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Abstract

Transformers have proven highly effective across various applications, especially
in handling sequential data such as natural languages and time series. However,
transformer models often lack clear interpretability, and the success of transformers
has not been well understood in theory. In this paper, we study the capability and
interpretability of transformers in learning a family of classic statistical models,
namely random walks on circles. We theoretically demonstrate that, after training
with gradient descent, a one-layer transformer model can achieve optimal accuracy
in predicting random walks. Importantly, our analysis reveals that the trained
model is interpretable: the trained softmax attention serves as a token selector,
focusing on the direct parent state; subsequently, the value matrix executes a one-
step probability transition to predict the location of the next state based on this
parent state. We also show that certain edge cases not covered by our theory are
indeed failure cases, demonstrating that our theoretical conditions are tight. By
investigating these success and failure cases, it is revealed that gradient descent
with small initialization may fail or struggle to converge to a good solution in
certain simple tasks even beyond random walks. Experiments are conducted to
support our theoretical findings.

1 Introduction

In recent years, transformers [31]] have revolutionized many fields such as natural language processing
[2, 123} 131]], computer vision [8} 24]], reinforcement learning [, [13} [15]], and have rapidly emerged
as a key component in state-of-the-art deep learning models due to their ability to capture complex
dependencies in data. While transformers exhibit remarkable practical performance, the underlying
mechanisms of transformers are still not well understood due to their complex architecture.

In order to theoretically understand transformers, a number of recent works have investigated their
capability in learning from sequential data that follows certain classic statistical models. Specifically,
[4) 22] studied sequential data with an underlying causal graph, and theoretically showed how
transformers can encode the causal structure with the self-attention mechanism for in-context learning.
[6L 9] considered the task of in-context learning of Markov chains, and investigated how two-layer
transformers can make predictions for Markov chains according to the context. [12] considered
Markov chain forecasting tasks and reveals a connection between a context-conditioned Markov chain
and the self-attention mechanism. [21] characterized the loss landscape of a one-layer transformer
and demonstrated the existence of global minima and bad local minima in learning Markovian data
with vocabularies of size two. Although these works provided valuable insights, there remain many
open questions that require further exploration. Notably, the Markov chain data studied in [21]] can be
essentially understood as a random walk over a space of only two states. Therefore, given the results
in [21]], a natural question is when and how transformers can learn more general random walks over a
larger state space.
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In this paper, we consider a classic statistical model for 1-p P

random sequences, namely random walks on circles, and L T

study the capability of one-layer transformers to learn from

such data and make predictions. We consider a general

setting that allows a large number of nodes (possible lo- K nodes
cations of the walker) on the circle, which is an extension
to the two-state setting studied in [21]. We also consider
the general setting where a walker moves on the circle
clockwisely with probability p, and counter-clockwisely
with probability 1 — p, and we build theories that cover the
full range of p € [0, 1]. For such a classic, yet relatively
general class of random sequences, our goal is to theoret-
ically study the performance of a one-layer transformer
trained by gradient descent in predicting the next location, and reveal the interpretability of the
obtained transformer model.

Figure 1: Illustration of random walks
on circles with K nodes and transition
probability p.

The main contributions of this paper are as follows:

* We theoretically demonstrate that a one-layer transformer can be trained to optimally predict the
next location of a random walk with p € (0, 1). Despite non-convexity, we prove that the trained
model converges to the optimal prediction function with a rate O(7~'/2), where T is the iteration
number of gradient descent. Furthermore, we show that the trained transformer achieves optimal
prediction accuracy max{p, 1 — p} after a constant number of iterations.

Our analysis reveals that the trained transformer model is interpretable, as we precisely delineate
the role of each component in the model. First, the trained softmax attention can select the “direct
parent” token by assigning it a near-one score. Second, the trained value matrix serves as a one-step
transition model that recovers the ground-truth probability transition matrix, which is applied to the
“direct parent” token to make an optimal prediction.

* We also identify failure cases when p = 0 or 1. In these cases, we show that starting from zero
initialization, the training of the one-layer transformer model with any loss function and any
learning rate will always fail, resulting in a transformer model whose performance is no better
than a random guess. This negative result is complementary to our positive guarantees for learning
random walks with p € (0,1), and they together give a comprehensive characterization of the
capability of transformers in learning random walks with p € [0, 1].

* We provide intuitive explanations that the failure cases with p = 0 or 1 are optimization failures
caused by zero initialization. Notably, similar optimization failures may also happen beyond the
cases of random walks, as we can construct simple question answering tasks that also suffer from
similar issues in optimization. We also empirically demonstrate that although training may still
take longer, these failure cases can be resolved to a certain extent with random initialization.

2 Problem Setup

In this section, we present our problem formulations, including the random walk prediction task, the
one-layer transformer model, and the training algorithm.

We study random walks on circles. Specifically, consider K nodes (possible locations) that are
arranged on a circle so that each node has two neighbors. Without loss of generality, we suppose
that the nodes are assigned with node IDs 1, 2, ..., K in a clockwise manner. A “walk” on the circle
refers to the process where a “walker” moves step-by-step among the nodes of the circle. We suppose
that, starting from a random initial location, at each step, the walker moves either clockwise with
probability p or counterclockwise with probability 1 — p, to a neighboring node of its current position,
where p € (0,1) is a fixed probability. In this way, a random walk of length N generates a sequence
of “states” s1,. .. sy, where s; € [K] denotes the location (node ID) of the walker at the i-th step.
We aim to address the problem of predicting the walker’s next location sy based on the historical
locations s1,...Sny_1.

To better formulate this random walk prediction task, we map si,...,Sy—1 to embeddings
x1,...,eny—1 € RE. Our goal is then to train a model to predict the target y = sy based on
T1,...,Tn—1. In the following, we give a detailed definition and discuss some basic properties.



Random walk on circles. Suppose that there are K nodes on a circle and the transition probability is
p. 1,...,TN—1,Yy are generated as follows:

1. Draw s; ~ Unif([K]).

2. Fori=2,...,N, sample either s; = (s;_1 + 1) k¢ with probability p or s; = (s;_1 — 1) ¢ with
probability 1 — p.

3. Setx; = e;,,i €[N —1],andy = sn.

Here, (s) is defined as the integer satisfying (s)x € [K] and (s)x = s (mod K). It is clear
that the sequence @1, ..., xn_1, e, form a Markov chain, and P(y|@1, ..., zn-1) = P(y|lxn_1).
Moreover, the transition matrix of the Markov model is IT = (m; ;) kxx, Where m; ; = p- 1{i =
j—1(mod K)} + (1 —p)-1{i = j + 1(mod K)}. A visualization of IT is given in Figure[2] The
Markov property indicates that the optimal predictor of y is given by

fOPT(iL'l, . ,il,'N,l) = I_ITIBN,17
and the optimal prediction accuracy any predictor can achieve is OPT = max{p,1 — p}. Based
on the formulation of fOPT(.), it is clear that a simple autoregressive model f(X) = Vx_; can
already solve this random walk prediction task. However, the goal of this work is not to identify
the optimal model for solving random walk tasks. Instead, we aim to understand and analyze the
capability and interpretability of transformers when learning such classic statistical tasks from scratch.
Therefore, in the following, we introduce a simple transformer model.

o

o

o

00

(a) IT withp = 0.5 (b) IT withp = 0.7 (c) IIwithp=1
Figure 2: Visualization of the transition matrices I with p = 0.5,0.7, 1.0 respectively.
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We consider learning the random walk prediction task with a simple one-layer transformer model.
By naturally treating the one-hot vectors x1, ..., xy_1 as token embeddings, the task to predict
the next position y is a problem of next token prediction. Therefore, we define the data matrix
X = [z1,22,...,zNn_1,0] € REXN_ We also employ a positional embedding matrix P =
[p1, P2, ..., pN] € RM*N where M is the embedding dimension with M = Q(N3/2) and p; €

RM s defined as
e o . 21T . Mim T
p; = |sin Ml ,sin Ml ,...,8in Ml

fori = 1,2,...,N. The positional embeddings above are inspired by the fact that (p;, p;) = 0
for all i # j, which significantly helps to simplify our theoretical analysis (see Lemma [E.5|in the
appendix). Additionally, orthogonal positional embeddings are commonly considered in existing
theoretical studies [3}22},132,133]]. Then, we define the matrix X by concatenating the input matrix
X and the positional embedding matrix P as

—~ X r|{ Ty - ETN_1 0 o _ .
Xx= - = R .
|:P:| |:p1 P2 -+ DPN-1 pN:| [w17w2a ,IEN] S

We consider a one-layer transformer model to make a prediction on a given input matrix X . The
transformer is defined as follows:

fo(X)=VXS(X Way), 2.1

where V' € REXK W ¢ RUK+HM)x(K+M) are the trainable parameter matrices, S : RY — RV is

the softmax function defined by [S(z)]; = %, and § = (V, W) denotes the collection
j=1XP(%j

of all the trainable parameters. In this definition, we consider a reparameterization where we



use a single matrix W to denote the product of the key and query parameter matrices in self-
attention. Such kind of reparameterizations are widely considered in theoretical studies of transformer
models [[L1} 12} [14} 16, 22}, 29/ [32] [34]. In addition, we omit the softmax scaling factor, which is
mainly for simplicity. Such omission has also been considered in most of the theoretical studies
(7, 117, 11811220 251 26]].

Note that by (2.1)), given any input matrix X, the transformer model outputs a K -dimensional vector.
This follows the standard practice of K -class classification: for i € [K], [fp(X)]; can be treated as a
predicted “score” of the i-th class. More specifically, we define the prediction rule as follows.

Definition 2.1. For any predictor f(X) : RE*N — R the predicted label is given as

Pred(f(X)) := min {j € (K] [F(X)]; = max{[f(X)]i}} .

1€[K]

The definition above matches the common practice to predict the label that corresponds to the entry
in f(X) with the maximum function value. It also gives a naive way to handle ties — when f(X)
contains multiple dimensions with the same (and maximum) function value, we always predict the
dimension corresponding to the smallest label. We remark that this definition to handle ties is just
to exclude ambiguity, and the detailed rule to handle ties is not essential. Our result works for all
reasonable methods to handle ties.

We train the transformer model defined in (2.1 by gradient descent, minimizing the loss function

where £(-) is a loss function. In terms of the specific choice of ¢(-), our analysis will cover learning
random walks on a circle by minimizing the log-loss £(z) = — log(z + €), which has been considered
in a series of recent works [[12, (16l 21} [28]].

We consider gradient descent with zero initialization V(0 — gKxK S WO = O HM)X(K+M) 4

train the model. The update rule for the parameter matrices W, V' are as follows:
WD — W _ vy LW, vED = v _ vy Le®), (2.3)

where 1 > 0 is the learning rate and ¢ > 0 is the iteration number. Note that the log-loss ¢(z) =
—log(z + €) is well-defined and does not blow up at zero initialization due to the stability constant
€ > 0. Gradient descent with appropriate learning rate further ensures that it does not blow up during
training.

3 Main Results

In this section, we present our main theoretical results on learning random walks with a self-attention
layer. In our result, we can choose any T* = poly(n, ¢!, K, N, M) as the maximum admissible
number of iterations, and only consider the training period 0 < ¢ < T, This technical assumption
regarding a polynomially large maximum admissible number of iterations prevents training from
becoming exponentially long and is a mild assumption since exponentially long training is impractical.

Our main results are given in the following theorem.

Theorem 3.1. Suppose that 0 < p < 1, K > 4, and N > C, - poly(K) for some constant C,
that only depends on p. Further suppose that the transformer is trained by gradient descent 2.3) to
minimize the loss with £(z) = —log(z + €), and 1, e = ©(1). Then there exists T, = O(1),
such that for all Ty, < T < T, it holds that:

1. The trained transformer achieves optimal prediction accuracy:
P[Pred(fycr) (X)) =y] = OPT = max{p, 1 — p}.
2. The transformer converges to the optimal predictor:

foer (X)  Lopr
oL &)

o)



3. The value matrix converges to the true transition matrix in direction:
F vT

H v

IVOlr [T F

[SXTWDzy)] | >1—exp(—Q(N)),
[S(XTWDEy)], < exp(=Q(N)) forall j # N — 1.

4. Softmax attention selects the “direct parent” of y:

The first result in Theorem [3.1] states that the transformer trained by gradient descent for a constant
number of iterations can achieve a prediction accuracy max{p, 1 — p}, which matches the optimal
accuracy OPT. The second result in Theorem further gives a more detailed characterization
of the trained transformer, and demonstrates that the normalized model converges to the optimal
prediction model fOPT(X) =T Txy_;.

Token selector One-step probability transition
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Figure 3: Illustration of how the trained one-layer transformer performs optimal prediction in an
example with p = 1/2, K = 6. Here we denote S = S(X "W (D z ).

The third and fourth results in Theorem [3.1] further back up the first two results by a precise
characterization on how the self-attention mechanism works in predicting random walks. Specifically,
the third result demonstrates that in direction, the value matrix V (7) serves as a one-step transition
model by recovering the ground-truth one-step transition matrix, and the last result indicates that
softmax attention performs optimal token selection by assigning a near-one score to the (N — 1)-th
token (the direct parent of y). These two results show that, when learning to predict random walks,
the one-layer transformer obtained through gradient descent is interpretable: the trained one-layer
transformer model makes predictions by (i) selecting the correct parent token a y_; of y by assigning
a softmax weighting close to 1 to it, and (ii) predicting y by applying a one-step transition model to
x y—_1 through the linear mapping defined by V. An illustration is given in Figure

A recent related work [21]] studied how one-layer transformers can learn Markov chains with a state
space of size two, and analyzed the loss landscape by identifying global minima and bad local minima.
We remark that we consider a different parameterization of one-layer transformers, which makes our
results not rigorously comparable. However, by studying random walks over state spaces of arbitrary
sizes and establishing theoretical guarantees directly on transformers trained by gradient descent, our
work explores a setting that is not covered in [21].

Notably, Theorem [3.1]is based on the assumption that the transition probability satisfies 0 < p < 1,
excluding the edge cases when p = 0, 1. In Section[d] we will show a negative result showing that
when p = 0, 1, gradient descent with zero initialization fails to achieve good prediction accuracy.
Therefore, the assumption 0 < p < 1 in Theorem [3.1]is inevitable.

Here we informally explain how Theorem [3.1]is proved. The idea of the proof can be shown by
investigating the first several gradient descent steps:

Step 1. After the first gradient descent step, due to the zero initialization and the Toeplitz property
of the transition matrix I1, it can be shown that V(1) is also a Toeplitz matrix whose largest
entries appear exactly on the locations of the largest entries of ITT. W (1) is still a zero
matrix due to the fact that V(9 = 0.



Step 2. With the same analysis, we can also show that V'(?) is a Toeplitz matrix whose largest entries
appear exactly on the locations of the largest entries of IT". Moreover, the locations of the
largest entries in V(1) encourage W (?) to be updated so that higher softmax weightings are
put upon the “direct parent” token xy_ (see Lemma|[C.5]in the appendix).

Step 3. The higher weighting on = _; given by W () further encourages V') to be updated
towards IT" in direction. And V(?) obtained in Step 2 continues to encourage W) to
place a even higher weighting on &y _; (see Lemma|C.7]in the appendix).

From the three gradient descent steps discussed above, it is clear that V() will converge to the
direction of TI'", and W ®) will consistently place a high weighting on the direct parent token 2 _1 .
This is our key intuition for proving Theorem 3.1} and in our formal proof (given in the appendix),
we use an induction to characterize the whole training procedure.

4 “Deterministic Walks” with p = 0, 1

In Section 3] we demonstrate that a one-layer transformer can be trained to optimally predict random
walks under the assumption 0 < p < 1. In this section, we justify the necessity of this assumption and
analyze the edge cases p = 0, 1, which lead to a failure for learning random walks. Random walks
with p = 0, 1 are essentially “deterministic walks”, and for them we have the following theorem.

Theorem 4.1. Suppose that N = rK + 1 with » > 1, and p = 0 or 1. Further suppose that the
transformer is trained by gradient descent (2.3)) to minimize the loss (2.2). Then for any loss function
£(-), any learning rate 7 > 0, and any 7" > 0, it holds that

1
P(Pred(fpm) (X)) =y) = a
Moreover, with probability 1, for all 7" > 0, it holds that
VT x 1rens, [S(EZTW(T)%N)L == [S(XVTW(T)&’N)]N%.

Theorem [.1]shows that the prediction accuracy of the trained transformer on deterministic walks is
1/K, equal to the accuracy of a random guess. Moreover, the characterizations of the softmax scores
and the value matrix V' (7) further demonstrate that the transformer takes average over all tokens, and
then gives the same prediction scores for all possible values of y. Notably, these results hold for any
choice of the loss function and any learning rate, indicating that this failure case of the transformer
cannot be resolved by simply adjusting these training setups.

Theorems [3.1]and [A.1] together provide a comprehensive characterization of the transformer’s perfor-
mance when learning random walks with transition probabilities p € [0, 1]. Based on Theorem
it is clear that the assumption in Theorem [3.1]that 0 < p < 1 is necessary and cannot be further
relaxed. Theorems and4.1|also point out an interesting fact, that compared to random walks with
0 < p < 1, the seemingly easier task of predicting deterministic walks with p = 0, 1 may be more
challenging for a transformer to learn. Here, we would like to remark that the failure of learning
deterministic walks is an optimization failure, and is highly due to zero initialization. To see the
reason, we can consider the two initial gradient descent steps:

Step 1. Since the initial softmax weightings on all tokens are the same, V(1) is essentially trained
based on the averaged token T = ﬁ va_ll x;. Importantly, we can see that

T is a constant vector that does not depend on y.

This means that = does not provide any helpful information in predicting y, and is therefore
“uninformative”. As aresult, it can be shown that all entries in V(1) are equal (see Lemma
in the appendix). Additionally, W) is still a zero matrix since V'(©) = 0.

Step 2. With the same analysis as Step 1, we can show that all entries in V(2 are equal. Moreover,
due to the fact that V(1) is proportional to the all-one matrix, it can be further shown that
W () is updated so that the softmax weightings on all tokens @, . .., & y_; remain equal.



In our formal proof, we inductively show that throughout training, the value matrix V') is always
proportional to the all-one matrix, and the softmax weights on all tokens are always the same.

From the discussion above, we can observe that transformers struggle to learn deterministic walks
due to the unbreakable symmetry in the training dynamics, arising from the “uninformative” token
average x given by the zero initialization. We remark that if random initialization is used, the
symmetry will be broken, and transformers may succeed in learning the optimal predictor. However,
if the random initialization is too small in scale, we can still expect that the optimization for learning
deterministic walks to be more challenging compared to that for random walks. While our theoretical
analysis does not cover random initialization, we present empirical studies in Sections [5]and [6] to
verify this claim. We believe that theoretically analyzing the impact of random initializations can be
an important future work direction.

S Experiment

In this section, we present experimental results to support our theoretical analysis. We consider two
cases: the first one is the zero initialization case that aligns with the setting used in our theoretical
analysis, and the second one is the random initialization case, which helps verify our discussion about
the optimization failure caused by zero initialization. In all experiments introduced in this section, we
set the number of nodes K = 6 and the length of each sequence N = 97. We utilize the transformer
model introduced in Section 2] and utilize the gradient method to train the model. The prediction
accuracy is calculated based on 1000 test data.

Zero initialization. In this case, we set the length of the positional embedding M = 1000, the
initialization V(©) = 0 i, W = 05} ar)x (54 a1)» and the learning rate n = 1. The constant €
in the log-loss is set as € = 0.1. For both tasks, we generate 1000 sequences to train the model.

Figure [ and Figure [3]illustrate the results of the experiment for p = 0.5 and p = 1 respectively:
Figure ¥4(a)] and Figure[5(a)| present the prediction accuracy; Figure [4(b) and Figure [5(b)| visualize
the value matrix V'(*) after 50 iterations; Figure and Figure splay the attention scores
attached to each token after 50 iterations. To clearly observe the results, we also provide Figure [(d)]
that represents the part of Figure ()]

25 Token Seletion Token Seletion

(a) Accuracy (b) v (c) Average attention  (d) Part of the attention

Figure 4: The results of the experiments for p = 0.5 with zero initialization: (a) is the test accuracy;
(b) is the visualization of V'; (c) and (d) present the average attention of the test data with x-axis
representing the position of the token and y-axis representing the attention score.

We can observe that these experimental results for p = 0.5 provide strong support for Theorem 3.1
Figure ()| shows that the prediction accuracy is close to the optimal accuracy (50%) within constant
iterations. Figure indicates that V(T) can recover the transition matrix ITT as shown in
Figure Figure presents that the (N — 1)-th attention score is the highest and close to 1,
indicating that the self-attention layer is able to select the true parent token. All of these experimental
results demonstrate the performance of transformers in learning random walks.

In addition, we can find that the experimental outcomes for p = 1 match the theoretical results
stated in Theorem[4.1] We obtain an accuracy close to 0.167 from Figure[5(a)] which suggests that
the prediction accuracy for learning deterministic walks is approximately equal to 1/ K, far away
from the optimal accuracy (100%) and no better than a random guess. Figure [5(b)]indicates that
V(T) is approximately proportional to 1« . Figure shows that the attention scores attached
to all tokens are identical, which proves that the self-attention layer cannot select any of the tokens
when learning deterministic walks. These experimental results demonstrate that the self-attention
mechanism struggles in learning deterministic walks with p = 0, 1.
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Figure 5: Experiments for p = 1 with zero initialization. (a) gives the prediction accuracy along
training. (b) is the visualization of V. (c) is the average attention of the test data with x-axis
representing the position of the token and y-axis representing the attention score.

Random initialization. In this case, we set the length of the positional embedding M = 1000, the
initialization Vi§0)7 Wi(jo) ~ N(0,0?) with o = 0.01, and the learning rate 7 = 0.01. The constant ¢
in the log-loss is set as € = 0.1. For both tasks, we generate 1000 sequences to train the model. To
ensure numerical stability, we normalize @;’s to unit length in the softmax attention.

Figure[6]illustrates the results of the experiment for p = 0.5 and p = 1. Figure[6(a)]and Figure [6(c)]
show the prediction accuracy within 1000 iterations, respectively. In Figure @ and Figure [6(d)l we
first normalize the output of the trained transformer model to get a /{-dimensional vector, which can
be regarded as the prediction distribution of K locations. The KL-divergence between this prediction
distribution and the true distribution of y|x x_ is illustrated in Figure and Figure[6(d)|

Accuracy KLDivergence Accuracy KLDivergence

(a) Accuracy (b) KL-Divergence (c) Accuracy (d) KL-Divergence

Figure 6: The results of the synthetic experiment with random initialization: (a) and (b) correspond
to the experiment for p = 0.5; (c) and (d) correspond to the experiment for p = 1. (a) and (c) present
the prediction accuracy. In (b) and (d), we first normalize the output of the trained transformer model
to get a K-dimensional vector, representing the prediction distribution of K locations. Then, we
display the KL-divergence between this prediction distribution and the true distribution of y|x N _1.

Figure [6(a)| clearly shows that in the experiment for p = 0.5, the accuracy is close to the optimal
accuracy (50%) after around 400 iterations. However, as shown in Figure for p = 1, the
prediction accuracy cannot reach the optimal accuracy (100%) within 1000 iterations. Based on the
plots of KL-divergence, we can also see that the transformer learns the true prediction distribution of
random walks much faster than learning that of deterministic walks. Note that these results are for
training with random initialization, and hence the results do not perfectly match our theory for zero
initialization in Section 3] However, the experiment results still show that the optimization task is
more challenging, even with small random initialization.

6 Beyond Random Walks

In Section[d] we intuitively explain that one-layer transformers may suffer from optimization issues
when learning deterministic walks with p = 0, 1 due to the fact that zero initialization produces a
token average which is “uninformative”. In this section, we briefly discuss other tasks beyond random
walks where transformers with zero/small initialization may face similar optimization challenges.

We construct two question answering tasks. The detailed descriptions are given as follows.
Task 1. We consider a simple question answering task. Possible input questions are of the form:

Based on the list ‘apple, orange, apple, apple, orange’, which type of fruit appears most frequently?



Here, the list stated in the question can be any combination of ‘apple’ and ‘orange’ with a fixed
length of 5. Therefore, there are a total of 32 possible questions the model may see, and each of these
questions occurs with probability 1/32. Ignoring punctuation marks, each input sample is assumed
to be 16 words involving the list and other words in the inquiry sentence. The correct response (the
’label” for classification) is the fruit that appears most frequently in the list. For example, for the
question “Based on the list ‘apple, orange, apple, apple, orange’, which type of fruit appears most
frequently?”, the correct response is apple.

Task 2. We again consider a simple question answering task with only two possible questions:

Based on the sentence ‘I prefer an apple to an orange’, which type of fruit do I prefer?
Based on the sentence ‘I prefer an orange to an apple’, which type of fruit do I prefer?

Here, each of the two questions above occurs with probability 1/2. Similar to Task 1, we ignore the
punctuation marks, and the input is the 18 words in the sentence. The correct response (the “label”
for classification) is apple for the first question above, and orange for the second question above.

Combining all the words appearing in two tasks, we attain a vocabulary with a length of 19: { ‘apple’,
‘orange’, ‘Based’, ‘on’, ‘the’, ‘which’, ‘type’, ‘of’, ‘fruit’, ‘list’, ‘appears’, ‘most’, ‘frequently’,
‘sentence’, ‘T, ‘prefer’, ‘an’, ‘to’, ‘do’}. We embed this sequence as a matrix E = [e}, ea, ..., €19] €
R'9>19 Then, we know that the length of the vocabulary K and the length of each input sequence N
are set as (K, N) = (19,17), (19, 19) for Task 1 and Task 2 respectively.

In the experiments, we consider a similar transformer model as we introduced in our theoretical

analysis. To train the model, we consider Gaussian random initialization V;E.O), VVZ.(Q) ~ N(0,0?)
with ¢ = 0.01, and we use gradient descent with learning rate 7 = 0.1 to train the model. The

constant e in the log-loss is set as ¢ = 0.1. Both the training and test datasets contain 1000 samples.
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Figure 7: The results of the experiment for Task 1 and Task 2: (a) and (b) correspond to the experiment
for Task 1; (c) and (d) correspond to the experiment for Task 2.

Figure [/| shows the experiment results for Task 1 and Task 2. Figure[/(a)|and Figure [/(c)|present
the test accuracy. In Figure and Figure we first normalize the output of the trained
transformer model to get a K -dimensional vector, representing the prediction distribution of K words.
Then, we report the KL-divergence between this prediction distribution and the true distribution of
ylxy, T2, ...,xN_1 in Figure and Figure The experiment results show a clear difference
between the performances of the transformer model in the two tasks. In Task 1, the trained transformer
model can successfully approach the optimal accuracy (100%) within 100 iterations. However, in
Task 2, the test accuracy remains around 50% within 100 iterations.

The results can be explained following the discussion in Section[d] Specifically, in Task 1, the average
of the word embeddings Z in a question can help the model to find the correct response, while in Task
2, the two questions give the same average of word embeddings x, and therefore, it causes inefficient
optimization.

The results for these two tasks demonstrate that our theories and explanations for random walks
can also guide the construction of various other learning tasks and predict the performance of a
transformer model in these tasks. This confirms the validity of our theories and explanations and
highlights the insights provided by our study.

7 Conclusion

This paper investigates the capability of a one-layer transformer model to learn random walks on
circles. We demonstrate that transformers successfully learn such walks for the transition probability
0 < p < 1, achieving the optimal prediction accuracy. We also show that the trained model is



interpretable: the softmax attention mechanism effectively selects the correct “parent” token, while
the value matrix recovers a one-step transition model that applies to the selected “parent” token for
optimal prediction. In addition, we identify that the edge cases (p = 0, 1) are failure cases, thereby
proving the necessity of the assumption 0 < p < 1. Motivated by the analysis of success and failure
in learning random walks, we design simple question answering tasks that exhibit similar optimization
challenges, showing the broader applicability of our analysis to other tasks beyond random walks.
We also provide experimental results to validate our theoretical findings.

In future works, it is important to theoretically study the impact of random initialization in learning
random walks. Moreover, an interesting future work direction is to extend the results and study
the performance of deeper transformer architectures, which may require more advanced theoretical
tools. Moreover, extending the finding to more complicated learning tasks, such as random sequences
generated by general Markov chains or Bayesian networks, is also an important future work direction.
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A Additional Related Work

In this section, we give an overview of some additional related works.

Token selection. Our work reveals that a one-layer transformer can learn to perform the optimal
token selection by focusing on the direct parent in a random walk. A line of recent works has
studied the token selection of the self-attention mechanism from different perspectives. [26, 27]
propose an equivalence between the optimization dynamics of one self-attention layer and an SVM
problem and prove the global convergence under certain assumptions. [16] shows that when training
a self-attention layer, the priority in token selection is determined by a directed graph extracted from
the training data. [32] demonstrates that transformer models can learn the sparse token selection task
effectively while fully connected networks fail in the worst case. [[18] shows that a self-attention layer
can be trained to perform proper token selection so that the model acts as a one-nearest neighbor
classifier in context.

Next-token prediction. [28]] explores the implicit bias of next-token prediction employing a related
SVM formulation. [19] demonstrates that transformers fail to solve the Partially Observable Markov
Decision Processes problem (POMDP) even with sufficient data. [[10]] observes a phenomenon of
next-token prediction in LLM that each layer contributes equally to enhancing the prediction accuracy.
[29] studies the SGD training dynamics of a transformer with one self-attention layer and one decoder
layer for next-token prediction, restricted to some specific assumptions like no positional encoding,
long input sequences, and the fact that the decoder layer learns faster than the self-attention layer.

Training dynamics of transformers. [20}[34] investigate the training dynamics of in-context learning
in transformers with a single self-attention layer trained through gradient flow on linear regression
tasks. [[L1] solves in-context linear regression with the orthogonal input data by gradient descent on a
single softmax attention layer. [14] demonstrates that the position-position block of a single attention
layer in a vision transformer can encode spatial structure by dealing with a binary classification task.
[30] delves into the training process of transformers with multi-layers by analyzing the dynamics of
the MLP layers. [3] analyzes a synthetic in-context learning task and emphasizes the significance of
weight matrices as associative memories. [1] shows incremental learning dynamics in transformers
with diagonal attention matrices.

B Gradient Calculation

Recall that the population loss is

L(0) = E[¢(9)] = E[~log(e, fo(X) + )] = E[- log(e, VXS(X  Wzy) +€)].
The following lemma calculates the gradients of the population function.
Lemma B.1. The gradients regarding V' and W are

N-1 1 N-1
—/. ol = T
Vv l(0) =1 ey;&azl VXS T ey;&ww

0 (Zf\;l Sipie] =YL Sipi- YL Sl ) Vie,py
B 1 0 (Z?’:—ll Siwx] — 0L Siwi L Sil’?) Vieypy
e, VXS+e 0 (N spal - LY, Sm- D Sl ) Viep)

V() = 1! 0 (Zi‘ll Sixix; Zi\/:—ll Six; - Zi\i—ll Sz-’BlT) VTe,p),
W = .

where S = S(fT Wzy), and S; is the i-th element of S.

Proof of Lemma For V, we have

Vo tl6) = 1 De] VXS
v e} fo(X) +e ov
1 Ty T
= X
VXSt 0



1 T
n 7e;—VXS+e "y ; Si®i -
For W, we have
1 9e] VXS(X TWiy)
e, fo(X) +e ow
1 —
= XS (X "Wzny)XV'e,z,
VXS o XX W) CvEN
1

YA T Ty, T, =T

N— N— N—
— _41 . [27_1\/1181‘”15”: - Ziﬁf‘siw' : Z]:\/i:ll 825’3:} . [0 VvTe pT]
e, VXS+e | L1, Sipa] — 3L, Sipi- Yo, Sl e
N-1 N-1 N-1
__ 1 . [0 (Ziﬁ£ 131‘«’32‘?2? - Ziﬁl Sit; - Zﬁll Sz )VTeyPE]
eJVXS +e 10 (X5 Sipia:; =2 i1 SiPi D il Sia:iT)VTepr,
where we use the fact that S'(X ' Way) = [diag(S) — SST] and
S1

Vwl(0) =

So
diag(S) :=

SN

To simplify the notation, we denote

N-1 N-1 N-1
A= (Z Siwi:l:;r — Z Six; - Z 3i$2—>VTeyp;7
i=1 i=1 i=1

N-1 N N-1
B = (Z Sipix, — ZSipi . Z Sixz] )V e,pr.
i=1 i=1 i=1
With this notations, by Lemma [B.1] we have

1 0 A
(0) = ————- . B.1

Vw i) e] VXS +e {0 B} @D
We also denote A®), B() the corresponding matrices at the ¢-th iteration of gradient descent.

Wi Wi KxK KxM
Way W22:|’ where W1, € R , Wi € R ,

Wiy € RM*K and Wy, € RM*M By (B.T), we know that WP = 0, and WY = 05/,
forall¢t > 1.

Moreover, we can observe that W = [

By the definition of the random walks on circles, we can write the transition matrix IT as II =
pIl] + (1 — p)IIy, where

C Proof of Theorem 3.1

In this section, we analyze random walks with the transition probability p satisfying 0 < p < 1.
Without loss of generality, we assume % < p < 1. We consider gradient descent starting from zero
initialization. The following lemma presents the result of the first iteration.
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Lemma C.1. Under the same conditions as Theorem[3.1] it holds that

N—1
1 n T\N—i 1
Ve = eNK ;(H )N and W = 0x s a1 4 00 -

Proof of Lemma|C.1] By Lemma[B.T] we have

E[Vye(e©)]=—— > Ele,a/]

where the first equation is by the initialization of V'(°) and W (©), the second equation is by the
sampling method, and the third equation is by E[x;x, ] = %Ik fori € [N — 1] since @; is uniformly
distributed in E. Thus, by the update, we can get

VO = VO B[V i0©))

Since V(O) = 0K><K and W(O) = 0(K+]VI)><(K+IM)5 we can get E[VWE(Q(O))] = 0(K+M)><(K+]VI)~
Thus,
w — wO _ UE[VWK(e(O))} — 0(K+M)><(K+M)-
O

Lemma gives explicit calculations of V' (1), Based on these, we can further derive some properties
of VI, given in Lemmabelow. In this lemma, for all matrix indices, we consider simplified
notations following the rule that if an index ¢ is not in the set {1,..., K}, we treat it as i’ €
{1,..., K} withi¢ =i (mod K).

Lemma C.2. Under the same conditions as Theorem it holds that [V(M],, . = [V, . for
i1 —jl = ig —jg (HlOd K)

Proof of Lemma|C.2] We use induction to prove that for any R € N, [II?]; ,, = [IIF];, ;, for
i1 — j1 =iz — jo (mod K). The result is obvious at R = 1. Suppose that the results hold for TT%,
We aim to prove the results hold for II*+!1. By the definition of II, for any 7, j, we obtain that

I =p- Mo+ (1 —p) - 17 4. (C.1)

By induction, for any i1, j1, i2, jo satisfying i1 — j; = i2 — j2 (mod K), we have [HR]“J&A =
[T1%];, j,—1 and [II%);, ; 41 = [II%];, j,41. Thus, by (CI), we can easily get [IT®H1];, ; =
[II7+1];, 5, which completes the induction.

From Lemma we know (V)T = 1 SN [EN =i holds the result. Therefore, V(1) also
has the same property. O

Lemma C.3. Under the same conditions as Theorem [3.1] it holds that [V 1] 1 = [V (]| .

Proof of Lemma|C.3] Without loss of generality, we assume % < p < 1. From Lemma we
know V(U = - ZfV:II(HT)N’i. We can observe that since p < 1, with increasing R, (IT")#
will be closer to %IIT, as stated in Lemma and [E.3| Thus, the location of the largest entries in
V(D is mainly determined by the first several terms. In II ", there are two locations with non-zero
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values p, 1 — p. In (IIT)2, there are three locations with non-zero values p?, 2p(1 — p), (1 — p)%. We
can easily check that p is larger than p? and 2p(1 — p). Thus, we know the location of the value p in

II7 is also the largest in V(1) ie. [V (D], . In detail, we can first get that

N-1
Z(HT)Nfi _ (HT o (HT)N)(I o HT)fl
=0

matrix of interest:

Denote

Claim: for all N, the diagonal entries in I'( V) are larger than or equal to the other entries.

I(N)=II"T'(N — 1)+ 1.

Induction hypothesis:

Suppose the induction hypothesis holds for T'(N — 1).
For 4, j with |1 — j| > 1,
L(N)ij =p-T(N =1)ij—1+ (1 =p) - (O(N = 1))ijs1 < (TN = 1))11 + ¢

I'(N)11>T(N—-1)14
4 k
SV @MNN = @ - @N)Ne, S, (1%) (I1J )*, where C, is a positive constant
regarding p. Considering the terms I1" (TI] )* with 0 < k < K — 1, we can easily observe that the
coefficient of ITT (IT] )° is much larger than that of other terms. Since IT] is a cyclic shift matrix

and the entries in (ITT ) are almost same (Lemma and [E.3)), the location of the largest entry in
TIT7 is also that in V(). Therefore, it holds that [V 1]y ; = [V || .. O

Further, the following two lemmas provide some properties of the weights for the second iteration.
Lemma C.4. Under the same conditions as Theorem it holds that ||V @ ;pax < J& + 2¢K2.
Proof of Lemma First, we have

€y Zf\;l Sz‘(l)mz‘T

e, VI SV SWa; +e

VR = vl _E[VyD) =V £k

Thus,

IV i < V]

+
max

N—-1
nE %ey D e @
Lel VOISV e, +e

i=1

max
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N-1
n 1 T
< HV(U’ 4 E|=e x;
max % mlnz,j [V(l)]’LJ N v ; ’
N—1
N -1
S n Z HN—Z + n o 1 .
eNK e XL min [ENK PR 1 B z:| N N
i,
n 2
< — +2eK
K + 2e K7,
where the second inequality is by eTV(l)a:l > min, ][V(l)}m, and the last inequality is by
Lemma[E.2and [E3l O

Lemma C

j # N — 1. Further, 31(\?),1 > 1 —exp(—(N)) and S;

.5. Under the same conditions as Theorem | it holds that 85\?11 > S](?) exp(Q(N)) for

) < exp(—QUN)) forj £ N —1

Proof of Lemma|C.5| By Lemma|B.T] we have

E[A<1>]

=E

N—1N-1
=E [ " Z :Bia:iTHN_i (HT)N_i:Bi
1 i'=1

3

N—-1N-1 o N-1 . .
B | X X e S,

i1=11i3=1 i'=1

2

eN2K p

=1 i'=
N—-1N-1N-1

n I .
[ O IDIDIEIL A “wh~pE1

11=1142=114=1

eN3
. N—1N-1
- PR Y e
i=1

where the

i'=

1N—
ENSKZ Z Z Z (HN i’ +io— n(HT)N 11) leN7

’Ll 17,2 14i=1

second equation is by Lemma [C.1] the third equation is by the sampling method, and

the fifth equation is by the fact that all the «; is uniformly distributed in E for ¢ € [N — 1]. Then,
W2 =W — nE[Vw(01)]15 x 1xp). Thus, We also have

E[BM)]

=E

N-1 N N-—1
(Z SPpal (VI Te, = sWpi- > sVa (V(”)Tey> Py

=1 =1 =1




. N N-1
ELN3KZpi Z ZHN i HT

—1N-1
ENQKQZZPI (HNl HT) )pr
=1 /=1
n N N—-1N-—
T eN3K?2 Zpi'zz (HN Z(HT) )p}7
=1 =1 /=1

where the second equation is by Lemma[C.1] the third equation is by the sampling method, and
the last equation is by the fact that all the ; is uniformly distributed in E for i € [N — 1].

Since [XVW(Q)i } = PNW2(2 pn and [NW(Q)iN} = az—rWI(2 PN erTWQ(2 py for j €
{1,2,..., N — 1}, we can obtain that

{XW@&N} v = pA Wil pn

N-1
_ n 1) T 1 T ON\T T
- [W <_SN prpy: 2 S el (VD ) e

i=1

where the third equation is by p;rpj =0fori # j. Andforj € {1,2,..., N — 2}, we can get

[XVWV%N}N —P(/W(Q)QN}
) .
=z} W Wy pn — ] W py — p] Wiy
=Ty 12PN+PN1 22PN —Z; Wiy Pj Woy PN
(4)
= pl Wi py — p] Wiy py
(i) n g T 1) (1) T
=E [EJV(l)XS(l)—ke N (prleflefl(V ) P p;x; (V ) )prN
(iid) Ul s T ANTHT T T ONT (T T\N—j .)T
= E[eij(l)XS(1>+e N(prleflefl(V ) I zy—y b; pjx; (V) (Ir) Zj | PNPN

“E leJV(l);S(l) Te (I);]I\)TN)2 ([(V(l))THT} 11 [(V(l))T(HT)Nﬁ} 1,1)]
(g maxmw’i(l)]m - (PEJI\';NFE H(V(l))THT] B [(V(l))T(HT)N—le]
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where (i) is by Wl(Q) o« 1xpy, (u) is by p] pis = 0 for i # i, (4ii) is by the sampling methods,
(iv) is by the fact that all the @; is uniformly distributed in E for i € [N — 1], (v) and (vi) are

by Lemma Therefore, we have Sﬁll/SJ(Q) = exp ([XW(Q)%N} o {EW@)%N} ) >
- J
exp(Q(N)) for j # N — 1. Further,

SP L =1- Y SP>1—(N-1)exp(—QN))ST,,
jAN-1
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which implies that

8(2) S 1 - N -1 _
N=1= 14 (N -1 exp(—Q(N)) exp(QN))+N -1

1 — exp(—Q(N)).
Then, we have SJ@) <1l- 81(\?)_1 < exp(—Q(N)) forj #N — 1. O

Then, we can derive the bounds of entries in v,
Lemma C.6. Under the same conditions as Theorem [3.1] it holds for ¢ > 3 that
n

. n
II:LI’IJH[V(t)]»LJ 2 26? and ||V(t)||max g 6? + (t - 2) . 2€K2.

Proof of Lemma|C.6] First, we have

min[V "], ; > min[V ], ;
i,J d

%,
n N
eNK 2K
. n
2¢ K2’

where the third inequality is by Lemma[E2]and [E3] Then, we can get that

ney iy ' el
e, V-1 SV S Vg, 4 e
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VO llnax < [V iax + (|E
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<VED | pax + E
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< [[max + ming, [VE ],

< ||V(t_1)Hmax + 2eK*
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n 2

< t—2)-2eK

< g t{t—2) 2K,

where the third inequality is by e; Vx; > min, ;[V]; ;, and the last inequality is by Lemma O

Next, we analyze the training dynamics over multiple iterations.

Lemma C.7. Assume the same conditions as Theoremm For 2 <t < T, it holds that S%ll >
1 — exp(—Q(N)) and V) = BOTIT + V() where Hf/(t) < ), Here, B > \/f — 2L
and () < 2L 4+ 2(¢t — 1)e K2 N exp(—Q(N)).

Proof of Lemma|C.7] We use induction to prove the results that

2
® > Jop_ 21
Bzt = e

2
70 < =L ot~ 1)eN exp(—Q(N)),
€

[EZW@)%N} - [X“WWEN} > Q(N),
J

N—1
S > 1—exp(—Q(N)).
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It can be easily checked that the results hold for ¢ = 2. Suppose that the results hold for the ¢-th
iteration. We aim to prove that the results hold for ¢ 4 1.

For V(1) we can get
v — v _E[Vye0™)
e, ZN 1 S,(t) T
e, V) EN ! )scl +e

=v®H 4 nE

7781\/ 18y TN
e, V® ZN 18()331—4—6

. neyz t) x]
e, V® Zf\’ ! S(f):vi +e
N-2 o(t
HT+E neyz 87,() i
e VO SN 1sWa, 1 e

T
77'5N 1TN— 1$N 1

VW LE
e VO SN sWa, 1

Then, we have

lE l nSJ(\;)_le_lw;ﬂ 7751(\?)—1
N T T
eJV(t) Zi:ll‘si(t)miJre 1,1 H‘/(t)Hmetx+6
N[l — exp(=Q(N))]
= BO 40 ¢
> n
T 2[B® + L+ 2eK? + 2te K2N exp(—Q(N)) + ¢]
d (C2)

> - @
T80+ )

where the first inequality is by eJV(t)zci < ||V ®|| max. the second inequality is by induction, and
the third inequality is by the assumption of €. And, we have

E ney ZN QS(t
e, V©® Zivzll SZ-(t)mi +e

n exp(—
~ min; J[V( )

max

i

< 2eK? exp(—Q(N)) - N, (C.3)

max

where the first inequality is by induction and e;— Vg > min; ; [V(t)]L 4. and the second inequality
is by Lemma|C.6] Thus, we can get that

T
e;er(t Zi:l Si T; + € 11
> g1 n
>p +2ﬁ(t)+4,7
n n
>Vt — = + ——
>Vt me
Vn
>\F——+
VEFT+VE
21
= t+1)— —
nt+1) - =

where the second inequality is by (C.2)), and the third inequality is by induction and the fact that

T+ o + P is monotonically increasing for x > % — =L, And, we can get

neyZN 28(t) T
e] Vi TN 1S“:m+6
7O 4 2eK2N exp(—Q(N))

A < A0 4 ||g

max
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2
< GTZ + 2eK2N exp(—Q(N)),

where the second inequality is by (C.3), and the third inequality is by induction.
Next, we consider S¢+1 | Recall that

AWM

W(t""l) _ W(t) E
12 12 e, VXS +e

(1)
] and WY = wl) + IE[ B }

eJVXS—i—e

where

N-1 N-1N—
i=1 1=1iz=1
N
Zf Zs(t (vt )pﬁ

B® — (Z 5 pix V(t)
i—1 -1
We also have [fw<t>£N] = p W py and [XW(“EEN] — 2] Wpy +p] Wpy for
j€41,2,...,N —1}. Then, for j = N, we have
pLBWpy

ef VO SV W, 4 e

sz'vzll Sz‘(t z/ Ve,
e, V©® SV SV, + e

1
PAWaypn = DAWE py + 1E

= pA Wit px — 1MSYE l

< PAW pn.
Forj € {1,2,...,N — 2}, we have
TA(t)PN
e, V® ZN ! S(t)wi +e
] Tyt )ey _ ZN 1S(f) Tv(t) ]

] Wi py =] Wi py +E

io=1
e, V® SV )w,+e
IV | max
min; ;[V®)]; ;

=] W)py + nVMSVE [
<] Wpn +nvVMS

4(t — 2)e’ K4
< w;—Wg)pN + VM exp(—Q(N)) (QK + ()6)

)

where the first inequality is by eTV xn_1 = ||V ®||max. and the second inequality is by induction
and LemmalC.6] And,

TB(t)pN
eTV t) ZN ! S(t)mi +€
V(t)ey ZNfl S(t) Tvte,
e] VO SN Sz, +e ]

IV |l imax
min; ;[V®)]; ;

1
pJTW2(;+ 'pn = ]TWQ(;)pN +nE

p; Wiy py +nMSVE

p] W3 pn +nMS"

4(t — 2)e2 K4
< p] Wit pn + nM exp(—Q(N)) (2K + H)

)

where the first inequality is by eTV( Jxn_1 = ||V ®||max. and the second inequality is by induction
and Lemma|C.6| For j = N — 1, we have

xl, AWpy
N-—1 t
eJV(t) Zi:l Sl( )ml + €

Ty 1W1(t+ 'pn = 5’3}—1W1(;)PN +nE
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xT Ve _ S(t) Tv(t)e
:$;—1W1(;)pN+77\/M81(\?—1El A z 212 =

e, V® ZN ! Si(t)a:,; +e

N—-2 o(t) T (t)
— Sz, Ve,
> @y Wi py 4+ ME[ T‘E/:(th) leN 1 o)
e x; + €

/ Zz 1 ||V(t)||mdx
> :BN 1W1(2 PN — 1) 211’1111 [V( )]
i,J

4(t — 2)e?K*
> w}71Wfé)pN —nVMN exp(—Q(N)) <2K + (77)6> ,

where the second inequality is by e, TVWxyn_ 1 = ||V pmax. and the third inequality is by induction
and Lemmal[C.6] And,

py_BYpy
e, V® SV S(t):ci +e

xl Ve, -V 15Ty ®e,
e, VOSSN 18V, 1
ZN—Q S(t) Tv(t

eTV(t) SV ):):1 +e

YaoiS HV(”H
mlnl,j [V( )]iJ

1
PN AW py = Dk Widpn +1E

=pN_ 1W2(2)PN + UMS(t)

> ph_ Wiy py + nME

> ph_ 1W2(2 pN —nM

4(t — 2)e2K*
> ph_ Wiy by — 1MN exp(—Q(N)) (2[( + (n)) 7

where the second inequality is by eT V®xn_ 1 = ||[V®| nax. and the third inequality is by induction
and Lemma|[C.6] Therefore, we can get that for j # N — 1,

[XWgy] [ XW gy
N-1 j
=ay W5 oy + ok W on — 2 Wi on - p] Wiy

>y 1W1(2)pN +PN_ 1W2(2)PN - wTsz)pN p; W(2)pN

— 4nM N exp(—Q(N)) <2K + 4(_77)2K4>
= [fw(t)iN}
> Q(N),

where the last inequality is by induction. Thus, Sy -+ 1 /S (1) > exp(Q(N)) for j # N — 1, which

implies that Sy Hl) > 1 — exp(—Q(N)). Therefore, we prove that the results hold for ¢ 4+ 1, which
completes the proof O

- [EEW“)%NL — exp(—Q(N))

The next two lemmas show the convergence rates of V(T)/HV(T) lF and for (X) /|| for (X)])2-
Lemma C.8. Assume the same conditions as Theorem For Q(ne‘QK ) T < T, it holds

that
1
<O|(—|.

Proof of Lemma|C.8] By Lemma | we can get that

H Ve o’ nat+v@ o’
VO O [e ||, HV e x|,

H V(T HT
VOl OTr
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(T) v (D)
|| (e~ ) ™, +
VO |p  [IIT|F o |[IV®le|
For the first part, we have
(o] e
||V<T>HF ITT7 || Foo 180T + VD) g
B O ¢
BONIT g+ VD g
@ IV ©l|r
VE@? + (1 —p)2)0 + [V p
- K~
T VE@®+ (1-p)?)BT) 4+ KT
(@ 21 1 2TeK?N exp(—QUN))

VIR (/T — 20) 4 20 4 9T K3 N exp(—Q(N))

<o(%)

where (i) is by [|[II ||p = /K (p? + (1 — p)2), and (i7) is by Lemma For the second part, we
have

IVl

DI + VD] g

IV Ollr_
CBOIT e+ VD e
(z<‘) K~
T 2K T) 4 KAy(T)
i) 2?’7 + 2T eK3N exp(—Q(N))

VIR (/T — 21) 121 4 9T e K3 N exp(—Q(N))

1
<o(—),
<o (%)
where (i) is by [[IT" ||z = /K(p> + (1 — p)?) > V2K /2, and (ii) is by Lemma Therefore,

we can obtain that
1
()
F VT
O

Lemma C.9. Assume the same conditions as Theorem For Q(ne 2K ~2) < T < T*, it holds

that
1
)
2 VT

Proof of Lemma[C9] The output with 6 = 6T is fyr)(X) = VOXS(X W Dzy) =
V(D) ZN ! Si(T):c,». Then, we can get that

i
I

forr) (X Hz

H V(1)
(T) -
Vx|,

INS

HT
H VOlp [T [|e

H foer (X
|

HTmN_
Joer (X H2 '

.
-II'zy 4

2
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(5(T)HT +‘7(T)) SN LMy, .
- N—1 o(T) —I N
HV(T)Zi:1 S wy
2 2
(T)S(T)
< ° N J1V_1T —1 | My
HV(T) dic Si( )xz
2 2
+ BN SN 28 + VO SN ST,
N-1 o(T
s,
For the first part, we have
T
B(T)ngzl —1|0'=z
(1) s~N-1 (T) N-l
VIS
2 2
B '
< II _
< Hﬂ(T)HT ZN 1S(T) H +HV(T) ZN 151(T) TN-1
2 2

(T — _
< 1_,3f[1 exp(—Q(N))] Ty,

J@(T)+¢[?7(T) )

. 2+ 1 —9p)2
) (2L 1 27K N oxp(— Q(N)))) PP+ {1-p)

<< (x/?TT ) [1 — exp(—Q(N))]
0

IA

VT + 2TeK2N exp(—Q(N))

o)

where the first inequality is by Lemma the second inequality is by Lemma and ||[TTT x; |2 =
p? + (1 — p)2, and the third inequality is by Lemma For the second part, we have

(W(z" +2T€K2N€Xp( Q(N)))>

IN

AL D DS T kD DR S
N-1 T

HV(T) Zi:l 81,( )
|pomT i 5

7

2 2
e

2

IN

= (O VD lnax + VEy®

- VpE+ (1—p)2BM

exp(—QUN)) (& +2TeK?) + VK (2 + 2TeK>N exp(—Q(N)))
P>+ (1—p)?- (ViT - Z)

[pm =25 sTa,

2

<

1
<O —=
<o (%)
where the second inequality is by Lemma and |[II"@;|l2 = /p*>+ (1 — p)2, and the third
inequality is by Lemma|C.7] Therefore, we can obtain that

o (X ( 1 >
Ool—|.
Hn ,=O\VT

.
—II' zny_y

Joer (X H2

24



D Proof of Theorem 4.1]

In this section, we analyze “deterministic walks” with p = 0, 1. Without loss of generality, we set
p = 1, which means IT = I1] . The following lemma shows the results of the first iteration.
Lemma D.1. Under the same condition as Theorem for any loss function £(-), it holds that

nr

v = ).
NK

1rxx and WO = O K4 M) x (K+M)-

Proof of Lemma|D.1] By Lemma we have

_ g’(@(o)) L

where the first equation is by the initialization of V'(°) and W (°), the second equation is by the
sampling method, the third equation is by E[z;x, | = 1k fori € [N — 1], and the last equation is
by Lemma[E.I] Thus, by the update, we can get

:
VO = VO B[V (0)] = ~(0) - S L

Since V© = 0 and W) = 0K+ M) x (K +M)» We can get E[VwL(0©)] = 0K+ M) x (K +M)-
Thus,

WO = WO —gE[Vw (0] = 0k aryx (51 11)-

The following lemma states the results of the second iteration.
Lemma D.2. If IT = I, then it holds that

V@ = (' 09)+ ¢ (0W)) - %lmx,

@) i
Wi, :g/(g(l))g/(g(o));z[giKle;’
2, N-1 2.2
W) = 0000 (9©) (133;( > pi— T pN> PR
i=1

Proof of Lemma|D.2] By Lemma|[B.1] we have

E[Vy0D)] = £(0V) - = 3 Ele,a]]
= 0'(6M) .

=0(6W).

- g/(g(l)) C—



where the second equation is by the sampling method, the third equation is by E[z;z, | = %I K for
1 € [N — 1], and the last equation is by Lemma Thus, we can get

VE = v B[V (o))

_prp)y . " _prpy .
20) N 0')

NK

By Lemma [B.I] we have

r N—1N-1
E[A(l)] =F (Z S(l)m T, (V(1 )’ e, — Z Z Sff)Sf;)milmg(V(l))Tey PN

where the second equation is by Lemma|[D.T] and the fourth equation is by the fact that all the ; is
uniformly distributed in E. We also have

N-—-1
(Zs;”piw:(vwey—z e Xl VO ) o
i=1 i=1

E/ <N2K sz TIK_NBKsz Zm 1K>
—0(0) <N2K Z N3K Zm) Py

N-1 2 .
—0'(0) N3K Pi — 73PN | PN

where the second equation is by Lemmam Thus, we can get that

E[BW] =

WY = Wiy — B[V £(0™)]1
- _E [ng’(g(l)) . A(l)}

n?r?
N3K

=1'(6W)'(9©) 1kPN,

and
Wiy = Wy — nE[Vw £(0™W)]2s
) W'((;(n) . B<1>]

N-1

_ é’(9<1>)e’(9<0>) n’r Z o U T
- N3K Di N3 PN | PN-
i=1

Next, we can analyze the gradient descent dynamics over multiple iterations.
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Lemma D.3. If IT = I, then for any ¢ > 0 and any sequence of learning rates {7}, it holds that
VO o 1oy, and 8P =8 =... =8P |

Proof of Lemma|D.3] We use induction to prove that for some scalar ag ) ag)7 { ), ()it holds
thatfort > 2, V() = agt)leK, Wl(;) =y )leN, and W22 = ( )Zl 1 Pi— afl )pN) P

By Lemma|D.2] we know that the hypothesis holds for ¢ = 2. Suppose that the hypothesis holds for
t = t'. We aim to prove that the hypothesis holds for ¢t = ¢’ + 1. We have

W1(2 oy + o] Wi i
. g W12 )PN + Pz W2(2 )PN
XW gy =

t/
xy 1W1(2 PN +pN 1W2(2 )pN

L PN Wz(; )pN

r t
O‘g )prN + O‘:(’, )p1 p1prN

(t )prN + Oé;(), )Pz P2PNPN
- : . (D.1)

t’ t’
as )p}pw + oy 'pl_\PN-_1PL DN

o8 (plpn)?

Since p{p1 = pap2 = .-+ = pAPN, wWe have [XW(t)iN]l = [fw(t/)iN]Q = ... =

[fW(t/)iN]N_l. Thus, we can get that Sft/) = SQ(t/) e SJ(\?/_)l := s(), Then, we
have

N-—1
E[Vvl(0" )] =E |00 e, Y s"x]

N-1

=0 (6®))s) Z]Ee x, |
i=1
N—-1
ACERITERE N 10 1 SRR Ry
=1
(t/) N—-1
_pript) 87 N—i
¢ T Yo mo)
s
=00 g,

where the second equation is by the induction, the third equation is by the sampling method, the fourth
equation is by the fact that x; is uniformly distributed in E, and the last equation is by Lemma[E.T]
Thus, we can get V(' +1) = v () _ n(t/>E[VVZ(9(t/))} o< 1 g x . We also have

r —1N-1
E[A®)] =E (Z S(f)w:c V(t Te, — Z ZS”S T, T Z2(V(t)) ) 1
i=1 i1=112=1

r N—1N-1

=E ( t)(t)wa 1K—a t)QZZm“wglK>p;
L =1 11=112=1
r ) N-1 N—-1N-—

—F (agt)s(t,) Zmi_al Z Z ) ]
L i=1 1=1dg=1

(%“wwNwl ,(”MUMan )

- K K K pNa
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where the second equation is by the induction, and the fourth equation is by the fact that all the x; is
uniformly distributed in E. And,

N-—1 N N-—1
EB")] =E [(Z S pixl (V) Te, =38 p; - 3= 8 a] <v“’>>Tey> Py
=1 =1

=1
, N N—-1
:E[(agﬂs@ me RNCIRTS oI lex)p;
=1 =1
N—
<<”s<f Z a(s >>2<N—1>Zpi>p;,
i=1 =1

where the second equation is by the induction. Therefore, we can get
Wit = W — nE[Vw (62
= af 1l — ¢/ (0*)EIA")]

, , )Y (N 1 ) (NN — 1)2
:aglep;_ng,(g(w)(al SOW 1) af PN -

K K
aét/+1)1KpJ—\rIa
and
W(t +1) W(t ) _ n]E[V E(e(t/))]22
! N71 !
= (ag) S pi—af )PN> py —nt'(0"))E[B™)]
=1
! N_l !
= (aét "N pi—af )pw) PN
=1
N-1 N
nt' (0) (a“ s py— ol (52N - 1) Zm) Py
i=1 =1
= ( e sz o p )pﬁ.
Therefore, by induction, we can conclude that for all ¢ > 2, v = agt)l KxK> Wg) =
ol pl,and W) = (aét) SN pi—alf )pN> p. Similarto (D.1), we have [ X W D&y ], =
[X/W(t)iN]Q =...= [X/W(t)iN]N_l, which implies that Sl(t) = Sét) =...= S](\?)_l. O

E Auxiliary Lemmas

In this section, we present some auxiliary lemmas. The following lemma states the properties of II;.

Lemma E.1. By the definition of IIy, it holds that IT¥ = I, II,II] = I, and 2521 Ik =
Irxk.

Proof of Lemma@] In this proof, the index ¢ larger than K represents ¢ — K. For IIj, only

[[Io];+1, = 1 for i € [K] and other elements are 0. We can get that for IIf, only [Ho]wk =1
for i € [K] and other elements are 0. By this observation, we can derive that IT = I and
Z,[le I} = 1 k. Also, we have TT] = TIX ™!, so we can get TT TT] = IT{ = Ig. O

Further, the following three lemmas show some properties of IT with transition probability p satisfying
O0<p<LlL
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Lemma E.2. Assume that K is odd. It holds that
1 8p(l —p)R
R
’[H i~ | <o <_K2 |

Proof of Lemma|E.2] TI has eigenvalues X, ..., A\ —1, where

with

) 27k 16p(1 — p) 8p(1 —p)
2
|/\k|:\/1—4p(1—p)sm ( >< 1-— 5 <1- 5

for k # 0, where the first inequality is by sin(27k/K) > sin(r/K) > 2/K. The eigendecomposi-

tion of each entry in Il can be written as

K-—1
1
iy = Y crijhs = Kot D i,
k=0 k#0

where ¢y i ; = —i=e®M TN S 2mUm DR = £ e2mi(i47=2)F/ K Then, we can get that
K-1 1
;5= cri A = z+ > ki
k=0 k+£0
Thus,
R 1 R
Mg — | = > ki
k+£0
< feri gl Ml
k+£0
R
8p(1 —p)
< (1- 20 S
k0
8p(1 —p)R
< exp <_(K2) .
where the second inequality is by the bound of the absolute values of the eigenvalues, and the last
inequality is by (1 — )% < e % forany 0 < ¢ < 1 and |cy; ;| = + forall k,i, ;. O

Lemma E.3. Assume that K is even. For the case that R is even,
[IT%], . = 0 forodd (j — i);

<_8p<1 )R

7 ) for even (j — ).

2
’[HRL‘,J‘ K < exp

For the case that R is odd,
2 8p(l —p)R .
’[HR]M_K < exp <_K2 for odd (j — 7);

[HR]M. = 0 foreven (j — i).

Proof of Lemma|E.3] II has eigenvalues Ao, ..., \x—1, where

xi ni 2k 2k
Ap = pe K 4 (1- p)e% = cos (;) +i(1 —2p)sin <[7T()
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with

) 2k 16p(1 — p) 8p(1 —p)
o2
|/\k|:\/1—4p(1—p)51n ( )S 1- 5 <1- TR

for k # 0, K/2, where the first inequality is by sin(27k/K) > sin(n/K) > 2/K. The eigendecom-
position of each entry in IT can be written as

K-1 1 (_1)i+j
(I ; = Z Chij Ak = Tz A0 + = Ar/2 + Z Chyij Ak
k=0 k#0,K/2

where ¢y, ; j = #e2ﬂi(i_1)k/K . \/%e2ﬂi(j_1)k/K = £e?m(i+3=2)k/K Then, we can get that

K-1 1 (_1)i+j

%5 = cri A = E/\g + T/\ﬁ/z + > i\
k=0 k#0,K /2
1 —1)iit+R
K + 7( )K + Z Ck,i,j)\kR
k£0,K /2

When ¢ + j + R is odd, it is easy to obtain that

1

_)\R K = i€2ﬂ'i(i+j72)t/K)\§% + 7(_1)i+j72627ri(i+j72)t/K(_)\t)R

Ct%j)‘ﬁ tTC K t+£
1 S L 1 L
_ 7627r1(z+]—2)t/K)\§% + (_1)z+_]+R . E62m(z+]_2)t/K)‘§
= ()7
which indicates that [TT7]; ; = 0.
When ¢ 4+ j + R is even,

2
’[HR]M - K‘ = Z Ck,i,j)\kR
k£0,K/2

< > feraglael®

k#£0,K/2

(1_81)(;(;]9))1% > lekigl

k#£0,K/2

< oxp (_Sp(l —p)R) ,

IN

K2

where the second inequality is by the bound of the absolute values of the eigenvalues, and the last
inequality is by (1 — )% < e forany 0 < ¢ < 1 and |cy; ;| = # forall k,i, ;. O

Lemma E4. ForITwith0 <p <1, N =w(p~ (1 —p)~!)and k € {2,..., N — 1}, it holds that

N—-1 N—-1
i=1 =1

where C), is a positive constant only depending on p.

+ G,
1,1

1,1

Proof of Lemma Without loss of generality, we assume % < p < 1. We observe that

N—-1 N-1 N—2
[Z HZHT] =el Y MM'e;=el > II' T e,
i=1 1,1 i=1 i=0
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i=1 i=1 =0

N-—-1 ) N-1 ) N-—-2 )
[Z HZ(HT)’“] =el Y I )'e;=e Y M T ) e.
1,1

Denote I'(N) = Z{\i_f IT'. We use induction to prove that
I'(N)11 > T(N);j+ (1—p)N 2 fori # j.

It can be easily obtained that for N = 2, I'(2);,; = I'(2); ; + 1 for any 7 # j. Suppose that the
induction hypothesis holds for I'(N — 1). Then, for I'(V), by the definition of I'(NV), we can get
I'(N) =II-T'(N — 1) 4+ I. Thus, based on the definition of II, we obtain that for i # j,

L(N)ij=p - T(N—=1)ij-1+ (1 =p) - TN = 1) 41
When |i — j| > 2, by induction, we have
L(N)ij=p - T(N=1)ij-1+ (1 =p) - T(N =1)ijn
<pON =111~ 1=p) )+ (L =p) (TN =111~ (1 -p)7)
=T(N—-1);, - (1-p~N3
<T(N—1)11 -1 -p)~N 2
When ¢ = j + 1, we have
L(N)ij=p-T(N—=1)ij-1+ (1 =p) - T(N =1)i 1
<p(C(N =111 = (1=p)" ) + (1 =p)D(N =114
=T(N-1)1—p(1-p~7?
<T(N—1)11—(1-p)~N 2
When i = j — 1, we have
L(N)ij=p-T(N—=1)ij-1+ (1 =p) - T(N =1)i 11
<PLN =11+ (1 =p)(TN =i — (1-p)V7?)
=T(N—-1)1; - (1—-p~N—2
Obviously, I'(N — 1);; < T(N);;asI’'(lV) =T(N — 1) + IIV—2. Therefore, we prove that
the induction hypothesis holds for I'(NV), which completes the induction. Thus, for all N > 2,
the diagonal element is the largest entry in T'(IN). We analyze this result from the perspective of

random walks. Given that IT* is the k-step transition matrix in the random walk task, the entry

I'(N);,; = 11162 IT' can be regarded as the expected number of visits to state j within N — 1 steps,
starting from state ¢. Since the largest entry in I'(V) is found at the diagonal, we can conclude that
the expected number of visits back to state ¢ within N — 1 steps, starting from state ¢, is the largest.
From Lemma|E.2]and [E.3] we know that for any i, j,

% < exp (_8]9(1 —p)R> e <_8p(1 —p)(R+ 1)) ‘

[IT7; 5 + [T 5 — 7e 72

Hence, we get that for any ¢, 7,

K? K?

HHR]lJ + [HR+1]1)1 _ [HR]i,j _ [HR—H]i,j’ < 2 [exp (_W) + exp (_ 8p(1 —p)(R+ 1)

Thus, for a constant integer Ng = w(p~ (1 — p)~!) and N > Ny, we can get for i # 7,
L(N)1,1 = T(N)ij > (1= )72 = cpo exp(=No),

where ¢, are constants related to p. In addition, we can get [I'(INV)1 ;, —T'(N)1,5,| < ¢po exp(—No)
forany ji # 1,72 # 1.

Next, we focus on TT(ITT)* with k = 1,2,..., N — 1. Denote T'y(k) = II(I1")*. Similar to the
analysis of induction above, we can use induction to prove that for i # j,

To(2k — 1)11 + To(2k)11 > Ta(2k — 1);; + T2(2k);; — (1 — p*)k.
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The proof can be directly extended from the proof for I'( V') above. Then, we use this result to prove
C2(D]11 + [T2(2)]11 > [T2(2k — )11 + [T2(2k)]11
for any k > 2. We also use induction to prove this. It is easily checked that [I's(1)]1 1 + [['2(2)]11 =
p*+ (1= p)* > 3p*(1 = p) +3p(L — p)° = [[2(3)]1.1 + [[2(4)]1,1. Suppose that [y (2k —
D]ia+ [F2(2k)1 = 22k + D]1g + [F2(2k + 2)]1,1. Then, by T'2(2k + 1) + T'2(2k + 2) =
(T2(2k — 1) + T'5(2k))(TIT)2, we can get
o2k + 1)11 + T2(2k + 2)11 = p*[T2(2k — 1) + T2(2k)]1.x 1
+2p(1 = p)[T2(2k — 1) + T2(2k)]11
+ (1= p)*[C2(2k — 1) + T2(2k)]1.3
<T9(2k —1)11 +T2(2k)1 1,

where the inequality is by the result demonstrated before. Therefore, we complete the induction and
get that for k > 1,

Io(1)110 +T2(2)1,1 —T2(2k+1)11 —T2(2k +2)1,1 > T2(1)11 + T2(2)1,1 —T2(3)11 — T2(4)11
= (p*+ (1 =p)*)(1=3p(1 - p)).
Since I'2(2)1,1 = 0, we obtain for k > 2,
To(1)1,1 — Ta(k)11 > (p° + (1 —p)*)(1 = 3p(1 — p)) := cp.

We provide an intuitive explanation from the perspective of random walks. TT(ITT)* represents first
taking a step according to the transition IT, followed by k steps according to the transition II . With
increasing k, the distribution of the possible state after £ + 1 steps is closer to uniform across all
states, regardless of the starting state chosen, which can also be shown by Lemma and- [E.3] Thus,
H(HT) e; will converge to a vector corresponding uniform distribution, and HH e; represents
the most sparse case with the largest value concentrating on the first entry.

Combining all the results obtained above, we can conclude that

[Jil Hi ) HT‘| - |f§ Hi X (HT)k]

=e/T(N) -Ty(l)e; — elTI‘(N) Ty(k)e

K
=T (N)11T2(1)11 + ZF )1,:02(1)in —T(N)11T2(k)11 — ZF(N)I,iF2(k)i,1
>T(N)11(T2(1)1,1 — F2(k)1,1) + QISI}SHK{F(N)M}U —Ta(1)11) - 21321)%@( )1t (1 —Ta(k)

=T2(1)11(T(N)11 — QISIlliSnK{F(N)l,i}) —T2(k)1,1 (T(N)1,1 — 22%{{11( )1,i})
+ 2gi§nK{F(N)1,¢} - 22@%{1“(1\7)1,1‘}
> (F2(1)1,1 = T2(k)1,1)(T(N)11 —Qgiglﬂ]({r( )1i}) + min {T'(N)1;} — max {T'(N)1;}

2<i<K 2<i<K
> cp ((1 — p)N"_2 — Cpo exp(—NO)) — ¢po exp(—No)

where C,, is a positive constant related to p. O

The following lemma shows the basic property of the positional embedding.
Lemma E.5. Assume that

; = |sin i sin 2im sin Mim !
pi= M+1) "\ 1) M\

for i € [M]. It holds that
MAL for §1 = 4y;
pz—'llpiz = { 2 . 1~ :

0 for iy # io.
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Proof of Lemma|E.5] When iy # i and i1 + iy are even, we have
M jirm o
T . 1 . 2
P;,Pi, = ;sm <M+ 1> sin <M—i— 1>
M .. ..
= Zsin Jam sin Jo2m
, M+1 M+1
7=0
1 in—1i i—i
. 01—, . iy — 2,
= ZZ [exp <I7TM+1]> +exp(—17TM+1j)

j=0
—ex iwil tia —ex —iﬂ'il tia,
PUT 417 P+ 1!

1 exp (—im(iy —i2)) — 1

foew(imhnt) -1t e (Sirkt) 1
1 exp (im(iy +i2)) =1 1 exp(—im(iy +12)) — 1

4 exp (171'1]\1;1%) -1 4 exp (—171’]\1/[":3) -1

_ 1 exp(in(in —iz)) — 1

=0,

where the third equation is by sin(z) = W, and the last inequality is by exp(irk) = 1
for even k. When i1 # i and i1 + iy are odd, we have

M . .
T . Jjim . Jiom
D, Dir = E SIII<M+1>SIII<M+1>

j=1
= sin (2 ) sin (22T
T \M 1 M+1

M . .
1 . .
= 1 Z [exp (iﬂ;\} +Zij> + exp (—iﬂ-é\l/j Jrlij)

—ex i7ri1+i2 ] —ex fiﬂil+i2 ]
p M+ 1] p M+ 1]
1 exp(im(i1 —d2)) —1 1 exp(—im(in —iz)) — 1
4 exp (177—%1”{‘) -1 4 exp (—i7r ’1\1/;:%) -1
1 exp(im(in +142)) =1 1 exp(—im(in +i2)) — 1

4 exp (171'1]\14':’%) -1 4 exp (—177’]\1/['?{’) -1

1 1 1
=-3 — + —
2 exp (i7r 3\14__&) -1 exp (—i7r Zﬁf__ﬁf) -1
1 1 1
+ - +

exp (i7r lﬁf-ﬁ) —1 exp (—177—’]\1/;:%) -1
= O,

where the third equation is by sin(z) = w, the fifth inequality is by exp(irk) = —1

for odd k, and the last equation is by (;)71 + exp(jx)ﬂ = —1. When i1 = i, we have

exp
M iy o
T . 1 . 2
D;,\Di, = jEZl sin <M+ 1) sin <M—|— 1>
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M .. ..
:Zsin Jhm sin Jiam
= M+1 M+1
1 in—i i —1i
. 11— 19, . 11— 12,
:4§[GXP(I7TM+1J>+eXp(_mM+1]>
—ex iwi1+i2' —ex —iwil—'—iz'
P\ 1/ p M1’

M . . . .
M+1 1 A .11t
= 5 —4;)[exp<17rM+lj + exp —17TM+1]
1

M+1 1 exp(in(ip +1i2)) — 1 exp (—im(iy +142)) — 1

2 4 exp (17r—11\14':’f) -1 4 exp (—1%%[‘1%) -1
_ M+1
= 5

where the third equation is by sin(x) = w, and the last inequality is by exp(irk) = 1

for even k. O

F Additional Experiments

F.1 Additional Experiments on Random/Deterministic Walks

In this subsection, we provide additional experiments on synthetic data with (K, N) = (20, 101).
We consider the transformer model introduced in Section 2] with the length of the position embedding
M = 1000. To train the model, we utilize gradient descent starting with zero initialization, where
the learning rate 17 = 1 and the constant € in the log-loss is set as € = 0.1. And, we run the gradient
descent algorithm for T = 50 training epochs. Figure [8]and Figure [9]illustrate the experiments for
p = 0.5 and p = 1 respectively. These experimental results match Theorem [3.1]and Theorem[4.1]
which also strongly supports our theoretical results.

Token Seletion Token Seletion

Position Positon.

(a) Accuracy (b) Visualization of v (c) The average attention (d) Part of the attention

Figure 8: The results of the experiment for p = 0.5 with (K, N) = (20, 101): (a) is the test accuracy;
(b) is the visualization of v(ID), (c) and (d) present the average attention of the test data with x-axis
representing the position of the token and y-axis representing the attention score.

F.2 Additional Experiments on the Question Answering Tasks in Section [6]

In this section, we conduct some additional experiments for Task 1 and Task 2 discussed in Section [6]
We conduct some additional experiments extending the one-layer transformer model to a more
complicated model by adding a fully connected layer with ReL.U activation to the transformer model.
The new model has the form

fo(X) = A -ReLU (VXSoftmax (EZT W%N» : (E1)

where A € REX™ vV ¢ Rm*E W ¢ REHM)X(K+M) are the trainable parameter matrices,
and m is the number of neurons in the fully connected layer. For Task 1 and Task 2, the length of
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Figure 9: The results of the experiment for p = 1 with K = 20, N = 101. (a) is the prediction
accuracy with z-axis representing the iteration and y-axis representing the accuracy. (b) is the
visualization of V. (c) is the average attention of the test data with x-axis representing the position of
the token and y-axis representing the attention score.

the vocabulary K and the length of each input sequence N are set as (K, N) = (19,17), (19, 19)
respectively. In addition, we set the positional embedding M = 1000 and the number of neurons

m = 19. To train the model, we consider the Gaussian random initialization AE?), Vigo), Wi(jo) ~
N(0,02) with o = 0.01, and use gradient descent with learning rate 7 = 0.1. The constant € in the
log-loss is set as ¢ = 0.1. Both experiments are conducted on 1024 training data and 1024 test data.

Here, most of the settings remain the same as in the previous experiments in Section [f]

Accuracy KLDivergence Accuracy KL-Divergence
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(a) Accuracy (b) KL-Divergence (c) Accuracy (d) KL-Divergence

Figure 10: The results of the experiment conducted using a more complicated transformer for Task
1 and Task 2: (a) and (b) correspond to the experiment for Task 1; (c) and (d) correspond to the
experiment for Task 2.

Figure [T0] shows the experiment results using the more complicated transformer in (FI) to learn
Task 1 and Task 2. In Figure[I0(a)|and Figure we present the test accuracy achieved by the
transformer model in learning Task 1 and Task 2 respectively. In Figure[T0(b)|and Figure[T0(d)] we
first normalize the output of the trained transformer model to get a K -dimensional vector, representing
the prediction distribution of K words. Then, we report the KL-divergence between this prediction
distribution and the true distribution of y|x1, 2, ...,£y—1. The experiment results show a clear
difference between the performances of the transformer model in the two tasks. In Task 1, the trained
transformer model can successfully approach the optimal accuracy (100%) within 100 iterations.
However, in Task 2, the test accuracy always remains around 50%, which is the accuracy of a random
guess.

Despite using a more complicated transformer model with an additional feedforward layer of non-
linearities compared to the one considered in our theoretical analysis and previous experiments, the
experimental results are still similar to those reported in Section[6} These results demonstrate that
more complex transformer models may still struggle with the relatively "simple’ Task 2 but excel
at the relatively ’difficult’ Task 1. This indicates that our findings can be applied to cases involving
additional nonlinearities, implying their applicability to more complex and general conditions.

F.3 Visualizations of the value matrix and Softmax scores corresponding to Figure 6]

In this section, we present visualizations of the value matrix and softmax scores corresponding to
Figure[6]
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Figure 11: Visualizations of the trained value matrix and the softmax scores corresponding to

Figure[6(a) and Figure [6(b)]
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Figure 12: Visualizations of the value matrix corresponding to Figure [6(c)|and Figure[6(d)|at 100,
400, 700, and 1000 training steps, respectively.

Figure [T1] visualizes the trained value matrix and the softmax scores attached to all tokens, corre-
sponding to Figure and Figure It shows that V' can recover the transition matrix II", and
the softmax score attached to the direct parent token is the largest and close to 1. These findings
demonstrate that our positive results for learning random walks in Theorem [3.Tare fairly robust to
random initialization.

Figure and Figuredisplay the value matrix and the weighted average token X - S(X "Wz )
corresponding to Figure[6(c)|and Figure [6(d)]at 100, 400, 700, and 1000 training steps, respectively.
In Figure[I3] the weighted average token embedding is calculated based on one sequence X as an
example, while the variance of each dimension of the weighted average token is calculated across
1000 sequences. We can observe that when considering the case for p = 1 with random initialization,
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Figure 13: Visualizations of the weighted average token X - & (f TWzy) corresponding to Fig-
ure[6(c) and Figure[6(d)]at 100, 400, 700, and 1000 training steps, respectively.

the value matrix and the weighted average token embedding remain approximately proportional to
the all-one matrix and the all-one vector within 700 iterations, aligning with the results stated in
Theorem 4.1. Additionally, the variances of all dimensions are close to 0, which shows that this result
is general for different sequences. However, after 1000 iterations, V' is no longer proportional to an
all-one matrix, and the softmax score for one arbitrary token becomes much larger than the others. As
discussed in Section[d] the failure case for p = 0, 1 is indeed due to an unbreakable symmetry caused
by zero initialization. The random initialization may break this symmetry, enabling the transformer
to successfully learn the optimal predictor.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: This paper mainly focus on theory, and our main results are stated in the
abstract and introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have discussed limitations on the studies of the impact of random initial-
ization and the relatively simple setting of one-layer transformers.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We have clearly stated all theoretical assumptions in the problem setting
section and in the formal theorems.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experiments in this paper are mainly to back up the theoretical results and are
not too complicated. We have provided detailed descriptions on the experimental setups.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: Experiments in this paper are on synthetic data and are relatively simple. The
purpose is mainly to back up our theory.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experiments are relatively simple and the purpose is mainly to back up
our theory. We have clearly explained all the experiment setups.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The experiments in this paper are to verify our theory, and there is no need to
analyze statistical significance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The experiments in this paper are very simple and are mainly to verify our
theory. There is no need to specify compute resources.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We confirm that this research conforms with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper mainly focuses on theoretical analyses on simple one-layer trans-
former models. We do not see any potential negative social impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper mainly focuses on theoretical analyses on simple one-layer trans-
former models. We do not see any potential risk for misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: This paper mainly focuses on theoretical analyses on simple one-layer trans-

former models. We have provided appropriate citations and there is no other relevant assets
to credit.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:
Justification: We have only used LLMs for editing purposes.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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