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Figure 1. An illustration of the proposed approach. UniGaussian reconstructs 3D driving scenes by learning unified 3D Gaussian repre-
sentations from multiple input sources. It achieves holistic driving scene understanding and models multiple sensors (pinhole cameras and
fisheye cameras) and modalities (semantic, normal, depth, and optional LiDAR point clouds).

Abstract

Urban scene reconstruction is crucial for real-world au-
tonomous driving simulators. Although existing methods
have achieved photorealistic reconstruction, they mostly fo-
cus on pinhole cameras and neglect fisheye cameras. In
fact, how to effectively simulate fisheye cameras in driv-
ing scenes remains an unsolved problem. In this work, we
propose UniGaussian, a novel approach that learns unified
3D Gaussian representations from multiple camera models
for urban scene reconstruction in autonomous driving. Our
contributions are two-fold. First, we propose a new differ-
entiable rendering method that distorts 3D Gaussians using
a series of affine transformations tailored to fisheye camera
models. This addresses the compatibility issue of 3D Gaus-
sian splatting with fisheye cameras, which is hindered by
light ray distortion caused by lenses or mirrors. Besides,
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our method maintains real-time rendering while ensuring
differentiability. Second, built on the differentiable render-
ing method, we design a new framework that learns unified
Gaussian representations from multiple camera models. By
applying affine transformations to adapt different camera
models and regularizing the shared Gaussians with supervi-
sion from different modalities, our framework learns unified
3D Gaussian representations with input data from multiple
sources and achieves holistic driving scene understanding.
As a result, our approach models multiple sensors (pinhole
and fisheye cameras) and modalities (depth, semantic, nor-
mal, and LiDAR point clouds). Our experiments show that
our method achieves superior rendering quality and fast
rendering speed for driving scene simulation.

1. Introduction

Urban scene reconstruction aims to reconstruct real-world
driving scenes from images and achieve photorealistic ren-
dering [3, 26, 33, 36]. It is crucial for realizing real-world
closed-loop evaluation in end-to-end autonomous driving



simulators [31, 33]. One of the most popular methods for
driving scene reconstruction is the use of Neural Radiance
Field (NeRF) [21], an implicit radiance field representa-
tion. Although NeRF-based methods [8, 23, 26, 29, 33]
have achieved photorealistic rendering, they suffer from
slow rendering speed and expensive training cost. Re-
cently, some researchers have resorted to 3D Gaussian
Splatting (3DGS) [11], an explicit radiance field represen-
tation, for urban scene reconstruction. 3DGS-based meth-
ods [3, 32, 36, 37] use explicit 3D Gaussian primitives to
represent 3D scenes and employ a differentiable tile raster-
izer for rendering. This enhances the editability of driving
scenes and achieves real-time photorealistic rendering.

However, existing driving scene reconstruction meth-
ods mainly focus on rendering from pinhole cameras and
largely neglect fisheye cameras. Compared with pinhole
cameras, fisheye cameras provide a wider field of view
(FOV) essential for navigation and perception tasks in au-
tonomous driving, especially for near-field sensing and au-
tomatic parking [14, 15, 24]. Nevertheless, it is non-trivial
to adapt 3DGS to fisheye cameras. For example, the direct
application of 3DGS to fisheye cameras is impeded by dis-
tortions induced by camera optics, which disrupt the affine
transformations of 3D Gaussians. Intuitively, an engineer-
ing strategy to tackle this issue is directly rectifying fish-
eye images and treating them as pinhole images for model
training. However, this strategy yields suboptimal render-
ing quality, particularly in regions with a large field of view
angle. Another strategy is to render multiple cubic images
and subsequently amalgamate them to construct fisheye im-
ages [13, 27]. Nevertheless, this strategy introduces notice-
able artifacts indicative of the stitching process. In fact, how
to effectively render driving scenes from fisheye images for
simulation remains an open question.

To address the aforementioned challenges, this work
presents UniGaussian, a novel 3DGS-based approach that
learns unified Gaussian representations from multiple cam-
era models for urban scene reconstruction in autonomous
driving. First, we aim to address the compatibility issue
of 3DGS with fisheye cameras. To this end, we propose
a novel differentiable rendering method for 3DGS tailored
to fisheye cameras. In our method, the distortion of light
rays caused by fisheye cameras is translated into the de-
formation of the radiance field. This is realized through a
series of affine transformations, including translation, rota-
tion, and stretching, applied to 3D Gaussians. These opera-
tions maintain the parallelization strategy and real-time per-
formance of 3DGS, while ensuring differentiability. Sec-
ond, with the proposed differentiable rendering method, we
design a new framework that jointly optimizes unified 3D
Gaussian representations from multiple camera models for
driving scene reconstruction. We apply affine transforma-
tions on 3D Gaussians to adapt them for different camera

models and regularize the shared Gaussians with supervi-
sion from different modalities. In this way, our framework
learns unified 3D Gaussian representations with input data
from multiple sources and achieves holistic driving scene
understanding. As illustrated in Fig. 1, our approach mod-
els multiple sensors, including pinhole cameras and fish-
eye cameras, and multiple modalities, including depth, se-
mantic, normal, and optional LiDAR point clouds. Besides,
since we use a unified rasterizer for 3D Gaussian rendering,
our framework shows adaptability to various differentiable
camera models and maintains real-time performance. The
framework of the proposed approach is depicted in Fig. 2.

In summary, our contributions are two-fold:
• We propose a novel differentiable rendering method

for 3DGS tailored to driving scene reconstruction from
fisheye cameras. Through a series of affine transfor-
mations, our method has adaptability to various fisheye
camera models for driving scene reconstruction with
large FOVs, does not significantly increase GPU mem-
ory consumption and maintains real-time rendering.

• Built on the proposed differentiable rendering method,
we propose to learn unified Gaussian representations
from multiple camera models for driving scene re-
construction. Our approach achieves holistic driving
scene understanding by modeling multiple sensors and
modalities. To the best of our knowledge, no existing
driving scene reconstruction method simulates both
pinhole and fisheye cameras in a unified framework.

2. Related Work
3D Gaussian Splatting. 3DGS [11] is a real-time radi-
ance field rendering approach. It represents a 3D scene with
a set of explicit 3D Gaussian primitives. Each primitive is
defined by a position (mean) µ ∈ R3, a covariance matrix
Σ ∈ R3×3, an opacity o ∈ R1 and spherical harmonics
(colors). To render images, these 3D Gaussian primitives
are projected from 3D space onto 2D image plane to com-
pute the color for each pixel with a differentiable tile-based
rasterizer. 3DGS achieves highly effective training and pho-
torealistic real-time rendering. We refer readers to [11] for
more details of 3DGS.

With the incredible success achieved by 3DGS, many
3DGS-based methods have emerged with the aim of solving
the problems of anti-aliasing [35], acceleration [6], relight-
ing [7], sparse-view synthesis [30], 4D reconstruction [28],
etc. Most of these works focus on reconstruction with pin-
hole camera models only. Recently, Liao et al. [17] adapt
3DGS to fisheye cameras by recalculating 3DGS projection
and gradients, but as they point out, their method is only
based on ideal camera models with equidistant projection
and not for generic fisheye camera models and real large-
FOV cameras. This hinders their use in driving scene re-
construction because fisheye cameras in driving scene are



Figure 2. The framework of our UniGaussian approach to driving scene reconstruction with multiple camera models. Our approach
achieves holistic driving scene understanding by modeling multiple sensors and modalities.

usually generic models and have large FOVs. In contrast,
our work proposes a new differentiable rendering method
for 3DGS tailored to driving scene reconstruction with fish-
eye cameras. Through a series of affine transformations,
our method has adaptability to various fisheye camera mod-
els for driving scene reconstruction with large FOVs, does
not significantly increase GPU memory consumption and
maintains real-time rendering.

Driving Scene Reconstruction. Typically, autonomous
driving scene simulation involves driving scene reconstruc-
tion [26, 29, 33] and road asset reconstruction [18, 19].
Our work mainly focuses on driving scene reconstruction
from images. Contemporary driving scene reconstruction
methods can be mainly categorized into two types, namely
NeRF-based methods and 3DGS-based methods. Gener-
ally, NeRF-based methods [8, 23, 26, 29, 33] perform dense
ray sampling and leverage a multi-layer perception with
many fully-connected layers to represent 3D scenes. Al-
though they have shown promising results for photorealis-
tic rendering, they are usually slow for both training and
rendering. This hinders their application to real-world au-
tonomous driving simulators. On the other hand, 3DGS-
based methods [3, 32, 36, 37] appear to be more efficient
for driving scene reconstruction due to the efficiency of ex-
plicit 3D Gaussian representations and differentiable raster-
ization. They are able to achieve photorealistic reconstruc-
tion and real-time rendering. Nevertheless, existing NeRF-
based and 3DGS-based methods neglect the importance of
fisheye camera simulation for autonomous driving. In au-
tonomous driving, fisheye cameras are useful for providing
a wider field of view, especially for near-field sensing and
automatic parking. Our work differs from existing works in
that the proposed method is built on a novel differentiable
rendering method tailored to fisheye cameras and the pro-
posed framework learns unified 3D Gaussians by modeling
multiple sensors and modalities.

Although we use composite Gaussians as the driving
scene representation following [32, 36, 37], our approach
significantly differs from [32, 36, 37]. Our approach
presents a novel differentiable rendering method tailored to

fisheye cameras and constructs a unified framework to learn
unified 3D Gaussians by modeling multiple sensors and
modalities. In contrast, [32, 36, 37] are designed to model
driving scene with pinhole cameras only. Specifically, [32]
constructs composite street Gaussians as driving scene rep-
resentation and employs tracking pose optimization to im-
prove foreground object modeling; [36] employs composite
Gaussians for holistic scene understanding with a unicycle
model for foreground object modeling; [37] presents incre-
mental 3D Gaussians and dynamic Gaussian graph for driv-
ing scene reconstruction. None of them simulates multiple
camera models in a unified framework for driving scene re-
construction. Note that post-processing or redistrotion is
not a practical solution to 3DGS fisheye rendering in driv-
ing scene reconstruction, which yields suboptimal render-
ing quality in regions with a large FOV (see Sec. 4.2 for
comparison with 3DGS+Undistort) and prevents each cam-
era model from learning complementary information.

3. Methodology
This work focuses on driving scene reconstruction from
multiple camera models, including pinhole and fisheye
cameras. Before delving into driving scene reconstruction
from multiple camera models, it is necessary to discuss dif-
ferentiable rendering of 3DGS for fisheye cameras. Thus,
in Sec. 3.1, we briefly introduce mathematical models of
fisheye cameras; then, in Sec. 3.2, we present the proposed
differentiable rendering of 3DGS for fisheye cameras; fi-
nally, in Sec. 3.3, we introduce the proposed UniGaussian
framework for driving scene reconstruction.

3.1. Mathematical Models of Fisheye Cameras

The Kannala-Brandt [10] and MEI [20] mathematical mod-
els are two models commonly used for fisheye cameras.
Each model consists of two main steps. The first step can be
referred to as the “mirror transformation” that characterizes
the twisting of light rays induced by the lens/mirrors or the
transformation that translates 3D points to new positions by
rotating the camera-point vectors towards the optical axis of
the camera. The second step is projecting 3D points from



(a) The architecture of our differentiable rendering for fisheye cameras.

(b) 3D Gaus-
sian translation
& rotation.

(c) 3D Gaussian
stretching.

Figure 3. Illustrations of our 3DGS rendering with fisheye cameras.

new positions onto the image plane. This step utilizes either
the camera intrinsic matrix or a pseudo intrinsic matrix.

Let θ and θd be the included angles between the camera-
point vectors and the optical axis before and after applying
the rotation, respectively. Then, the first step is defined as:

θd = M(θ), (1)

where M is the transformation specified by different mod-
els. For the Kannala-Brandt model, Eq. (1) is defined as:

θd = arctan rd = arctan
(
θ
(
1 + k1θ

2 + k2θ
4 + k3θ

6 + k4θ
8)) ,
(2)

where ki is a distortion coefficient. For the MEI model,
Eq. (1) is defined as:

θd = arctan rd = arctan
(
χ+ k1χ

3 + k2χ
5
)
, (3)

where χ = sin θ
cos θ+ξ and the twist of light rays is controlled

by three parameters k1, k2 and ξ. Next, these translated 3D
points are projected onto the image plane with intrinsic pa-
rameters fx, fy , u0 and v0. Specifically, the pseudo intrinsic
matrix defined in Eq. (4) is used to project the translated 3D
points onto the image plane. Since the focal length fx, fy
and the gain η cannot be estimated independently, γ1 and
γ2 are used as the pseudo focal length of the MEI model.γ1 0 u0

0 γ2 v0
0 0 1

 =

fxη 0 u0

0 fyη v0
0 0 1

 . (4)

Note that the MEI model also considers the tangential dis-
tortion caused by the misalignment between the camera op-
tical axis and the mirrors/lens rotational axis [20], but the
influence of this distortion is minor so we neglect it here.

Discussion. From Eqs. (2) and (3), we can see that the
principles of these two camera models are similar. We
can move 3D points by rotating the camera-point vectors
towards the optical axis of the camera and then project
these 3D points onto the image plane with the pinhole
camera model. From this perspective, the rendering of a
scene represented by 3D Gaussians follows a similar proce-
dure, with the main differences being that 3D points are re-
placed by 3D Gaussians and the rotational transformation of
the camera-point vectors introduces the deformation to 3D

Gaussians. In light of this, we formulate a transformation
method to approximate the deformation of 3D Gaussians
for fisheye cameras while maintaining differentiability.

3.2. 3DGS Rendering with Fisheye Cameras

Overview. The architecture of the proposed differentiable
rendering method is shown in Fig. 3a. Suppose a driv-
ing scene is represented by a set of 3D Gaussians. When
rendering from a specific viewpoint, we first select all visi-
ble 3D Gaussians and compute their colors utilizing spher-
ical harmonics in the world space. Subsequently, we adjust
the positions of the selected 3D Gaussians via rotating the
camera-Gaussian center vectors towards the optical axis of
the camera. Also, the poses of the selected 3D Gaussian
are rotated with the camera-Gaussian center vectors. Then,
the adjusted 3D Gaussians are compressed in both polar and
tangential directions. The scaling factor and the quaternion
of the 3D Gaussians are updated via eigendecomposition.
Finally, the updated 3D Gaussians are projected onto the
image plane to generate the final rendering. Overall, our
method is generic to various differentiable camera models
and can be used for driving scene reconstruction with large
FOVs. Besides, our method does not require large amounts
of additional GPU memory, so is suitable for processing
millions of 3D Gaussians in driving scene reconstruction.

3D Gaussian Position and Pose Adjustment. Let rg and
rc be the positions of 3D Gaussians and cameras in the
world coordinate space, respectively, and let ra be the op-
tical axis of cameras. As shown in Fig. 3b, when perform-
ing the transformation, the camera-Gaussian center vector
needs to be rotated by θ∆ around the vector rrot. Here,
θ∆ = θd − θ, and rrot is denoted by:

rrot =
rgc

||rgc||
× ra, (5)

where rgc = rg − rc, θ is the included angle between the
camera-Gaussian center vector and ra, and θd is computed
using Eq. (1). Then, the new position r′g of the 3D Gaussian
is computed as:

r′g = C(δq)rgc + rc, where δq = qvec(rrot, θ∆), (6)

and qvec denotes the transform from the axis-angle to the
quaternion and C(·) is the transform from the quaternion to



the rotation matrix. Since the pose of the 3D Gaussian needs
to be rotated along the camera-Gaussian center vector, the
new quaternion q′g is defined as:

q′g = δq ⊗ qg, (7)

where qg is the original quaternion and ⊗ denotes the
quaternion multiplication.

Compression of 3D Gaussians. Corresponding to the
compression of FOV, 3D Gaussians need to be compressed
in the polar and tangential directions; otherwise, adjacent
3D Gaussians will have greater degree of overlap on the
splatting plane. To compress 3D Gaussians in the given di-
rection, we use a stretching matrix S which is defined as:

S(n̂, k) =

1 + (k − 1)n2
x, (k − 1)nxny, (k − 1)nxnz

(k − 1)nxny, 1 + (k − 1)n2
y, (k − 1)nynz

(k − 1)nxnz, (k − 1)nynz, 1 + (k − 1)n2
z

 ,

(8)
where n̂ is the stretching direction and k is the stretching
ratio. This stretching matrix S is used to scale targets along
an arbitrary axis [5]. In Fig. 3c, the blue and green ellip-
soids denote 3D Gaussians before and after translation, ro-
tation, and stretching. These two ellipsoids have the same
tangential field angle ∆ϕ. The tangential stretching ratio is
computed by sin θd/ sin θ and the polar stretching ratio is
defined as:

kθ = ∆θd/∆θ, (9)

where ∆θ = max(||θ̂ · vx||, ||θ̂ · vy||, ||θ̂ · vz||) × 2, θ̂ is
the local orthogonal unit vector points to the direction of
optical axis, vx, vy and vz are the principal axes of the 3D
Gaussian with scale. ∆θd can be computed with the Taylor
series expansion of Eq. (1) as:

∆θd =
dθd
dθ

∆θ+
1

2!

d2θd
dθ2

∆θ2+
1

3!

d3θd
dθ3

∆θ3+ · · · . (10)

Therefore, for the Kannala-Brandt model, we have:

dθd
dθ

=
1

1 + r2d

drd
dθ

, (11)

d2θd
dθ2

=
d2rd
dθ2 (1 + r2d)− 2rd(

drd
dθ )2

(1 + r2d)
2

, (12)

where drd
dθ = 1 + 3k1θ

2 + 5k2θ
4 + 7k3θ

6 + 9k4θ
8 and

d2rd
dθ2 = 6k1θ + 20k2θ

3 + 42k3θ
5 + 72k4θ

7. While for the
MEI model, we have:

dθd
dθ

=
(1 + 3k1χ

2 + 5k2χ
4)

(1 + r2d)

dχ

dθ
, (13)

d2θd
dθ2

=
U − V

(1 + r2d)
2
, (14)

V = 2rd(1 + 3k1χ+ 5k2χ
4)2(

dχ

dθ
)2, (15)

U = ((6k1χ+20k2χ
3)(

dχ

dθ
)2+(1+3k1χ

2+5k2χ
4)
d2χ

dθ2
)(1+r2d),

(16)

where dχ
dθ = 1+ξ cos θ

(cos θ+ξ)2 and d2χ
dθ2 = sin θ(2+ξ cos θ−ξ2)

(cos θ+ξ)3 . Here,
dnθd/dθ

n(n > 2) also have analytical expressions for both
the Kannala-Brandt and MEI models. When the linear ap-
proximation is used, kθ = dθd/dθ so the computation is
considerably simplified.

Update Scaling Factors and Rotations. Generally, ran-
dom variables that conform to a Gaussian distribution can
retain this property even after applying affine transforma-
tions. Since the stretching operation is an affine transfor-
mation in our method, the covariance matrix of the resultant
Gaussian distribution is defined as:

Σ′ = SθSϕΣST
ϕS

T
θ , (17)

where Sθ and Sϕ are the stretching matrices in the polar
and tangential directions. Besides, the three scaling factors
and the quaternion of the new 3D Gaussian are defined as:

si =
√
λi, i∈{1, 2, 3}, (18)

q = quat ([v1,v2,v1 × v2]) , (19)

where λi is the eigenvalue of Σ′, vi is the eigenvector of Σ′,
and v3 is replaced by v1 × v2 to ensure that these vectors
form a right-hand system.

3.3. UniGaussian for Driving Scene Reconstruction

Fig. 2 depicts an overview of our approach to learning uni-
fied Gaussian representations from multiple camera models
for driving scene reconstruction.

Driving Scene Gaussians. With input images from dif-
ferent cameras, we represent a driving scene with compos-
ite 3D Gaussians1. Following [32, 36, 37], we decompose
the scene into background Gaussians for static scenes, dy-
namic Gaussians for moving objects and sky Gaussians for
distant regions. Besides, we employ LiDAR point clouds to
initialize 3D Gaussians by accumulating all LiDAR frames
and projecting points onto images for color extraction. This
provides a better representation of the scene geometry and
enables the optional LiDAR simulation in our framework.

Modeling Multiple Sensors and Modalities. To account
for the distortion of fisheye images, we applied a series
of affine transformations to further process 3D Gaussians
for fisheye cameras as introduced in Sec. 3.2 while pinhole
cameras skip these transformations. These processed 3D
Gaussians are rendered with a unified tile-based rasterizer.

1In this work, “unified Gaussian representation” refers to learning a
unified model for multiple sensors, while “composite Gaussians” refers to
scene decomposition in the same model.



Then, to resolve the exposure difference between pinhole
and fisheye cameras, we applied camera-dependent scaling
and biases factors to the rendering images as [36]. This
models appearance difference between pinhole and fisheye
cameras. Besides, we also render other modalities, includ-
ing depth maps, semantic maps, and normal maps. To ren-
der these maps, each 3D Gaussian is added with the cor-
responding 3D logits, and then 2D maps are obtained via
α-blending of these 3D logits in the rasterizer. Although
LiDAR simulation may not be directly achieved by explicit
3D Gaussians, we can obtain point clouds from the render-
ing depth maps by extracting points based on real-world
LiDAR parameters and scans. Similarly, the intensities of
point clouds can be obtained by generating intensity maps
from the rasterizer and extracting the corresponding points.
Please refer to the supplementary material for more details
of the optional LiDAR simulation.

Adaptive Density Control. Driving scene reconstruction
usually requires millions of 3D Gaussians. To enhance the
adaptive density control of these Gaussians, we employ the
Markov Chain Monte Carlo (MCMC) sampling and reloca-
tion strategy following [12]. Specifically, we consider 3D
Gaussian densification and pruning as a deterministic state
transition of MCMC samples and employ a relocation strat-
egy to dynamically adjust the position of Gaussians while
preserving sample probability. With the opacity and scaling
regularization, this adaptive control encourages the removal
of redundant Gaussians and produces more compact scene
Gaussians. Please refer to [12] for more details.

Model Optimization. We employ multiple losses to op-
timize our model. These losses constrain the shared 3D
Gaussian representation to learn complementary informa-
tion from different modalities, ensuring the consistency and
complementarity of outputs across sensors and modalities.
Overall, the training loss L is defined as:

L = LP
rgb + LF

rgb + Ld + Ls + Ln + Lreg, (20)

where LP
rgb and LF

rgb are the reconstruction losses between
the ground-truth and the rendering pinhole/fisheye images
following [11], Ld is the depth loss computed between the
rendering depth and the monocular depth [9] or LiDAR
depth, Ls is the semantic loss computed with the rendering
semantic map and the predefined 2D semantic segmentation
map [15], Ln is the normal consistency loss regularizing the
rendering normal and the normal derived from the depth,
and Lreg is the Gaussian opacity and scale regularization
term [12] to encourage a compact Gaussian representation.
Please refer to the supplementary material for more details.

4. Experiments
In our experiments, we first verify the effectiveness of the
proposed rendering method in Sec. 4.1 and Sec. 4.2 and then

Figure 4. The flowchart for analyzing geometric errors.

BICYCLE FOV = 56◦ GARDEN FOV = 68◦

(W,H)=(4946, 3286) ROI(4391, 2917) (W,H)=(5187, 3361) ROI(4358, 2824)

ϕ̂ θ̂ PSNR↑ SSIM↑ LPIPS↓ Time(ms) PSNR↑ SSIM↑ LPIPS↓ Time(ms)
% % 29.340 0.926 0.0386 122 29.805 0.902 0.0523 119
% 1 30.752 0.936 0.0325 132 30.148 0.911 0.0455 124
1 % 29.440 0.926 0.0381 128 29.835 0.903 0.0522 122
1 1 30.794 0.936 0.0323 149 30.189 0.911 0.0454 140
1 2 30.825 0.936 0.0322 251 30.192 0.912 0.0454 446

Table 1. Rendering geometric error analysis. ϕ̂ and θ̂ denote the
approximation order of tangential and polar stretching ratios. “%”
means the 3D Gaussian is not stretched in that direction. “1” de-
notes the 1st order while “2” denotes the 2nd order.

examine the efficacy of the unified framework in Sec. 4.3.

4.1. Fisheye Rendering Geometric Error Analysis
Relative Error Analysis. Since the proposed method is
a “convert-project” method, the conversion part contains
some approximations. After the light rays are twisted by
fisheye cameras, the distorted 3D Gaussian no longer fol-
lows an exact normal distribution. The tangential stretching
ration kϕ does not contain any approximation, while kθ in-
cludes the truncation error. When using the first-order ap-
proximation, the truncation error of kθ is defined as:

ϵkθ (θ,∆θ) =
1

2!

d2θd
dθ2

∆θ +
1

3!

d3θd
dθ3

∆θ2 + . . . . (21)

On the image plane, this can cause scale errors in the radial
direction from the center of the image, so the relative error
is defined as ϵkθ

(θ,∆θ) cos θd. However, our design is not
significantly affected by this approximation. To verify this,
we conduct the following experiment.

Flowchart for Analysis. We employ the method depicted
in Fig. 4 to analyze the rendering geometric error introduced
by these approximations. First, a 3D Gaussian model is
trained using the images of a pinhole camera. Then, im-
ages of a fisheye camera are rendered in two different ways:
the “convert-project” method as introduced above and the
“project-convert” method that renders a pinhole image and
distorts it to a fisheye image. The “project-convert” method
does not have any approximation in the conversion part,
so its rendering result is considered as the reference im-
age. We use the “BICYCLE” and “GARDEN” of the Mip-
NeRF360 dataset [1] in this experiment because these data



Figure 5. Image zones.

Instant-NGP [22] NeRFacto-big [25] Zip-NeRF [2] 3DGS [11]+Undistort Ours (w/o-s) Ours (w-s)
PSNR↑ 21.247 13.751 12.604 12.635 24.574 24.651
SSIM↑ 0.773 0.548 0.504 0.508 0.815 0.817
LPIPS↓ 0.195 0.306 0.469 0.361 0.133 0.130

Zone-A
PSNR↑ 22.339 15.495 15.366 17.010 22.784 22.919
SSIM↑ 0.617 0.412 0.405 0.425 0.688 0.695
LPIPS↓ 0.371 0.489 0.540 0.353 0.276 0.265

Zone-B
PSNR↑ 21.210 20.917 19.228 12.437 30.830 30.860
SSIM↑ 0.867 0.830 0.797 0.710 0.869 0.869
LPIPS↓ 0.127 0.155 0.190 0.340 0.116 0.115

Zone-C
PSNR↑ 22.401 14.768 11.978 11.637 25.720 25.861
SSIM↑ 0.790 0.508 0.426 0.426 0.838 0.842
LPIPS↓ 0.154 0.266 0.510 0.468 0.099 0.093

Training time 12m 3h28m 37m 26m 36m 58m
Rendering FPS 0.26 0.23 0.28 121.37 138.89 39.06

3DG Num – – – 697K 897K 634K

Table 2. Results of fisheye camera simulation on KITTI-360. “Ours(w-s)” and “Ours(w/o-s)” denote our
method w/ and w/o stretching. “Undistort” denotes fisheye images are rectangularized for reconstruction and
the scene is rendered with the pinhole camera model and distorted to fisheye images. For a fair comparison,
all methods do not use LiDAR or multimodal optimization.

Ground truth Ours 3DGS+Undistort Instant-NGP

Figure 6. Rendering results of fisheye simulation on KITTI-360.

have enough multi-view images and accurate camera poses
that enable rendering from any point of view.

Results Analysis. The results are presented in Tab. 1.
From these results, we can see that the stretching of 3D
Gaussians is effective for improving the quality of render-
ing. This proves the correctness of our rendering algo-
rithm’s derivation because the approximations do not de-
grade the image quality. Moreover, in our method, most of
the rendering time is spent on affine transformations of 3D
Gaussians, while rasterization only takes around 3 ms. Note
that the time consumption shown in Tab. 1 is for images
with large resolutions, but for autonomous driving scenes,
3D Gaussians are projected within a frustum and the image
resolution is less than 4358× 2824 so the rendering can be
done in real time. Besides, although the 2nd order approx-
imation of the polar stretching ratio gives an improvement
on rendering quality, it greatly increases the rendering time.

4.2. Driving Scene Fisheye Camera Simulation

In this experiment, we verify the effectiveness of the
proposed fisheye rendering method on the KITTI-360

Ground truth GT(local) Ours(w-s) Ours(w/o-s)

Figure 7. Rendering results of our approach w/ and w/o stretching.

dataset [16]. We compare the image quality of both global
image and three representative local zones, namely, A, B,
and C, as illustrated in Fig. 5. Details of the experimental
setup can be found in the supplementary material.

We present the quantitative results in Tab. 2 and the qual-
itative results in Fig. 6. Overall, our approach achieves the
best rendering quality both globally and locally (at zones
A, B and C), while maintaining real-time rendering speed.
In comparison, 3DGS+Undistort performs poorly in fisheye
simulation, indicating that direct distortion is not a suitable
choice. Besides, from Tab. 2 and Fig. 7, we can see that our
method without stretching yields slightly worse image qual-
ity, especially for texture details, but achieves significantly
faster rendering speed of 138 FPS. Also, skipping stretch-
ing increases the number of Gaussians by 40%, which in-
creases the risk of GPU memory overflow. The reason is
that small Gaussians are insensitive to changes in the dis-
tribution caused by light rays distortion and the optimizer
tends to approximate the scene with a large number of small
3D Gaussians in exchange for better rendering quality.

4.3. Multiple Camera Model Simulation

In this experiment, we evaluate our UniGaussian framework
for driving scene simulation from multiple camera models.
We conduct our experiments on KITTI-360 [16], because



Figure 8. Rendering results of multiple camera model simulation on KITTI-360. We highlight the key differences in yellow boxes.

Method Pinhole Fisheye
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Instant-NGP[22] 24.6 0.808 0.181 - - -
UniSim-SF[26, 33] 24.9 0.812 0.184 - - -
AlignMiF[26] 25.3 0.826 0.164 - - -
Ours(pinhole) 25.7 0.881 0.102 - - -

HUGS++[36] 25.2 0.866 0.146 24.9 0.879 0.241
Ours 26.1 0.886 0.099 26.2 0.897 0.185

Table 3. Results of multiple camera model simulation on KITTI-
360. “HUGS++” denotes using our method for additionally train-
ing fisheye cameras, and for a fair comparison, “HUGS++” uses
the same initialization as our approach. Some results are borrowed
from [26].

it is a real-world autonomous driving dataset that provides
both pinhole and fisheye images, while the other commonly
used datasets provide only one type of image.

As shown in Tab. 3, for pinhole camera simulation, for
fair comparison with AlignMiF and UniSim-SF, we also re-
port the results of our approach with pinhole camera only.
We can see that both ours and ours(pinhole) achieve bet-
ter results than the state-of-the-art driving scene reconstruc-
tion methods, such as HUGS, AlignMiF and UniSim-SF. As
for fisheye camera simulation, we add our fisheye rendering
method to HUGS (named HUGS++) because HUGS does
not support fisheye cameras. The results in Tab. 3 show that
our approach outperforms the modified method. Besides,
as shown in Fig. 8, our approach generates better rendering
images with more fine-grained details. For example, our ap-
proach renders the license plate, the fence, the taillight, etc.,
while HUGS++ generates worse rendering images. More-
over, we also visualize some semantic and depth maps in
Fig. 8. We can see that our multimodal outputs achieve
slightly better holistic 3D scene understanding.

Component Pinhole PSNR↑ Fisheye PSNR↑
Ours 26.10 26.19
Ours w/o depth supervision 25.96 26.19
Ours w/o semantic supervision 26.01 25.85
Ours w/o normal supervision 26.02 26.17
Ours w/o adaptive control and Lreg 25.76 25.75

Table 4. Ablation study on KITTI-360.

4.4. Ablation study

The ablation studies of the stretching and approximation op-
erations of the proposed rendering method are discussed in
Sec. 4.1 and Sec. 4.2. In this experiment, we further eval-
uate other components of our approach. From Tab. 4, we
can see that our approach with all components performs the
best and the supervisions from different modalities, includ-
ing depth, semantic, and normal, are helpful for model op-
timization. These modalities also facilitate better holistic
understanding of driving scenes as shown in Fig. 8. Be-
sides, from the last row of Tab. 4, we can see that without
the adaptive control and Lreg , the PSNRs are slightly worse,
indicating the importance of learning a compact representa-
tion in driving scene reconstruction.

5. Conclusion

In this work, we present a new differentiable rendering
method of 3D Gaussians tailored for fisheye cameras and
propose a new framework for learning unified 3D Gaus-
sians of driving scenes from multiple camera models. Our
method enables holistic driving scene understanding by
modeling multiple sensors and modalities. Our experimen-
tal results on real-world autonomous driving dataset verify
the effectiveness of the proposed method.
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