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ABSTRACT

Graph Neural Networks (GNNs) have shown remarkable performance in various
scientific domains, but their lack of interpretability limits their applicability in
critical decision-making processes. Recently, intrinsic interpretable GNNs have
been studied to provide insights into model predictions by identifying rationale
substructures in graphs. However, existing methods face challenges when the un-
derlying rationale subgraphs are complicated and variable. To address this chal-
lenge, we propose TOPING, a novel topological framework to interpretable GNNs
that leverages persistent homology to identify persistent rationale subgraphs. Our
method introduces a rationale filtration learning technique that models the gen-
erating procedure of rationale subgraphs, and enforces the persistence of topo-
logical gap between rationale subgraphs and complement random graphs by a
novel self-adjusted topological constraint, topological discrepancy. We show that
our topological discrepancy is a lower bound of a Wasserstein distance on graph
distributions with Gromov-Hausdorff metric. We provide theoretical guarantees
showing that our loss is uniquely optimized by the ground truth under certain con-
ditions. Through extensive experiments on varaious synthetic and real datasets,
we demonstrate that TOPING effectively addresses key challenges in interpretable
GNNs including handling variiform rationale subgraphs, balancing performance
with interpretability, and avoiding spurious correlations. Experimental results
show that our approach improves state-of-the-art methods up to 20%+ on both
predictive accuracy and interpretation quality. Our code is available through the
link: https://anonymous.4open.science/r/TopoEx-1EE2/

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as powerful tools for learning graph-structured data,
in various scientific domains, such as chemistry, biology, physics, and materials science, achieving
remarkable success in applications of predicting molecular properties (Kamberaj, 2022; Chen et al.,
2023), modeling protein-protein interactions (Görmez et al., 2021; Ravichandran et al., 2024; Li
et al., 2023), analyzing phase transitions (Qu et al., 2022), characterizing material characteristics (Hu
& Latypov, 2024; Sheriff et al., 2024; Gurniak et al., 2024; Xiao et al., 2024), etc. As GNNs are
increasingly applied to critical scientific and decision-making tasks, there is a growing need for
interpretability and explainability in these models (Zhang et al., 2024a). Scientists and practitioners
often ask for not only accurate predictions, but also insights into why and how these predictions
are made. This is particularly crucial in scientific applications where understanding the underlying
mechanisms and causal relationships is as important as the predictions themselves.

A recent trend in GNN research focuses on enhancing interpretability by developing methods that
identify and visualize the nodes, edges, subgraphs, or features most influential or causal for a
given prediction. Existing approaches to GNN interpretation can be broadly categorized into two
classes (Zhang et al., 2024a): post-hoc explainer methods (Ying et al., 2019a; Luo et al., 2020a;
Schlichtkrull et al., 2021; Wu et al., 2023; Bui et al., 2024) and intrinsically interpretable mod-
els (Wu et al., 2022; Miao et al., 2022; Chen et al., 2024). Post-hoc Explainer methods analyze a
pre-trained GNN model to generate intuitive explanations after the fact. It enjoys flexibility and can
be integrated into different kinds of models. However, recent research (Miao et al., 2022) shows that
post-hoc methods might provide explanations that are suboptimal or inconsistent with the model’s
actual decision-making processes. On the other hand, intrinsically interpretable models incorporate
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interpretability directly into the model architecture and training process. The fundamental idea of
intrinsical interpretability stems from the concept of graph attention (Veličković et al., 2018). As
attention weights may not always correlate with actual feature importance, a Naı̈ve application of
attenion weights is not reliable for real graph data (Ying et al., 2019a; Yu et al., 2020). Moreover,
the potential trade-off between interpretability and predictive performance (Du et al., 2019) may not
be acceptable in real-world applications. Therefore, various methods have been developed regard-
ing how to use attention weights for interpretation. Miao et al. (2022) proposed stochastic attention
mechanism (GSAT) to use the graph information bottleneck (Wu et al., 2020; Tishby et al., 1999) as
target function, employ attention weights to control the information bottleneck, and sample rationale
subgraphs using Gumbel-softmax reparameterization, to achieve strong performance in both predic-
tion and interpretation. Similarly, Chen et al. (2024) approached interpretation by searching for
rationale subgraphs within the framework of subgraph multilinear extension (SubMT) and propos-
ing a graph multilinear net (GMT) for better SubMT approximation. Wu et al. (2022) proposed
Discovering Invariant Rationales (DIR), applying interventions on training distributions to obtain
invariant causal rationales while filtering out spurious correlations.

Despite these advancements, existing interpretable models often assume either explicitly or im-
plicitly that the subgraph rationales are nearly invariant across different instances within the same
category of graphs, even a strong one-to-one correspondence between subgraph rationales and pre-
dictions. However, this is overly restrictive and unrealistic in many real-world scenarios, where the
graph dataset and the downstream tasks might be complicated with varriform subgraph rationales,
which can vary significantly in form, size, and topology, even among graphs belonging to the same
category. For example, in molecular biology, molecules with the same bioactivity can have different
functional groups responsible for that activity Patani & LaVoie (1996); Brown (2012). An aromatic
ring, a sulfonamide group, or a heterocyclic compound can each be the key substructure leading to
the same pharmacological effect in different molecules. Another example can be drawn from social
networks. In the scenario of identifying influential users, the structural reasons for the influence
vary significantly. An influential user might have high degree centrality, being directly connected to
many other users, or they might act as bridge nodes connecting different communities. Our obser-
vations, supported by experiments on a synthetic dataset we created (see Figure 3 for the results and
Appendix C for the dataset construction), also show that existing intrinsically interpretable models
struggle with such variability. Models obtained under these assumptions may fail to accurately cap-
ture the true causal mechanisms underlying the predictions, resulting in unreliable interpretations
and bad generalization performance.

To address the above challenges, we propose Topologically Interpretable Graph Learning
(TOPING), a novel topological approach to intrinsically interpretable GNNs that leverages tech-
niques from topological data analysis to identify stable and persistent rationale subgraphs, effec-
tively handling the variability in subgraph structures. Our method is inspired by the concept of
persistent homology, originating from algebraic topology and recently applied to data analysis and
machine learning Wong & Vong (2021); Yan et al. (2021; 2022a); Zhao et al. (2020); Immonen et al.
(2023); Ye et al. (2023). Persistent homology studies the dynamics of topological invariants over
various scales through a filtration process, allowing us to capture all the changes and persistence of
topological features in the data.

Based on this foundation, we introduce a new perspective on the rationale subgraph identification
problem. We model the graph attention mechanism as an underlying graph generation process,
which ideally constructs the rationale subgraph first, followed by the addition of auxiliary struc-
tures. We use persistent homology tools to capture and track the representations and life cycles of
topological features during the generating process. To effectively distinguish the rationale subgraph
from the complement subgraph, we optimize the parameterized generation procedure to enhance the
stability of the rationale subgraph. Specifically, our goal is to amplify the topological differences
between the rationale subgraph and the complement subgraph, creating a persistent gap in their
topological features throughout the generation process. To achieve this goal, we propose a novel
self-adjusting topological constraint, topological discrepancy, which measures the statistical differ-
ence between two graphs with respect to their topological structures. The topological discrepancy
serves as a metric to quantify how well the rationale subgraph is preserved and distinguished from
the complement subgraph during the filtration process. We also provide a tractable approximation of
our topological discrepancy and provide theoretical guarantees that our models are able to achieve
ground truth as the unique optimal solution under our loss function.
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Our main contributions of the paper can be briefly summarized as follows:

• We introduce TOPING, a novel intrinsically interpretable GNN framework that incorpo-
rates topological data analysis to identify stable rational subgraphs via persistent rationale
filtration learning. We propose a new loss function, topological descrepency, to measure
the statistical difference between two graphs with respect to their topological structures.

• We provide a tractable approximation of our topological discrepancy and provide theo-
retical guarantees that our models are able to achieve ground truth as the unique optimal
solution under our loss function. This establishes a solid theoretical foundation for the
effectiveness of our approach.

• We empirically demonstrate that TOPING improves existing methods in both prediction
and interpretation tasks on multiple benchmark datasets, up to 20%+ on both interpretation
and prediction performance. Additionally, we created a synthetic dataset with variiform
rationale subgraphs to specifically target challenges faced by previous methods. Our results
show that TOPING effectively handles such variability, confirming its ability to address this
critical challenge.

2 PRELIMINARY

2.1 GRAPH NEURAL NETWORKS (GNNS)

Graph neural networks are a class of neural networks designed to operate on graph-structured data.
A typical message-passing GNN layer updates node representations by aggregating information
from neighboring nodes:

h(l+1)
v = ϕ(h(l)v , AGG(h

(l)
u : u ∈ N(v))) (1)

where h(l)v is the message representation of node v at layer l, N(v) is the neighborhood of v, AGG is
an permutation invariant aggregation function, e.g.: sum, mean, max, and ϕ is a non-linear activation
function. Some commonly used graph neural networks architecture includes Graph Convolutional
Networks (GCN) (Kipf & Welling, 2017), Graph Isomorphism Networks (GIN) (Xu et al., 2019),
Graph Attention Networks (GAT) (Veličković et al., 2018).

2.2 INTRINSICALLY INTERPRETABLE GRAPH LEARNING

Intrinsically interpretable graph learning aims to build a model simultaneously targeting for both per-
formance and interpretability during the training procedure. Formally, given a collection of labeled
graphs (G, Y ) = {(G, yG)}, assume each graph G is composed with two edge disjoint subgraphs
G = GX ⊔ Gϵ with vertex correspondence for some GX ∈ GX and Gϵ ∈ Gϵ. GX and Gϵ are two
families of graphs. GX is usually a small finite set. Given a graph G, GX is the rationale subgraph
in G that almost determines the label yG ≈ h∗(GX) up to some random noise, for some unknown
oracle h∗ : G → [0, 1]. Gϵ is the noise or less relevant part of in the graph. Both GX and Gϵ are
unknown and they have to be learned from the data. The goal is to predict the label ŷG for each
graphs G and simultaneously identify its rationale subgraphs GX .

2.3 TOPOLOGICAL DATA ANALYSIS (TDA)

Recent year, TDA has found its applications in various areas such as machine learning, artificial
intelligence, data science, neuroscience, an so on (Giunti et al., 2022). Especially in the area of
graph representation learning, TDA has shown the power of enhancing popular GNNs on different
tasks by augumenting potentially useful topological features represented by TDA methods Hofer
et al. (2017); Dehmamy et al. (2019); Carrière et al. (2020); Horn et al. (2022). One successful
tool is persistent homology. On graphs, the persistent homology is mainly determined by a graph
filtration which is usually induced by some edge filtration function. With the spirit of machine
learning, it is natural to consider learning the edge filtration function from data to search for an
optimal filtration for downstream tasks. Along this approach, various models have been proposed
for the graph filtration learning (Carrière et al., 2020; Horn et al., 2022; Hofer et al., 2020; Xin et al.,
2023; Yan et al., 2022a; Zhao et al., 2020; Carrière & Blumberg, 2020; Zhang et al., 2024b). Just
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name a few. We give a brief introduction to the basic concepts of topological data analysis (TDA)
and persistent homology, which are essential for understanding our proposed method. For a more
detailed introduction, we refer readers to (Edelsbrunner & Harer, 2010; Dey & Wang, 2022).

For an edge weighted graph G = (V,E, f : E → R), we define a graph filtration as an increasing
sequence of nested subgraphs F(G) := {G≤t | t ∈ f(E)}, where G≤t = (V,Et) with Et = {e ∈
E : f(e) ≤ t}. By tradition, set G−∞ = ∅ and G+∞ = G to be the first and the last element
in F(G). On such a filtration, applying p-homology functor (Hatcher, 2002), Hp(F(G)) outputs a
chain of homology groups (vector spaces over fields)

Hp(F(G)) : 0 → · · · → Hp(G≤t1) → Hp(G≤t2) → Hp(G≤t3) → · · · → HP (G)

connected by linear maps naturally induced by inclusion maps. Such an algebraic structure is called
a persistent homology. In this paper, we only consider p = 0, 1 which corresponding to connected
components and cycle bases in graphs. We use the finite field F2 as the coefficient field for homol-
ogy groups. Then, the p-th persistent homology group Hp(F(G)) is a sequence of vector spaces
over F2 with linear maps between them. Essentially, persistent homology captures the evolution of
persistent topological features (e.g., connected components, cycles, voids, ...) in the graph filtration.
These topological features can be summarized as a complete discrete invariant known as persistence
diagram (Edelsbrunner & Harer, 2010; Carlsson et al., 2009), PD(G), which is a collection of points
in R2. Each point in the persistence diagram essentially represents the lifecycle (birth, death) of a
persistent topological feature. We provide a concrete example in Figure 1 to illustrate intuitive ideas
behind TDA.

+ 5+ 0+ 8+ 8+ 4+ 0+ 0𝜷𝟏 + all the rest

0.975

0.990

0.226

0.974

~ 0.0

0.3230.974

1.0 0.0
𝐺𝑋 𝐺𝜀

~ Topological Descrepancy
Persistent Homology Gap > 0.65

Figure 1: The top row sequence is our learned rational filtration on an example graph. Red and yellow points
correspond to ground truth rationale subgraph GX and noisy subgraph gϵ respectively. Each snapshot is a
subgraph G≤t with t showing on the top of the figure. We did not do any normalization on the filtration values.
Observed that all edges in GX have weights ≥ 0.974 and all edges in Gϵ have weights ≤ 0.323, which means
the rationale filtration we learned is quite consistent with the ground truth rationale. Takeing a closer look at the
filtration, one can see that, the generating procedure of the rationale filtration is well-ordered and fast. There is
a clear pattern of the generating procedure. However, the noisy graph is generated in a more chaotic way. Only
five cycles are generated until t reaches 0.226. Most of the cycles are generated until t closed to 0. Now check
the bottom part of the figure showing the barcode of the filtration, which is a topological summary equivalent
to persistence diagram. Each horizontal bar corresponds to a topological feature. Here we only illustrate 1-st
degree persistent homology, which correponds to cycle bases in graphs. The left end of each bar indicates the
first time t it appears in the filtration. The most important information one can get from the barcode is that,
within the interval [0.974, 0.226], the barcode does not change at all. That means the persistent topological
structure of the graph is stable within this region. The length of the interval (0.974− 0.226) is what we called
persistent homology gap, which is a measure of the difference of topological structures between the GX and
Gϵ. Note that this gap is very closed to the gap between minimal edge weight in GX and maximal edge weight
in Gϵ. In fact, they will be exactly the same if we also consider the 0-th persistent homology. Such gap will
be approximated by what we proposed topological descrepency, and our final target function is designed to
maximize persistent homology gaps statistically over all data.

Persistence diagrams are topological invariants. Therefore, they can be viewed as graph representa-
tions that capture topological structures of input graphs. Two persistence diagrams PD(G),PD(G′)
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can be compared through the bottleneck distance dB (Edelsbrunner & Harer, 2010), which is de-
fined as the Wasserstein distance between the two persistence diagrams viewed essentially as two
collections of points in the R2. The bottleneck distance is a (pseudo)metric that quantifies the sim-
ilarity between two persistence diagrams, also similarity between two graphs with respect to their
topologies.

One important property of the bottleneck distance is that it is stable under perturbations of the
input data. Formally, the bottleneck distance is stable with respect to the Gromov-Hausdorff dis-
tance (Chazal et al., 2009) on graphs. Given two finite, connected, weighted (with no negative
cycle) graphs G and H , the Gromov-Hausdorff distance between G and H is defined as

dGH(G,H) =
1

2
inf
Π

sup
(u,v), (u′,v′)∈Π

| dG(u, u′)− dH(v, v′) | , (2)

where Π ⊆ VG × VH is a coupling such that Π1 = VG and Π2 = VH , and dG, dH are shortest
path distances on G and H respectively. The Gromov-Hausdorff distance measures the distortion
between two graphs. Intuitively, for two isomorphic graphs, the Gromov-Hausdorff distance is zero.
It is known that dB ≤ 2dGH.

3 METHOD OF TOPING

In the following context, for a given G, we denote the oracle rationale subgraph and its complement
as G∗

X and G∗
ϵ . Use GX and Gϵ to represent a candidate rationale subgraph predicted by our model.

In contrast to existing methods, our approach reconsiders the problem from a more global perspec-
tive through the lens of topology. If the graph classification/prediction task indeed can be captured
by a rationale subgraph as a core structure in a relatively small family GX , then the graph G can be
considered as ‘growing’ from the core with additional auxiliary structures attached to the core. Nev-
ertheless looking for this core rationale substructure is highly non-trivial, as this requires maintaining
consistency across the growing procedure (i.e., not losing edges in the middle) and identifying com-
mon subgraphs across many instances in the data input. We propose to learn a filtration function that
captures the importance of edges in the graph generating process, allowing us to identify stable and
persistent substructures that are most relevant for predictions. This approach aims to leverage the
power of topological data analysis to improve the interpretability and generalization of GNNs while
maintaining high predictive performance.

Based on our assumption, we consider a generating process of G = (V,E) by first generating the
most important part which corresponds to the candidate rationale subgraph GX , and then combined
with some noisy graph Gϵ as complement to get the final graph G. Following this idea, for a
given graph G, we consider a filtration on the graph F(G) which is a sequence of step-by-step
generating process of G based on an ordering of the edges in G. More precisely, we construct
an ordering on edges (e1, e2, · · · , e|E|) and induced graph filtration F(G) = {G0, G1, . . . , G|E|},
where ∀i ∈ [|E|], Gi = Gi−1 ∪ ei with G0 initialized to be the empty graph and G|E| = G.
Intuitively, we hope such ordering can capture the importance of the edges in G. We use a filtration
function f : E → [0, 1] to represents the importance of each edge in G and the order of edges is
following 1− f(e). It is natural to assume that the more important the edge is, the earlier it appears
in the ordering (and those pairs (u, v) /∈ E are out of the generating process). Following such idea,
we also require this ordering to be consistent with the importance of GX and Gϵ. That is to say,
f(e ∈ GX) > f(e′ ∈ Gϵ) . In our model, we will learn a filtration functional fϕ : G → [0, 1]|E|

to construct for each graph a function fGϕ : E → [0, 1] mapping edges to their importance score.
For concise of notations, we might omit the upper and lower indices for f = fGϕ and F(G) =

Fϕ(G) if they are clear in the context. We denote the subfiltration F(G≤t) ⊆ F(G) to be the
filtration consisting of the subgraphs in Fϕ(G) whose edges’ filtration values are all below or equal
t. Symmetrically, let F(G≥t) to be the filtration consisting of the subgraphs whose edges’ filtration
values are all above t.

Before we talk about the construction of our model, let us first discuss what ideal properties we are
looking for in our filtration function fϕ. Let F(G) = {F(G) : G ∈ G} be the collection of all
graph filtrations determined by fϕ. For a given t ∈ R, denote F(G≤t) := {F(G≤t) : G ∈ G} and
F(G≥t) := {F(G≥t) : G ∈ G}. We consider the following property:
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Topological Discrepancy: There exists a global threshold t such that, the distributions of P(T ◦
F(G≤t)) and P(T ◦ F(G≥t)) are discrepant with respect to some topological invariants T .

Remark 3.1. The underlying idea of this property is that, if we track the generating process of the
rationale subgraph GX and the noise subgraph Gϵ, we hope to see in general two very different
evolutionary paths on the topological structures during the process. The methods based on our
persistent rationale filtration framework should be able to capture such difference.

L(ϕ) = EG [R(hϕσfϕ(G))]− αdtopo(P(T ◦ Fϕ(G≤t)),P(T ◦ Fϕ(G≥t))) (3)

G

fϕ(G)

σ

F(GX)

F(Gϵ)

T

T

TX Tϵ

GX

ŷG

Ltopo

∼

Pprior

fϕ = GNNϕ

hϕ = GNNϕ

clf

Lprior

≥ t

< t

Figure 2: TOPING uses
a GNN to learn a filtra-
tion functional fϕ. It ex-
tracts graph filtrations of
GX and Gϵ and use them
to compute topological fea-
tures. GX is sampled from
fϕ. Sampled GX passes
the same GNN with shared
parameter of fϕ to get a
graph representation. Con-
catenated with topological
features (which are natu-
rally global feature of the
graph), model get final rep-
resentation before the clas-
sifier.

Formally, we consider persistence diagrams as our topological invariants
T . We define the topological discrepancy dtopo between P = P(T ◦
F(G≤t)) and Q = P(T ◦ F(G≥t)) as follows:

dtopo(P,Q) ≜ inf
π∈Π(P,Q)

E(p,q)∼π[dB(p, q)] (4)

Essentially, dtopo is the 1-Wasserstein distance between the distributions
of induced persistence diagrams of subfiltations T ◦ F(G≤t) and T ◦
F(G≥t) with metric dB.

Now we are ready to design a high-level model together with a loss func-
tion approximating an f∗ϕ based on our topological discrepancy property.
See Figure 2 as an illustration. We use a GNN model to learn the filtra-
tion function fϕ. After that, we apply some extraction function σ to
separate graph G into two subgraph GX ⊔ Gϵ. For simplicity, one can
just consider σ to be a hard cut with threshold value t = 0.5. Based on
the extracted GX = G<0.5, we apply a GNN model hϕ followed by a
classifier to predict the label yG. Here we use the same GNN model with
shared parameters from fϕ. The classifier is some MLP whose param-
eters are omitted in the loss function for simplicity. The loss function
R is the standard cross-entropy loss between the predicted label and the
ground truth.

3.1 SELF-ADJUSTED TOPOLOGICAL CONSTRAINT

In this subsection, we will discuss the construction and properties of our
topological features in details. For briefness, we denote the distribution
of persistence diagrams P(GX) := P(T ◦F(G<t)) and P(Gϵ) := P(T ◦
F(G≥t)) respectively. In summary, we will show an upper and lower
bound of our dtopo as follows:

Theorem 3.2. Given a finite collection of 1-Lipschitz continuous func-
tions, Ψ = {ψ1, ψ2, · · · }, on the space of persistence diagrams, dtopo
have an upper and lower bound as follows:

max
ψ∈Ψ

| EP∼P(GX)[ψ(P )]−EQ∼P(Gϵ)[ψ(Q)] |≤ dtopo(P(GX),P(Gϵ)) ≤ 2dwass(P(GX),P(Gϵ))

Proof. The upper bound is from the dGH-stability property of bottleneck
distance dB on persistent diagrams. The lower bound is from the Kantorovich duality of Wasserstein
distance (Villani, 2009):

dwass(P,Q) = sup
∥ψ∥Lip≤1

| Ep∼P [ψ(p)]− Eq∼Q[ψ(q)] |

Essentially, the upper bound says that topological discrepancy has discriminative power up to the
Wasserstein distance between the marginal distributions of GX and Gϵ. For the lower bound, we
will use it to derive a tractable approximation of dtopo in practice. We apply a family of learnable
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vectorization functions introduced by Hofer et al. (2019) to represent persistence diagrams as some
k-dimensional vectors. These functions are Lipschitz continuous. More details about the construc-
tion can be found in the appendix B. Based on above, we have a tractable lower bound approximation
of our dtopo.
Remark 3.3. In practice the expections are approximated by the empirical means. The maximum
can be picked out by a softmax attention during training. Here we instead apply a 2-head attention
mechanism to select the top-2 maximums and add them up. We use k = 8 in our experiments. Intu-
itively, the vectorization function together with multi-head attentions not only provide a lower bound
approximation of dtopo for the sake of efficient computation, but also a self-adjusted focus on data
dependent topological features. Essentially, it will help the model to learn the most relevant topo-
logical features for the downstream tasks. In practice, we found that it not only makes the training
procedure more stable, but also leads to a better performance. All the topological representations
we used are Lipschitz continuous, hence differentiable almost everywhere. We use the code in Zhang
et al. (2024b) to compute our topological representations and gradients.

Finally, we give the following theorem to show when our model is guaranteed to be optimized by
the ground truth. The proof is a bit technical. We provide it in the appendix B.
Theorem 3.4. Assume ∀G, |EX | < |Eϵ|, and G∗

X is minimal with respect to yG in the sense that
any subgraph GX ⊂ G∗

X losses some information of label, then dtopo is uniquely optimized by
f∗ϕ(e) = 1{e ∈ G∗

X}.

Remark 3.5. Note that our guarantee does not depend on any stability or invariance assumptions
on GX , therefore, it will not be affected by variiform rationale subgraphs in theory.

3.2 PRIOR REGULARIZATION

Despite the theoritical guarantee we provide, in practice, more powerful model does not neccessarily
imply better performance in general. We found sometimes our model can still overfit. We add a prior
regularization term on our edge filtration fϕ. It significantly helps stabilize the training procedure.

L(ϕ) + βLprior(fϕ(G),Pprior) (5)

We set for a prior marginal distribution on edge filtration Pprior = 0.5(N (µ1, r1) + N (µ2, r2))
with µ1, µ2 = 0.25, 0.75 and r1, r2 being learnable parameters initialized with 0.25. Then the prior
regularization term Lprior is calculated as:

Lprior(fϕ(G),Pprior) = DKL[fϕ(G)∥Pprior] + γ(r−2
1 + r−2

2 ) (6)

= −
∑
e∈GE

log(Pprior(fϕ(G)e)) + γ(r−2
1 + r−2

2 ) (7)

The term γ(r−2
1 + r−2

2 ) is added to the KL divergence to prevent the model from collapsing to a
single mode. In practice, we found that Gumbel-Softmax reparameterization trick (Jang et al., 2017)
used in (Miao et al., 2022) sometimes also helps stabilize the training procedure.
Remark 3.6. Although in this section, we only talk about edge filtrations, our methods can be
extended to filtrations on nodes, edges, and higher order simplices (faces, tetrahedrons, etc.). In
fact, in our experiments we just use node filtration and extend it to edges by setting f(u, v) =
min(f(u), f(v)) or max(f(u), f(v)). This is called upper-star or lower-star filtration in TDA.
Obviously it contains less information in general since node filtrations can only represents O(|V |)
much “information” but edge filtrations can represents up toO(|E|) = O(|V |2) “information”. We
do this mainly because it speed up the computation of persistent homology based on our currently
used tool package (Zhang et al., 2024b). From the proof of our Theorem 3.4 we know that using
the node filtration is in fact enough to guarantee the optimization solution. The performance of
our experimental results is also good enough. But of course, in general, using both node and edge
filtrations would give the model more power.

3.3 RELATED WORK

Two works are most related to ours: DIR (Wu et al., 2022) and GSAT (Miao et al., 2022).

Compared to DIR, our model also considers the distribution of the complement graph, but in a “soft
way”, which is more efficient since we do not store those graphs exactly. Intuitively, our methods
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can be viewed as storing a learnable distribution of topological summary of the complement graphs.
Also, in practice we do not use a hard threshold to filter the graphs. What we do is computing the
persistent homology along ascending ordering and descending ordering separately, to mimic a hard
cut for some threshold t. Since our TDA method is robust enough, in practice it works good.

Compared to GSAT, our loss function can also be viewed as a variational lower bound of the GIB
loss. However, we use a totally different prior distribution of the rationales GX , and get rid of the
hyperparameter r used in GSAT to specify the mean values of edge attentions. Instead, our topolog-
ical loss can be viewed as a self-adjusted cut to separate GX from G. In practice, we observe that
the attention learned by GSAT can collapse to the constant value r if it is not tuned carefully, which
is also mentioned in Chen et al. (2024). But our method does not have this issue. We consider that
such an issue might be caused by the unimodality of the prior distribution used in GSAT. However,
our prior is bimodal, which is essentially doing an unsupervised clustering over two Gaussians, like
k-means. In practice, we find the position of the two centers of the prior distribution does not matter
too much, as long as they do not collapse into one. Therefore, we just fix them to be 0.25 and 0.75,
with a penalty term to prevent component collapse.

4 EXPERIMENTS

We evaluate our proposed method in terms of both interpretability and predictive performance on
the seven most commonly used datasets. Our approach, TOPING, demonstrates significant advan-
tages over state-of-the-art post-hoc interpretation methods as well as inherently interpretable models
across almost all datasets. We will provide a brief introduction to the datasets, baselines, and exper-
iment setups, and leave more details in the Appendix C.

4.1 EXPERIMENTAL SETTINGS

Datasets. We consider eight datasets commonly referenced in the graph explainability literature and
classify them into Single Motif, Multiple Motif and Real Dataset. For Single Motif, we consider BA-
2Motifs (Luo et al., 2020b), BA-HouseGrid (Amara et al., 2023), SPmotif0.5 and SPmotif0.9 (Wu
et al., 2022). These datasets contain graphs with a single type of motif or structural pattern re-
peated throughout. For Multiple Motif, we consider BA-HouseAndGrid, BA-HouseOrGrid (Bui
et al., 2024), and BA-HouseOrGrid-nRnd. The last one is a synthetic dataset we create for verifying
the variiform rationale challenge for existing intrinsic methods(see Appendix C). These datasets in-
volve graphs with multiple types of motifs, thereby increasing the complexity and providing a more
challenging scenario for explanation methods. For Real Dataset, we include Mutag (Luo et al.,
2020b) and Benzene (Sanchez-Lengeling et al., 2020) for interpretation.

Baselines. We evaluate the interpretability of several methods by differentiating between post-
hoc and inherently interpretable approaches. The post-hoc methods we compare include GNNEx-
plainer (Ying et al., 2019a), PGExplainer (Luo et al., 2020b), MatchExplainer (Wu et al., 2023), and
Mage (Bui et al., 2024). Additionally, we consider the inherently interpretable methods DIR (Wu
et al., 2022), GSAT (Miao et al., 2022), and GMT-Lin (Chen et al., 2024), known for their state-of-
the-art interpretation capabilities and generalization performance.

Setup. Since we focus on graph classification tasks, GIN (Xu et al., 2018) is used as the back-
bone model for baselines. Furthermore, in order to support more general filtrations beyond nodes
and edges, i.e, data supported on topological domains such as simplicial complexes (Bodnar et al.,
2021b), cell complexes (Bodnar et al., 2021a), and even hypergraphs (Chien et al., 2022). We first
apply CINPP (Giusti et al., 2023) as our backbone to test the wide applicability of TOPING.

Metrics and evaluation. For interpretation evaluation, we report explanation ROC AUC follow-
ing (Ying et al., 2019b; Luo et al., 2020b). For prediction performance, we report classification
accuracy for real datasets and SPmotif (Wu et al., 2022) for generalization performance. All the
results are averaged over 5 times tests with different random seeds. All methods adopt the same
graph encoder and optimization protocol to ensure fair comparisons. We set the hyperparameters
according to the recommendations of previous work.
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4.2 RESULT COMPARISON AND ANALYSIS

Variiform Rationale Challenge. As shown in Figure 3, the interprebility of two SOTA ex-
isting intrinsic methods decrease drastically when the nubmer of rationale graphs increase.
Our method’s performance is much better and stable among varriform rationale dataset.

Figure 3: In BA-HouseOrGrid-nRnd
dataset, as n grows, the number of rationale
subgraphs increases. Existing intrinsically
interpretable methods face significant diffi-
culties in learning these interpretable sub-
graphs.

Interpretation performance. As shown in Table 1, com-
pared to the most post-hoc based methods(in the first
row), and latest intrinsic interpretable models(in the sec-
ond row), TOPING has shown significant improvement
across almost all datasets. Especially on the Spurious-
Motif datasets, which are challenging due to spurious cor-
relations in the training data, we achieve nearly a 20% im-
provement over the previous best approach. On the chal-
lenging Multiple Motif and Benzene datasets, TOPING
even achieves the best performance.

Prediction performance. We compare the results of all
intrinsic interpretable models training from scratch. Ta-
ble 2 shows the prediction accuracy on Real Dataset and
Spurious Motif. TOPING significantly outperforms other
baseline models on the Spurious-Motif datasets, which
exhibit varying degrees of spurious correlations. This
supports our claim that the model can more effectively
focus on classifying the optimal stable subgraph through persistent rationale filtration learning.

Table 1: Interpretation Performance (AUC) on test datasets. The shadowed entries are the results
with mean-1*std larger than the mean of the corresponding best baselines.

SingleMotif MultipleMotif RealDataset

Method BA-2Motifs BA-HouseGrid SPmotif0.5 SPMotif0.9 BA-HouseAndGrid BA-HouseOrGrid Mutag Benzene
GNNEXPLAINER 67.35 ± 3.29 50.73 ± 0.34 62.62 ± 1.35 58.85 ± 1.93 53.04 ± 0.38 53.21 ± 0.36 61.98 ± 5.45 48.72 ± 0.14
PGEXPLAINER 84.59 ± 9.09 50.92 ± 1.51 69.54 ± 5.64 72.34 ± 2.91 10.36 ± 4.37 3.14 ± 0.01 60.91 ± 17.10 4.26 ± 0.36
MATCHEXPLAINER 86.06 ± 28.37 64.32 ± 2.32 57.29 ± 14.35 47.29 ± 13.39 81.67 ± 0.48 79.87 ± 1.61 91.04 ± 6.59 55.65 ± 1.16
MAGE 79.81 ± 2.27 82.69 ± 4.78 76.63 ± 0.95 74.38 ± 0.64 99.95 ± 0.06 99.93 ± 0.07 99.57 ± 0.47 96.03 ± 0.63
DIR 82.78 ± 10.97 65.50 ± 15.31 78.15 ± 1.32 49.08 ± 3.66 64.96 ± 14.31 59.71 ± 21.56 64.44 ± 28.81 54.08 ± 13.75
GSAT 98.85 ± 0.47 98.58 ± 0.59 74.49 ± 4.46 65.25 ± 4.42 92.92 ± 2.03 77.52 ± 3.71 99.38 ± 0.25 91.57 ± 1.48
GMT-LIN 97.72 ± 0.59 85.68 ± 2.79 76.26 ± 5.07 69.08 ± 10.14 76.12 ± 7.47 74.36 ± 5.41 99.87 ± 0.09 83.90 ± 6.07
TOPING 100.00 ± 0.00 99.87 ± 0.13 95.08 ± 0.82 90.82 ± 4.95 100.00 ± 0.00 100.00 ± 0.00 96.38 ± 2.56 100.00 ± 0.00

Table 2: Prediction Performance (Acc) on test datasets. The shadowed entries are the results with
mean-1*std larger than the mean of the corresponding best baselines.

RealDataset SpuriousMotif

Mutag Benzene b=0.5 b=0.7 b=0.9
DIR 68.72 ± 2.51 50.67 ± 0.93 45.49 ± 3.81 41.13 ± 2.62 37.61 ± 2.02
GSAT 98.28 ± 0.78 100.00 ± 0.00 47.45 ± 5.87 43.57 ± 2.43 45.39 ± 5.02
GMT-LIN 91.20 ± 2.75 100.00 ± 0.00 51.16 ± 3.51 53.11 ± 4.12 47.60 ± 2.06
TOPING 92.92 ± 7.02 100.00 ± 0.00 79.30 ± 3.92 75.46 ± 7.62 65.64 ± 4.98

Ablation Studies. In addition to the interpretability and generalizability analysis, we also conduct
further ablation studies to gain a deeper understanding of the results. Table 3 illustrates the useful-
ness of topological regularizer and the prior Guassion regularizer. Topological constraint is essential
for finding more complex subgraphs, but it struggles with classification performance. Gaussian
prior distribution can successfully partition a graph, but it lacks the ability to accurately identify in-
terpretable subgraphs. We also examine the hyperparamter sensitivity of them in BA-HouseAndGrid
dataset. As is shown in Fig. 4, TOPING maintains stronger robustness against prior regularization
choices compared to the topological constraint. However, using too large or too small topological
regularizer weights can negatively affect both interpretation performance and prediction accuracy.
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Table 3: Ablation studies.

BA-2Motifs BA-HouseGrid
Method ACC AUC ACC AUC
TOPING w/o dtopo 100.00 ± 0.00 97.90 ± 1.24 89.24 ± 5.40 92.17 ± 6.43
TOPING w/o Lprior 53.49 ± 4.03 93.20 ± 4.61 52.10 ± 1.72 98.76 ± 1.53
TOPING 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.87 ± 0.13
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Figure 4: A sensitivity study on BA-HouseAndGrid shows results with the topological constraint
coefficient varied from [0.001, 0.005, 0.01, 0.05] and the coefficient of prior regularization term
from [0.005, 0.05, 0.5].

5 CONCLUSION AND FUTURE WORK

In this work, we reconsider the intrinsically interpretable graph learning problem via learning a
persistent rationale filtration. We propose our novel TOPING model that leverages the persistent ho-
mology to represent topological features of graphs. Based on that, we propose a novel self-adjusted
topological constraint, topological discrepancy, to measure the statistical topological difference be-
tween two graph distributions. We provide a theoretical guarantee that our target function can be
uniquely optimized by ground truth under certain conditions. We empirically show that our model
can handle a newly targeted challenge on one simple synthetic dataset. From experiments, we also
see that our model can solve other challenges including balancing performance of interpretability
and prediction and avoiding spurious correlations.

5.1 LIMITATION

One limitation of our model is the computational cost. Currently the bottleneck is limited by the
computation of the topological invariants. The main technique issue is that there is no efficient GPU
implementation of the core algorithm to compute the persistent homology. The data transfer between
GPU memory and CPU memory takes much I/O cost. Maybe some system-level optimization based
on the CUDA framework can help. Some attempts have been made to use GPU to accelerate the
computation of persistent homology (Zhang et al., 2020), but the performance is still not satisfactory
enough. Another possible solution is to use some approximation algorithms to compute the topolog-
ical invariants. For example, some efficient sparsification methods (Dey et al., 2019), or pretained
NNs for computing persistent homology (Yan et al., 2022b). We leave these problems for the future.

5.2 FUTURE WORK

Another potential extension is to use multi-parameter filtration. Our current model is based on a
linear graph filtration, which is based on the assumption that the importance of the edges in a graph
generating procedure is a 1-dimensional scalar. But if multi-dimensional vector can represents a
more sophisticated importance relations among all edges, which should in theory enrich the ex-
pressive power of our model. Some corresponding works are available in the literature that study
multi-parameter persistence (Xin et al., 2023; Mukherjee et al., 2024; Dey & Xin, 2021b; 2019b;a;
2021a; Botnan et al., 2024). We also leave this for future work.
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Enhancing topological message passing, 2023. URL https://arxiv.org/abs/2306.
03561.

Emily J Gurniak, Suyue Yuan, Xuezhen Ren, and Paulo S Branicio. Harnessing graph convolutional
neural networks for identification of glassy states in metallic glasses. Comput. Mater. Sci., 244
(113257):113257, September 2024.
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A LIST OF NOTATIONS

• G = (V,E): A graph with vertex set V and edge set E
• GX : Candidate rationale subgraph
• Gϵ: Candidate noise or less relevant part of the graph
• G∗

X : Oracle rationale subgraph
• G∗

ϵ : Oracle noise or less relevant part of the graph

• fϕ : G→ [0, 1]|E|: Filtration functional
• F(G): Graph filtration determined by f
• F(G≤t): Subfiltration consisting of subgraphs with f(e) ≤ t

• F(G≥t): Subfiltration consisting of subgraphs with f(e) ≥ t

• T : Topological invariant (e.g., persistence diagram)
• dtopo: Topological discrepancy
• dB: Bottleneck distance between persistence diagrams
• dGH: Gromov-Hausdorff distance between graphs
• dwass: 1-Wasserstein distance
• hϕ: GNN model for prediction
• σ: Extraction function to separate graph G into GX and Gϵ
• φ: Vectorization function for persistence diagrams
• Pprior: Prior distribution on edge filtration
• Lprior: Prior regularization term
• α, β, γ: Hyperparameters for loss function components

B MISSING PROOFS

Proof. (Proof of Theorem 3.4) By the assumption we know that the first term can only be optimized
by GX ≥ G∗

X . We just need to show that dtopo is uniquely maximized by G∗
X among those GX ≥

G∗
X . In other words, we could assume that we have already restricted fϕ to the region satisfying

fϕ|E∗
X
> 0.5 + δ (the partition threshold t = 0.5 is fixed).

For a given G and a fixed partition GX ⊔ Gϵ determined by some fϕ, let p0, p1 be the 0-th and
1-st persistence diagrams, and q0, q1 be the 0-th and 1-st persistence diagrams. Observe that the
bottleneck distance between the 0-th persistence diagrams dB(p0, q0) is maximized when

fϕ(e) = 1{e ∈ GX}. (8)

The reason is that since we only care about edge filtrations, the filtration values on nodes can be
viewed as some global minimum constant value which is commonly set to be time 0 (or more
precisely, 1 for GX and 0.5 for Gϵ since we build the filtration in the reversed ordering of im-
portance). Then since |Eϵ| > |EX | =⇒ |q0| > |p0|, we hope to maximize the death times of
points in q0 and minimize the death times of points in p0 to maximize dB(p0, q0), which gives
us the constant filtration function fϕ(e) = 1{e ∈ GX} on each partition. Then, for constant
filtration functions, the induced graph filtrations are essentially reduced to static graphs, and in
consequences, persistent homology is essentially reduced to homology. For 0-degree homology,
we just need to compare the 0-th Betti numbers βϵ0 and βX0 between Gϵ and GX . In that case,
dB(p, q) = C(βϵ0 − βX0 ) = C(|Eϵ| − |EX |) = C(|GE | − 2|EX |) for some constant C independent
of ϕ or G. This is maximized when GX = G∗

X .

The rest is to check the bottleneck distance dB(p1, q1) on 1-th persistence diagrams. In a similar way
one can check that dB(p1, q1) should be maximized for some constant filtration function. Then the
problem is again reduced to compare the 1-degree homology betweenGX andGϵ. That is |βX1 −βϵ1|.
However, observe that |βX1 − βϵ1| ≤ β1 for β1 be the 1-st Betti number of the original graph. By the
property of the Euler characteristic on a connected graph we know that β1 ≤ |E|− |V |+1 ≤ |E| ≤
|V |2. Therefore, dB(p1, q1) ≤M for some large enough M over the whole dataset.
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Based on that, since dtopo is essentially a weighted sum of dB on both 0-th and 1-st persistence
diagrams, we just need a large enough constant scaling factor on 0-th persistence diagrams. Then it
can been guaranteed that our dtopo is optimized by G∗

X with f∗ϕ(e) = 1{e ∈ G∗
X}. Such constant

factor can be easily learned by our neural networks, or fixed by hand in the model.

Learnable Vectorization of Persistence Diagrams: We need a collection of Lipschitz continuous
functions on the space of persistence diagrams to some Euclidean space on which we can easily
compute the expectation of marginal distributions. Such techniques are well studied as vectorization
methods in topological data analysis. Here we apply a learnable vectorization function introduced
by Hofer et al. (2019) to represent persistence diagrams as some k-dimensional vectors. The core
idea is to learn k parameterized kernels (e.g., exponential) to represent the distributions of points
on the persistence diagrams. Each kernel, in that paper called structure element, is proved to be
Lipschitz continuous with some constant C. Here we use a so-called Rational hat structure element
given by

φ(p; c, r) =
∑
x∈p

1

1 + ∥x− c∥2
− 1

1+ | |r| − ∥x− r∥2 |
(9)

where c and r are learnable center and radii. Then Ψ = 1
Cφ, gives us a 1-Lipschitz continuous

function.

C MORE DETAILS ABOUT THE EXPERIMENTS

C.1 DATASETS

Mutag (Kazius et al., 2005): The dataset involves a task of predicting molecular properties, specif-
ically determining whether a molecule is mutagenic. The functional groups -NO2 and -NH2 are
regarded as definitive indicators that contribute to mutagenicity, as noted by (Luo et al., 2020b).

Benzene (Sanchez-Lengeling et al., 2020): The dataset comprises 12,000 molecular graphs sourced
from ZINC15 (Sterling & Irwin, 2015). The objective is to identify the presence of benzene rings
within a molecule. The carbon atoms in these benzene rings serve as the ground-truth explanations.

BA-2Motifs (Luo et al., 2020b): The dataset involves a binary classification task in which each
graph combines a Barabasi-Albert base structure with either a house motif or a five-cycle motif. The
graph’s label and ground-truth explanation are based on the motif it includes.

SPmotif (Wu et al., 2022): The dataset consists of graphs that merge a base structure (such as a Tree,
Ladder, or Wheel) with a motif (either a Cycle, House, or Crane). Each graph is manually infused
with a spurious correlation between the base and the motif. The graph’s label and the ground truth
explanation are determined by the motif it contains.

BA-HouseGrid: The house and grid motifs are chosen because they do not have overlapping struc-
tures, such as those found in the house and 3× 3 grid.

BA-HouseAndGrid (Bui et al., 2024): Each graph is based on a Barabasi-Albert structure and may
be linked with either a house motif or a grid motif. Graphs that contain both types of motifs are
labeled as 1, while those containing only one type are labeled as 0. Note that each motif appears at
most once in each graph.

BA-HouseOrGrid (Bui et al., 2024): Similar to BA-HouseAndGrid, graphs that contain either
house motif or grid motif are labeled as 1, while those containing neither type are labeled as 0. Note
that each motif appears at most once in each graph.

BA-HouseOrGrid-nRnd: Similar to BA-HouseOrGrid, graphs that contain either n house motifs
or n grid motifs are labeled as 1, where n is a random integer between 1 (inclusive) and n (inclusive).
More formally:

• Label Assignment:

P (Label = 1) = 0.5, P (Label = 0) = 0.5
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• For Label = 1: Given n ∈ Z+, for each i ∈ {1, 2, . . . , n}, the three possible manifestations
are:

P (i× grid+ i× house) =
1

6n
,

P (i× grid) =
1

6n
,

P (i× house) =
1

6n
.

When grid and house appear simultaneously, their counts are equal.

C.2 DETAILS ON HYPERPARAMTER TUNING

C.2.1 BACKBONE MODELS

Backbone Architecture. We use a two-layer GIN (Xu et al., 2019) with 64 hidden dimensions and
0.3 dropout ratio for all baselines. We use a three-layer CINpp (Giusti et al., 2023) with 64 hidden
dimensions and 0.15/0.3 dropout ratio for TOPING. For all datasets, we directly follow (Giusti et al.,
2023) using enhanced Topological Message Passing scheme including messages that flow within the
lower neighbourhood, the upper neighbourhood and boundary neighbourhood of the underlying cell
complex. Considering that the largest chordless cycle for most interpretable motifs is equal to 5 (the
BA-2Motifs dataset includes a 5-cycle, while most of the other motifs have chordless cycles with a
maximum length of 4), we lift the maximum length of a chordless cycle to 5 as the cell(dim=2).

Data Splits. For BA synthetic datasets, we follow the previous work (Miao et al., 2022; Chen et al.,
2024; Bui et al., 2024) to split them into three sets(80%/10%/10%). For SPmotifs and real datasets,
we use the default splits.

Evaluation. We report the performance of the epoch with the highest validation prediction accuracy
and use these models as the pre-trained models. If multiple epochs achieve the same top perfor-
mance, we choose the one with the lowest validation prediction loss.

C.3 INTERPRETATION VISUALIZATION

We provide visualization of the learned interpretabel subgraphs by GSAT and TOPING in the dif-
ferent datasets. The transparency of the edges shown in the figures represents the normalized at-
tention weights learned by interpretable method. Note that we no longer need min-max normaliza-
tion like (Miao et al., 2022) for better visualization, we can directly use edge attention to visualize
through rational filtration learning, because persistent homology gap has guaranteed that our edge
attention is easy to be distinguished.

(a) GSAT (b) TOPING

Figure 5: Learned interpretable subgraphs by GSAT and TOPING on BA-HouseAndGrid. Nodes
colored pink are ground-truth explanations.
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Figure 6: Visualizing attention of GSAT (first row) and TOPING (second row) on Benzene. Nodes
colored pink are ground-truth explanations.

Figure 7: The rationals of BA-HouseOrGrid-2Rnd learned by TOPING. Nodes colored pink are
ground-truth explanations.

Figure 8: The rationals of BA-HouseOrGrid-4Rnd learned by TOPING. Nodes colored pink are
ground-truth explanations.

Figure 9: The rationals of BA-HouseOrGrid-6Rnd learned by TOPING. Nodes colored pink are
ground-truth explanations.

Figure 10: The rationals of SPmotif0.9 learned by TOPING. Nodes colored pink are ground-truth
explanations.
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