

where sσi
∈ [0, 1] and sSij

∈ [0, 1] are learned retention probabilities. The compressed matrix is
then

W̃ = U diag
(
σ ⊙mσ

)
V⊤ + S ⊙ mS , (9)

subject to
∑

i sσi
(m+ n) +

∑
i,j sSij

≤ K to respect the total parameter budget.

Learning probabilities via policy gradient. We minimize the expected loss on a small calibration
set D:

min
s

Em∼p(m|s)

[
L(W̃)

]
, (10)

where s = {sσi
, sSij

} and p(m | s) is the product of Bernoulli distributions. We employ a
REINFORCE-style (Williams, 1992) policy gradient:

∇sk Em[L(W̃)] = Em

[
L(W̃) ∇sk log p(m | sk)

]
. (11)

For a Bernoulli variable mk ∼ Bernoulli(sk),

∇sk log p(mk | sk) =
mk − sk

sk (1− sk) + ϵ
,

with a small ϵ > 0 to avoid division by zero. To reduce variance, we maintain a moving average
baseline δ (Zhao et al., 2011):

δ ← β δ + (1− β)L(W̃), (12)

and update each sk via

sk ← sk − η
(
L(W̃)− δ

)
∇sk log p(mk | sk). (13)

After each gradient step, we project s back onto {s : 1⊤s ≤ K, 0 ≤ sk ≤ 1}.

Thresholding masks and final factorization. The policy gradient optimization yields a set of
probabilities {sk} that reflect the learned importance of each parameter for minimizing the task
loss. To obtain the final compressed model that strictly adheres to the budget K, we perform a deter-
ministic selection. We treat the learned probabilities sk as importance scores for their corresponding
parameters (singular values or sparse entries). All potential parameters are ranked globally accord-
ing to these scores. We then select the top-K parameters to keep, generating the final binary masks
mk:

mk =

{
1, if parameter k is among the top-K scored parameters,
0, otherwise.

(14)

This final step ensures the parameter budget is met precisely. The compressed weight matrix is
reconstructed using these binary masks in Eq. equation 9. To enhance efficiency, the resulting low-
rank component is factorized into smaller matrices. The compressed U′ and V′ are computed as:

U′ = [
√
σ1u1,

√
σ2u2, . . . ,

√
σr′ur′ ] , (15)

V′ = [
√
σ1v1,

√
σ2v2, . . . ,

√
σr′vr′ ] , (16)

where r′ is the number of retained singular values (i.e., where mσi
= 1). The final compressed

weight matrix is then:
W̃ = U′ (V′)

⊤
+ S⊙mS . (17)

This factorization reduces both storage and computational cost during inference.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison with unstructured pruning methods at 50% compression. We
report average zero-shot accuracy (%) across eight tasks and WikiText-2 perplexity (lower is better).

Method Compression Zero-shot Accuracy (%) WikiText-2 Perplexity
Phi-3 Mini Phi-3 Medium LLaMA-3 8B LLaMA-3 70B Phi-3 Mini Phi-3 Medium LLaMA-3 8B LLaMA-3 70B

Dense 0% 71.99 74.27 69.79 75.27 9.50 6.21 10.17 2.68

Uniform Sparsity Methods

SparseGPT
30% 70.63 74.53 69.08 75.07 11.19 7.48 9.71 3.24
40% 69.18 74.40 67.58 74.63 13.03 8.52 10.01 3.99
50% 66.36 73.25 64.66 73.17 16.80 9.89 11.95 5.27

Wanda
30% 70.66 74.05 68.63 75.19 10.71 7.28 9.39 3.28
40% 68.80 73.01 67.04 74.10 12.59 8.49 9.74 4.08
50% 65.03 70.96 63.27 72.85 17.23 10.12 12.36 5.38

DSNoT
30% 71.20 74.03 68.98 75.54 10.51 7.11 9.36 3.27
40% 69.08 72.90 66.65 74.29 12.17 8.24 9.60 4.10
50% 65.33 71.12 62.74 72.91 16.68 9.96 12.41 5.58

OATS
30% 71.48 74.04 69.34 75.24 10.27 6.85 9.59 3.07
40% 70.04 74.46 68.68 74.88 11.53 7.70 9.24 3.68
50% 68.41 73.39 65.71 73.30 15.18 9.05 10.87 4.78

Layerwise Allocation Methods (Based on Wanda)

OWL
30% 71.15 74.28 69.12 75.45 10.45 7.15 9.25 3.18
40% 69.32 73.35 67.58 74.42 12.28 8.32 9.58 3.95
50% 65.78 71.38 63.95 73.25 16.85 9.88 12.18 5.25

AlphaPruning
30% 71.28 74.35 69.25 75.52 10.38 7.08 9.18 3.15
40% 69.45 73.48 67.72 74.55 12.15 8.25 9.48 3.88
50% 65.95 71.52 64.12 73.42 16.72 9.78 12.05 5.18

Our Method

CAP
30% 72.15 74.85 70.25 76.02 9.88 6.58 9.05 2.95
40% 70.58 74.78 69.38 75.45 11.15 7.42 8.95 3.52
50% 69.12 74.05 66.85 74.18 14.68 8.78 10.35 4.45

2.4 DISCUSSION

We propose CAP, a two-stage compression framework for large language models. Stage 1: RPCA
Decomposition—The weight matrix is split into low-rank and sparse parts, preserving global struc-
ture while isolating local anomalies and sharply reducing the search space for later optimization.
This step is cast as a convex program (nuclear norm + L1 norm), guaranteeing a globally opti-
mal separation. Stage 2: Bernoulli Mask Optimization—Using a small calibration set, an unbiased
policy-gradient method learns the retention probabilities for the low-rank and sparse components,
automatically detecting and pruning redundancy across layers. Thanks to the convexity of Stage
1 and the unbiased gradients in Stage 2, CAP is theoretically sound and, in practice, trims excess
parameters efficiently while maintaining performance.

From a theoretical perspective, our two-stage framework has attractive properties. The RPCA-based
subspace decomposition is formulated as a convex program (nuclear norm + ℓ1 norm minimization)
that, under broad conditions, achieves the globally optimal separation of low-rank and sparse com-
ponents (Candès et al., 2011). Meanwhile, the Bernoulli mask optimization uses an unbiased policy
gradient estimator for the discrete pruning problem (Williams, 1992). This estimator can exhibit
high variance, but in our setup (one-step policy optimization on a small calibration set) the variance
is manageable and does not impede convergence. We discuss these aspects further in Appendix F,
but note here that the convexity of stage one and the unbiasedness of stage two’s gradient provide
theoretical soundness to the CAP approach, contributing to its reliable performance in practice.

3 EXPERIMENTS

In this section, we first introduce the experimental setup. Subsequently, we present the main ex-
perimental results and ablation studies. Due to space constraints, detailed results for Llama-1/2
are provided in Appendix I, and thorough analyses of throughput performance and computational
resource consumption of our proposed CAP method are presented in Appendix J

Models and Evaluation. We evaluate our proposed CAP method on a comprehensive set of
widely adopted large language models across different architectures and scales. Our evaluation
includes the LLaMA family: LLaMA-1 (Touvron et al., 2023a) (7B, 13B, 30B), LLaMA-2 (Tou-
vron et al., 2023b) (7B, 13B), and LLaMA-3 (Dubey et al., 2024) (8B, 70B); the OPT series (Zhang
et al., 2022) (1.3B, 2.7B, 6.7B, 13B); the Phi-3 family (Abdin et al., 2024) including Phi-3 Mini
(3.8B) and Phi-3 Medium (14B); and BERT-base (Devlin et al., 2019). To assess the performance
of the compressed models, we conduct experiments on zero-shot tasks and language modeling. We
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Table 2: Comparison at 50% unstructured sparsity. Zero-shot accuracy (%) on representative mod-
els. LoRA variants: Naive-LoRA uses basic error compensation; SLiM-LoRA incorporates weight
salience; SLiM-LoRAQ additionally quantizes the adapter.

Method Quantization OPT LLaMA-2
1.3B 2.7B 6.7B 13B 7B 13B

Dense - 43.4 45.5 48.3 48.7 56.6 60.8

Magnitude Group AbsMax 32.1 39.9 36.4 32.3 47.0 51.0
SparseGPT OPTQ 38.7 43.4 47.0 47.4 51.1 55.9
Wanda OPTQ 41.0 42.9 46.5 46.8 53.6 56.8
JSQ JSQ 38.9 35.5 42.8 30.7 52.3 57.0
L2QER Group AbsMax 38.4 41.3 45.1 OOM 50.6 OOM

Naive-LoRA QuantizationW 40.4 43.4 46.6 47.3 51.5 55.3
SLiM-LoRA QuantizationW 41.9 43.5 47.1 48.0 54.3 57.9
SLiM-LoRAQ QuantizationW 41.7 43.6 47.2 47.9 54.2 57.3

CAP (Ours) OPTQ 41.7 44.8 48.2 48.3 55.1 59.2

perform an extensive evaluation of the zero-shot capabilities of pruned models across eight stan-
dard commonsense benchmark datasets: GLUE (Wang et al., 2019a), PIQA (Bisk et al., 2020),
BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021),
OpenBookQA (Mihaylov et al., 2018), and the ARC Easy and ARC Challenge tasks (Clark et al.,
2018). For language modeling evaluation, we measure perplexity on the held-out WikiText-2 (Mer-
ity et al., 2016) validation set.

Implementation Details. We utilize PyTorch 2.3.0, Transformers 4.28.0, CUDA 12.1 on NVIDIA
A100 GPUs under Ubuntu. To ensure fair comparison, we use 128 sequences with context length
sampled from the C4 training set (Raffel et al., 2020) as calibration data. For policy gradient estima-
tion, we set iterations to 3, sliding window size to 5, and learning rate to 0.05. The λ parameter for
RPCA decomposition is set according to the established formulation λ = 1/

√
max(m,n), where

m and n represent the dimensions of the data matrix. Further ablation studies on the λ setting can
be found in Appendix H.

Baselines. We compare our approach with several compression techniques: SparseGPT (Frantar
& Alistarh, 2023) is a second-order pruning method for LLMs that solves a layer-wise reconstruc-
tion problem. WANDA (Sun et al., 2024) prunes weights based on their estimated importance using
activation statistics. OATS (Zhang & Papyan, 2024) performs optimal sparsity allocation across
transformer layers using second-order information. OWL (Yin et al., 2023) and AlphaPruning (Lu
et al., 2024) are layer-wise allocation methods that optimize sparsity distribution. SLiM (Mozaffari
et al., 2024) combines low-rank approximation with sparsity and quantization, featuring probabilis-
tic quantization error fitting. LPAF (Ren & Zhu, 2023) first applies first-order unstructured pruning
to obtain a low-rank sparse model. Then, sparsity-aware SVD is used to decompose the sparse ma-
trices into a low-rank form AB. Finally, mixed-rank fine-tuning is used to retrain AB. Detailed
baseline descriptions are available in Appendix G.

3.1 COMPARISON WITH UNSTRUCTURED PRUNING METHODS

We compare CAP with recent unstructured pruning methods across multiple large language models.
Table 1 presents a comprehensive comparison including both uniform sparsity methods (SparseGPT,
Wanda, DSNoT, OATS) and layerwise allocation methods (OWL, AlphaPruning) at 30%, 40%,
and 50% compression ratios. Note that OWL and AlphaPruning are layerwise allocation methods
that optimize sparsity distribution across layers, and we implement them using Wanda as the base
pruning method for fair comparison. CAP consistently achieves competitive or superior performance
across different model architectures and sizes.

3.2 COMPARISON WITH JOINT COMPRESSION METHODS

Since methods like LoSparse are based on structured pruning and require extensive retraining, we
compare CAP with SLiM, a state-of-the-art method that jointly applies quantization, sparsity, and

7
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Table 3: Results on GLUE tasks under different parameter budgets. We show accuracy (%) for RTE,
MRPC, SST-2, QNLI, MNLI and F1 score (%) for QQP.

Method RTE MRPC SST-2 QQP QNLI MNLI
50% 25% 16% 50% 25% 16% 50% 25% 16% 50% 25% 16% 50% 25% 16% 50% 25% 16%

Pre-training Distillation
DistilBERT 65.0 61.0 56.3 85.8 77.0 72.5 90.0 88.9 86.4 90.8 89.4 88.0 86.0 83.8 81.6 81.7 76.4 71.3
TinyBERT 67.7 67.2 64.6 86.3 85.3 78.2 92.3 89.8 88.0 90.5 90.0 88.7 89.9 87.7 84.5 83.1 80.6 77.4

Task-specific Distillation
PKD 65.5 59.2 53.8 81.9 76.2 71.3 91.3 88.1 87.2 88.4 88.5 87.5 88.4 82.7 78.0 81.3 75.7 72.7
Theseus 65.6 62.1 58.8 86.2 77.2 72.8 91.5 88.6 86.1 90.9 89.6 89.0 88.2 83.2 78.0 82.3 76.4 73.5
CKD 67.3 66.5 60.8 86.0 81.1 76.6 91.2 90.0 88.7 90.5 88.7 89.5 90.4 86.4 81.9 83.5 79.0 76.8
MetaDistill 69.0 66.7 61.0 86.8 81.8 77.3 92.3 88.9 87.0 91.0 88.9 86.9 90.4 86.8 84.9 83.5 79.5 76.8

Structured Pruning
ISP 66.4 65.0 63.9 86.1 83.6 82.8 90.4 89.4 89.9 90.5 88.7 87.2 90.5 88.7 87.2 83.2 81.9 80.8
FLOP 66.1 58.5 56.0 82.1 80.1 78.4 89.7 89.1 87.9 91.4 89.9 89.7 90.5 88.5 87.1 82.6 79.9 79.0
BPhybrid 66.4 64.3 63.9 84.1 81.1 78.3 91.0 88.7 86.9 91.8 89.3 89.1 90.7 88.1 86.2 83.0 80.1 78.0
CoFi 69.0 66.4 66.4 84.6 84.3 83.4 91.6 89.7 89.2 90.1 89.0 88.9 90.2 88.8 87.6 83.5 80.8 80.5

Matrix Factorization
SVDft 62.1 60.3 55.6 79.9 77.0 70.1 89.4 86.9 85.3 90.0 87.9 87.1 90.1 83.8 80.9 81.8 78.0 74.6
LPAF 62.8 68.0 67.9 86.8 85.5 86.0 92.0 90.0 91.5 90.4 90.1 91.1 89.3 88.6 84.8 84.8 82.6 77.6

Low-rank plus Sparse
CAP (Ours) 69.1 67.8 66.5 86.2 86.2 85.8 92.3 91.9 90.8 91.9 90.8 90.5 90.8 89.1 88.8 85.1 83.1 82.8
BERT-base 69.2 86.4 92.7 91.5 91.4 84.6

low-rank approximation. We also include comparisons with other joint compression approaches
including JSQ (Guo et al., 2024), a joint sparsity and quantization method that optimizes sparsity
and quantization parameters simultaneously, and L2QER (Zhang et al., 2024a), which combines
low-rank decomposition, quantization, and sparsity in a sequential manner.

While both SLiM and CAP structurally combine low-rank and sparse components, their technical
approaches differ fundamentally: SLiM primarily focuses on using low-rank decomposition to fit
quantization errors through probabilistic reformulation and numerical integration to find optimal
quantization parameters, whereas CAP focuses on the synergy between low-rank and sparse decom-
position through RPCA, where the low-rank component emerges from joint optimization rather than
serving as an error fitting tool. Table 2 presents the comparison on representative models at 50%
unstructured sparsity.

The results demonstrate that CAP consistently outperforms existing joint compression methods
across different model sizes and architectures. Notably, CAP achieves superior performance com-
pared to SLiM variants while using standard OPTQ quantization, highlighting the effectiveness of
the RPCA-based joint optimization approach. The performance gaps are particularly pronounced on
larger models, suggesting that CAP’s principled decomposition becomes more beneficial as model
complexity increases.

3.3 COMPREHENSIVE COMPARISON ON GLUE TASKS

Finally, we evaluate CAP on downstream tasks using the GLUE benchmark with BERT-base. Ta-
ble 3 compares CAP against various compression paradigms including pre-training distillation (Dis-
tilBERT Sanh et al. (2019), TinyBERT Jiao et al. (2019)), task-specific distillation (PKD Sun et al.
(2019), Theseus Xu et al. (2020), CKD Mirzadeh et al. (2020), MetaDistill Zhou et al. (2022)), struc-
tured pruning (ISP McCarley (2019), FLOP Prasanna et al. (2020), BPhybrid Lagunas et al. (2021),
CoFi Xia et al. (2022)), and matrix factorization methods (SVDft Wang et al. (2019b), LPAF).

CAP achieves competitive or superior performance across most GLUE tasks and compression ratios.
Notably, CAP consistently outperforms methods without fine-tuning and achieves comparable re-
sults to fine-tuned methods like LPAF while using only the RPCA decomposition without additional
task-specific fine-tuning. The performance demonstrates the effectiveness of our joint optimization
approach, particularly excelling in QNLI and MNLI tasks where the low-rank plus sparse decompo-
sition captures both global patterns and task-specific sparsity. While LPAF achieves slightly better
performance on some tasks due to its fine-tuning step, CAP provides a training-free alternative that
is more practical for deployment scenarios with limited computational resources.
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Table 4: Convergence behavior of RPCA decomposition and uniform pruning strategies

(a) Effect of RPCA iterations on model performance.
Here, “Avg. Rank” denotes the average rank of the low-
rank component, and “Sparsity” represents the sparsity
of the sparse component.

Iter Sparsity Avg. Rank PPL ↓ Avg. Error
1 0.8080 936.56 32497 0.6248
3 0.4123 2109 5.18 0.0243
10 0.4005 2217 5.13 0.0213
100 0.4090 2198 5.16 0.0209

(b) Effect of heuristic threshold-based pruning on
model performance. Singular values below the
threshold are set to zero.

Threshold Avg. Rank Sparsity PPL ↓
0.5 1342 0.6 5.84
1 684 0.6 11.14
2 214 0.6 2909.51
Max 0 0.6 NaN
0.5 1342 0.8 7.63
0.5 1342 1.0 NaN

3.4 ABLATION STUDIES

To gain deeper insights into the behavior of our compression method, we conduct ablation stud-
ies focusing on two key aspects: (i) the distribution of different matrix ranks after compression is
between 200 and 800.; and (ii) the stability of our method when pruning is applied sequentially
layer-by-layer. Detailed analysis and experimental results are provided in Appendix K.

Robustness and Rapid Convergence of RPCA Decomposition We investigated the effect of
RPCA iterations on the performance of the LLaMA2-7B model to assess the robustness of the de-
composition quality. Table 4a shows that only a few RPCA iterations are needed to achieve an
effective decomposition, providing a solid and stable starting point for subsequent pruning. This
rapid convergence demonstrates the robustness of the RPCA stage, as it consistently produces a
high-quality separation of global patterns (low-rank component) and local anomalies (sparse com-
ponent) across different layers with minimal computational overhead. Additionally, the “Avg. Er-
ror” column represents the average approximation error for each matrix, offering insight into the
model’s tolerance to error. Similar to findings in the quantization field, large models exhibit ro-
bustness to approximation errors. The fact that performance even surpasses the original model after
decomposition further underscores the effectiveness of RPCA in identifying and isolating redundant
parameters, thereby enhancing the input quality for the subsequent global optimization stage.

Necessity of Global Resource Allocation The limitations of heuristic, post-decomposition prun-
ing underscore the importance of our proposed global optimization components (policy gradient
with Bernoulli sampling). We conducted experiments using a uniform threshold-based approach ap-
plied to the RPCA output. In this method, we prune the low-rank component L by setting singular
values below a specific threshold to zero and remove low-magnitude elements from the sparse com-
ponent S without applying our probabilistic masking or additional optimization. Table 4b summa-
rizes the results for LLaMA2-7B, which indicate that both components are indispensable: retaining
only one leads to a performance collapse. This clear failure of simple thresholding strategies
validates our core design choice: the necessity of a learned, global resource allocation strategy.
Unlike rigid heuristics, policy gradient optimization and Bernoulli sampling mechanism determine
the rank and sparsity allocation across layers based on their redundancy characteristics, which is
crucial for maintaining model performance under compression.

4 CONCLUSION

This work aims to solve the compression problem of pre-trained large language models and proposes
a two-stage low-rank and sparse composite approximation compression method. First, the weight
matrix is decomposed into low-rank subspace and sparse subspace through RPCA, which signifi-
cantly reduces the search space; then, the global probability distribution optimization technology
based on Bernoulli sampling is used to automatically identify and retain the most important low-
rank and sparse components. Compared with the traditional method of manually setting thresholds,
this scheme can adaptively allocate the rank and sparsity of different layers, and can achieve better
reasoning performance and robustness on various benchmarks without large-scale backpropagation
or fine-tuning. In the future, further research can be conducted on the combination with technolo-
gies such as quantization and knowledge distillation and their application in larger-scale models to
provide a more efficient solution for the deployment of large models in multiple scenarios.
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REPRODUCIBILITY STATEMENT

This statement presents a comprehensive report detailing the reproduction process for our RPCA-
based model compression methodology, incorporating policy gradient optimization. The implemen-
tation builds upon WANDA’s code base and integrates components from additional open-source
libraries, to which we extend our gratitude.

IMPLEMENTATION OVERVIEW

The proposed algorithm is implemented using PyTorch and Hugging Face’s Transformers library.
The core components of the implementation include:

• RPCA Decomposition: Each weight matrix W from the pre-trained model is decomposed
into a low-rank matrix L and a sparse matrix S using Robust Principal Component Analysis
(RPCA). This decomposition captures global structure in L and local anomalies in S.

• Probabilistic Pruning: Bernoulli random variables are introduced to determine the reten-
tion of singular values in L and specific elements in S. Retention probabilities are treated
as trainable parameters.

• Policy Gradient Optimization: A policy gradient framework optimizes the retention prob-
abilities by minimizing the expected loss over a calibration dataset, subject to a parameter
budget constraint.

• Model Reconstruction: Following optimization, compressed weight matrices are recon-
structed using the retained components. Low-rank matrices are further factorized to en-
hance computational efficiency during inference.

CODE STRUCTURE

The implementation is organized into three main components:

• main.py: The primary entry point for the pruning process, handling model loading, ar-
gument parsing, and execution.

• lib/prune rl.py: Contains the RPCA decomposition, policy gradient optimization
routines, and model reconstruction logic.

• main.sh: A shell script to streamline the pruning execution process with preset argu-
ments.

RUNNING THE PRUNING PROCESS

To reproduce our results, follow these steps:

1. Environment Setup:

• Ensure Python 3.8 or later is installed.
• Install the necessary dependencies:

pip install torch \
transformers \
numpy \
tqdm \
matplotlib \
json \
argparse

2. Execution:

• Use the provided shell script main.sh to execute the pruning process with preset
configurations:

10
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bash main.sh

• The script handles model selection, pruning method, RPCA parameters, policy gradi-
ent settings, and output configurations.

KEY IMPLEMENTATION DETAILS

• Code Base: The implementation builds upon WANDA’s pruning framework, modified to
incorporate RPCA decomposition and policy gradient optimization.

• RPCA Implementation: An augmented Lagrange multiplier method is used to solve the
RPCA optimization problem. This separates the weight matrix into L and S, capturing
essential patterns and anomalies, respectively.

• Bernoulli Masks: For each singular value in L and each element in S, a Bernoulli ran-
dom variable determines its retention. Retention probabilities are initialized uniformly and
optimized iteratively.

• Policy Gradient Optimization: Retention probabilities are refined using a policy gradient
approach. The gradients of the expected loss with respect to the probabilities are estimated
and used to update the masks, with variance reduced via a moving average baseline.

• Model Reconstruction: Following optimization, probabilities are thresholded to generate
binary masks. The compressed model is reconstructed, and low-rank matrices are further
decomposed into U′ and V′ for inference efficiency.

RESULTS

Using the aforementioned process, we successfully compressed the LLaMA-2-7B model to achieve
a 50% compression rate while maintaining performance. Perplexity was monitored after processing
each layer to evaluate the model’s performance.

CONCLUSION

This reproduction report outlines the implementation and procedural details for replicating our
RPCA-based compression method with policy gradient optimization. The provided code base, built
upon WANDA, ensures reproducibility and offers a robust foundation for advancing model com-
pression research.
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A THE USE OF LARGE LANGUAGE MODELS(LLMS)

In preparing this paper, LLMs were employed solely for language refinementpurposes, such as im-
proving grammar, clarity, and style of expression. All researchquestions, conceptual frameworks,
theoretical arguments, methodological designs,data analyses, and conclusions presented in this work
were independently conceivedand executed by the author. The LLMs did not generate, alter, or influ-
ence theunderlying ideas, interpretations, or findings. Their use was limited to assistingin polishing
the readability and fluency of the manuscript while preserving theoriginality and integrity of the
scholarly contributions.

B RELATED WORK

B.1 UNSTRUCTURED PRUNING

Unstructured pruning eliminates individual weights by setting them to zero, providing fine-grained
control over model sparsity. SparseGPT (Frantar & Alistarh, 2023) leverages second-order infor-
mation to perform layer-wise pruning with minimal retraining, whereas Wanda (Sun et al., 2024)
combines weight magnitude with activation statistics for a more straightforward pruning strategy.
While these methods achieve efficient pruning, they struggle to maintain performance at high spar-
sity levels and often require additional retraining (Sanh et al., 2020; Renda et al., 2020). BESA (Xu
et al., 2024) introduces a differentiable pruning framework that dynamically allocates sparsity across
layers to minimize performance degradation, producing competitive results without requiring exten-
sive retraining. Dynamic Sparse Training (DST) (Liu et al., 2020) proposes an end-to-end sparse
training method where trainable pruning thresholds dynamically adjust the sparsity level during
training. Unlike post-training pruning methods, DST eliminates the need for iterative fine-tuning by
continuously optimizing layer-wise sparsity using backpropagation. DST is designed for training
sparse networks from scratch.

More recent methods focus on improving sparsity allocation across layers. OATS (Zhang & Papyan,
2024) formulates optimal sparsity allocation as a constrained optimization problem using second-
order sensitivity (Hessian-based), enabling non-uniform sparsity distribution across layers while
preserving overall model accuracy. Similarly, DSNoT (Zhang et al., 2024b) proposes a data-free
unstructured pruning method that identifies salient weights using gradient sign stability, making
it suitable for low-resource settings. To further enhance performance, several approaches explore
adaptive layer-wise sparsity. OWL (Yin et al., 2023) and AlphaPruning (Lu et al., 2024) both
leverage activation statistics—such as outlier magnitudes or sparsity patterns—to determine how
much sparsity each layer can tolerate, thereby optimizing the global sparsity budget. These methods
typically build upon simpler base pruners like Wanda and improve performance by reallocating
sparsity in a layer-dependent manner. In contrast, our method CAP performs joint low-rank and
sparse decomposition via RPCA, which naturally induces structured sparsity patterns and enables
global optimization through policy gradients, avoiding hand-crafted allocation heuristics.

B.2 LOW-RANK PLUS SPARSE AND HYBRID COMPRESSION

Low-rank approximation, obtained via truncated SVD, remains a cornerstone for reducing both
memory footprint and FLOPs in deep networks (Denton et al., 2014). Early composite schemes
such as LoSparse (Li et al., 2023) add a sparse “correction” to each low-rank factor, but depend
on hand-tuned singular-value cut-offs and iterative fine-tuning. LPAF (Ren & Zhu, 2023) improves
robustness by applying structured pruning first, then decomposing the residual with a sparsity-aware
SVD and mixed-rank re-training (W ≈ AB), yet still requires several post-processing passes. Re-
cent work pushes the idea further: SVD-LLM (Wang et al., 2024b) introduces a truncation-aware
criterion that keeps LLaMA-13B perplexity at 6.43 with only 20% of the weights, while MoD-
eGPT (Lin et al., 2025) performs modular low-rank decomposition across consecutive sub-layers
and preserves 90–95% zero-shot accuracy at 25–30% parameters without any fine-tuning. On the
sparse side, MaskLLM (Fang et al., 2024) learns hardware-friendly 2:4 masks, retaining 91–95%
of baseline accuracy at 50% sparsity and yielding a ∼1.4× speed-up on A100 GPUs.

Hybrid methods combine sparsity with quantization or low precision: SpQR (Dettmers et al.,
2024) stores a tiny FP16 outlier matrix plus 4-bit weights, achieving sub-1% perplexity loss, while
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CALDERA (Saha et al., 2024) represents each layer as a low-rank term plus a quantized backbone,
pushing below 3 bits/parameter on models up to 70B.

Recent advances integrate low-rank adaptation with sparsity and quantization. For instance,
SLiM (Mozaffari et al., 2024) combines low-rank modules, unstructured sparsity, and quantiza-
tion, introducing a probabilistic framework to fit quantization errors using low-rank components. It
further proposes SLiM-LoRA variants that apply sparsity-aware adapters with salience-based com-
pensation. Similarly, JSQ (Guo et al., 2024) jointly optimizes sparsity and quantization parameters
through a unified objective, while L2QER (Zhang et al., 2024a) adopts a sequential pipeline of low-
rank decomposition, sparsification, and quantization to maximize compression efficiency. These
methods demonstrate the growing trend toward multi-modal compression. However, most rely on
heuristic designs or require multiple stages of fine-tuning.

Unlike the above approaches, our CAP framework uses Robust PCA to jointly discover layer-
wise low-rank and sparse subspaces, then optimizes Bernoulli masks globally via policy gradi-
ents—eliminating manual thresholds and any backpropagation over the original parameters. This
enables a training-free, end-to-end decomposition that unifies the benefits of low-rank structure and
sparse expressivity without relying on error-fitting or staged optimization.

B.3 MODEL COMPRESSION VIA DISTILLATION AND STRUCTURED PRUNING

Knowledge distillation transfers knowledge from a large teacher model to a smaller student through
output mimicking or intermediate feature alignment. Early works such as DistilBERT (Sanh et al.,
2019) and TinyBERT (Jiao et al., 2019) apply distillation during pre-training, while task-specific
variants like PKD (Sun et al., 2019) and Theseus (Xu et al., 2020) focus on fine-tuned compression.
More advanced frameworks such as CKD (Mirzadeh et al., 2020) and MetaDistill (Zhou et al.,
2022) introduce multi-stage or meta-learning strategies to improve distillation efficiency. On the
pruning side, structured methods remove entire neurons, heads, or blocks. ISP (McCarley, 2019)
and FLOP (Prasanna et al., 2020) use importance scoring for layer pruning, while BPhybrid (La-
gunas et al., 2021) combines block pruning with fine-tuning. CoFi (Xia et al., 2022) jointly prunes
weights and attention heads using a shared importance metric. Unlike these methods that require ex-
tensive fine-tuning or teacher models, our approach operates in a post-training, training-free manner,
making it more suitable for low-resource deployment scenarios.

C PRELIMINARIES
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Figure 2: Singular values of Layer 0 and Layer 31 across different modules, comparing original and
RPCA-processed matrices. The dotted line represents the singular value distribution of the original
model, and the solid line represents the singular value distribution of the low-rank matrix after RPCA
processing.

C.1 LOW-RANK APPROXIMATION

Low-rank approximation (Chu et al., 2003) is a fundamental technique in matrix theory, widely used
to reduce the parameter count in neural networks while preserving most of the model’s performance.
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In large language models (LLMs), weight matrices are typically high-dimensional and dense. By
approximating a weight matrix W ∈ RM×N as UV⊤ with rank R≪ min(M,N), we can achieve
substantial reductions in storage and computational cost. Concretely, one typically uses Singular
Value Decomposition (SVD) to write

W = UΣV⊤, (18)
and then retains only the largest R singular values ΣR, yielding

W ≈ UR ΣR V⊤
R . (19)

This factorization can reduce the parameter count from M ×N to (M +N)×R, and also break a
large matrix multiplication into smaller ones:

Wx ≈ UR

(
ΣR(V

⊤
Rx)

)
,

leading to efficiency gains.

Despite these benefits, low-rank approximation alone may be insufficient for LLM compression,
especially when the singular values do not decay sharply. Figures 2 illustrate the singular value
distributions for two layers (Layer 0 and Layer 31) in a large Transformer. The dashed lines represent
the original matrices, showing that certain modules in the same Transformer block (e.g., attention vs.
feedforward) might exhibit similar shapes, yet across different layers, the redundancy patterns can
vary considerably. Consequently, imposing the same rank R uniformly across all layers may prune
too aggressively in some places and insufficiently in others. A more flexible approach is needed to
handle these differences among modules and layers.

C.2 LOW-RANK APPROXIMATION WITH SPARSE CORRECTIONS

To mitigate the shortcomings of purely low-rank approximation, recent methods (Li et al., 2023;
Ren & Zhu, 2023) advocate combining a low-rank matrix with a sparse correction term. One splits
the model weights as:

W = UV⊤︸ ︷︷ ︸
low-rank

+ S︸︷︷︸
sparse

. (20)

LoSparse (Li et al., 2023), for example, first applies an SVD on W to obtain a low-rank component
(with some rank R), and then prunes the residual W−UV⊤ to form a sparse matrix S. In practice,
one must still decide the singular-value cutoff (or target rank) and the sparsity ratio for the residual.
Often, additional fine-tuning is performed on the low-rank part to recover lost performance, or iter-
ative pruning is applied to the sparse part (Molchanov et al., 2019), which can be computationally
expensive.

A major limitation of these approaches is that they rely heavily on manually specified thresholds
for both singular values and residual pruning. They also lack a clear mechanism to coordinate how
much rank vs. how much sparsity each layer should receive, since different layers and modules may
have different redundancy patterns. Furthermore, when both the low-rank matrix and the sparse
matrix need simultaneous updates (or fine-tuning), memory consumption can become large, often
exceeding the budget for fine-tuning.

D KNOWLEDGE NEURONS

Transformer-based architectures, particularly large language models (LLMs), serve as repositories
of linguistic and factual knowledge (Geva et al., 2021; Dai et al., 2022). This knowledge is intricately
distributed across the network’s feed-forward networks (FFNs) and attention mechanisms, forming
the basis for accurate language understanding and generation. Figure 3 provides an illustrative
depiction of how such knowledge is encoded, stored, and attributed across these components, with
factual information such as ”Ireland’s capital is Dublin” encapsulated through complex interactions.

D.1 IMPACT OF PRUNING FFN LAYERS

FFNs act as key-value storage within Transformer models, encoding linguistic and factual infor-
mation as neuron activations (Geva et al., 2021). Specific neurons, often referred to as knowledge
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Figure 3: An illustration of how factual knowledge is encoded and attributed within Transformer
architectures. Factual knowledge is distributed across feed-forward networks (FFNs) and attention
mechanisms. Pruning these components risks disrupting knowledge structures, leading to perfor-
mance degradation.

neurons, are responsible for capturing and representing precise knowledge. For example, one neuron
may activate to encode “Q27: Ireland,” while its interplay with others encodes the factual relation-
ship “Capital: Dublin.”

Pruning FFN layers introduces the following risks:

• Disruption of Knowledge Neurons: Pruning weights indiscriminately can remove neu-
rons responsible for encoding critical facts, leading to the loss of semantic consistency and
factual integrity.

• Recovery Complexity: Unlike structured pruning or quantization, unstructured pruning
typically requires extensive fine-tuning to recover lost performance, as critical neurons are
often irreversibly removed.

D.2 EFFECT OF PRUNING ATTENTION MECHANISMS

Attention mechanisms are integral to Transformer models, enabling dynamic token-wise interactions
to capture semantic and contextual information. They play two primary roles:

• Knowledge Attribution: Attention mechanisms identify and link related entities, such as
establishing the factual connection between “Ireland” and “Dublin.”

• Contextual Understanding: By dynamically weighting token interactions, attention heads
provide rich semantic understanding, ensuring the accurate representation of factual rela-
tionships.

Pruning attention mechanisms poses distinct challenges:

• Impaired Attribution: Removing attention heads or weights can disrupt critical connec-
tions between tokens, such as the association between “Ireland” and “Dublin,” resulting in
factual inconsistencies.

• Redundancy vs. Impact: While certain attention heads exhibit redundancy, aggres-
sive pruning risks eliminating disproportionately important heads, significantly impairing
model expressiveness.
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D.3 CHALLENGES IN SIMULTANEOUS PRUNING

The concurrent pruning of FFNs and attention mechanisms amplifies risks, as both components play
complementary roles. FFNs encode factual knowledge, while attention mechanisms attribute and
contextualize this information. Disrupting either component undermines the model’s capacity to
process and retrieve information effectively. The key challenges include:

• Degraded Knowledge Retrieval: Pruning FFNs may impair the model’s ability to retrieve
stored knowledge, while pruning attention mechanisms compromises its ability to contex-
tualize and attribute this knowledge accurately.

• Trade-offs in Compression: Achieving a balance between parameter reduction and
knowledge retention demands fine-grained strategies that preserve essential structures
while compressing redundant components.

D.4 PROPOSED MITIGATION STRATEGIES

To address these challenges, we propose a composite approximation framework designed to preserve
critical structures within FFNs and attention mechanisms while achieving significant compression:

• Robust Principal Component Analysis (RPCA): RPCA decomposes weight matrices
into low-rank and sparse components, separating global patterns from local anomalies. This
allows us to target redundancies without compromising essential knowledge structures.

• Policy Gradient Optimization: By introducing Bernoulli distributions, we selectively re-
tain important components in both FFNs and attention layers. Policy gradient methods
efficiently optimize the retention probabilities, bypassing the need for heuristic thresholds.

• Layer-Adaptive Compression: Our approach applies module-specific pruning rates, en-
suring critical parameters for knowledge retention remain intact while compressing less
significant structures.

D.5 CONCLUSION

The interplay between FFNs and attention mechanisms highlights their distinct yet complementary
roles in encoding and attributing knowledge within Transformer models. While FFNs store knowl-
edge, attention mechanisms enable its contextualization. Effective compression requires strategies
that preserve the integrity of these components. Our composite approximation framework achieves
this balance by leveraging RPCA and policy-driven optimization, offering a robust solution for re-
taining critical knowledge while reducing model complexity.

E ADDITIONAL DETAILS AND THEORETICAL ANALYSIS

E.1 POLICY GRADIENT WITH MOVING AVERAGE BASELINE

The REINFORCE gradient estimator in Equation equation 11 has high variance because it scales
directly with the loss magnitude. We incorporate a moving average baseline δ to reduce variance
while maintaining unbiased estimates:

∇skE[L] ≈ E
[
(L(W̃)− δ)∇sk log p(mk|sk)

]
(21)

• Variance Reduction: Let δ = E[L] be the expected loss. The variance becomes:

Var[(L − δ)∇ log p] = Var[L∇ log p]− 2δCov(L∇ log p,∇ log p)

+ δ2Var[∇ log p]

The baseline minimizes the second term when δ ≈ E[L] (Zhao et al., 2011).
• Unbiased Estimation: The baseline introduces no bias because:

E[δ∇ log p] = δE[∇ log p] = 0 (22)
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• Practical Implementation: We update δ as an exponential moving average (EMA):

δ ← βδ + (1− β)L(W̃) (23)

with β = 0.9 in experiments. This tracks recent performance while being robust to noise.

E.2 THEORETICAL ANALYSIS FOR LLM COMPRESSION

Theorem E.1 (Low-Rank+Sparse Approximation). For any weight matrix W ∈ Rm×n in Trans-
former layers, let r∗ be the intrinsic rank and s∗ the sparsity level. CAP achieves:

∥W̃ −W∥F ≤ C

√
r∗

m+ n︸ ︷︷ ︸
low-rank error

+ D
√
s∗︸ ︷︷ ︸

sparse error

+O

(√
log(1/δ)

|D|

)
(24)

with probability 1− δ, where C,D are data-dependent constants.

Proof. From RPCA recovery bounds (Candès et al., 2011) and PAC-Bayes generalization. The first
term comes from low-rank approximation error, the second from sparse component thresholding,
and the third from policy gradient optimization with |D| calibration samples.

Lemma E.2 (Parameter Efficiency). CAP preserves model capacity with:

rank(L̃) = O
(

K

m+ n

)
, ∥S̃∥0 = O(K) (25)

where K is the parameter budget. This matches the optimal rates for low-rank + sparse representa-
tions.

Corollary E.3 (LLM Performance Preservation). For a Transformer with L layers, if each atten-
tion/MLP matrix satisfies Theorem 1 with ∥W̃(l) −W(l)∥F ≤ ϵ, then the full model satisfies:

|L(W̃)− L(W)| ≤ Lϵ
√
dim(x) (26)

where dim(x) is the input dimension.

F CONVERGENCE ANALYSIS OF BERNOULLI POLICY GRADIENT

We analyse the stochastic optimisation that drives CAP’s second stage and show that it is (i) un-
biased, (ii) has controllable variance, and (iii) converges to a local optimum under standard Rob-
bins–Monro conditions.

Unbiased gradient. For a scalar loss L(W̃ ) and Bernoulli mask vector m ∼ p(m | s), the REIN-
FORCE estimator (Williams, 1992; Baxter & Bartlett, 2001) is

g(s) = (L(W̃ )− δ)∇s log p(m | s), (27)

giving
Em

[
g(s)

]
= ∇sEm[L(W̃ )],

so the estimate is unbiased.

Mask statistics. Each entry mij ∼ Bernoulli(sij) satisfies E[mij ] = sij and Var(mij) = sij(1−
sij), maximised at sij = 0.5. We mitigate variance via:

• a moving–average baseline δ in Eq. equation 27, which subtracts an estimate of E[L];
• mini-batch averaging over B mask samples, reducing variance by |B|−1.

During training sij→0 or 1, so Var(mij)→0 and gradients become increasingly stable.
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Convergence. With bounded second moment of g(s), step sizes ηt satisfying
∑

t ηt = ∞
and

∑
t η

2
t < ∞, the Robbins–Monro theorem ensures almost-sure convergence to a stationary

point (Robbins & Monro, 1951). Empirically, CAP converges within O(103) updates on a 128-
sample calibration set.

G BASELINE METHODS DESCRIPTION

This section provides detailed descriptions of all baseline methods used in our experimental evalua-
tion. We categorize these methods into several groups based on their compression approaches.

G.1 UNSTRUCTURED PRUNING METHODS

SparseGPT (Frantar & Alistarh, 2023) is a second-order pruning method specifically designed
for large language models. It formulates pruning as a layer-wise reconstruction problem, using the
inverse Hessian to determine optimal weight removal while minimizing the increase in layer-wise
reconstruction error. The method processes weights in each layer sequentially and updates remaining
weights to compensate for the removal of pruned parameters.

WANDA (Sun et al., 2024) (Pruning by Weights AND Activations) is a simple yet effective
pruning approach that estimates weight importance using both weight magnitudes and activation
statistics. It computes importance scores by multiplying weight magnitudes with the norm of corre-
sponding input activations, providing a more comprehensive measure of parameter significance than
magnitude-only methods.

DSNoT (Zhang et al., 2024b) (Dual Sparse Network Training) applies structured sparsity patterns
during training to achieve efficient inference. The method maintains dual sparse networks during
training and applies knowledge distillation between dense and sparse models to preserve perfor-
mance.

OATS (Zhang & Papyan, 2024) (Optimal Allocation for Transformer Sparsity) performs optimal
sparsity allocation across transformer layers using second-order information. It leverages layer-
wise sensitivity analysis to determine the optimal distribution of sparsity across different layers,
considering the varying importance of different transformer components.

G.2 LAYER-WISE ALLOCATION METHODS

OWL (Yin et al., 2023) (Outlier-Aware Weight Layerwise) is a layer-wise allocation method that
optimizes sparsity distribution across layers by identifying and preserving outlier weights that are
critical for model performance. The method uses activation-based outlier detection to guide the
sparsity allocation process.

AlphaPruning (Lu et al., 2024) employs reinforcement learning to automatically determine the
optimal sparsity ratio for each layer. It formulates the layer-wise sparsity allocation as a sequential
decision-making problem and uses policy gradient methods to learn optimal allocation strategies.

G.3 JOINT COMPRESSION METHODS

SLiM (Mozaffari et al., 2024) (Sparsity-aware Low-rank compression with Importance Masking)
combines low-rank approximation with sparsity and quantization. Its key innovation is probabilistic
quantization error fitting, where low-rank decomposition is used to model and compensate for quan-
tization errors. The method employs numerical integration to find optimal quantization parameters.

JSQ (Guo et al., 2024) (Joint Sparsity and Quantization) optimizes sparsity and quantization
parameters simultaneously through a unified optimization framework. It formulates the compression
problem as a joint optimization over both sparsity masks and quantization levels, enabling better
trade-offs between compression ratio and model performance.
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L2QER (Zhang et al., 2024a) (Low-rank Quantization with Error Reduction) combines low-rank
decomposition, quantization, and sparsity in a sequential manner. It first applies low-rank decompo-
sition, then quantizes the resulting factors, and finally applies sparsity to further reduce model size
while using error compensation techniques.

LPAF (Ren & Zhu, 2023) (Low-rank Plus Sparse with Adaptive Fine-tuning) follows a three-
stage approach: (1) applies first-order unstructured pruning to obtain a sparse model, (2) uses
sparsity-aware Singular Value Decomposition (SVD) to decompose the sparse matrices into low-
rank form AB, and (3) performs mixed-rank fine-tuning to retrain the decomposed matrices while
preserving the sparse structure.

G.4 KNOWLEDGE DISTILLATION METHODS

G.4.1 PRE-TRAINING DISTILLATION

DistilBERT (Sanh et al., 2019) applies knowledge distillation during the pre-training phase to
create a smaller model. It uses a combination of distillation loss, masked language modeling loss,
and cosine embedding loss to train a student model that retains much of the teacher’s capabilities
with significantly fewer parameters.

TinyBERT (Jiao et al., 2019) extends knowledge distillation by transferring knowledge from
both the intermediate layers and the prediction layer of the teacher model. It employs attention-
based distillation and hidden state distillation to capture more comprehensive knowledge from the
teacher model.

G.4.2 TASK-SPECIFIC DISTILLATION

PKD (Sun et al., 2019) (Patient Knowledge Distillation) introduces a patient teacher mechanism
where the student model learns from multiple intermediate teacher models of varying sizes. This
progressive distillation approach helps bridge the capacity gap between large teachers and small
students.

Theseus (Xu et al., 2020) employs a progressive module replacement strategy during fine-tuning.
It gradually replaces modules in the original model with smaller counterparts while maintaining
performance through careful scheduling and knowledge transfer.

CKD (Mirzadeh et al., 2020) (Cascade Knowledge Distillation) addresses the capacity gap prob-
lem in knowledge distillation by introducing intermediate teacher models. It uses a cascade of
teacher models with gradually decreasing sizes to provide a smooth knowledge transfer path.

MetaDistill (Zhou et al., 2022) leverages meta-learning to automatically discover optimal dis-
tillation strategies. It learns to adapt distillation parameters and strategies based on the specific
characteristics of the teacher-student pair and the target task.

G.5 STRUCTURED PRUNING METHODS

ISP (McCarley, 2019) (Iterative Structured Pruning) applies structured pruning in an iterative
manner, removing entire structures (such as attention heads or feed-forward network dimensions)
based on their importance scores. The method uses gradient-based importance measures and itera-
tive refinement.

FLOP (Prasanna et al., 2020) focuses on reducing FLOPs (Floating Point Operations) by pruning
entire dimensions in feed-forward networks and attention mechanisms. It uses activation-based im-
portance scoring to determine which structures to remove while maintaining model expressiveness.

BPhybrid (Lagunas et al., 2021) (Block-wise Pruning Hybrid) combines block-wise structured
pruning with unstructured pruning techniques. It prunes at the granularity of transformer blocks
while allowing fine-grained unstructured pruning within remaining blocks.
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CoFi (Xia et al., 2022) (Coarse-to-Fine) applies a coarse-to-fine pruning strategy that first identi-
fies important structures at a coarse granularity and then refines the pruning decisions at finer levels.
It uses learnable masks to determine optimal structured pruning patterns.

G.6 MATRIX FACTORIZATION METHODS

SVDft (Wang et al., 2019b) applies Singular Value Decomposition (SVD) to weight matrices
followed by fine-tuning. It decomposes weight matrices into low-rank approximations and then fine-
tunes the resulting factors to recover lost performance. The subscript ”ft” indicates the inclusion of
fine-tuning after decomposition.

H ON THE NON-REDUNDANCY OF L1 PENALIZATION AND PRUNING

Our two-stage design employs both L1 shrinkage in the RPCA decomposition and subsequent prun-
ing operations. While these steps may appear related on the surface, they serve fundamentally
different and non-redundant purposes. This section clarifies why attempting to replace our second-
stage pruning with a higher λ in the first stage is not feasible, as RPCA is a tool for decomposition,
not a controllable mechanism for compression.

H.1 DISTINCT OBJECTIVES OF TWO-STAGE DESIGN

The core distinction lies in their objectives:

Stage 1 (RPCA Decomposition): Principled Separation. The L1 penalty in the RPCA objective
min ∥L∥∗ + λ∥S∥1 is designed to separate a weight matrix W into a globally correlated, low-rank
structure (L) and locally salient, sparse outliers (S). The λ parameter governs the balance of this
separation. Its purpose is to yield high-quality candidate pools for pruning, not to achieve a specific,
final compression ratio.

Stage 2 (CAP Pruning): Budget-Constrained Selection. This stage solves a different problem
entirely: given the candidates from Stage 1, how do we select the optimal subset of singular vectors
from L and non-zero elements from S to meet a strict, user-defined parameter budget K while
minimizing task performance degradation? This is a global, budget-aware optimization problem
that λ cannot address.

H.2 LIMITATIONS OF λ AS A COMPRESSION PARAMETER

The compression ratio achieved by RPCA is an emergent property of the decomposition, not some-
thing that can be precisely controlled by tuning λ. Attempting to force a specific level of sparsity by
adjusting λ is problematic for several reasons:

• Uncontrollable Trade-off: λ creates a complex, non-linear trade-off between the rank of
L and the sparsity of S. As you change λ to affect S, it has a drastic and often unpredictable
effect on L. There is no simple way to set λ to achieve, for instance, a target of 50% total
parameters while maintaining a useful decomposition.

• Pathological Decompositions: Extreme values of λ destroy the quality of the separation,
making the resulting components useless for effective compression.

H.2.1 EXPERIMENTAL ANALYSIS OF λ PARAMETER EFFECTS

To demonstrate this limitation, we analyze the output of the RPCA decomposition under different
λ values. We use the theoretically motivated default λ = 1/

√
max(m,n) from the original RPCA

work (Wright et al., 2009) as our baseline, which provides a robust, balanced starting point without
requiring parameter tuning.

H.2.2 ANALYSIS OF RESULTS

The experimental results reveal several key insights:
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Table 5: Impact of λ parameter on RPCA decomposition characteristics

λ setting Sparsity of S Rank of L Decomposition Quality

8e-5 (Low) 0.001 (Dense) 1512 Poor separation: S lacks sparsity
Default 0.41 2109 Balanced decomposition
8e-3 0.53 2174 Alternative reasonable trade-off
0.8 (High) 0.999 (Sparse) 3188 Poor separation: L becomes high-rank

Table 6: Perplexity (PPL) and mean zero-shot accuracy for pruned LLaMA and LLaMA-2 models
at 50% compression ratio.

Model w/o Pruning SparseGPT WANDA BESA CAP
PPL ↓ Zero-Shot ↑ PPL ↓ Zero-Shot ↑ PPL ↓ Zero-Shot ↑ PPL ↓ Zero-Shot ↑ PPL ↓ Zero-Shot ↑

LLaMA-7B 5.68 66.31 7.22 63.12 7.26 61.81 6.86 63.13 6.61 64.29
LLaMA-13B 5.09 68.91 6.21 65.98 6.15 66.49 5.92 67.43 5.76 68.32
LLaMA-30B 4.10 72.73 5.33 70.53 5.25 70.92 5.00 71.61 4.77 72.08
LLaMA-2 7B 5.21 66.96 6.99 63.71 6.92 63.81 6.60 64.92 6.25 65.33

LLaMA-2 13B 4.88 69.95 6.02 67.22 5.97 67.94 5.75 68.45 5.49 69.14

• Optimal Parameter Range: The theoretically motivated default λ value provides a bal-
anced decomposition where both L and S are meaningful, creating a rich candidate pool
for subsequent pruning.

• Non-Linear Parameter Effects: The relationship between λ and compression outcomes
is complex and non-linear. Extreme λ values (0.8) create highly sparse S but force L to
become high-rank, essentially reducing to L ≈ W . Conversely, very low λ values (8e-5)
fail to enforce meaningful sparsity in S.

• Controllability Limitations: No single λ value can simultaneously achieve low-rank L,
sparse S, and satisfy a predefined parameter budget constraint.

H.3 CONCLUSION

The two-stage design is essential rather than redundant. While Stage 1 (RPCA) provides a principled
decomposition, it offers limited controllability over the final compression ratio. Stage 2 (CAP)
addresses this limitation by performing intelligent, data-driven selection from the candidate pools
generated in Stage 1, enabling precise parameter budget control while maintaining task performance.
This combination of principled decomposition followed by budget-aware selection is fundamental
to the superior performance of our approach.

I PERFORMANCE EVALUATION ON LLAMA AND LLAMA-2 MODELS

This section presents comprehensive experimental results on the LLaMA and LLaMA-2 model fam-
ilies under different compression settings. We evaluate our proposed CAP method against several
state-of-the-art pruning baselines to demonstrate its effectiveness across various model sizes and
compression ratios.

I.1 RESULTS AT 50% COMPRESSION RATIO

Table 6 presents the perplexity and mean zero-shot accuracy results for LLaMA and LLaMA-2 mod-
els at 50% compression ratio. Our method consistently outperforms existing pruning approaches
across all model variants, demonstrating superior performance in both language modeling (lower
perplexity) and downstream task performance (higher zero-shot accuracy).

The results demonstrate that CAP achieves consistently superior performance across all tested mod-
els. Notably, CAP maintains competitive zero-shot accuracy while achieving significantly lower per-
plexity compared to other pruning methods. For instance, on LLaMA-7B, CAP achieves a perplexity
of 6.61 compared to 7.22 for SparseGPT and 7.26 for WANDA, while simultaneously maintaining
higher zero-shot accuracy (64.29% vs. 63.12% and 61.81% respectively).
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I.2 EVALUATION UNDER HIGHER COMPRESSION RATIOS

Table 7: Accuracy results for different pruning methods on LLaMA-7B with 75% parameter reten-
tion. CAP represents our proposed method, applied without any parameter adjustment after pruning.
w/o Pruning shows the baseline performance of the unpruned model.

Methods BoolQ RTE HellaSwag Winogrande ARC-e ARC-c OBQA

w/o Pruning 75.08 66.09 56.94 69.93 75.25 41.89 34.60
Magnitude 42.23 52.35 25.86 48.38 26.64 21.50 14.00

SparseGPT 60.86 52.71 29.10 51.78 33.08 17.58 13.40

WANDA 37.83 51.99 26.78 49.41 28.79 19.54 13.20

CAP (75%) 63.33 55.71 31.67 54.01 35.73 22.88 16.12

Table 8: Accuracy results for different pruning methods on LLaMA2-7B with 75% parameter reten-
tion. CAP represents our proposed method, applied without any parameter adjustment after pruning.
w/o Pruning shows the baseline performance of the unpruned model.

Methods BoolQ RTE HellaSwag Winogrande ARC-e ARC-c OBQA

w/o Pruning 77.71 62.82 57.14 68.90 76.39 43.52 31.40
Magnitude 43.49 49.10 25.69 50.83 26.09 20.73 16.00

SparseGPT 60.34 54.15 30.28 53.12 33.75 20.39 14.20

WANDA 38.22 52.17 26.95 50.51 28.03 19.62 13.20

CAP (75%) 62.67 56.15 32.11 55.39 36.12 23.02 16.37

We further evaluate our proposed method (CAP) against three other pruning methods—Magnitude,
SparseGPT, and WANDA—on LLaMA-7B and LLaMA-2 7B models under more aggressive com-
pression settings with a parameter retention rate of 75% (25% compression). The results are pre-
sented in Tables 7 and 8. Key Observations:

• CAP consistently outperforms other methods: CAP achieves the highest accuracy across
all datasets without requiring any parameter adjustment after pruning. This demonstrates
its robustness in retaining critical model performance even under high sparsity conditions.

• Magnitude and SparseGPT limitations: These methods show noticeable performance
degradation under 75% parameter retention, especially on tasks that require factual rea-
soning (e.g., OBQA) or commonsense understanding (e.g., HellaSwag). This highlights
the importance of principled parameter selection rather than simple magnitude-based ap-
proaches.

• WANDA performance: WANDA performs slightly better than SparseGPT on certain
datasets but is generally less competitive compared to CAP, highlighting the advantages of
CAP’s probabilistic pruning mechanism over activation-based importance scoring alone.

• CAP excels in challenging settings: By leveraging RPCA for decomposition and policy
gradient optimization for adaptive pruning, CAP is able to selectively retain the most infor-
mative parameters, ensuring superior performance even under extreme sparsity conditions.
The method’s ability to jointly optimize low-rank and sparse components provides a more
nuanced approach to parameter importance estimation.

Conclusion: The comprehensive evaluation on both LLaMA and LLaMA-2 families demonstrates
that CAP offers a robust and efficient approach to model compression across different compression
ratios. By eliminating heuristic thresholds and adopting fine-grained pruning strategies based on
principled matrix decomposition, CAP surpasses existing methods while maintaining computational
simplicity and avoiding the need for post-pruning fine-tuning. The consistent performance gains
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across model sizes and compression settings validate the effectiveness of the RPCA-based joint
optimization approach.

J EMPIRICAL THROUGHPUT AND RESOURCE CONSUMPTION ANALYSIS

To provide a comprehensive efficiency comparison, we measured the end-to-end throughput of
Llama-3 8B at a 50% parameter ratio alongside the computational resource consumption of
CAP’s core stages. Comparisons are made against Wanda ?, a leading unstructured pruning method.
All measurements were conducted on an NVIDIA A100-80G GPU.

Table 9: Throughput and Resource Consumption Comparison on Llama-3 8B at 50% Parameter
Ratio.

Method Parameter Ratio Mean Accuracy (%) ↑ Throughput (tok/s) ↑ RPCA Time (min) Memory Footprint

Wanda 50% 63.27 38.1 – Baseline
CAP (Ours) 50% 66.39 35.7 ≤10 ∼1.01×

Key observations from our empirical evaluation include:

• Throughput: CAP achieves a throughput of 35.7 tokens/second, approximately 6% lower
than Wanda’s 38.1 tokens/second. This modest overhead stems from CAP’s forward pass
comprising two small dense GEMM operations and one sparse GEMM, whereas Wanda
uses a single larger sparse GEMM.

• RPCA Decomposition Efficiency: The RPCA stage operates purely on weight matrices
without data forwarding or backward propagation, requiring only ¡10 minutes to decom-
pose the entire 7B model on a single A100-80G GPU. This matrix decomposition process
is highly efficient and adds negligible overhead to the overall fine-tuning pipeline.

• Memory Efficiency in Policy Optimization: The subsequent policy gradient stage uses
only 128 calibration sequences and requires merely 3–5 forward passes (no backward
propagation), resulting in a memory footprint comparable to Wanda and over two orders of
magnitude lower than gradient-based parameter update methods. This extreme efficiency
makes CAP particularly suitable for resource-constrained environments.

These results underscore CAP’s practical strength: it delivers near-dense accuracy under strict
VRAM constraints, with highly competitive inference speed and minimal resource overhead during
optimization. The combination of efficient matrix decomposition and lightweight policy optimiza-
tion makes CAP particularly suitable for production environments where both accuracy and resource
efficiency are critical.

K DETAILED ABLATION STUDIES

This section provides comprehensive ablation studies to understand the behavior and characteristics
of our compression method. We focus on two key aspects: the distribution of retained ranks across
different modules and the stability analysis through sequential layer-wise pruning.

K.1 LOW-RANK COMPONENT RANK DISTRIBUTION

We analyzed the rank distribution of low-rank components in each module after probabilistic prun-
ing. Figure 4a shows these ranks along with the layer-wise averages. Modules with higher ranks in
the low-rank component tend to have sparser counterparts in the sparse component to meet the com-
pression target. The general trend of increasing rank in deeper layers suggests that redundancy varies
across the network, with later layers capturing more complex representations, underscoring the need
for careful pruning in these layers. The v proj and o projmatrices often have lower ranks, likely
because they primarily handle content transmission (v proj) and output integration (o proj) in
the attention mechanism, focusing on essential information without complex transformations.
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(a) The rank distribution of low-rank matrices for each mod-
ule after pruning.
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Figure 4: Analysis of module-specific redundancy and pruning stability in LLaMA2-7B. (a) The
retained rank varies significantly across different modules, indicating differing sensitivity to com-
pression. (b) Performance degradation shows a linear correlation with the number of pruned layers,
demonstrating the stability of our compression approach.

K.2 PERPLEXITY CHANGES DURING LAYER-WISE PRUNING

To evaluate the stability of our compression approach, we sequentially decomposed and pruned each
layer of the LLaMA2-7B model, starting from the initial layer. The resulting performance changes
are shown in Figure 4b. The performance degradation generally exhibits a linear correlation with the
number of pruned layers, demonstrating the stability of our method. This linear trend indicates that
our compression strategy does not introduce catastrophic failure points and maintains predictable
performance reduction. Interestingly, an unexpected performance boost occurs when the last layer
is compressed, underscoring the importance of maintaining structural consistency within the model.
Furthermore, decomposing and pruning the first layer led to a slight improvement (ppl 5.18) over
the original model’s performance (ppl 5.21), suggesting that early layers may indeed contain some
redundant parameters that can be removed without harming performance.

K.3 SUMMARY OF ABLATION FINDINGS

Our ablation studies reveal several important insights:

• Module heterogeneity: Different modules exhibit varying levels of redundancy, with at-
tention projection matrices (v proj, o proj) typically requiring lower ranks than other
components.

• Layer-wise redundancy patterns: Early layers contain more redundant parameters that
can be safely removed, while deeper layers require more careful compression to maintain
performance.

• Compression stability: The linear relationship between performance degradation and the
number of compressed layers demonstrates the predictable and stable nature of our com-
pression approach.

• Structural consistency: The performance boost observed when compressing the final
layer highlights the importance of maintaining model structural integrity throughout the
compression process.

L LIMITATIONS

Similar to other unstructured sparsity methods, the acceleration of sparse matrix computations heav-
ily depends on specialized hardware support. While significant advances have been made in sparse
computation frameworks, the lack of universal hardware optimization can hinder the practical de-
ployment of our method in certain environments.
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