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Mugshots while routinely acquired by law enforcement agencies are under utilized by automated face
recognition systems. In this paper, we propose a regression based approach to reconstruct textured full
3D face models from multi-view mugshot images. Using landmarks from the input frontal and profile
mugshots of a subject, our method reconstructs hisnher 3D face shape via either linear or nonlinear
regressors. The texture of the mugshot images is mapped to the reconstructed 3D face shape via an effi-
cient seamless texture recovery scheme. Compared with existing 3D face reconstruction methods, the
proposed method more effectively utilizes the three-view mugshot face images collected during booking.
The reconstructed 3D faces are used to generate realistic multi-view face images to enlarge the gallery
and facilitate arbitrary view face recognition. Evaluation experiments have been done on BFM and
Bosphorus databases in terms of reconstruction accuracy, and on Multi-PIE and Color FERET databases
in terms of recognition accuracy. The results show that the proposed method can reduce the 3D face
reconstruction error of the best competitive method from 2.31 mm to 1.88 mm, and improve the recog-
nition accuracy of state-of-the-art deep learning based face matchers by as much as ~4% on Multi-PIE and
~2% on Color FERET despite the high baseline set by them.

� 2020 Published by Elsevier B.V.
1. Introduction face data to assist face recognition. The 3D face data could be
Mugshot face images are widely used for identity recognition in
forensic applications. They usually consist of 2D frontal and profile
face images of each person (see Fig. 1), which are routinely col-
lected by law enforcement agencies. The frontal and profile face
images provide complementary information of a face, and are thus
believed to be useful for pose-robust face recognition if they are
effectively utilized [1,2]. However, existing automated face recog-
nition methods mostly assume that only 2D frontal face images
are enrolled in gallery, and recognize off-angle probe images by
extracting pose-robust features [3] or normalizing the probe faces
to frontal pose [4]. Typically, these methods use three-dimensional
(3D) face models to assist pose normalization or pose-adaptive fea-
ture extraction [5–7,4,8].

The usefulness of 3D face models in recognizing arbitrary view
face images has also been shown by other researchers [9–12]. They
assume the availability of 3D face data in gallery, and use these 3D
acquired by using 3D scanners [13,14], or reconstructed from 2D
face images [15–19]. In contrast to the high cost of 3D scanners,
2D face image acquisition devices (such as surveillance cameras
and web cameras) are much more cost-effective and widespread
in both forensic and civilian applications. Therefore, it is highly
desirable to develop efficient methods to reconstruct 3D face mod-
els from 2D face images.

Despite the large amount of research on 3D face reconstruction,
very few studies have been reported about reconstructing 3D face
models from mugshot face images. Ip and Yin [21] and Ansari and
Abdel-Mottaleb [22] proposed methods to reconstruct 3D face
models from orthogonal-view face images. However, they required
that the input face images should be calibrated, and were thus not
suitable for mugshot face images that are not calibrated. Also,
some methods can reconstruct 3D face models from multi-view
face images. Choi et al. [23] utilized sparse bundle adjustment to
reconstruct 3D landmarks from multi-view images, which were
further used to deform a generic 3D face model to the final shape.
To better investigate the multi-view constraint on face images, Lin
et al. [24] used five images (including profile views), and inferred
first the accurate poses of cameras in all views, and then a dense
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Fig. 1. (a) Mugshot images of a suspect (obtained from the Internet). (b) The reconstructed 3D faces in three different views by the proposed method and Han & Jain’s method
[1]. (c) Recognition results of SphereFace face matcher [20] in a gallery of tens of thousands of subjects for a probe image of the suspect. The first five rank results on the
original gallery and the gallery enlarged by Han and Jain’s method both find wrong subjects; the highest ranks of the true subject are 154 and 68, respectively in these two
cases. Our method hits the true subject at rank 3.
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3D face model. However, the calibration process in their method
may fail and the final reconstructed shape may be severely
affected.

Recently, there are some attempts to use deep learning to solve
multi-view image (not exactly mugshot) based face reconstruction.
Dou et al. [25] regress 3DMM parameters from both a deep convo-
lutional neural network and a recurrent neural network that aggre-
gate the identity specific contextual information in multi-view
images. Wu et al. [26] regress 3DMM parameters from three-
view inputs with an end-to-end Convolutional Neural Network
leveraging a novel self-supervised view alignment loss. Both
approaches only focus on shape reconstruction and are hardly
applied to face recognition. Some researchers [1,2] have endeav-
ored to utilize the mugshot images to improve the automated face
recognition accuracy for arbitrary view images by reconstructing
3D face models. Despite the promising results they obtain, they
mainly focus on shape reconstruction, but do not fully explore
the texture on the three images. Further, the rotation angles of
probe images they used are mostly within 70 degrees. Moreover,
Fig. 2. Flowchart of the proposed mugshot-based reconstruction method. S0 and SK are
projection matrix in the last iteration.
the baseline face matchers they use are traditional ones, and it is
not clear how beneficial the mugshot images are with respect to
the state-of-the-art deep learning (DL)-based face matchers, which
have achieved significant progress in automated face recognition.

The goal of this paper is threefold: (i) improve the 3D face shape
reconstruction accuracy via effectively exploiting the frontal and
profile images in mugshot databases, (ii) generate dense full 3D
face models with texture stitching from frontal and profile images,
and (iii) investigate the effectiveness of mugshot images in
improving the arbitrary view face recognition accuracy of state-
of-the-art DL-based face matchers. To this end, we propose both
linear and nonlinear regression approaches for reconstructing full
3D face shapes based on the facial landmarks on mugshot images,
and an effective texture recovery method that can cope with
potential illumination variations among the mugshot face images
(see Fig. 2). Once the full textured 3D face models are obtained,
we enlarge the gallery with multi-view face images generated from
the models, and recognize probe face images based on the enlarged
gallery. Extensive evaluation experiments demonstrate the superi-
, respectively, the initial and final estimated 3D models, and MK are the 3D-to-2D



Fig. 4. Pipeline of the texture recovery module of the proposed method.

Fig. 3. Pipeline of the nonlinear implementation of the proposed shape reconstruction method.
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ority of our method over existing mugshot-based methods in
reconstructing 3D faces, as well as the effectiveness of mugshot-
generated 3D face models in improving arbitrary view face recog-
nition accuracy of state-of-the-art DL-based face matchers. See
Fig. 1 for an example.2

A preliminary version of this work was published in the 2018
24th International Conference on Pattern Recognition (ICPR) [27].
We extend this work from three aspects. (i) We implement the
mugshot-based shape reconstruction method with both linear
and non-linear regressors. (ii) We extend in detail the application
of the proposed method to face recognition. (iii) We carry out more
comprehensive evaluation with comparisons to state-of-the-art
methods.
2 The name of the suspect in Fig. 1 is Kehua Zhou. The mugshot images were
captured in 2005 when he was arrested in Yunnan province of China. The probe image
was from a surveillance video in 2011 when he committed a crime in Chongqing of
China. At that time, the automated face matcher of the police failed to correctly
identify the suspect.
The rest of this paper is organized as follows. Section 2 briefly
reviews related work. Section 3 introduces the proposed
mugshot-based 3D face reconstruction method in detail. Section 4
introduces the 3D-assisted face recognition method employed in
this paper and Section 5 reports the evaluation results. Finally, a
conclusion is drawn in Section 6.
2. Related work

Only a few studies on mugshot-based face reconstruction meth-
ods for automated face recognition have been reported in the pub-
lic domain. The first work on exploring mugshot images for face
recognition is due to Wallhoff et al. [28]. They proposed to synthe-
size profile face images from frontal face images through a neural
network that was trained with pairs of frontal and profile face
images in mugshot databases. They focused specifically on recog-
nizing profile faces, rather than arbitrary view faces. The mugshot
face images were used to train the profile face synthesis neural
network, but used only frontal faces as gallery when recognizing



Fig. 5. Texture recovery results of our method and the method of Dessein et al. [54]
for one subject in Multi-PIE and one subject in Color FERET. All 3D face models are
shown in four different views.
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profile faces. Next, we will introduce the related work from the
aspects of mugshot-based reconstruction and pose-invariant face
recognition.
2.1. Mugshot-based face reconstruction

Single-view face reconstruction has attracted lots of attentions
and made a great progress [29–34,70]. For instance, Tran and Liu
[29–31] proposed an innovative network to learn a nonlinear
3DMM model from a large set of in-the-wild face images. Liu
[34] proposed a joint face alignment and 3D face reconstruction
method by exploring the relationship between 2D landmarks and
3D shapes. Most of above methods are focused on the shape recon-
Fig. 6. Flowchart of the proposed mugshot-bas
struction, and there are a few works on mugshot-based face
reconstruction.

Zhang et al. [2] presented a novel approach to recognize faces in
arbitrary pose using frontal and side view mugshot face images as
gallery images. They generated virtual view face images to enlarge
the gallery based on the 3D face models reconstructed from the
gallery mugshot images. To reconstruct the personalized 3D face
model of a subject, they employed a hierarchical multilevel varia-
tion minimization approach for 3D shape modelling and pixel-wise
texture analysis considering diffuse and specular reflections from
human face. Their proposed method was evaluated on the CMU
PIE database consisting of 68 subjects with PCA (Principal Compo-
nent Analysis) based and LBP (Local Binary Patterns) based meth-
ods as baselines. The rotation angles of the probe images in their
experiments are within 70 degrees.

Lee et al. [35] obtained the 3D shape by deforming a generic
model in accordance with the extracted facial features from both
frontal and profile face images. They first extracted salient features
of the frontal and profile face images, by using ACM (Active Con-
tour Model) and deformable ICP (Iterative Closest Point) methods,
and then generated a 3D face model by deforming a generic model
so that the 3D face model conforms to the extracted facial features.
This method is limited in recovering fine facial details and could be
easily dominated by the generic model. Notable deformations can
be observed especially when the reconstructed model is rotated
under large view point changes. As a consequence, the recon-
structed 3D face model could not be utilized to assist in face
recognition.

Han and Jain [1] proposed a 3DMM (3D Morphable Model)
based 3D face reconstruction method. They first employed a sim-
plified 3DMM to reconstruct the 3D face shape from the frontal
face image, then refined the shape according to the landmarks on
the profile face image, and finally directly mapped the texture from
only the frontal face image to the reconstructed 3D shape. They
evaluated the contribution of reconstructed 3D faces to face recog-
nition in two ways, i.e., enlarging the gallery and normalizing the
probe face images to frontal view. Their evaluation results showed
that the face recognition accuracy of contemporary commercial
face matchers was improved significantly by both these
approaches. For the sake of efficiency, they used a sparse 3DMM
that had a relatively small number of vertices in the 3D face model.
As a result, the reconstructed 3D face shapes could have serious
distortion especially when observed in profile views (see Fig. 1).
Hence, the rotation angles of most of the probe images in their
experiments were within 60 degrees. In addition, because the
underlying 3DMM is a PCA based global statistical model, this
ed arbitrary view face recognition method.



Fig. 7. Reconstruction result of different methods for subjects No.1 and No.8 in BFM. From left to right: the ground truth 3D face models, the reconstructed 3D face models by
the SSF method [64] and our proposed method using only frontal view (denoted as ‘F’), frontal and right profile views (‘F + R’), and frontal and both right and left profile views
(‘F + R + L’). All 3D face models are shown in two different views. Error maps, mean and standard deviation of errors (in terms of PDE) are also shown. The colormap goes from
dark blue to dark red (corresponding to an error between 0 and 5).

Table 1
Reconstruction errors (Mean Absolute Error (MAE)) of different 3D face reconstruc-
tion methods on the BFM test data. ‘F’ represents using only frontal view as input,
‘F + R’ using frontal and right profile views, and ‘F + R+ L ’ using frontal and both left
and right profile views.

Method Input Image MAE (mm)

SSF [64] F 6.18
MFF [63] F 6.24
VRN [19] F 4.96
3DSR [60] F 2.31
3DMM-CNN [62] F 2.46
Qu et al. [61] F 7.34

F + R + L 5.78
Proposed (Linear) F 2.13

F + R 1.92
F + L 1.91
F + R + L 1.88

Proposed (Nonlinear) F 2.27
F + R 1.89
F + L 1.92
F + R + L 1.87

The best results for different inputs are highlighted in bold.
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method is limited in recovering fine details and could be easily
dominated by the mean 3D face model.

Zeng et al. [36] proposed an exemplar based method for
mugshot-based face reconstruction. The method first recon-
structed a coarse 3D face model from each of the mugshot face
image by using a shape from shading (SFS)-based approach, and
then fused the three coarse 3D face models to form a fine 3D face
model via an energy minimization process based on a diverse set of
reference 3D face models. A limitation of this method is its high
computational cost due to the involved online optimization. The
authors [37] applied the method to face recognition by using the
reconstructed 3D face shape to establish the correspondence
between the semantic patches on the arbitrary view probe image
and those on the gallery mugshot face images. They directly com-
pared the LBP features of the corresponding patches, and fused the
matching results of different patches to obtain the final decision on
the probe identity. This method effectively utilized the texture
information in both frontal and profile views. Evaluation results
on the Bosphorus and Color FERET databases demonstrated its



Fig. 8. The reconstruction errors on the BFM test data of our method over different face regions when only frontal (‘F’) images, frontal and right profile (‘F + R’) images, and
frontal and both right profile and left profile (‘F + R + L’) images are used.

Fig. 9. Mean depth errors obtained by the SFS [59], examplar-based method [36], MVF-Net [26] and our proposed method for the 105 subjects in the Bosphorus database. The
overall average errors of our proposed method are 1.66 for linear implementation and 1.69 for nonlinear implementation, while that of MVF-Net method is 1.86, the
examplar-based method is 4.79, and SFS method is 5.60.
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advantages over the baseline LBP-based matcher. However, the
baseline face matcher used in their work is not state of the art.

Dou et al. [25] proposed a Deep Recurrent 3D Face Reconstruc-
tion (DRFAR) method to regress the 3DMM shape parameters from
a set of facial images by a deep convolutional neural network
(DCNN) and a recurrent neural network (RNN). The DCNN disen-
tangles the facial identity and the facial expression components
for each single image, while the RNN fuses identity-related fea-
tures from the DCNN and aggregates the identity specific contex-
tual information from the whole set of images to predict the
facial identity 3DMM parameters. Wu et al. [26] proposed MVF-
Net to extract identity features and pose parameters of three-
view face images separately with a weighting-sharing CNN, and
concatenate those identity features to regress the 3DMM shape
parameters. The photometric reprojection error and optical-flow-
based alignment error are used to supervise the training process.
Same as DRFAR, MVF-Net focuses only on shape reconstruction,
and is limited by the capacity of 3DMM. Consequently, both meth-
ods are hardly applicable to face recognition.

2.2. Pose-invariant face recognition

Pose variation is a major problem in face recognition, and exist-
ing approaches to this problem can be mainly divided into two cat-
egories. One is to extract pose-invariant features directly from the
original images; the other is to normalize face images to frontal
pose, and then feed the pose normalized images to feature extrac-
tors. Tran et al. [38,39] proposed DR-GAN which disentangles the
identity features in arbitrary view images via an elaborated GAN
framework, and uses these features for face recognition. Huang
et al. [40] proposed a Two-Pathway Generative Adversarial Net-
work (TP-GAN) to synthesize frontal facial images by simultane-
ously sensing global structures and local details. Zhao et al.
[41,42] proposed a Dual-Agent Generative Adversarial Network
(DA-GAN) model, which can improve the realism of synthetic pro-
file face images while preserving the identity information. Zhao
et al. [43] also proposed 3D-Aided Deep Pose-Invariant Face Recog-
nition Model (3D-PIM), which automatically recovers realistic
frontal faces from arbitrary poses through a 3D face model. Zhao
et al. [44,69] proposed a Pose Invariant Model (PIM), which con-
sists of Face Frontalization sub-network and Discriminative Learn-
ing sub-network. The two sub-networks are combined for end-to-
end training to get better frontal images and identity feature rep-
resentation. Different from the above methods, we propose in this
paper to generate dense full 3D face models from mugshot images
and enlarge the gallery to improve arbitrary view face recognition
accuracy.

To summarize, this paper makes the following contributions:

� We propose a novel mugshot-based 3D face shape reconstruc-
tion method implemented by both linear and nonlinear regres-
sion, which effectively integrates and utilizes the information
provided by the frontal and profile images in mugshot database.

� We generate dense full 3D face models with texture stitching
from frontal and profile images, which eliminates texture
inconsistency caused by varying illuminations in mugshot
images.

� We improve the arbitrary view face recognition accuracy with
3D-enhanced method, by enlarging the gallery with multi-
view face images generated from obtained full 3D face models.



Fig. 11. Thirteen poses in Multi-PIE [47]. Labels under images indicate different yaw rotations: ‘240’: 90�, ‘010’: 75�, ‘200’: 60�, ‘190’: 45�, ‘041’: 30�, ‘050’: 15�, ‘051’: 0�, ‘140’:
�15�, ‘130’: �30�, ‘080’: �45�, ‘090’: �60�, ‘120’: �75�, ‘110’: �90�.

Fig. 10. Example reconstruction results on the Bosphorus database by SFS [59] (second row), examplar-based method [36] (third row), our proposed method (fourth and fifth
rows). The first row shows the input mugshot images and the ground truth 3D model from different viewpoints. Error maps of the three methods are shown in the right-most
heat map in the second to fourth rows.
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� We achieve state-of-the-art mugshot-based 3D face reconstruc-
tion performance on BFM [45] and Bosphorus [46] databases.
We demonstrate the effectiveness of our proposed 3D-
enhanced face recognition method in improving state-of-the-
art deep learning based face matchers on Multi-PIE [47] and
Color FERET [48] databases.

3. 3D face reconstruction

In this section, we introduce our proposed mugshot-based 3D
face reconstruction method. As shown in Fig. 2, input to our
method contains three mugshot face images of a person, including
one frontal and two profile views. To recover a point-cloud-based
full 3D face model with texture, the method first detects 2D facial
landmarks on the mugshot images, then updates the reconstructed
3D face shape with either linear or nonlinear regressors such that
the 3D face shape is consistent with the 2D landmarks, and finally
computes the texture for each vertex in the 3D face shape by
exploiting both frontal and profile face images with a patch-
based texture stitching method. In this section, we will go through
the details with emphasis on (i) 2D facial landmark extraction, (ii)
3D face shape reconstruction, and (iii) texture recovery.



Fig. 14. CMC curves of the (a) LightCNN [65], (b) CenterLoss [66] and (c) SphereFace [20] matchers on Color FERET before and after enlarging the gallery, and with and
without fine-tuning, using Han and Jain’s and our methods.

Fig. 13. CMC curves of the (a) LightCNN [65], (b) CenterLoss [66] and (c) SphereFace [20] matchers on Multi-PIE before and after enlarging the gallery, and with and without
fine-tuning, using Han and Jain’s and our methods.

Fig. 12. Pose variations in the Color FERET database [48]. Labels under images indicate different yaw rotations: ‘pr’: 90�, ‘hr’: 67.5�, ‘qr’: 22.5�, ‘fa’: 0�, ‘ql’: �22.5�, ‘hl’: �67.5�,
‘pl’: �90�.
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3.1. 2D facial landmarks extraction

Our mugshot-based 3D face shape reconstruction method
begins with extracting 2D facial landmarks on the mugshot face
images. For the frontal face image, we extract a set of 68 facial
landmarks using the DLIB implementation [49] of the algorithm
in Ref. [50]. For profile face images, we extract 25 landmarks (see
Fig. 2). However, since the DLIB model cannot be directly applied
due to large pose variations, we re-train it with the face images
in the 300 W-LP database [51] whose yaw angles are between
70� and 90�. Let PF ; PR, and PL denote the landmarks on frontal,
right profile, and left profile face images, respectively. To fully uti-
lize the correlation between the landmarks on frontal and profile
faces, we concatenate them to form a unified 2D facial landmark
vector P¼ PFPRPLð ÞT ¼ uF

1;vF
1; . . . ;u

F
68;vF

68;u
R
1;vR

1; . . . ;u
R
25;vR

25;u
L
1;vL

1; . . . ;
�

uL
25;vL

25ÞT 2 R236�1 (‘T’ denotes transpose, and u;vð Þ 2D landmark
coordinates) as input to the subsequent 3D face shape reconstruc-
tion step.
3.2. 3D face shape reconstruction

In this paper, we regress 3D face shape by exploiting relation-
ship between 3D shape and its mugshot landmarks. Both linear
regression and nonlinear regression are implemented to learn this
‘relationship’. Next, we introduce the implementation in detail.

3.2.1. Reconstruction via Linear regression
In the process of 3D face shape reconstruction, we assume that

dense correspondences have been established for 3D face shapes,
and the indices of the vertices corresponding to facial landmarks
are known. We represent the full 3D face shape of a subject as a
vector S ¼ x1; y1; z1; . . . ; xn; yn; znð ÞT 2 R 3nð Þ�1, where x; y; zð Þ are 3D
coordinates of the shape vertex, and n is the total number of ver-
tices. To reconstruct the 3D face shape, we start from an initial
3D face shape S0 (e.g., the mean 3D face shape of training samples),
and iteratively seek shape offsets DS to update the 3D face shape
towards its true value. Motivated by the recent single-image-
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based 3D face shape reconstruction methods [52,34], we estimate
DS via regression over the deviations of 2D landmarks from their
true positions.

Let P� denote the set of detected 2D landmarks on mugshot

images that are taken as the ground truth, and Sk be the recon-
structed 3D face shape after k iterations. According to Ref. [52],

Sk can be projected to 2D image plane to obtain its corresponding

2D landmarks Pk through weak perspective projectionM. Note that
the 3D-to-2D projection matrix is computed via least squares fit-
ting for each of the frontal, right profile and left profile views such

that the projections of the landmark vertices in Sk are as close as
possible to the ground truth landmarks on mugshot images, i.e.,

Mk
j ¼ Dk

j

� �T
Dk

j

� ��1

Dk
j

� �T
P�
j ; ð1Þ

where j 2 f ; l; rf g denotes the frontal, left or right view in mugshot

images, and Dk denotes the corresponding landmark vertices in Sk.

The shape offset to Sk can be then calculated by

DSkþ1 ¼ Rkþ1 DPk
� �

; ð2Þ

where DPk ¼ P� � Pk
� �

are 2D landmark deviations, and Rkþ1 is the

regressor at kþ 1ð Þth iteration. The updated 3D face shape after
kþ 1ð Þ iterations is finally obtained as

Skþ1 ¼ Sk þ DSkþ1: ð3Þ

The regressors Rk
n o

involved in the above shape reconstruction

process are learnt based on N training samples of mugshot images
together with their ground truth 3D face shapes S�i ji ¼ 1;2; . . . ;N

� �
and 2D landmarks P�

i ji ¼ 1;2; . . . ;N
� �

. Specifically, Rk at the kth

iteration is obtained by solving the following optimization problem
over the N training samples,

argmin
Rk

XN
i¼1

k S�i � Sk�1
i

� �
� Rk P�

i � Pk�1
i

� �
k22: ð4Þ

Under the assumption that Rk
n o

are linear regressors, the above

optimization problem can be solved by using least squares with a
closed-form solution as

Rk ¼ DSk�1 DPk�1� 	T
DPk�1 DPk�1� 	T� ��1

; ð5Þ

where S 2 R 3nð Þ�N and P 2 R236�N denote the composition of all
training samples’ 3D face shapes and 2D landmarks with each col-

umn corresponding to one sample, and DSk�1 ¼ S
� � S

k�1
� �

and

DPk�1 ¼ P� � Pk�1� 	
are, respectively, the 3D shape offsets and the

2D landmark deviations.
In order to avoid over-fitting, we further incorporate a regular-

ization term into the objective function in Eq. (4), resulting in

argmin
Rk

XN
i¼1

k S�i � Sk�1
i

� �
� Rk P�

i � Pk�1
i

� �
k22 þ kkRkk22; ð6Þ

with its closed-form solution as

Rk ¼ DSk�1 DPk�1� 	T
DPk�1 DPk�1� 	T þ kE

� ��1
; ð7Þ

where E is identity matrix and k is the regularization parameter.

According to Eqs. (5) and (7), the inverse of DPk�1 DPk�1� 	T
is

required to compute the regressors. In order to accurately evaluate
these two equations, the rank of DPk�1 DPk�1� 	T
should not be lar-

ger than the number of training samples. Fortunately, as we use
low-dimensional 2D features, it is easy to satisfy this requirement
by using a small number of training samples. Algorithm 1 summa-
rizes the process of learning the cascaded linear regressors.

Algorithm 1. Training process of learning the cascaded linear
regressors

Input: Training data Ii; S
�
i ; P

�
i

� 	� �ji ¼ 1;2; . . . ;Ng, initial shape
S0

Output: Cascaded regressors Rk
n oK

k¼1

1: for k ¼ 1; . . . ;K

2: Estimate weak perspective projection matrix Mk�1 for

each subject via Eq. (1), where Dk�1 can be obtained from

shape Sk�1;

3: Compute 2D projection landmark Pk�1 ¼ Dk�1Mk�1;
4: Compute 2D landmark deviations and 3D face offsets for

all samples: DPk�1 ¼ P� � Pk�1; DSk�1 ¼ S� � Sk�1;

5: Estimate cascaded regressor Rk via Eq. (7);

6: Update 3D face Sk ¼ Sk�1 þ Rk DPk�1
� �

7: end for
3.2.2. Reconstruction via nonlinear regression
The ‘relationship’ between 3D face shapes and mugshot land-

marks can also be learned by nonlinear regressors. Here, we
employ multiple layer perceptions (MLP) with LeakyReLU activa-
tion functions as the nonlinear regressors. As shown in Fig. 3,
unlike the linear implementation, our nonlinear implementation
updates the reconstructed 3D face shape in a recursive rather than
cascaded way. Given the mugshot images of a subject, its 3D face
shape is initialized as the average 3D face shape, and the 3D-to-
2D projection matrices are estimated according to Eq. (1). The
mugshot landmarks offset is taken as the input to the MLP, which
consists of two full connection layers and a LeakyReLU activation
layer. The output of the MLP is the offset required to update the
currently reconstructed 3D face shape. After updating the 3D face
shape according to Eq. (3), the 3D-to-2D projection matrices Mi

are re-estimated, and the new mugshot landmarks offset is re-
calculated accordingly. This 3D face shape update procedure is
recursively called with the same MLP until convergence.

To train the MLP, in each recursion call, the Euclidean loss
between the estimated 3D face shape offset and the ground truth
offset (i.e., the difference between the ground truth 3D face shape
and the currently reconstructed 3D face shape at the begin of the
recursion call) is employed. Note that the same MLP is shared
between different recursion calls. Hence, once the training of one
recursion call is completed, the new mugshot landmarks offset as
well as the new ground truth 3D face shape offset are computed
and used as the training data for the next recursion call. This way,
the MLP as a nonlinear regressor for 3D face shape reconstruction
is gradually fine-tuned to generate more accurate 3D face shapes.

3.3. Texture recovery

The purpose of texture recovery module is to assign texture
value for each of the vertices in the reconstructed full 3D face
shape. As shown in Fig. 4, our proposed texture recovery method
consists of two phases: texture mapping and texture stitching.
The texture mapping phase coarsely determines the texture values,
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while the texture stitching phase refines the texture values to deal
with the seams or texture inconsistency caused by varying illumi-
nations present in mugshot images.

Texture mapping is done at two levels, i.e., vertex and patch
levels. We first map, at vertex level, the texture values from each
of the mugshot images to the reconstructed 3D face shape at its
corresponding view angle, resulting in three partially textured 3D
faces of frontal, right profile and left profile views. The correspon-
dences between the shape vertices and the image pixels are deter-
mined by the projection matrices that are obtained during 3D face
shape reconstruction (refer to Section 3.2). Inspired by Ref. [53],
the visibility of each vertex is estimated according to the intersec-
tion angle between the surface normal at the vertex and the view
direction from the face to the observer. Smaller intersection angles
indicate higher visibility, and vertices with angles beyond 90� are
invisible and thus do not contain any texture because no corre-
sponding pixels exist for them in the mugshot images.

To remove the seams in the textured full 3D face is essentially a
problem of stitching target and source textures (i.e., frontal and
profile face images). While many methods [54–56] have been pro-
posed for seamless texture stitching, only a few of them have been
designed for 3D data. In addition, most of them operate in gradient
domain and are thus time-consuming. Recently, a fast texture
stitching method was proposed in Ref. [57]. It treats texture stitch-
ing as a re-sampling process of the source texture constrained by
the target texture. It directly refines the source texture in the
intensity domain rather than in the gradient domain. Specifically,
it derives three filter kernels that can approximate the Poisson
blending process in gradient domain, and applies pyramid convo-
lutions to the source texture image by filtering the image with
the three kernels at multiple scales. Motivated by this method,
we first project the coarsely textured 3D face onto 2D images in
three views, then refine the profile view texture according to the
frontal view texture by using pyramid convolutions, and finally
back-project the three 2D images onto the 3D face. Algorithms 2
and 3 summarize the processes of patch-level texture selection
and texture refinement, respectively.

Algorithm 2. Process of patch-level texture selection and
projection

Input: Textures of different views: Tv jv 2 f ; l; rf gf g,
projection matrix of different views: Mv jv 2 f ; l; rf gf g, 3D
face shape: S

Output: Projection images of selected texture fragments of
different views: av jv 2 f ; l; rf gf g

1: Compute 100 overlapping patches (P) via method
introduced in [58];

2: for p in patches P
3: Compute visibility of each vertice in p:

vis ¼ 1
2 1þ sgn n!� M1

kM1k �
M2
kM2k

� �� ��
(sgn is sign function, n! is normal, M1 and M2 are first three

elements of the first and second rows, respectively);
4: Compute visibility of patch p on each view:

visvj ¼ P
j2p visjjv 2 f ; l; rf g� �n

;

5: Texture of p is set to be the value of the most visible one
among three views;

6: end for
7: The selected patches on each view forms a texture

fragment;
8: Project the selected texture fragments of each view and

obtain images av jv 2 f ; l; rf gf g.
Algorithm 3. Process of texture refinement

Input: Projection images of selected texture fragments from
different views: av jv 2 f ; l; rf gf g

Output: Refined texture fragments on left and right views:
â0v jv 2 l; rf g� �

1: Determine the number of levels L and convolution filter
h1;h2 and g according to [57];

2: for a in av jv 2 l; rf gf g
3: Calculate the texture difference between a and af at the

seam, and modify the texture value at the seam of a to the
texture difference;

4: {Forward transform (analysis)}:
5: a0 ¼ a;
6: for each level j ¼ 0; . . . ; L� 1

7: aj0 ¼ aj;

8: ajþ1 ¼# h1~aj
� 	

(# denotes the downsampling operator,
~ denotes convolution operator);

9: end for
10: {Backward transform (synthesis)}:
11: â ¼ g~aj;
12: for each level j ¼ L� 1; . . . ; 0

13: âj ¼ h2~ " âjþ1
� 	þ g~aj0 (" denotes the upsampling

operator);
14: end for
15: The â0 is the texture refinement result of a.
16: end for

Fig. 5 shows the recovered texture by our method and the state-
of-the-art method proposed by Dessein et al. [54] for subjects in
Multi-PIE and Color FERET databases. As can be seen, our obtained
textured 3D faces no longer have apparent seams, and more impor-
tantly, retain facial details (especially in nose and cheek regions)
that could be over-smoothed by the counterpart method. More-
over, the time complexity of our method is O np

� 	
, where np is the

number of image pixels, whereas that of the counterpart method

is O n3
p

� �
.

According to Ref. [54], patch-level texture mapping can better
ensure local texture consistency than vertex-level texture map-
ping. Therefore, we use the method in Ref. [58] to segment the
3D face to 100 overlapping patches with a coefficient value
r ¼ 0:6 and a fast-marching-based farthest-point strategy. For
each patch, its texture values are set to be the values of the most
visible one among the corresponding patches on the aforemen-
tioned three partially textured 3D faces. Fig. 4 shows an example
of coarsely textured full 3D face after texture mapping. Some obvi-
ous seams can be observed due to the inconsistent illuminations
among different views of the input mugshot images.

4. Application to face recognition

Pose, illumination and expression (PIE) are well-known chal-
lenges in face recognition. With respect to the pose challenge, pre-
vious studies [2] show that face recognition accuracy would be
obviously degraded as the facial pose becomes larger and enrolling
subjects with face images of multiple views could enhance the
robustness of face recognition to pose variations. Therefore, in this
paper, we enlarge the mugshot gallery with multiple view face
images that are generated by projecting the reconstructed textured
full 3D faces onto 2D plane at different view angles. Given an arbi-
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trary view probe 2D face image, its similarity with an enrolled sub-
ject is determined as the maximum of its match scores with the
multi-view images of the subject, and its identity is decided as
the subject that has the highest similarity with it. The flowchart
of the proposed mugshot-based arbitrary view face recognition
method is shown in Fig. 6.

5. Experiments

In this section, we evaluate the effectiveness and efficiency of
the proposed method. First, we compare the proposed method
with state-of-the-art methods in terms of 3D face reconstruction
accuracy on BFM and Bosphorus databases. Then, we evaluate
the contribution of the reconstructed 3D faces to face recognition
with three deep learning based face matchers as baseline on
Multi-PIE and Color FERET databases. Finally, we report the com-
putational efficiency of the proposed method.

5.1. 3D face reconstruction accuracy

Databases and Metrics. We use the 3DMM model in the Basel
Face Model (BFM) database [45] to randomly generate 3D faces of
1000 subjects, and synthesize multi-view 2D face images (of
1024� 768 pixels) from them. The facial landmarks on these
images are directly obtained during the synthesis process accord-
ing to their corresponding vertices in the 3D face shapes (note that
all the 3DMM-generated 3D faces have vertex-to-vertex dense cor-
respondences). The landmarks together with the 3D face shapes
are used as ground truth data to train our proposed method to
learn the linear and nonlinear regressors for 3D face shape recon-
struction. In the experiments of linear regression, we empirically
set k ¼ 3000 in Eq. (6), and observe that the training process con-
verges typically in five iterations, i.e., K ¼ 5. The obtained linear
regressors are also used in the face recognition experiments in
the next subsection.

The Bosphorus [46] database and the BFM database are used to
assess the 3D face shape reconstruction accuracy of our proposed
method and several state-of-the-art methods,3 including the
improved shape-from-shading (SFS) method [59], an examplar-
based method [36], a regressor based method (3DSR) [60], a volu-
metric CNN Regressor based method (VRN) [19], a multi-view
3DMM based method [61], a 3DMM CNN based method (3DMM-
CNN) [62], a Multi-view 3DMM regression based method (MVF-
Net) [26] and two improved single-view 3DMM methods, namely
MFF [63] and SSF [64]. The BFM database provides 10 out-of-
sample 3D faces for evaluation. The Bosphorus dataset has ground
truth 3D faces of 105 subjects. In both datasets, we choose only
the frontal and profile 2D face images as input, and compare the
reconstructed models with the ground truth shapes in terms of
two metrics: Mean Absolute Error (MAE) and Per-vertex Depth Error
(PDE). MAE is defined as

MAE ¼ 1
m

Xm
i¼1

kS�i � bSik=n
� �

; ð8Þ

where S�i is the ground truth 3D shape of the ith model out of a total

of m test samples, bSi is the corresponding reconstructed shape, and
n is the number of points in 3D face shape. PDE is computed by

Ez xi; yið Þ ¼j z�i xi; yið Þ � ẑi xi; yið Þ j; ð9Þ
3 Most of these methods are designed for single-image-based reconstruction. For a
fair comparison, we reconstruct 3D face shapes for each of the three views in mugshot
images using these methods, and we find the frontal view can get the best accuracy,
so we report the accuracy of frontal view only.
where z�i and ẑi are the ground truth and reconstructed depth values
of the ith vertex.

Results on BFM. Fig. 7 shows the reconstruction results of our
method compared with SSF on the BFM dataset. As the training
data used in MVF-Net[26] includes 300W-LP dataset that is based
on BFM, it’s not fair to compare with MVF-Net on this dataset. The
reconstruction error in terms of PDE is also plotted. Both linear and
nonlinear implementations of our proposed method can produce
more visually pleasing results. Compared with SSF, our method
leads to much smaller reconstruction errors.

Table 1 summarizes the reconstruction accuracy of different
methods. Note that for the nonlinear implementation of our pro-
posed method, we recursively call the MLP for two times. Accord-
ing to our experimental results, when applying the MLP only once
without recursive calls, the MAEs are 2.28, 1.94, 1.95 and 1.93 for
using frontal, frontal and right profile, frontal and left profile, and
frontal and both left and right profile face images, respectively,
which are worse than the MAEs when recursively calling the
MLP. When only frontal 2D images are used as input, our method
is obviously better than the existing state-of-the-art 3DMM-
based methods. When multi-view mugshot images are used, our
method surpasses the counterpart multi-view 3DMM-based
method with a large margin. These results demonstrate the supe-
riority of our proposed method in fully utilizing the information
in multi-view mugshot face images.

We can also see from Table 1 that using only right-profile
images or left-profile images and using both right-profile and
left-profile images do not make significant differences in enhanc-
ing the reconstruction accuracy. This is reasonable considering that
the two profile views are nearly mirror views of each other. We
further investigate the contribution of additional profile images
on the reconstruction of different face regions. The results are
shown in Fig. 8. Note that the nose region benefits the most. This
is probably because the profile views provide richer geometric
details for the nose region than for other regions.

Results on Bosphorus. Fig. 9 shows the average depth error of
our proposed method as well as the SFS [59], examplar-based
method [36] and MVF-Net [26] over the 105 subjects in the
Bosphorus database. It can be seen that our method achieves the
lowest error on almost all the subjects. Furthermore, our method
successfully reduces the average reconstruction error from 5.60
to 1.66 (Linear) and 1.71 (Nonlinear). Some example results of
reconstruction are shown in Fig. 10. Compared with SFS and
examplar-based method, our proposed method can produce full
3D face models with overall smoothness and detailed geometry.
5.2. Face recognition accuracy

5.2.1. Databases and protocols
The Multi-PIE face database [47] and the Color FERET face data-

base [48] are used for face recognition accuracy evaluation. To fol-
low the real-world applications in law enforcement agencies, the
galleries in our experiments are further expanded by 30,000 mug-
shot photographs (three images per subject) fromaprivate database
(which can not be published due to copyright and privacy issues).

The Multi-PIE database contains 755,370 images from 337 sub-
jects under various poses, illuminations and expressions. These
face images were captured in four sessions during different peri-
ods. In our experiments, we only consider the effect of arbitrary
poses on face recognition. Therefore, we choose the 11,921 images
from 337 subjects with 13 poses, normal illumination and neutral
expression to evaluate the arbitrary view face recognition accu-
racy, and take the frontal view (pose 051) and side views (poses
110 and 240) of each subject from a session as the gallery mugshot
images (see Fig. 11). Note that the gallery images are chosen from



Table 2
Rank-1 identification rates (%) of different methods at different poses of probe images on Multi-PIE. The best results of each face matcher at each pose are highlighted in bold.

Method Matcher Pose of probe images Average

�90� �75� �60� �45� �30� �15� 0� 15� 30� 45� 60� 75� 90�

Original Gallery LightCNN 48.4 31.4 56.8 93.9 99.0 99.5 100 100 99.5 90.6 45.0 20.0 30.1 70.35
Han and Jain [1] 75.7 84.3 86.8 92.0 92.5 94.4 90.4 94.4 92.4 90.6 86.8 75.7 65.5 86.30
Ours 69.7 87.1 93.0 93.4 93.0 95.8 94.3 97.2 94.4 94.4 90.1 78.6 62.4 87.94

Original Gallery SphereFace 72.7 71.9 89.2 99.0 100 100 100 100 100 98.1 81.6 68.5 65.5 88.22
Han and Jain [1] 65.6 76.6 89.2 99.1 99.5 100 100 100 100 96.7 81.6 70.4 55.9 87.30
Ours 69.7 86.7 92.0 98.1 99.5 99.5 100 99.5 100 98.6 90.6 80.0 67.7 90.93

Original Gallery CenterLoss 74.7 82.8 85.9 92.0 92.4 93.9 90.4 94.3 92.4 90.1 84.5 74.2 65.5 85.68
Han and Jain [1] 83.8 95.2 96.2 97.2 99.0 99.0 98.1 99.1 99.1 98.5 92.9 90.4 78.5 94.41
Ours 84.8 93.3 97.2 98.6 98.6 99.1 97.1 99.1 99.5 98.5 94.8 90.9 81.7 94.88

LDF-Net [67] LDA 63.9 87.3 93.0 98.1 98.6 97.2 - 100 99.1 98.6 94.4 85.0 66.7 90.1

Table 3
Rank-1 identification rates (%) of different methods at different poses of probe images on Color FERET. The best results of each face matcher at each pose are highlighted in bold.

Method Matcher Pose of Probe Images Average

22.5� 67.5� �22.5� �67.5� 90�

Original Gallery LightCNN 100 65.1 100 73.4 26.6 73.05
Han and Jain [1] 92.6 75.9 95.3 70.9 33.3 73.62
Ours 99.3 91.1 97.9 89.9 33.3 82.33

Original Gallery SphereFace 100 98.1 100 96.2 80.0 94.86
Han and Jain [1] 100 94.9 100 95.5 80.0 94.10
Ours 100 99.3 100 98.7 80.0 95.62

Original Gallery CenterLoss 100 96.8 100 97.4 80.0 94.86
Han and Jain [1] 100 97.2 100 100 83.3 96.11
Ours 100 97.5 100 100 86.7 96.83
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one session while the probes are collected in other sessions. The
Color FERET database contains a total of 11,338 facial images from
994 subjects at various angles, over the course of 15 sessions
between 1993 and 1996. We conduct experiments on a subset of
the Color FERET database because not each subject in the Color
FERET database has mughsot images. Similarly, we choose the
2974 images from 343 subjects with various angles to evaluate
the face recognition accuracy. Among them, a frontal face image
(pose fa) and two profile face images (poses pl and pr) of each sub-
ject are used as the gallery mugshot images (see Fig. 12). From the
mugshot images, 3D faces are reconstructed with linear regressors
and used to generate multi-view 2D face images with yaw rotation
angles ranging from �90� to +90� at an interval of 15� to enlarge
the gallery.The face recognition is conducted in identification
mode, and rank-1 identification rate and cumulative match charac-
teristic (CMC) curves are reported. In order to investigate the scal-
ability of our proposed method, we consider two galleries, one of
which is an expansion of the other with additional 10,000 subjects.
4 The results of SphereFace become worse after being fine-tuned with the images
generated by the method in Ref. [1]. One possible reason is because SphereFace is
more sensitive to the low quality images in the relatively small training dataset, while
the images generated by the method in [1] at large poses look unrealistic with
obvious artifacts.
5.2.2. Improved face recognition by enlarging gallery
To evaluate the effectiveness of the proposed method in

enhancing face recognition, we enlarge the mugshot gallery with
multiple view face images that are generated by reconstructed
3D model. we employ the following state-of-the-art deep learning
based face matchers, including the Lightened Convolutional Neural
Networks (LightCNN) [65], the CenterLoss model (CenterLoss) [66],
and the SphereFace method (SphereFace) [20], which are available
in the public domain. We conduct two series of experiments to (i)
compare the performance of these matchers before and after
enlarging the gallery, and (ii) investigate the effectiveness of
fine-tuning the matchers with the generated multi-view images.
The training data for fine-tuning are chosen in a similar way to
the Setting-I protocol in [67]. Specifically, for the Multi-PIE data-
base we choose the images of the first 229 subjects as training
data, and the images of the remaining 108 subjects as test data
(~23 images per subject for test), and for the Color FERET database
we choose the images of the first 200 subjects as training data, and
the images of the remaining 143 subjects as test data (~5 images
per subject for test). To demonstrate the superiority of our recon-
structed 3D face models, we compare our method with one exist-
ing mugshot based face recognition method in [1] and one state of
the art cross-pose face recognition method in [67].

Figs. 13 and 14, respectively, show the CMC curves of different
methods based on Multi-PIE database and Color FERET database.
‘Original Gallery’ in the figures indicates the results of the original
models on un-enlarged gallery. From these results, the following
two observations can be made. (i) The accuracy of the DL-based
matchers is improved after enlarging the gallery, and our method
provides more improvement than the counterpart method in Ref.
[1]. We believe that this is because our method effectively exploits
both the shape and texture information in mugshot images. (ii)
Fine-tuning the original DL-based face matchers with the gener-
ated multi-view face images further improves the recognition
accuracy with a large margin in most cases,4 and our method is con-
sistently better in terms of rank-1 identification rate.

Tables 2 and 3 give the rank-1 identification rates of different
methods under various pose variations of probe images on Multi-
PIE database and Color FERET database, respectively. While the
face matchers deteriorate significantly with the pose variations
in probe images on the original gallery, they become more robust
to pose variations after using the reconstructed 3D faces to enlarge
the gallery and to fine-tune the matchers. Moreover, our method
achieves the best rank-1 identification rate, on average, among



Table 4
Rank-1 identification rates (%) of different methods for small and large galleries, and the improvement made under different enlarged galleries. The entries shown as ‘‘–” in the
table indicate no improvement.

Matcher Gallery (No. of Subjects) Rank-1 Accuracy of Different Methods Improvement (%) y Han and Jain [1] Improvement (%) by Ours

Han and Jain [1] Ours Original Gallery

LightCNN Multi-PIE (337) 89.55 92.15 80.05 9.5 12.1
Multi-PIE (337) + Private (10,000) 87.65 89.8 72.16 15.49 17.64
FERET (343) 85.85 94.28 87.6 – 6.68
FERET (343) + Private (10,000) 82.19 93 82.83 – 10.17

CenterLoss Multi-PIE (337) 96.74 97.44 93.52 3.22 3.92
Multi-PIE (337) + Private (10,000) 95.54 95.99 88.19 7.35 7.8
FERET (343) 99.52 100 99.36 0.16 0.64
FERET (343) + Private (10,000) 99.05 99.52 98.09 0.96 1.43

SphereFace Multi-PIE (337) 92.52 95.21 93.68 – 1.53
Multi-PIE (337) + Private (10,000) 89.34 92.69 89.59 – 3.1
FERET (343) 98.57 99.68 99.05 – 0.63
FERET (343) + Private (10,000) 97.14 99.05 98.09 – 0.96

Table 5
Rank-1 identification rates (%) for probe images of Mongolian race and other races.

Matcher Gallery Percentage of Mongolians in Gallery
(%)

Probe images of Mongolian race Probe images of other races

Ours Original
Gallery

Improvement
(%)

Ours Original
Gallery

Improvement
(%)

LightCNN Multi-PIE 26.36 90.83 72.84 17.99 92.57 82.31 10.26
Multi-
PIE + Private

99.19 86.61 60.38 26.23 90.94 75.85 15.09

FERET 8.96 96.43 78.57 17.86 94.07 88.48 5.59
FERET + Private 98.69 87.5 66.07 21.43 93.54 84.47 9.07

CenterLoss Multi-PIE 26.36 96.54 85.47 11.07 97.72 96.04 1.68
Multi-
PIE + Private

99.19 91.7 70.24 21.46 97.23 93.81 3.42

FERET 8.96 100 98.21 1.79 100 99.48 0.52
FERET + Private 98.69 96.43 85.71 10.72 99.83 99.3 0.53

SphereFace Multi-PIE 26.36 92.56 88.06 4.5 96.04 95.44 0.6
Multi-
PIE + Private

99.19 84.43 75.09 9.34 95.28 94.14 1.14

FERET 8.96 98.21 98.21 0 99.83 99.13 0.7
FERET + Private 98.69 92.86 91.07 1.79 99.65 98.78 0.87
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the methods considered.
Table 4 compares the improvement made by our method and

that made by the method in Ref. [1] when different numbers of
subjects are in the gallery. As can be seen, as the gallery becomes
larger, the face recognition accuracy improves more for both meth-
ods. This is because it is more likely to hit wrong subjects in a lar-
ger gallery if no additional information is explored. While both our
method and the method in Ref. [1] enlarge the gallery with images
of extra views, our method can improve the face recognition accu-
racy more significantly due to its ability to generate better quality
synthetic multi-view images.

Considering that the subjects in the private database are all of
Mongolian race, we expect that the recognition accuracy of the
Mongolian probe images is improved more than that of others.
Table 6
Rank-1 identification rate (%) for different methods at different poses of probe images on

Method Pose of

±90� ±75� ±60�

TP-GAN [40] 64.0 84.1 92.9
3D-PIM [43] 76.1 94.3 98.8
PIM [44] 75.0 91.2 97.7
Original Gallery 65.4 88.6 98.3
Ours without Fusion 66.2 86.0 97.0
Ours with Fusion 81.5 94.1 99.1
To investigate such race effect, we divide the probe images into
two subsets according to whether they are of Mongolian race or
not, and calculate the rank-1 identification rates for them sepa-
rately. The results are shown in Table 5. Not surprisingly, the
improvement for Mongolian probe images is obviously higher,
since a larger portion of the gallery is Mongolian. All these results
demonstrate the superior scalability of our method.

5.2.3. Further discussion on face recognition
The above experiments show that our proposed method obtains

better overall face recognition accuracy; however, it does not con-
sistently work across all pose directions. Based on this observation,
we argue that the synthetic images and the original gallery images
can complement each other. Yet, due to the modality gap between
Multi-PIE. The best results at each pose are highlighted in bold.

Probe Images Average

±45� ±30� ±15�

98.6 99.9 99.8 89.9
99.3 99.5 99.8 94.7
98.3 99.4 99.8 93.6
99.8 100.0 100.0 92.0
99.5 99.9 99.9 91.4
99.8 100.0 100.0 95.8



Table 7
Testing time and model size of different methods. The entries shown as ‘‘–” in the
table indicate that the corresponding metrics are not provided or unavailable.

Method Test Time (s) Model Size (MB)

Shape Texture Shape Texture

Zhang et al. [2] 985.80 225.60 – –
MVF-Net [26] 0.25 – 33.4 –
Ours 0.04 1.20 702.5 3.7
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them, simply using the synthetic images to enlarge the gallery
might not be the best way to improve face recognition accuracy.
Therefore, in this experiment, we modify the implementation of
the face recognition method by matching the probe against the
original and the synthetic images in the enlarged gallery, respec-
tively. Once the comparison between the probe and the images
of an object is done, we sum up the maximum score among the
synthetic images and the maximum score among the original
images as the final match score between the probe and the subject.
The identity of the probe is finally determined as the subject that
has the highest match score with the probe. We refer to this imple-
mentation of our method as ours with fusion. For a fair comparison
with existing state-of-the-art pose-invariant face recognition
methods, in this experiment we use the CosFace [68] as the face
matcher and conduct comparison evaluation on Multi-PIE by using
the images of 250 subjects with neutral expression in session one.
The images with 13 poses within ±90� and under 20 illumination
situations of the first 150 identities are used for fine-tuning. For
testing, one frontal view with neutral expression and normal illu-
mination (i.e., ID07) is used as the gallery image for each of the
remaining 100 identities, and the rest images are used as probes.

Table 6 gives the evaluation results. As can be seen, although
the previous implementation in Section 5.2.2 is not consistently
better than the counterpart methods, the implementation of our
method in this experiment can better utilize the complementary
features in the original and synthetic gallery images, and thus
obtain consistently better recognition accuracy under varying pose
angles than the existing state-of-the-art methods.
5.3. Computational efficiency

In order to evaluate the computational efficiency of our
method, here, we analyze the computational complexity of the
linear implementation of our proposed method. According to
the closed-form solution in Eqs. (5) and (7), the involved compu-
tation mainly includes three matrix multiplications and one
matrix inverse. Let N be the number of training samples, n the
number of vertices in the output 3D model, and m the number
of used facial landmarks. The time complexity is then of the order
O 3nmN þm2N þm2N þm3
� 	

, in which the first three terms corre-
spond to the three matrix multiplications and the last term to the
matrix inverse. Note that our method uses a sparse set of facial
landmarks. Thus the training complexity is primarily linear to
the number of training samples and the point cloud density of
the output 3D model. Further, we execute the MATLAB imple-
mentation of the linear version of our proposed 3D face recon-
struction method on a PC with i7-4710 CPU and 16 GB
memory. When using 1000 samples to train our method, it takes
133 s (s) to converge. The testing time and the model size of our
method are summarized in Table 7 with comparison to some
existing methods. Obviously, our method is more efficient in
terms of running time. However, the space complexity of our
method is relatively higher.
6. Conclusion

We have proposed a novel method for reconstructing textured
full 3D faces from mugshot images (frontal and profile views). In
our method, personalized face models are reconstructed via a lin-
ear or nonlinear regression pipeline for 3D shape reconstruction
and an efficient texture recovery module. Extensive experimental
results have demonstrated that our proposed method can generate
more accurate 3D face shapes and more realistic facial texture for
the full 3D faces. An application of the reconstructed textured full
3D faces to arbitrary view face recognition is presented. In the
recognition experiments, multi-view 2D face images are generated
from the textured full 3D faces and used to enlarge the gallery to
improve the arbitrary view face recognition accuracy. Our recogni-
tion results demonstrate the effectiveness of the proposed method,
and show that DL-based face matchers, though being more robust
to pose variations than conventional face matchers, do benefit
from the textured full 3D faces reconstructed from mugshot
images. A more significant improvement over the recognition
accuracy can be obtained after they are fine-tuned with the gener-
ated multi-view face images.
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