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ABSTRACT

Adversarial training has been empirically proven to be one of the most effective
and reliable defense methods against adversarial attacks. However, the majority of
existing studies are focused on balanced datasets, where each class has a similar
amount of training examples. Research on adversarial training with imbalanced
training datasets is rather limited. As the initial effort to investigate this problem,
we reveal the facts that adversarially trained models present two distinguished
behaviors from naturally trained models in imbalanced datasets: (1) Compared to
natural training, adversarially trained models can suffer much worse performance
on under-represented classes, when the training dataset is extremely imbalanced.
(2) Traditional reweighting strategies may lose efficacy to deal with the imbalance
issue for adversarial training. For example, upweighting under-represented classes
will drastically hurt the model’s performance on well-represented classes, and as a
result, finding an optimal reweighting value can be tremendously challenging. In
this paper, to further understand our observations, we theoretically show that the
poor data separability is one key reason causing this strong tension between under-
represented and well-represented classes. Motivated by this finding, we propose
Separable Reweighted Adversarial Training (SRAT) to facilitate adversarial training
under imbalanced scenarios, by learning more separable features for different
classes. Extensive experiments on various datasets verify the effectiveness of the
proposed framework.

1 INTRODUCTION

The existence of adversarial samples (Szegedy et al., 2013; Goodfellow et al., 2014) has risen huge
concerns on applying deep neural network (DNN) models into security-critical applications, such
as autonomous driving (Chen et al., 2015) and video surveillance systems (Kurakin et al., 2016).
As countermeasures against adversarial attacks, adversarial training (Madry et al., 2017; Zhang
et al., 2019; Wang et al., 2019) has been empirically proven to be one of the most effective and
reliable defense methods. In general, it can be formulated to minimize the model’s average error
on adversarially perturbed input examples (Madry et al., 2017). Although promising to improve
the model’s robustness, most existing adversarial training methods assume that the number of
training examples from each class is equally distributed. However, datasets collected from real-world
applications typically have imbalanced distribution (Everingham et al., 2010; Lin et al., 2014). Hence,
it is natural to ask: What is the behavior of adversarial training under imbalanced scenarios? Can
we directly apply existing imbalanced learning strategies in natural training to tackle the imbalance
issue for adversarial training? Recent studies find that adversarial training usually presents distinct
properties from natural training. For example, compared to natural training, adversarially trained
models suffer more from the overfitting issue (Schmidt et al., 2018), and they tend to present strong
class-wise performance disparities, even if the training examples are uniformly distributed over
different classes (Xu et al., 2020a). Imagine that if the training data distribution is highly imbalanced,
these properties of adversarial training can be greatly exaggerated and make it extremely difficult to
be applied in practice. Therefore, it is necessary but challenging to answer aforementioned questions.

As the initial effort to study the imbalanced problem in adversarial training, in this work, we
first investigate the performance of existing adversarial training under imbalanced settings. As a
preliminary study shown in Section 2.1, we apply both natural training and PGD adversarial train-
ing (Madry et al., 2017) on multiple imbalanced training datasets constructed from CIFAR10 training
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(a) Natural Training Standard Acc. (b) Adv. Training Standard Acc. (c) Adv. Training Robust Acc.

Figure 1: Class-wise performance of natural & adversarial training using an imbalanced CIFAR10.

dataset (Krizhevsky et al., 2009) and evaluate trained models’ performance on class-balanced test
dataset. From the preliminary results, we observe that, compared to naturally trained models, adver-
sarially trained models always present very low standard & robust accuracy1 on under-represented
classes. This observation suggests that adversarial training is more sensitive to imbalanced data
distribution than natural training. Thus, when applying adversarial training in practice, imbalance
learning strategies should always be considered for help.

As a result, we explore potential solutions which can handle the imbalance issue for adversarial
training. In this work, we focus on studying the behavior of the reweighting strategy (He & Ma,
2013) and leave other strategies such as resampling (Estabrooks et al., 2004) for one future work. In
Section 2.2, we apply the reweighting strategy to adversarial training with varied weights assigning to
one under-represented class and evaluate trained models’ performance. From the results, we observe
that, in adversarial training, increasing weights for an under-represented class can substantially
improve the standard & robust accuracy on this class, but drastically hurt the model’s performance
on the well-represented class. This finding indicates that the performance of adversarially trained
models is very sensitive to the reweighting manipulations and it could be very hard to figure out an
eligible reweighting strategy which is optimal for all classes.

It is also worth noting that, in natural training, we find that upweighting the under-represented
class increases model’s standard accuracy on this class but only slightly hurts the accuracy on the
well-represented class, even when adopting a large weight for the under-represent class. To further
investigate the possible reasons leading to different behaviors of the reweighing strategy in natural
and adversarial training, we visualize their learned features (in Figure 3), and observe that features
learned by the adversarially trained model of different classes tend to mix together while they are
well separated for the naturally trained model. This observation motivates us to theoretically show
that when the given data distribution has poor data separability, upweighting under-represented
classes will hurt the model’s performance on well-represented classes. Motivated by our theoretical
understanding, we propose a novel framework Separable Reweighted Adversarial Training (SRAT) to
facilitate the reweighting strategy in imbalanced adversarial training by enhancing the separability of
learned features. Through extensive experiments, we validate the effectiveness of SRAT.

2 PRELIMINARY STUDY

2.1 THE BEHAVIOR OF ADVERSARIAL TRAINING

In this subsection, we conduct preliminary studies to examine the performance of PGD adversarial
training (Madry et al., 2017). Following previous works (Cui et al., 2019; Cao et al., 2019), we
construct an imbalanced CIFAR10 (Krizhevsky et al., 2009) training dataset, where each of the first 5
classes (a.k.a. well-represented classes) has 5,000 training examples and each of the last 5 classes
(a.k.a. under-represented classes) has 50 training examples.

Figure 1 shows the performance of naturally and adversarially trained models using a ResNet18 (He
et al., 2016) architecture. From the figure, we can observe that, compared with natural training, PGD
adversarial training will result in a larger performance gap between well-represented classes and
under-represented classes. For example, in natural training, the ratio between the average standard

1In this work, we denote standard accuracy as model’s accuracy on the input samples without perturbations
and robust accuracy as model’s accuracy on the input samples which are adversarially perturbed. Without clear
clarification, we consider the perturbation is constrained by l∞-norm 8/255.
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accuracy of well-represented classes (brown) and under-represented classes (violet) is about 2:1, while
in adversarial training, this ratio expands to 16:1. Moreover, for adversarial training, it has extremely
poor performance on under-represented classes. There are 3 out of the 5 under-represented classes
with 0% standard & robust accuracy. As a conclusion, the performance of adversarial training is easier
to be affected by imbalanced distribution than natural training and suffers more on under-represented
classes. More results are reported in Appendix A.1, which further support our findings.

2.2 THE REWEIGHTING STRATEGY IN NATURAL TRAINING V.S. IN ADVERSARIAL TRAINING

The preliminary study in Section 2.1 demonstrates that it is highly demanding to adjust the original
adversarial training methods to accommodate imbalanced data distribution. Next, we investigate
the effectiveness of adopting the reweighting strategy (He & Ma, 2013) in adversarial training. Our
experiments are conducted under a binary classification setting, where the training dataset contains
two classes that are randomly selected from CIFAR10 dataset, with each class having 5,000 and
50 training examples respectively. Based on this training dataset, we arrange multiple trails of
(reweighted) natural training and (reweighted) adversarial training, with the weight ratio between the
under-represented class and well-represented class ranging from 1:1 to 200:1.

(a) Natural Training Standard Acc. (b) Adv. Training Standard Acc. (c) Adv. Training Robust Acc.

Figure 2: Class-wise performance of reweighted natural & adversarial training in binary classification.

Figure 2 shows the experimental results with training data sampled from the classes “cat” and “horse”.
As demonstrated in Figure 2, increasing the weight for the under-represented class (horse) will
drastically increase the model’s performance on this class, while also immensely decreasing the
performance on the well-represented class (cat). For example, when increasing the weight ratio from
1:1 to 150:1, the standard accuracy of the under-represented class is improved from 0% to∼ 60% and
its robust accuracy from 0% to ∼ 50%. However, the standard accuracy on the well-represented class
drops from 100% to 60%, and its robust accuracy drops from 100% to 50%. These results illustrate
that adversarial training’s performance can be significantly affected by the reweighting strategy. As
a result, the reweighting strategy in this setting can hardly help improve the overall performance
no matter which weight ratio is chosen, because the model’s performance always presents a strong
tension between these two classes. More experiments using different binary imbalanced datasets are
reported in Appendix A.2, where we have similar observations.

3 THEORETICAL ANALYSIS

(a) Natural Training. (b) Adversarial Training.

Figure 3: t-SNE visualization of learned features.

In Section 2.2, we observe that in natu-
ral training, the reweighting strategy can
only make a small impact on the two
classes’ performance. This phenomenon
has been extensively studied by recent
works (Byrd & Lipton, 2019; Xu et al.,
2021), where they find that a linear clas-
sifier optimized by SGD on a linearly
separable data will converge to the solu-
tion of the hard-margin support vector
machine (Noble, 2006). In other words,
as long as the data can be well separated,
reweighting will not make huge influ-
ence on the finally trained models.
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Inspired by their conclusions, we hypothesize that, as the adversarially trained models separate the
data poorly, their performance is highly sensitive to the reweighting strategy. As a direct validation of
our hypothesis, in Figure 3, we visualize the learned (penultimate layer) features of the imbalanced
training examples used in the binary classification problem in Section 2.2. We find that adversarially
trained models do present obviously poorer separability on the learned features. Next, we theoretically
analyze the impact of reweighting on linear models which are optimized under poorly separable data
and provide all detailed proof in Appendix A.3.

Binary Classification Problem. To construct the theoretical study, we focus on a binary classification
problem, with a Gaussian mixture distribution D which is defined as:

y ∼ {−1,+1}, x ∼
{
N (µ, σ2I), if y = +1

N (−µ, σ2I), if y = −1 and µ = (

dim=d︷ ︸︸ ︷
η, ..., η), (1)

where the two classes’ centers (±µ ∈ Rd) with each dimension have mean value ±η (η > 0) and
variance σ2. Formally, we define the data separability as S = η/σ2. Intuitively, when S is larger,
it suggests that two classes are well separated. Previous work (Byrd & Lipton, 2019) also closely
studied this term to describe data separability.

Besides, we assume the imbalanced training dataset satisfying the condition Pr.(y = +1) = K ·
Pr.(y = −1) and K > 1, which indicates the imbalance ratio between two classes. During test, we
assume two classes have the equal probability to appear. Under the data distribution D, we will
discuss the performance of linear classifiers f(x) = sign(wTx− b) where w and b are the weight
and bias terms of the model f . If a reweighting strategy is involved, we define the model upweights
the under-represented class “-1” by ρ.

Lemma 3.1 Under the data distribution D as defined in Eq. (1), with an imbalanced ratio K and a
reweight ratio ρ, the optimal classifier which minimizes the (reweighted) empirical risk:

f∗ = argmin
f

(
Pr.(f(x) ̸=y|y=−1) · Pr.(y=−1) · ρ+ Pr.(f(x) ̸=y|y=+1) · Pr.(y=+1)

)
(2)

has the solution: w = 1 and b = 1
2 log(

ρ
K )dσ

2

η = 1
2 log(

ρ
K ) d

S .

Lemma 3.1 indicates that the final optimized classifier has a weight vector equal to 1 and its bias term
b only depends on K, ρ and the data separability S. In the following, we first focus on one special
setting when ρ = 1, which is the original ERM model without reweighting. Specifically, we aim to
compare the behavior of linear models when they can poorly separate data (like adversarial trained
models) or they can well separate data (like naturally trained models).

Theorem 3.1 Under two data distributions (x(1), y(1)) ∈ D1 and (x(2), y(2)) ∈ D2 with different
separabilities S1 > S2, let f∗

1 and f∗
2 be the optimal non-reweighted classifiers (ρ = 1) under D1

and D2, respectively. Given the imbalance ratio K is large enough, we have:

Pr.(f∗
1 (x

(1)) ̸= y(1)|y(1) = −1)− Pr.(f∗
1 (x

(1)) ̸= y(1)|y(1) = +1)

< Pr.(f∗
2 (x

(2)) ̸= y(2)|y(2) = −1)− Pr.(f∗
2 (x

(2)) ̸= y(2)|y(2) = +1).
(3)

Intuitively, Theorem 3.1 suggests that when the data separability S is low (such as D2), the optimized
classifier (without reweighting) can intrinsically have a larger error difference between the under-
represented class “-1” and the well-represented class “+1”. Similar to the observation in Section 2.1
and Figure 3, adversarially trained models present a weak ability to separate data, and they also
present a strong performance gap between the well-represented class and under-represented class.
Conclusively, Theorem 3.1 indicates that the poor ability to separate the training data can be one
important reason which leads to the strong performance gap of adversarially trained models.

Next, we consider the case when the reweighting strategy is applied. In particular, we compare the
impact of upweighting the under-represented class on the performance of well-represented class.

Theorem 3.2 Under two data distributions (x(1), y(1)) ∈ D1 and (x(2), y(2)) ∈ D2 with different
separabilities S1 > S2, let f∗

1 and f∗
2 be the optimal non-reweighted classifiers (ρ = 1) under D1
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and D2, respectively, and let f ′
1
∗ and f ′

2
∗ be the optimal reweighted classifiers under D1 and D2

given the optimal reweighting ratio (ρ = K). Given the imbalance ratio K is large enough, we have:

Pr.(f ′
1
∗
(x(1)) ̸= y(1)|y(1) = +1)− Pr.(f∗

1 (x
(1)) ̸= y(1)|y(1) = +1)

< Pr.(f ′
2
∗
(x(2)) ̸= y(2)|y(2) = +1)− Pr.(f∗

2 (x
(2)) ̸= y(2)|y(2) = +1).

(4)

As Theorem 3.2 shows, when the data distribution has poorer data separability (such asD2), upweight-
ing the under-represented class can cause greater hurt on the performance of the well-represented
class. It is also consistent with our empirical findings about adversarial training models. Since the ad-
versarially trained models poorly separate the data (Figure 3), upweighting the under-represented class
always drastically decreases the performance of the well-represented class (Section 2.2). Through the
discussions in both Theorem 3.1 and Theorem 3.2, we conclude that the poor separability can be one
important reason which makes adversarial training and its reweighted variants extremely difficult to
achieve good performance under imbalance data distribution. Therefore, in the next section, we will
explore potential solutions which can facilitate the reweighting strategy in adversarial training.

4 SEPARABLE REWEIGHTED ADVERSARIAL TRAINING (SRAT)

The observations from both preliminary study and theoretical understandings indicate that more sepa-
rable data will advance the reweighting strategy in adversarial training under imbalanced scenarios.
Thus, in this section, we present a framework, Separable Reweighted Adversarial Training (SRAT),
which enables the effectiveness of the reweighting strategy in adversarial training under imbalanced
scenarios by increasing the separability in the learned latent feature space.

4.1 REWEIGHTED ADVERSARIAL TRAINING

Given an input example (x, y), adversarial training (Madry et al., 2017) aims to obtain a robust model
fθ that can make the same prediction y for an adversarial example x′, generated by applying an
adversarially perturbation on x. The adversarial perturbations are typically bounded by a small value
ϵ under Lp-norm, i.e., ∥x′ − x∥p ≤ ϵ.

As indicated in Section 2.1, adversarial training cannot be applied in imbalanced scenarios directly, as
it presents very low performance on under-represented classes. To tackle this problem, a natural idea
is to integrate existing imbalanced learning strategies proposed in natural training, such as reweighting,
into adversarial training to improve the trained model’s performance on those under-represented
classes. Hence, the reweighted adversarial training can be defined as

min
θ

1

n

n∑
i=1

max
∥x′

i−xi∥p≤ϵ
wiL(fθ(x′

i), yi), (5)

where wi is a weight value assigned for each input sample (xi, yi) based on the example size of
the class (xi, yi) belongs to or some properties of (xi, yi). In most existing adversarial training
methods (Madry et al., 2017; Zhang et al., 2019; Wang et al., 2019), the cross entropy (CE) loss is
adopted as the loss function L(·, ·). However, the CE loss could be suboptimal in imbalanced settings
and some new loss functions designed for imbalanced learning specifically, such as Focal loss (Lin
et al., 2017) and LDAM loss (Cao et al., 2019), have been proven their superiority in natural training.
Hence, besides CE loss, Focal loss and LDAM loss can also be adopted as the loss function L(·, ·) in
Eq. (5).

4.2 INCREASING FEATURE SEPARABILITY

Our preliminary study indicates that only reweighted adversarial training cannot work well under
imbalanced scenarios, and the reweighting strategy in adversarial training behaves very differently
from natural training. Hence, in order to facilitate the reweighting strategy in adversarial training
under imbalanced scenarios, inspired by our theoretical analysis, we equip a feature separation loss
with our SRAT method to enforce the learned feature space as separable as possible. More specifically,
the goal of our feature separation loss is to make the learned features of examples from the same class
well clustered while from different classes well separated. Hence, adjusting the decision boundary via
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the reweighting strategy to fit under-represented classes’ examples more will not hurt well-represented
classes drastically. The feature separation loss is formally defined as:

Lsep(x
′
i) = −

1

|P (i)|
∑

p∈P (i)

log
exp(z′i · z′p/τ)∑

a∈A(i) exp(z
′
i · z′a/τ)

, (6)

where z′i is the feature representation of the adversarial example x′
i of xi, τ ∈ R+ is a scalar

temperature parameter, P (i) denotes the set of input examples belonging to the same class with xi

and A(i) indicates the set of all input examples except x′
i. Our proposed feature separation loss

Lsep(·) is inspired by the supervised contrastive loss proposed in (Khosla et al., 2020). The main
difference is, instead of applying data augmentation techniques to generate two different views of
each data example and feeding the model with augmented data examples, our feature separation loss
directly takes the adversarial example x′

i of each data example xi as input.

4.3 TRAINING SCHEDULE

By combining the feature separation loss with the reweighted adversarial training, the final object
function for Separable Reweighted Adversarial Training (SRAT) is defined as:

min
θ

1

n

n∑
i=1

max
∥x′

i−xi∥p≤ϵ
wiL(fθ(x′

i), yi) + λLsep(x
′
i), (7)

where λ is a hyper-parameter to balance the contributions of two terms.

In practice, in order to better take advantage of the reweighting strategy in our SRAT method, we
adopt a deferred reweighting training schedule (Cao et al., 2019). Specifically, before annealing the
learning rate, SRAT first trains a model without introducing the reweighting strategy and then applies
reweighting into model training process with a smaller learning rate. Since SRAT enables to learn
more separable feature space, comparing with applying the reweighting strategy from the beginning
of training, this deferred reweighting training schedule enables the reweighting strategy to obtain
more benefits from our SRAT method. The training algorithm for SRAT is shown in Appendix A.4.

5 EXPERIMENT

In this section, we perform experiments to validate the effectiveness of our SRAT method. We first
compare SRAT with several representative imbalanced learning methods in adversarial training under
various imbalanced scenarios and then conduct ablation study to understand SRAT more deeply.

5.1 EXPERIMENTAL SETTINGS

Datasets. We conduct experiments on multiple imbalanced training datasets artificially created from
three benchmark image datasets CIFAR10, CIFAR100 (Krizhevsky et al., 2009) and SVHN (Netzer
et al., 2011) with diverse imbalanced distributions. Specifically, we consider two different imbalance
types: Exponential (Exp) imbalance (Cui et al., 2019) and Step imbalance (Buda et al., 2018). For Exp
imbalance, the number of training examples of each class will be reduced according to an exponential
function n = niτ

i, where i is the class index, ni is the number of training examples in the original
training dataset for class i and τ ∈ (0, 1). We categorize half classes with most frequent example
sizes in the imbalanced training dataset as well-represented classes and the remaining half classes as
under-represented classes. For Step imbalance, we follow the similar process adopted in Section 2.1.
Moreover, we denote imbalance ratio K as the ratio between training example sizes of the most
frequent and least frequent class. We construct different imbalanced datasets “Step-10”, “Step-
100”, “Exp-10” and “Exp-100”, by adopting different imbalanced types (Step or Exp) with different
imbalanced ratios (K = 10 or K = 100) to train models, and evaluate model’s performance on the
original uniformly distributed test datasets of CIFAR10, CIFAR100 and SVHN correspondingly.
More detailed information about imbalanced training sets can be found in Appendix A.5.

Baseline methods. We implement several representative and state-of-the-art imbalanced learning
methods (or their combinations) into adversarial training as baseline methods. These methods
include: (1) Focal loss (Focal); (2) LDAM loss (LDAM); (3) Class-balanced reweighting (CB-
Reweight) (Cui et al., 2019), where each example is reweighted proportionally by the inverse of
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Table 1: Performance comparison on the CIFAR10 Step-10 dataset.

Metric Standard Accuracy Robust Accuracy
Method Overall Under Overall Under

CE 63.26 ± 0.59 40.62 ± 1.10 36.96 ± 0.36 14.23 ± 0.83
Focal 63.57 ± 0.92 41.17 ± 2.07 36.89 ± 0.36 14.25 ± 0.97

LDAM 57.08 ± 1.16 31.09 ± 2.20 37.18 ± 0.56 12.44 ± 0.93
CB-Reweight 73.30 ± 0.30 74.80 ± 0.88 41.34 ± 0.42 42.15 ± 1.42

CB-Focal 73.42 ± 0.29 74.35 ± 1.39 41.34 ± 0.23 41.80 ± 1.24
DRCB-CE 75.89 ± 0.23 70.55 ± 1.10 39.93 ± 0.24 33.33 ± 1.42

DRCB-Focal 74.61 ± 0.35 67.06 ± 1.37 37.91 ± 0.24 29.50 ± 1.31
DRCB-LDAM 72.95 ± 0.08 75.42 ± 1.83 45.23 ± 0.19 44.98 ± 1.90

SRAT-CE 76.69 ± 0.33 73.07 ± 0.63 41.02 ± 0.49 36.57 ± 0.92
SRAT-Focal 75.41 ± 0.69 74.91 ± 0.70 42.05 ± 0.52 41.28 ± 0.82

SRAT-LDAM 73.99 ± 0.52 76.63 ± 0.39 45.60 ± 0.18 45.95 ± 0.51

the effective number2 of its class; (4) Class-balanced Focal loss (CB-Focal) (Cui et al., 2019),
a combination of Class-balanced method and Focal loss, where well-classified examples will be
downweighted while hard-classified examples will be upweighted controlled by their corresponding
effective number; (5) deferred reweighted CE loss (DRCB-CE), where a deferred reweighting training
schedule is applied based on the CE loss; (6) deferred reweighted Class-balanced Focal loss (DRCB-
Focal), where a deferred reweighting training schedule is applied based on the CB-Focal loss; (7)
deferred reweighted Class-balanced LDAM loss (DRCB-LDAM) (Cao et al., 2019), where a deferred
reweighting training schedule is applied based on the CB-LDAM loss. In addition, we also include
the original PGD adversarial training method using cross entropy loss (CE) in our experiments.

Our proposed methods. We evaluate three variants of our proposed SRAT method3 with different
implementations of the prediction loss L(·, ·) in Eq. (5), i.e., CE loss, Focal loss and LDAM loss.
The variant utilizing CE loss is denoted as SRAT-CE, and, similarly, other two variants are denoted as
SRAT-Focal and SRAT-LDAM, respectively. For all these three variants, Class-balanced method (Cui
et al., 2019) is adopted to set weight values within the deferred reweighting training schedule.

Implementation details. All aforementioned methods are implemented using a Pytorch library
DeepRobust (Li et al., 2020). For CIFAR10/CIFAR100 based datasets, the adversarial examples used
in training are calculated by PGD-10, with a perturbation budget ϵ = 8/255 and step size γ = 2/255;
in evaluation, we report robust accuracy under l∞-norm 8/255 attacks generated by PGD-20 on
Resnet-18 (He et al., 2016) models. For SVHN based datasets, the settings are similar, excepts we set
step size γ to 1/255 in both training and evaluation, as suggested in (Wu et al., 2020). We set the total
training epochs to 200 and the initial learning rate to 0.1, and decay the learning rate at epoch 160 and
180 with the ratio 0.01. The deferred reweighting strategy will be applied starting from epoch 160.

5.2 PERFORMANCE COMPARISON

Table 1 and Table 2 show the performance comparison on two different imbalanced CIFAR10 datasets.
In these two tables, we use bold values to denote the highest accuracy among all methods and use
the underline values to indicate our SRAT variants which achieve the highest accuracy among their
corresponding baseline methods utilizing the same loss function for making predictions. Due to the
limited space, we report the performance comparison on other imbalanced datasets created from
CIFAR10, CIFAR100 and SVHN datasets in Appendix A.6.

From Table 1 and Table 2, we can make the following observations. First, compared to baseline
methods, our SRAT method obtains improved performance in terms of both overall standard &
robust accuracy under almost all imbalanced settings. More importantly, SRAT makes significant
improvements on those under-represented classes, especially under the extremely imbalanced settings.
For the CIFAR10 Step-100 dataset, our SRAT-Focal method improves the standard accuracy on
under-represented classes from 21.81% achieved by the best baseline method utilizing Focal loss to
51.83% and robust accuracy from 3.24% to 15.89%. These results demonstrate that our SRAT method
is able to obtain more robustness under imbalanced settings. Second, the performance gap among

2The effective number is defined as the volume of examples and can be calculated by (1− βni)/(1− β),
where β ∈ [0, 1) is a hyperparameter and ni denotes the number of examples of class i.

3The implementations can be found via https://github.com/anonymous2share/SRAT.
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Table 2: Performance comparison on the CIFAR10 Step-100 dataset.

Metric Standard Accuracy Robust Accuracy
Method Overall Under Overall Under

CE 47.29 ± 0.32 9.03 ± 0.99 30.39 ± 0.24 1.62 ± 0.41
Focal 47.36 ± 0.19 9.03 ± 0.52 30.12 ± 0.31 1.45 ± 0.12

LDAM 42.49 ± 0.62 0.85 ± 0.46 30.80 ± 0.31 0.05 ± 0.06
CB-Reweight 37.68 ± 1.18 19.64 ± 1.82 25.58 ± 0.62 10.33 ± 0.82

CB-Focal 15.44 ± 3.85 0.00 ± 0.00 14.46 ± 3.16 0.00 ± 0.00
DRCB-CE 53.40 ± 1.20 22.86 ± 3.03 28.31 ± 0.59 3.35 ± 0.56

DRCB-Focal 52.75 ± 0.96 21.81 ± 2.27 27.78 ± 0.49 3.24 ± 0.57
DRCB-LDAM 61.60 ± 0.44 50.69 ± 2.27 31.37 ± 0.45 16.25 ± 2.04

SRAT-CE 60.04 ± 1.16 41.71 ± 2.07 30.00 ± 0.80 12.25 ± 1.43
SRAT-Focal 62.93 ± 1.10 51.83 ± 3.33 28.38 ± 1.00 15.89 ± 3.15

SRAT-LDAM 63.13 ± 1.17 52.73 ± 3.23 33.51 ± 0.68 18.89 ± 0.59

three SRAT variants are mainly caused by the gap between the loss functions in these methods. As
shown in these two tables, DRCB-LDAM typically performs better than DRCE-CE and DRCB-Focal,
and similarly, SRAT-LDAM outperforms SRAT-CE and SRAT-Focal under the same settings.

5.3 ABLATION STUDY

In this subsection, we provide ablation study to understand our SRAT method more comprehensively.

(a) CE. (b) DRCB-LDAM. (c) SRAT-LDAM.

Figure 4: t-SNE visualization of feature learned by different methods.

Feature space visualization.
In order to facilitate the
reweighting strategy in adver-
sarial training under the im-
balanced setting, we present
a feature separation loss in
our SRAT method. The main
goal of the feature separation
loss is to enforce the learned
feature space as much sepa-
rated as possible. For check-
ing whether the feature sepa-
ration loss can work as expected, we apply t-SNE (Van der Maaten & Hinton, 2008) to visualize
the latent feature space learned by our SRAT-LDAM method as well as by original PGD adversarial
training method (CE) and DRCB-LDAM method in Figure 4.

As shown in Figure 4, the feature space learned by our SRAT-LDAM method is more separable than
two baseline methods, which demonstrates that, with our feature separation loss, the adversarially
trained model is able to learn much better features and thus SRAT can achieve superiority performance.

Figure 5: The impact of weights.

Impact of weight values. As in all SRAT variants, we adopt
the Class-balanced method (Cui et al., 2019) to assign different
weights to different classes. To explore how the assigned weights
impact the performance of SRAT, we conduct experiments using
“Step-100” dataset to see the change of model’s performance
using different reweighting values. Specifically, we assign well-
represented classes with weight 1 and change the weight for
under-represented classes from 10 to 200. The experimental
results are shown in Figure 5. Here, we use an approximation
integer 78 to denote the weight calculated by the Class-balanced
method when the imbalance ratio equals 100.

From Figure 5, we can obverse that, for all SRAT variants, the model’s standard accuracy is increased
with the increasing of the weights for under-represented classes. However, the robust accuracy for
these three methods do not synchronize with the change of their standard accuracy. When increasing
the weights for under-represented classes, robust accuracy of SRAT-LDAM is almost unchanged and
of SRAT-CE and SRAT-Focal even has slight decrease. As a trade-off, using a relative large weight,
such as 78 or 100, in SRAT can obtain satisfactory performance on both standard & robust accuracy.
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(a) Step-100. (b) Exp-100.
Figure 6: The impact of the hyper-parameter λ.

Impact of hyper-parameter λ.
In our SRAT method, the con-
tributions of feature separation
loss and prediction loss are con-
trolled by a hyper-parameter λ.
In this part, we study how this
hyper-parameter affects the per-
formance of SRAT. In experi-
ments, we evaluate the models’
performance of all SRAT variants
with different values of λ used in
training process on both “Step-100” and “Exp-100” datasets.

As shown in Figure 6, the performance of all SRAT variants are not very sensitive with the choice of
λ. However, a large value of λ, such as 8, may hurt the model’s performance.

6 RELATED WORK

Adversarial Robustness. The vulnerability of DNN models to adversarial examples has been
verified by many existing successful attack methods (Goodfellow et al., 2014; Carlini & Wagner,
2017). To improve model robustness against adversarial attacks, various defense methods have
been proposed (Madry et al., 2017; Raghunathan et al., 2018; Cohen et al., 2019). Among them,
adversarial training has been proven to be one of the most effective defense methods (Athalye et al.,
2018). Adversarial training can be formulated as solving a min-max optimization problem where the
outer minimization process enforces the model to be robust to adversarial examples, generated by
the inner maximization process via some existing attacking methods like PGD (Madry et al., 2017).
Based on adversarial training, several variants, such as TRADES (Zhang et al., 2019), MART (Wang
et al., 2019), have been presented to improve the model’s performance further. More details about
adversarial robustness can be found in recent surveys (Chakraborty et al., 2018; Xu et al., 2020b).
Since almost all studies of adversarial training are focused on balanced datasets, it’s worthwhile to
investigate the performance of adversarial training methods on imbalanced training datasets.

Imbalanced Learning. Most existing works of imbalanced training can be roughly classified into
two categories, i.e., re-sampling and reweighting. Re-sampling methods aim to reduce imbalance
level through either over-sampling examples from under-represented classes (Buda et al., 2018;
Byrd & Lipton, 2019) or under-sampling examples from well-represented classes (Japkowicz &
Stephen, 2002; Drummond et al., 2003; He & Garcia, 2009). reweighting methods allocate different
weights for different classes or even different examples. For example, Focal loss (Lin et al., 2017)
enlarges the weights of wrongly-classified examples while reducing the weights of well-classified
examples in the standard cross entropy loss; and LDAM loss (Cao et al., 2019) regularizes the under-
represented classes more strongly than the well-represented classes to attain good generalization on
under-represented classes. More details about imbalanced learning can be found in recent surveys (He
& Ma, 2013; Johnson & Khoshgoftaar, 2019). The majority of existing methods focused on the nature
training scenario and their trained models will be crashed when facing adversarial attacks (Szegedy
et al., 2013; Goodfellow et al., 2014). Hence, in this paper, we develop a novel method that can
defend adversarial attacks and achieve well-pleasing performance under imbalance settings.

7 CONCLUSION

In this work, we first empirically investigate the behavior of adversarial training under imbalanced
settings and explore potential solutions to assist adversarial training in tackling the imbalanced issue.
As neither adversarial training itself nor adversarial training with reweighting can work well under
imbalanced settings, we further theoretically verify that the poor data separability is one key reason
causing the failure of adversarial training based methods. Based on our findings, we propose the
Separable Reweighted Adversarial Training (SRAT) framework to facilitate the reweighting strategy
in imbalanced adversarial training. We validate the effectiveness of SRAT via extensive experiments.
In the future, we plan to examine how other types of defense methods perform under imbalanced
scenarios and how other types of balanced learning methods behave under adversarial training.
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A APPENDIX

In this section, we provide more details about the proposed SRAT framework, as well as the full
experimental results of the preliminary study and evaluation.

A.1 THE BEHAVIOR OF ADVERSARIAL TRAINING

In order to examine the performance of PGD adversarial training under imbalanced scenarios, we
adversarially train ResNet18 (He et al., 2016) models on multiple imbalanced training datasets based
on CIFAR10 dataset (Krizhevsky et al., 2009). Similar with observations we discussed in Section 2.1,
as shown in Figure 7, Figure 8 and Figure 9, adversarial training produces larger performance gap
between well-represented classes and under-represented classes than natural training. Especially, in
all imbalanced scenarios, adversarially trained models obtain very low robust accuracy on under-
represented classes, which proves again that adversarial training cannot be applied in practical
imbalanced scenarios directly.

(a) Natural Training Standard Acc. (b) Adv. Training Standard Acc. (c) Adv. Training Robust Acc.

Figure 7: Class-wise performance of natural & adversarial training under an imbalanced CIFAR10
dataset “Step-10”.

(a) Natural Training Standard Acc. (b) Adv. Training Standard Acc. (c) Adv. Training Robust Acc.

Figure 8: Class-wise performance of natural & adversarial training under an imbalanced CIFAR10
dataset “Exp-100”.

(a) Natural Training Standard Acc. (b) Adv. Training Standard Acc. (c) Adv. Training Robust Acc.

Figure 9: Class-wise performance of natural & adversarial training under an imbalanced CIFAR10
dataset “Exp-10”.

12



Under review as a conference paper at ICLR 2022

A.2 REWEIGHTING STRATEGY IN NATURAL TRAINING V.S. IN ADVERSARIAL TRAINING

For exploring whether the reweighting strategy can help adversarial training deal with imbalanced
issues, we evaluate performance of adversarial trained models using diverse binary imbalanced
training datasets with different weights assigning to under-represented class. As shown in Figure 10,
Figure 11, Figure 12, for adversarially trained models, increasing the weights assigning to under-
represented class will improve models’ performance on under-represented class. However, as
the same time, the models’ performance on well-represented class will be drastically decreased.
As a comparison, adopting larger weights in naturally trained models will also improve models’
performance on under-represented class but only result in slight drop in performance on well-
represented class. In other words, the reweighting strategy proposed in natural training to handle
imbalanced problem may only provide limited help in adversarial training, and, hence, new techniques
are needed for adversarial training under imbalanced scenarios.

(a) Natural Training Standard Acc. (b) Adv. Training Standard Acc. (c) Adv. Training Robust Acc.

Figure 10: Class-wise performance of reweighted natural & adversarial training in binary classifica-
tion. (“auto” as well-represented class and “truck” as under-represented class).

(a) Natural Training Standard Acc. (b) Adv. Training Standard Acc. (c) Adv. Training Robust Acc.

Figure 11: Class-wise performance of reweighted natural & adversarial training in binary classifica-
tion. (“bird” as well-represented class and “frog” as under-represented class).

(a) Natural Training Standard Acc. (b) Adv. Training Standard Acc. (c) Adv. Training Robust Acc.

Figure 12: Class-wise performance of reweighted natural & adversarial training in binary classifica-
tion. (“dog” as well-represented class and “deer” as under-represented class).
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A.3 PROOFS OF THE THEOREMS IN SECTION 3

A.3.1 PROOF OF LEMMA 3.1

Lemma 3.1 Under the data distribution D as defined in Eq. (1), with an imbalanced ratio K and a
reweight ratio ρ, the optimal classifier which minimizes the (reweighted) empirical risk:

f∗ = argmin
f

(
Pr.(f(x) ̸=y|y=−1) · Pr.(y=−1) · ρ+ Pr.(f(x) ̸=y|y=+1) · Pr.(y=+1)

)
(2)

has the solution: w = 1 and b = 1
2 log(

ρ
K )dσ

2

η = 1
2 log(

ρ
K ) d

S .

Proof 1 (Proof of Lemma 3.1) We will first prove that the optimal model f∗ has parameters w1 =
w2 = · · · = wd (or w = 1) by contradiction. We define G = {1, 2, . . . , d} and make the following
assumption: for the optimal w and b, we assume if there exist wi < wj for i ̸= j and i, j ∈ G. Then
we obtain the following standard errors for the class “-1” and the class “+1” of this classifier f with
weight w:

Pr.(f∗(x) ̸= y|y = −1) = Pr.(wTN (−η, σ2)− b > 0)

= Pr.{
∑

k ̸=i,k ̸=j

wkN (−η, σ2) + wiN (−η, σ2) + wjN (−η, σ2)− b > 0},

Pr.(f∗(x) ̸= y|y = +1) = Pr.(wTN (+η, σ2)− b < 0)

= Pr.{
∑

k ̸=i,k ̸=j

wkN (+η, σ2) + wiN (+η, σ2) + wjN (+η, σ2)− b < 0}.

(8)

However, if we define a new classier f̃ whose weight w̃ uses wj to replace wi, we obtain the errors
for the new classifier:

Pr.(f̃(x) ̸= y|y = −1) = Pr.{
∑

k ̸=i,k ̸=j

wkN (−η, σ2) + wjN (−η, σ2) + wjN (−η, σ2)− b > 0},

Pr.(f̃(x) ̸= y|y = +1) = Pr.{
∑

k ̸=i,k ̸=j

wkN (+η, σ2) + wjN (+η, σ2) + wjN (+η, σ2)− b < 0}.
(9)

Comparing the errors in Eq. (8) and Eq. (9), as wi < wj , then the classifier f̃ has smaller standard
error in each class. Therefore, it contradicts with the assumption that f is the optimal classifier with
smallest error. Thus, we conclude for an optimal linear classifier in natural training, it must satisfies
w1 = w2 = · · · = wd (or w = 1) if we do not consider the scale of w.

Next, we calculate the optimal bias term b given w = 1, where we find an optimal b can minimize the
(reweighted) empirical risk:

Errortrain(f
∗) = Pr.(f∗(x) ̸= y|y = −1) · Pr.(y = −1) · ρ+ Pr.(f∗(x) ̸= y|y = +1) · Pr.(y = +1)

∝ Pr.(f∗(x) ̸= y|y = −1) · ρ+ Pr.(f∗(x) ̸= y|y = +1) ·K

= ρ · Pr.(
d∑

i=1

N (−η, σ2)− b > 0) +K · Pr.(
d∑

i=1

N (η, σ2)− b < 0)

= ρ · Pr.(N (0, 1) < − b+ dη

dσ
) +K · Pr.(N (0, 1) <

b− dη

dσ
),

and we take the derivative with respect to b:

∂Errortrain

∂b
=

ρ√
2π
· (− 1

dσ
) exp(−1

2
(−b+ dη

dσ
)2) +

K√
2π
· ( 1

dσ
) exp(−1

2
(
b− dη

dσ
)2).

When ∂Errortrain/∂b = 0, we can calculate the optimal b which gives the minimum value of the
empirical error, and we have:

b =
1

2
log(

ρ

K
)
dσ2

η
=

1

2
log(

ρ

K
)
d

S
.
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A.3.2 PROOF OF THEOREM 3.1

Theorem 3.1 Under two data distributions (x(1), y(1)) ∈ D1 and (x(2), y(2)) ∈ D2 with different
separabilities S1 > S2, let f∗

1 and f∗
2 be the optimal non-reweighted classifiers (ρ = 1) under D1

and D2, respectively. Given the imbalance ratio K is large enough, we have:

Pr.(f∗
1 (x

(1)) ̸= y(1)|y(1) = −1)− Pr.(f∗
1 (x

(1)) ̸= y(1)|y(1) = +1)

< Pr.(f∗
2 (x

(2)) ̸= y(2)|y(2) = −1)− Pr.(f∗
2 (x

(2)) ̸= y(2)|y(2) = +1).
(3)

Proof 2 (Proof of Theorem 3.1) Without loss of generality, for distribution D1, D2 with different
mean-variance pairs (±η1, σ2

1) and (±η2, σ2
2), we can only consider the case η1 = η2 and σ2

1 < σ2
2 .

Otherwise, we can simply rescale one of them to match the mean vector of the other and will
not impact the results. Under this definition, the optimal classifier f∗

1 and f∗
2 has weight vector

w1 = w2 = 1 and bias term b1, b2, with the value as demonstrated in Lemma 3.1. Next, we will prove
the Theorem 3.1 by 2 steps.

Step 1. For the error of class “-1”, we have:

Pr.(f∗
1 (x

(1)) ̸= y(1)|y(1) = −1) = Pr.(
d∑

i=1

N (−η, σ2
1)− b1 > 0)

< Pr.(
d∑

i=1

N (−η, σ2
1)− b2 > 0) (because S1 > S2)

< Pr.(
d∑

i=1

N (−η, σ2
2)− b2 > 0) (because σ2

1 < σ2
2)

= Pr.(f∗
2 (x

(2)) ̸= y(2)|y(2) = −1).

Step 2. For the error of class “+1”, we have:

Pr.(f∗
1 (x

(1)) ̸= y(1)|y(1) = +1) = Pr.(
d∑

i=1

N (η, σ2
1)− b1 < 0)

= Pr.(N (0, 1) <
b1 − dη

dσ1
)

= Pr.(N (0, 1) <
− log(K) · σ1

2η
− η

σ1
),

(10)

and similarly,

Pr.(f∗
2 (x

(2)) ̸= y(2)|y(2) = +1) = Pr.(N (0, 1) <
− log(K) · σ2

2η
− η

σ2
). (11)

Note that when K is large enough, i.e., log(K) > 2·η2

σ1·σ2
, we can get the Z-score in Eq. (10) is larger

than Eq. (11). As a result, we have:

Pr.(f∗
1 (x

(1)) ̸= y(1)|y(1) = +1) > Pr.(f∗
2 (x

(2)) ̸= y(2)|y(2) = +1). (12)

By combining Step 1 and Step 2, we can get the inequality in Theorem 3.1.

A.3.3 PROOF OF THEOREM 3.2

Theorem 3.2 Under two data distributions (x(1), y(1)) ∈ D1 and (x(2), y(2)) ∈ D2 with different
separabilities S1 > S2, let f∗

1 and f∗
2 be the optimal non-reweighted classifiers (ρ = 1) under D1

and D2, respectively, and let f ′
1
∗ and f ′

2
∗ be the optimal reweighted classifiers under D1 and D2

given the optimal reweighting ratio (ρ = K). Given the imbalance ratio K is large enough, we have:

Pr.(f ′
1
∗
(x(1)) ̸= y(1)|y(1) = +1)− Pr.(f∗

1 (x
(1)) ̸= y(1)|y(1) = +1)

< Pr.(f ′
2
∗
(x(2)) ̸= y(2)|y(2) = +1)− Pr.(f∗

2 (x
(2)) ̸= y(2)|y(2) = +1).

(4)
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Proof 3 (Proof of Theorem 3.2) We first show that under both distribution D1 and D2, the optimal
reweighting ratio ρ is equal to the imbalance ratio K. Based on the results in Eq. (8) and calculated
model parameters w and b, we have the test error (given the model trained by reweight value ρ):

Errortest(f
∗)

= Pr.(f∗(x) ̸= y|y = −1) · Pr.(y = −1) + Pr.(f∗(x) ̸= y|y = +1) · Pr.(y = +1)

∝ Pr.(N (0, 1) < − b+ dη

dσ
) + Pr.(N (0, 1) <

b− dη

dσ
)

= Pr.(N (0, 1) < −1

2
log(

ρ

K
)− σ

η
) + Pr.(N (0, 1) <

1

2
log(

ρ

K
)− σ

η
).

The value of taking the minimum when its derivative with respect to ρ is equal to 0, where we can get
ρ = K and the bias term b = 0. Note that the variance values have the relation: σ2

1 < σ2
2 . Therefore,

it is easy to get that:

Pr.(f ′
1
∗
(x(1)) ̸= y(1)|y(1) = +1) = Pr.(

d∑
i=1

N (η, σ2
1) < 0)

< Pr.(
d∑

i=1

N (η, σ2
2) < 0) = Pr.(f ′

2
∗
(x(2)) ̸= y(2)|y(2) = +1).

(13)

Combining the results in Eq. (12) and (13), we have proved the inequality in Theorem 3.2.

A.4 ALGORITHM OF SRAT

The algorithm of our proposed SRAT framework is shown in Algorithm 1. Specifically, in each
training iteration, we first generate adversarial examples using PGD for examples in the current batch
(Line 5). If the current training iteration does not reach a predefined starting reweighting epoch
Td, we will assign same weights, i.e., wi = 1 for all adversarial examples xi in the current batch
(Line 6). Otherwise, the reweighting strategy will be adopted in the final loss function (Line 15),
where a specific weight wi will be assigned for each adversarial example xi if its corresponding clean
example xi comes from an under-represented class.

Algorithm 1 Separable Reweighted Adversarial Training (SRAT).

Input: imbalanced training dataset D = {(xi, yi)}ni=1, number of total training epochs T , starting
reweighting epoch Td, batch size N , number of batches M , learning rate γ

Output: An adversarially robust model fθ
1: Initialize the model parameters θ randomly;
2: for epoch = 1, . . . , Td − 1 do
3: for mini-batch = 1, . . . ,M do
4: Sample a mini-batch B = {(xi, yi)}Ni=1 from D;
5: Generate adversarial example x′

i for each x′
i ∈ B;

6: L(fθ) = 1
N

∑N
i=1 max∥x′

i−xi∥p≤ϵ L(fθ(x′
i), yi) + λLsep(x

′
i)

7: θ ← θ − γ∇θL(fθ)
8: end for
9: Optional: γ ← γ/κ

10: end for
11: for epoch = Td, . . . , T do
12: for mini-batch = 1, . . . ,M do
13: Sample a mini-batch B = {(xi, yi)}Ni=1 from D;
14: Generate adversarial example x′

i for each x′
i ∈ B;

15: L(fθ) = 1
N

∑N
i=1 max∥x′

i−xi∥p≤ϵ wiL(fθ(x′
i), yi) + λLsep(x

′
i)

16: θ ← θ − γ∇θL(fθ)
17: end for
18: Optional: γ ← γ/κ
19: end for
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A.5 DATA DISTRIBUTION OF IMBALANCED TRAINING DATASETS

In our experiments, we construct multiple imbalanced training datasets to simulate various kinds
of imbalanced scenarios by combining different imbalance types (i.e., Exp and Step) with different
imbalanced ratios (i.e., K = 10 and K = 100). Figure 13 and Figure 14 show the data distribution
of all ten-classes imbalanced training datasets used in our preliminary studies and experiments based
on CIFAR10 (Krizhevsky et al., 2009) and SVHN (Netzer et al., 2011) datasets, respectively.

(a) Step-10 (b) Step-100 (c) Exp-10 (d) Exp-100

Figure 13: Data distribution of imbalanced training datasets constructed from CIFAR10 dataset.

(a) Step-10 (b) Step-100 (c) Exp-10 (d) Exp-100

Figure 14: Data distribution of imbalanced training datasets constructed from SVHN dataset.

A.6 PERFORMANCE COMPARISON

A.6.1 PERFORMANCE COMPARISON ON IMBALANCED CIFAR10 DATASETS

Table 3 and Table 4 show the performance comparison on two imbalanced CIFAR10 datasets. We
use bold values to denote the highest accuracy among all methods and use the underline values to
indicate our SRAT variants which achieve the highest accuracy among their corresponding baseline
methods utilizing the same loss function for making predictions.

From Table 3 and Table 4, we get similar observation that, comparing with baseline methods, our
proposed SRAT method can produce a robust model which can achieve improved overall performance
when the training dataset is imbalanced. In addition, based on the experimental results in Table 3
to Table 4, we find that, compared with the performance improvement between DRCB-LDAM and
SRAT-LDAM, the improvement between DRCB-CE and SRAT-CE and the improvement between
DRCB-Focal and SRAT-Focal are more obviously. The possible reason behind this phenomenon is,
the LDAM loss can also implicitly produce a more separable feature space (Cao et al., 2019) while
CE loss and Focal loss do not conduct any specific operations on the latent feature space. Hence, the
feature separation loss contained in SRAT-CE and SRAT-Focal could be more effective on learning
separable feature space and facilitate the Focal loss on prediction. However, in SRAT-LDAM, the
feature separation loss and LDAM loss may affect each other on learning feature representations and,
hence, the effectiveness of the feature separation loss may be counteracted or weakened.

A.6.2 PERFORMANCE COMPARISON ON IMBALANCED SVHN DATASETS

We report the performance comparison on various imbalanced SVHN datasets with different imbal-
ance types and imbalance ratios from Table 5 to Table 8.

Based on experimental results shown in Table 5 and Table 8, we find that the robust model trained
by our SRAT method can achieve superior overall performance under various imbalanced scenarios,
when comparing with their corresponding baselines methods which utilize the same prediction loss
function. Hence, experiments conducted on various imbalanced SVHN datasets further verify the
effectiveness of our SRAT method under diverse imbalanced scenarios.
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Table 3: Performance comparison on the CIFAR10 Exp-10 dataset.

Metric Standard Accuracy Robust Accuracy
Method Overall Under Overall Under

CE 71.95 ± 0.52 64.09 ± 0.44 37.94 ± 0.19 26.79 ± 0.51
Focal 72.06 ± 0.78 63.99 ± 1.15 37.62 ± 0.34 26.27 ± 1.04

LDAM 67.39 ± 1.00 58.01 ± 2.26 41.35 ± 0.32 28.65 ± 0.83
CB-Reweight 75.17 ± 0.15 76.87 ± 0.69 41.02 ± 0.39 41.67 ± 0.89

CB-Focal 74.73 ± 0.41 76.67 ± 0.26 38.86 ± 0.67 42.41 ± 0.56
DRCB-CE 76.25 ± 0.09 75.83 ± 0.49 40.02 ± 0.45 37.93 ± 0.65

DRCB-Focal 75.36 ± 0.40 72.72 ± 0.94 37.76 ± 0.54 33.83 ± 0.68
DRCB-LDAM 73.92 ± 0.31 78.53 ± 1.24 46.29 ± 0.46 48.81 ± 0.54

SRAT-CE 76.74 ± 0.15 78.61 ± 0.63 42.39 ± 0.71 43.37 ± 0.38
SRAT-Focal 75.26 ± 0.00 80.52 ± 0.00 42.37 ± 0.00 47.22 ± 0.00

SRAT-LDAM 74.63 ± 0.00 79.82 ± 0.00 46.72 ± 0.00 50.38 ± 0.00

Table 4: Performance comparison on the CIFAR10 Exp-100 dataset.

Metric Standard Accuracy Robust Accuracy
Method Overall Under Overall Under

CE 48.40 ± 0.59 23.04 ± 1.15 26.94 ± 0.84 6.17 ± 0.86
Focal 49.16 ± 0.61 23.69 ± 1.15 26.84 ± 0.59 5.88 ± 0.48

LDAM 48.39 ± 0.99 25.69 ± 1.35 29.51 ± 0.27 8.95 ± 0.45
CB-Reweight 57.49 ± 0.58 56.47 ± 1.67 29.01 ± 0.30 26.53 ± 1.27

CB-Focal 50.35 ± 0.44 60.05 ± 0.53 27.15 ± 0.20 33.56 ± 0.35
DRCB-CE 57.30 ± 0.30 37.90 ± 1.23 26.97 ± 0.55 10.57 ± 1.03

DRCB-Focal 54.76 ± 0.30 31.79 ± 1.30 25.24 ± 0.39 7.81 ± 0.87
DRCB-LDAM 62.65 ± 0.50 57.19 ± 2.10 31.66 ± 0.56 22.11 ± 1.70

SRAT-CE 64.29 ± 0.46 61.81 ± 1.83 29.99 ± 0.43 24.09 ± 0.98
SRAT-Focal 62.57 ± 0.47 64.88 ± 0.81 30.34 ± 0.67 28.66 ± 1.60

SRAT-LDAM 63.11 ± 0.08 65.60 ± 1.94 34.22 ± 0.41 32.55 ± 1.70

A.6.3 PERFORMANCE COMPARISON ON IMBALANCED CIFAR100 DTASETS

Table 9 and Table 10 show the performance comparison between our SRAT variants with baseline
methods on two imbalanced CIFAR100 datasets.

As shown in Table 9 and Table 10, although the increasing of total number of classes in the dataset
brings more challenges on the model training process, our SRAT variants are able to achieve notable
improvements on both standard accuracy and robust accuracy.

Therefore, in conclusion, experiments conducted on multiple imbalanced datasets created from three
benchmark image datasets CIFAR10, CIFAR100 (Krizhevsky et al., 2009) and SVHN (Netzer et al.,
2011) with diverse imbalanced distributions verify the effectiveness of our proposed SRAT method
under various imbalanced scenarios.

A.7 ABLATION STUDY

(a) Standard Accuracy (b) Robust Accuracy.

Figure 15: The impact of weights for the SRAT-LDAM method.

Impact of weight values. We
study the impact of weight values
in Section 5.3 via evaluating the
overall standard accuracy and ro-
bust accuracy of SRAT trained
models with different weights
assigning to under-represented
classes. Here, we further inves-
tigate the impact of weight val-
ues in our SART method from
the class-wise perspective. In Fig-
ure 15, we report the standard &
robust accuracy of models trained
by our SRAT-LDAM variant with
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Table 5: Performance comparison on the SVHN Step-10 dataset.

Metric Standard Accuracy Robust Accuracy
Method Overall Under Overall Under

CE 79.88 ± 0.17 67.04 ± 0.37 37.62 ± 0.10 22.08 ± 0.26
Focal 79.96 ± 0.15 67.03 ± 0.38 37.83 ± 0.17 22.47 ± 0.43

LDAM 84.55 ± 0.83 74.96 ± 1.52 45.80 ± 0.31 31.23 ± 0.70
CB-Reweight 79.48 ± 0.27 66.07 ± 0.42 37.38 ± 0.20 21.66 ± 0.26

CB-Focal 80.29 ± 0.15 67.56 ± 0.23 38.10 ± 0.24 23.00 ± 0.38
DRCB-CE 80.62 ± 0.25 68.74 ± 0.50 37.25 ± 0.15 22.79 ± 0.42

DRCB-Focal 79.11 ± 0.15 65.72 ± 0.44 37.01 ± 0.33 22.02 ± 0.55
DRCB-LDAM 87.83 ± 0.68 82.63 ± 1.17 46.45 ± 0.30 35.15 ± 0.69

SRAT-CE 82.89 ± 0.91 72.79 ± 1.93 38.23 ± 0.78 24.70 ± 1.62
SRAT-Focal 85.32 ± 0.19 77.75 ± 0.51 39.53 ± 0.40 28.41 ± 0.99

SRAT-LDAM 87.65 ± 0.09 82.62 ± 0.25 46.03 ± 0.10 34.75 ± 0.48

Table 6: Performance comparison on the SVHN Step-100 dataset.

Metric Standard Accuracy Robust Accuracy
Method Overall Under Overall Under

CE 59.61 ± 1.59 26.19 ± 3.08 29.57 ± 0.59 5.03 ± 1.49
Focal 60.58 ± 1.40 28.17 ± 2.76 30.27 ± 0.51 5.83 ± 1.42

LDAM 65.61 ± 0.43 37.13 ± 0.71 33.34 ± 0.07 8.36 ± 0.54
CB-Reweight 60.23 ± 1.74 27.68 ± 3.49 29.54 ± 0.76 5.32 ± 1.40

CB-Focal 60.73 ± 0.40 28.37 ± 0.63 30.09 ± 0.09 5.75 ± 0.61
DRCB-CE 60.67 ± 1.04 28.36 ± 2.08 30.02 ± 1.04 5.59 ± 1.30

DRCB-Focal 61.65 ± 1.21 30.29 ± 2.02 30.78 ± 0.32 7.06 ± 0.93
DRCB-LDAM 63.78 ± 1.79 33.99 ± 3.50 33.60 ± 0.23 7.28 ± 1.47

SRAT-CE 63.39 ± 0.64 33.85 ± 1.11 29.64 ± 0.21 6.11 ± 0.29
SRAT-Focal 69.27 ± 1.38 45.50 ± 3.16 31.58 ± 0.70 9.87 ± 1.61

SRAT-LDAM 71.56 ± 1.25 50.33 ± 2.29 33.54 ± 0.52 11.63 ± 1.09

different weight values on all ten classes, five well-represented classes and five under-represented
classes of the Step-100 CIFAR10 dataset separately. Same as before, we assign well-represented
classes with weight 1 and change the weight for under-represented classes from 10 to 200. In
addition, we use an approximation integer 78 to denote the weight calculated by the Class-balanced
method (Cui et al., 2019).

As shown in Figure 15, when increasing of the weights for under-represented classes, the model’s
performance on under-represented classes can be increased greatly, with the cost of relatively small
performance dropping on well-represented classes, and the overall performance of the model is also
increased. This phenomenon can be observed much clear in the standard accuracy case, as shown in
Figure 15a. Recall that in our preliminary study (Section 2), we find the reweighting strategy cannot
work well in adversarial training, as it causes a strong tension of the model’s performance between
well-represented and under-represented class. As this strong tension does not exist in the model
trained by our SRAT method, we believe our SRAT method indeed facilitate the reweighting strategy
in adversarial training under imbalanced scenarios.

Figure 16: The impact of imbal-
ance ratio K.

Impact of imbalance ratio K. In previous experiments, we
evaluate the effectiveness of our SRAT method using various
imbalanced datasets with imbalance ratio K = 10 or K =
100. To investigate the performance of our SRAT method more
comprehensively, in this part, we test our SRAT method on more
imbalanced datasets with diverse imbalance ratios. Specifically,
we construct a series of ”Step” imbalanced CIFAR10 datasets
by setting the value of the imbalance ratio K from 5 to 100. For
comparison, we apply both DRCB-Focal method and our SRAT-
Focal variant to train models on those imbalanced datasets and
test the trained models’ performance on the original uniformly
distributed CIFAR10 test dataset. The experimental results are
shown in Figure 16.
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Table 7: Performance comparison on the SVHN Exp-10 dataset.

Metric Standard Accuracy Robust Accuracy
Method Overall Under Overall Under

CE 87.54 ± 0.61 82.67 ± 1.01 44.12 ± 0.36 35.33 ± 0.19
Focal 87.82 ± 0.52 83.01 ± 0.90 44.88 ± 0.55 35.97 ± 0.09

LDAM 90.06 ± 0.59 86.69 ± 0.70 51.84 ± 0.68 43.73 ± 0.97
CB-Reweight 87.66 ± 0.59 82.79 ± 0.99 44.39 ± 0.57 35.53 ± 0.53

CB-Focal 87.86 ± 0.53 82.96 ± 0.99 44.61 ± 0.48 35.55 ± 0.35
DRCB-CE 88.49 ± 0.55 84.51 ± 0.89 43.82 ± 0.46 36.28 ± 0.37

DRCB-Focal 87.47 ± 0.48 82.78 ± 0.72 42.52 ± 0.60 34.31 ± 0.54
DRCB-LDAM 91.24 ± 0.57 89.65 ± 0.70 52.39 ± 0.74 46.71 ± 1.46

SRAT-CE 88.70 ± 0.37 84.94 ± 0.40 44.54 ± 0.66 36.59 ± 0.68
SRAT-Focal 89.36 ± 0.44 85.93 ± 0.44 45.41 ± 0.55 38.18 ± 0.79

SRAT-LDAM 91.27 ± 0.46 89.55 ± 0.66 52.10 ± 0.85 46.13 ± 1.23

Table 8: Performance comparison on the SVHN Exp-100 dataset.

Metric Standard Accuracy Robust Accuracy
Method Overall Under Overall Under

CE 72.51 ± 0.46 56.30 ± 0.85 33.34 ± 0.42 16.93 ± 0.24
Focal 72.61 ± 0.37 56.48 ± 0.57 34.09 ± 0.37 17.62 ± 0.29

LDAM 79.11 ± 0.74 66.86 ± 1.14 40.42 ± 0.75 25.18 ± 1.29
CB-Reweight 72.25 ± 0.45 55.97 ± 0.84 33.36 ± 0.40 17.16 ± 0.77

CB-Focal 73.23 ± 0.50 57.34 ± 0.96 34.25 ± 0.37 17.90 ± 0.53
DRCB-CE 73.74 ± 0.53 58.03 ± 1.14 33.52 ± 0.13 17.68 ± 0.40

DRCB-Focal 71.95 ± 0.09 55.11 ± 0.22 33.43 ± 0.36 17.63 ± 0.49
DRCB-LDAM 80.29 ± 0.28 69.23 ± 0.12 40.16 ± 0.74 24.64 ± 0.77

SRAT-CE 77.11 ± 0.48 64.47 ± 1.19 34.48 ± 0.19 19.91 ± 0.68
SRAT-Focal 81.30 ± 0.91 72.26 ± 2.00 36.71 ± 0.53 24.84 ± 1.59

SRAT-LDAM 80.71 ± 0.40 70.49 ± 0.71 40.33 ± 0.43 25.11 ± 0.58

From Figure 16, we can obverse that, under different imbalanced scenarios, the model trained by our
SRAT-Focal can always achieve better performance than the one trained by DRCB-Focal method. In
other words, the effectiveness of our SRAT method will not be affected by the imbalanced ratio K,
which determines the data distribution of the imbalanced training dataset.
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Table 9: Performance comparison on the CIFAR100 Step-10 dataset.

Metric Standard Accuracy Robust Accuracy
Method Overall Under Overall Under

CE 39.90 ± 0.11 17.90 ± 0.38 17.88 ± 0.32 6.40 ± 0.60
Focal 40.10 ± 0.27 17.99 ± 0.75 17.67 ± 0.30 6.40 ± 0.18

LDAM 39.34 ± 0.54 17.57 ± 0.94 20.95 ± 0.20 7.41 ± 0.37
DRCB-CE 45.21 ± 0.11 33.26 ± 0.09 18.36 ± 0.33 11.15 ± 0.48

DRCB-Focal 44.28 ± 0.15 30.57 ± 0.22 17.30 ± 0.39 9.73 ± 0.18
DRCB-LDAM 44.70 ± 0.46 35.90 ± 0.92 21.80 ± 0.12 15.19 ± 0.36

SRAT-CE 47.17 ± 0.26 37.81 ± 0.38 21.36 ± 0.31 15.41 ± 0.19
SRAT-Focal 46.83 ± 0.28 38.10 ± 0.58 21.66 ± 0.32 16.52 ± 0.32

SRAT-LDAM 45.41 ± 0.55 36.39 ± 0.65 23.15 ± 0.15 16.84 ± 0.08

Table 10: Performance comparison on the CIFAR100 Exp-10 dataset.

Metric Standard Accuracy Robust Accuracy
Method Overall Under Overall Under

CE 41.88 ± 0.36 31.30 ± 0.57 16.62 ± 0.03 11.22 ± 0.21
Focal 41.64 ± 0.51 31.02 ± 0.71 16.29 ± 0.18 10.97 ± 0.34

LDAM 41.55 ± 0.60 31.74 ± 0.91 20.20 ± 0.20 14.71 ± 0.51
DRCB-CE 43.89 ± 0.26 37.28 ± 0.29 16.90 ± 0.19 13.62 ± 0.14

DRCB-Focal 43.38 ± 0.30 36.17 ± 0.57 16.04 ± 0.18 12.56 ± 0.27
DRCB-LDAM 43.36 ± 0.48 39.27 ± 0.72 20.36 ± 0.30 17.63 ± 0.38

SRAT-CE 45.84 ± 0.18 41.72 ± 0.53 21.20 ± 0.15 19.23 ± 0.36
SRAT-Focal 46.38 ± 0.28 42.53 ± 0.79 20.09 ± 0.25 17.83 ± 0.56

SRAT-LDAM 44.98 ± 0.33 40.39 ± 0.69 21.83 ± 0.33 18.99 ± 0.59
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