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Abstract

Self-supervised representation learning methods have
achieved significant success in computer vision and natural
language processing (NLP), where data samples exhibit
explicit spatial or semantic dependencies. However, applying
these methods to tabular data is challenging due to the less
pronounced dependencies among data samples. In this paper,
we address this limitation by introducing SwitchTab, a novel
self-supervised method specifically designed to capture
latent dependencies in tabular data. SwitchTab leverages
an asymmetric encoder-decoder framework to decouple
mutual and salient features among data pairs, resulting in
more representative embeddings. These embeddings, in turn,
contribute to better decision boundaries and lead to improved
results in downstream tasks. To validate the effectiveness
of SwitchTab, we conduct extensive experiments across
various domains involving tabular data. The results showcase
superior performance in end-to-end prediction tasks with
fine-tuning. Moreover, we demonstrate that pre-trained
salient embeddings can be utilized as plug-and-play fea-
tures to enhance the performance of various traditional
classification methods (e.g., Logistic Regression, XGBoost,
etc.). Lastly, we highlight the capability of SwitchTab to
create explainable representations through visualization of
decoupled mutual and salient features in the latent space.

Introduction
While representation learning (Bengio, Courville, and Vin-
cent 2013) has made remarkable advancements in computer
vision (CV) and natural language processing (NLP) do-
mains, tabular data, which is ubiquitous in real-world appli-
cations and critical industries such as healthcare (Qayyum
et al. 2020; Chen et al. 2017, 2019), manufacturing (Borisov
et al. 2022; Chen, Lu, and Li 2017; Wang et al. 2023a; Chen
et al. 2020a), agriculture (Liakos et al. 2018; Wu et al. 2022;
Tao et al. 2022) and various engineering fields (Chen et al.
2018; Zhu et al. 2018; Chen 2020; Wang et al. 2023b), has
not fully benefited from its transformative power and re-
mains relatively unexplored. The unique challenges posed
by tabular datasets stem from their inherent heterogeneity,
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Figure 1: Given a pair of images, a person can easily distin-
guish the salient digits and mutual background due to the
well-structured spatial relationships. However, it becomes
challenging to distinguish a pair of tabular samples. For
instance, feature City may be salient between data points
“Chicago” and “New York” for word counts, however, still
sharing some latent mutual information (e.g., big cities),
making it challenging for decoupling. Note that this decou-
pling process is for illustration only. In the implementation,
all the decoupled samples are computed in the feature space.

which lacks explicit spatial relationships in images (e.g.,
similar background and distinct characters) or semantic de-
pendencies in languages. Tabular data typically comprises
redundant features that are both numerical and categori-
cal, exhibiting various discrete and continuous distributions
(Grinsztajn, Oyallon, and Varoquaux 2022). These features
can be either dependent or entirely independent from each
other, making it difficult for representation learning mod-
els to capture crucial latent features for effective decision-
making or accurate predictions across diverse samples.

When comparing data samples, mutual features consists
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of information that highlights common characteristics, while
salient features emphasize the distinctive attributes to differ-
entiate one sample from the others. For image data, the in-
tensity of the background pixels forms the mutual features
shared across images while the relative positions of bright
and dark pixels form the salient features, which are likely to
vary significantly across images with different shapes or ob-
jects. As illustrated in Figure 1, in MNIST (Xiao, Rasul, and
Vollgraf 2017), decoupling digits from the background is
relatively straightforward, using digits as the salient features
for classification. However, the differentiation for tabular
data tends to be less distinct. For example, feature like City
can be considered salient when the data points “Chicago”
and “New York” have different word counts. Nonetheless,
when considering the size of city semantically, feature City
could share mutual information. Therefore, it becomes more
complicated to set the decision boundary for classification.

To tackle these challenges, our central insight revolves
around empowering representation models to explicitly dis-
tinguish mutual and salient information within the feature
space, which we define as the decoupling process. Instead of
solely relying on the original data space, We firmly believe
that manipulating the feature space could lead to less noise
and obtain more representativeness, adapting the success of
representation learning from other domains to tabular data.

In this paper, we introduce SwitchTab, an elegant and ef-
fective generative pre-training framework for tabular data
representation learning. The core of SwitchTab is an asym-
metric encoder-decoder structure, augmented with custom
projectors that facilitate information decoupling. The pro-
cess begins with encoding each data sample into a general
embedding, which is further projected into salient and mu-
tual embeddings. What sets SwitchTab apart is the deliberate
swapping of salient and mutual embeddings among differ-
ent data samples during decoding. This innovative approach
not only allows the model to acquire more structured em-
beddings from encoder but also explicitly extracts and rep-
resents the salient and mutual information. Another advan-
tage of SwitchTab is its versatility, to be trained effectively
in both self-supervised manners. This adaptability ensures
that SwitchTab performs well in diverse training scenarios,
regardless of the availability of labeled data.

Our contributions can be summarized as follows:

• We propose SwitchTab, a novel self-supervised learning
framework to decouple salient and mutual embeddings
across data samples. To the best of our knowledge, this is
the first attempt to explore and explicitly extract separa-
ble and organized embeddings for tabular data.

• By fine-tuning the pre-trained encoder from SwitchTab,
we demonstrate that our method achieves competitive re-
sults across extensive datasets and benchmarks.

• The extracted salient embeddings can be used as plug-
and-play features to enhance the performance of various
traditional prediction models, e.g., XGBoost.

• We visualize the structured embeddings learned from
SwitchTab and highlight the distinction between mutual
and salient information, enhancing the explainability of
the proposed framework.

Related Work
Models for Tabular Data Learning and Prediction
Traditional Models. For tabular data classification and re-
gression tasks, various machine learning methods have been
developed. For linear relationships modeling, Logistic Re-
gression (LR) (Wright 1995) and Generalized Linear Mod-
els (GLM) (Hastie and Pregibon 2017) are top choices. Tree-
based models include Decision Trees (DT) (Breiman 2017)
and various ensemble methods based on DT such as XG-
Boost (Chen and Guestrin 2016), Random Forest (Breiman
2001), CatBoost (Prokhorenkova et al. 2018) and Light-
GBM (Ke et al. 2017), which are widely adopted in industry
for modeling complex non-linear relationships, improving
interpretability and handling various feature types like null
values or categorical features.

Deep Learning Models. Recent research trends aim to
adopt deep learning models to tabular data domain. Vari-
ous neural architectures have been introduced to improve
performance on tabular data. There are several major cate-
gories (Borisov et al. 2022; Gorishniy et al. 2021), including
1) supervised methods with neural networks (e.g., ResNet
(He et al. 2016), SNN (Klambauer et al. 2017), AutoInt
(Song et al. 2019), DCN V2 (Wang et al. 2021)); 2) hy-
brid methods to integrate decision trees with neural networks
for end-to-end training (e.g., NODE (Popov, Morozov, and
Babenko 2019), GrowNet (Badirli et al. 2020), TabNN (Ke
et al. 2018), DeepGBM (Ke et al. 2019)); 3) transformer-
based methods to learn from attentions across features and
data samples (e.g., TabNet (Arik and Pfister 2021), Tab-
Transformer (Huang et al. 2020), FT-Transformer (Gorish-
niy et al. 2021)); and 4) representation learning methods,
which have emerging focuses and align with the scope of
our proposed work, to realize effective information extrac-
tion through self- and semi-supervised learning (e.g., VIME
(Yoon et al. 2020), SCARF (Bahri et al. 2021), SAINT
(Somepalli et al. 2021)) and Recontab (Chen et al. 2023).

Self-supervised Representation Learning
Deep representation learning methods have been introduced
in the computer vision and remote sensing domains, uti-
lizing self-supervised learning methods (Kolesnikov, Zhai,
and Beyer 2019; Ericsson et al. 2022; Li, Guo, and Schuur-
mans 2015; Wu, Hobbs, and Hovakimyan 2023; Manas et al.
2021; Wu, Hovakimyan, and Hobbs 2023). These methods
can be divided into two branches. The first branch mainly fo-
cuses on a contrastive learning framework with various data
augmentation schemes. More specifically, models rely on
momentum-update strategies (He et al. 2020; Wu et al. 2023;
Chen et al. 2020c; Wu, Hovakimyan, and Hobbs 2023), large
batch sizes (Chen et al. 2020b), stop-gradient operations
(Chen and He 2021), or training an online network to predict
the output of the target network (Grill et al. 2020). These
ideas have also been applied to the tabular data domain.
One representative work in this area is SCARF (Bahri et al.
2021), which adopts the idea of SimCLR (Chen et al. 2020b)
to pre-train the encoder using feature corruption as the data
augmentation method. Another work is SAINT (Somepalli
et al. 2021), which also stems from a contrastive learning
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Figure 2: Block diagram of the proposed self-supervised learning framework. (1) Two different samples x1 and x2 are randomly
corrupted and encoded into feature vectors z1 and z2 through encoder f . (2) feature vectors z1 and z2 are decoupled into mutual
and salient features by two different projectors pm and ps, respectively. (3) Mutual and salient features are combined and
reconstructed by a decoder d where the salient feature dominates the sample type and the mutual feature provides common
information that is switchable among two samples.

framework and computes column-wise and row-wise atten-
tions. The second branch is based on generative models
such as autoencoders (Kingma and Welling 2013). Specif-
ically, Masked Autoencoder (MAE) (He et al. 2022) has an
asymmetric encoder-decoder architecture for learning em-
beddings from images. This framework is also capable of
capturing spatiotemporal information (Feichtenhofer et al.
2022) and can be extended to 3D space (Jiang et al. 2022)
and multiple scales (Reed et al. 2022). The similar mask-
ing strategy is widely used in NLP (Devlin et al. 2018) as
well as tabular data (Arik and Pfister 2021; Huang et al.
2020; Yin et al. 2020). A work similar to MAE in the do-
main of tabular data is VIME (Yoon et al. 2020). VIME cor-
rupts and encodes each sample in feature space using two
estimators. After each estimator, the features are assigned
with decoders to reconstruct a binary mask and the original
uncorrupted samples, respectively. The key difference be-
tween VIME and our work is that we leverage the asymmet-
ric encoder-decoder architecture in pre-training (Chen et al.
2023) and introduce a switching mechanism, which strongly
encourages the encoder to generate more structured and rep-
resentative embeddings.

Feature Decoupling
Autoencoder-based models (Kingma and Welling 2013;
Bengio, Courville, and Vincent 2013) have been widely used
for feature extraction and latent representation learning, with
strong capabilities to learn useful representations for real-
world tasks with little or no supervision. Previous work has
been focusing on learning a decoupled representation (Hig-
gins et al. 2016; Kim and Mnih 2018; Bousmalis et al. 2016;

Zhang et al. 2020) where each dimension can capture the
change of one semantically meaningful factor of variation
while being relatively invariant to changes in other factors.
Recent work also explored capturing the dependencies and
relationships across different factors of variation to enhance
the latent representations (Sønderby et al. 2016; Tschannen,
Bachem, and Lucic 2018). Taking one step further, the work
of contrastive variational autoencoder (cVAE) by (Abid and
Zou 2019), which adapted the contrastive analysis princi-
ples, has explicitly categorized latent features by salient and
mutual information and enhanced the salient features. The
swapping autoencoder by (Park et al. 2020) explicitly de-
couples the image into structure and texture embeddings,
which are swapped for image generation. Some recent work
for tabular data representation learning has also shown the
benefits of quantifying the between-sample relationships.
Relational Autoencoder (RAE) (Meng et al. 2017) consid-
ered both the data features and relationships to generate
more robust features with lower reconstruction loss and bet-
ter performance in downstream tasks. (Kossen et al. 2021;
Somepalli et al. 2021) shared a similar idea to consider self-
attention between data samples. We extend the idea of cVAE
and swapping autoencoder to the tabular data domain with
the argument that the two data samples share mutual and
salient information through latent between-sample relation-
ships. Salient information is crucial for downstream tasks
involving decision boundaries, while mutual information re-
mains necessary for data reconstruction. To the best of our
knowledge, we are the first to model tabular data with ex-
plicit and expressive feature decoupling architecture to en-
hance the representation learning performance.
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Algorithm 1: Self-supervised Learning with SwitchTab

Require: unlabeled data X ⊆ RM , batch size B, encoder f , pro-
jector for mutual information pm, projector for salient infor-
mation ps, decoder d, mean squared error MSE, feature con-
catenation ⊕.

1: for two sampled mini-batch
{
x1
i

}B

i=1
⊆ X and

{
x2
i

}B

i=1
⊆

X do
2: for each sample x1

i and x2
i , apply feature corruption, define

the corrupted feature as: x̆1
i and x̆2

i , for i ∈ [B]
3: data encoding:

z1i = f(x̆1
i ), z

2
i = f(x̆2

i ), for i ∈ [B]
4: feature decoupling:

(1) the salient and mutual information of the first batch be
defined as follows: s1i = ps(z

1
i ) and m1

i = pm(z1i ).
(2) the salient and mutual information of the second batch
be defined as follows: s2i = ps(z

2
i ) and m2

i = pm(z2i ).
5: data reconstruction:

(1) let recovered pairs be defined as:
x̃1
i = d(m1

i ⊕ s1i ), x̃
2
i = d(m2

i ⊕ s2i )
(2) let switched pairs be defined as:
x̂1
i = d(m2

i ⊕ s1i ), x̂
2
i = d(m1

i ⊕ s2i )
6: define reconstruction loss Lrecon =

MSE(x1
i , x̃

1
i )+MSE(x2

i , x̃
2
i )+MSE(x1

i , x̂
1
i )+MSE(x2

i , x̂
2
i )

7: update encoder f , projectors pm and ps, and decoder d to
minimize Lrecon using RMSProp.

8: end for

Method
In this section, we present SwitchTab, our comprehensive
approach for tabular data representation learning and feature
decoupling. First, we outline the process of feature corrup-
tion. Then, in the second sub-section, we delve into the intri-
cacies of self-supervised learning, including data encoding,
feature decoupling, and data reconstruction. The third sub-
section elucidates our pre-training learning method with la-
bels. Finally, we illustrate how to utilize the pre-trained en-
coders and embeddings to improve downstream tasks.

Feature Corruption
Generative-based representation learning relies on data aug-
mentations to learn robust embeddings for downstream
tasks. Among different methods, feature corruption (Yoon
et al. 2020; Bahri et al. 2021) is one of the most promis-
ing approaches. In this paper, we also take advantage of this
method to improve the model performance. For one tabu-
lar data xi from original dataset X ⊆ RM , we define its
j-th feature as xij , i.e., xi = (xi1 , xi2 , ..., xiM ), where M
is the dimension of features and i is the index of samples.
For each sample, we randomly select t features among M
features and replace them with corrupted feature c. Con-
cretely, c ∼ X̂ij , where X̂ij is the uniform distribution over
Xij =

{
xij : xi ∈ X

}
.

Self-supervised Learning
Self-supervised learning of SwitchTab aims to learn infor-
mative representations from unlabeled data (Algorithm 1),
which is described in Figure 2. For each of the two data sam-
ples, x1 and x2, we apply feature corruption to obtain cor-
rupted data. We encode them using an encoder, f , resulting

in two feature vectors, z1 and z2. Importantly, we decouple
these two feature vectors using two types of projectors, pm
and ps, which extract switchable mutual information among
the data samples and salient information that is unique to
each individual data sample, respectively. Through this de-
coupling process, we obtain the salient feature vectors, s1
and s2, and the mutual feature vectors, m1 and m2, for x1

and x2, respectively.
Notably, the mutual features should be shared and switch-

able between two samples. In other words, the concatenated
feature vector of s1 ⊕m1 should exhibit no discernible dif-
ference compared to s1 ⊕ m2. Consequently, it is expected
that not only should the decoded data x̃1 (recovered) from
s1⊕m1 be highly similar to x1, but also the decoded data x̂1

(switched) from the concatenated feature vector of s1 ⊕m2

should demonstrate a comparable level of similarity. Like-
wise, we anticipate both x̃2 (recovered) and x̂2 (switched)
to resemble x2 as much. Therefore, we define the loss func-
tion Lself = Lrecon as reconstruction loss by:

Lrecon =
1

M

M∑
j=1

(x1j − x̂1j )
2 +

1

M

M∑
j=1

(x2j − x̂2j )
2

︸ ︷︷ ︸
switched

+
1

M

M∑
j=1

(x1j − x̃1j )
2 +

1

M

M∑
j=1

(x2j − x̃2j )
2

︸ ︷︷ ︸
recovered

. (1)

Pre-training with Labels
We further improve the pre-training process by taking ad-
vantage of labeled data, as shown in Figure 3. With labels
introduced, we pose additional constraints to the encoded
embeddings z1 and z2 for label prediction and compute the
prediction loss (illustrated by classification loss Lcls through
the context). To be specific, z1 and z2 are fed to the same
multi-layer perceptron (MLP) that maps from the embed-
ding space to the label space. During the optimization stage,
we combine the prediction loss with Lrecon above to update
the parameters in the framework. Formally, we define the
loss function Ltotal for two samples x1 and x2 as follow:

Ltotal = Lrecon + α ∗ Lcls , (2)

where α is used to balance the classification loss and re-
construction loss and set to 1 as default. To illustrate, the
cross-entropy loss for classification task is defined as:

Lcls = − (y1 log(ŷ1) + y2 log(ŷ2)) , (3)

where ŷ1 and ŷ2 are predicted labels, i.e., ŷ1 = MLP(z1) and
ŷ2 = MLP(z2). For regression tasks, rooted mean squared
error (RMSE) will replace the cross-entropy loss.

Downstream Fine-tuning
In line with the established paradigm of representation learn-
ing (He et al. 2020; Chen et al. 2020c,b; Bahri et al. 2021),
we perform the end-to-end fine-tuning of the pre-trained en-
coder from SwitchTab using the complete set of labeled data.
Specifically, we incorporate the encoder f with an additional
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Figure 3: Block diagram of the proposed pre-training framework with labels. (1) Supervised learning: latent feature vectors
z1 and z2 are passed through a multi-layer perceptron (MLP) to predict labels. The cross-entropy loss is computed based on
the predicted labels and the true labels. (2) Self-supervised learning: reconstructed (recovered and switched) data and original
encoded data are used for computing the mean square error (MSE).

linear layer, unlocking all its parameters and adapting them
for the downstream supervised tasks.

Another avenue to leverage the advantages of our frame-
work lies in harnessing the salient feature vector s as a plug-
and-play embedding. By concatenating s with its original
feature vector x, we construct enriched data sample vector
denoted as xconcat = x ⊕ s. This method effectively high-
lights the distinct characteristics within the data which facil-
itates the establishment of a clear decision boundary. As a
result, we anticipate noticeable enhancements in classifica-
tion tasks when utilizing xconcat as the input for a traditional
model like XGBoost.

Experiments and Results
In this section, we present the results of our comprehensive
experiments conducted on various datasets to demonstrate
the effectiveness of SwitchTab. The section is divided into
two parts. In the first part, we provide preliminary informa-
tion about the experiments, including the datasets, data pre-
processing, model architectures, and training details, aiming
to ensure transparency and reproducibility.

In the second part, we evaluate the performance of our
proposed method from two distinct perspectives. First, we
compare SwitchTab against mainstream deep learning and
traditional models using standard benchmarks from (Gorish-
niy et al. 2021) and additional datasets to establish a more
comprehensive performance assessment of SwitchTab. Sec-
ondly, we showcase the versatility of SwitchTab by demon-
strating the utilization of salient features as plug-and-play
embeddings across various traditional models, including

XGBoost, Random Forest, and LightGBM. The plug-and-
play strategy allows us to enhance the traditional model’s
performance effortlessly and without additional complexity.

Preliminaries for Experiments
Datasets. We first evaluate the performance of SwitchTab
on a standard benchmark from (Gorishniy et al. 2021). Con-
cretely, the datasets include: California Housing (CA) (Pace
and Barry 1997), Adult (AD) (Kohavi et al. 1996), Helena
(HE) (Guyon et al. 2019b), Jannis (JA) (Guyon et al. 2019b),
Higgs (HI) (Baldi, Sadowski, and Whiteson 2014), ALOI
(AL) (Geusebroek, Burghouts, and Smeulders 2005), Ep-
silon (EP) (Yuan, Ho, and Lin 2011), Year (YE) (Bertin-
Mahieux et al. 2011), Covertype (CO) (Blackard and Dean
1999), Yahoo (YA) (Chapelle and Chang 2011), Microsoft
(MI) (Qin and Liu 2013).

Besides the standard benchmarks, there is also another set
of popular datasets used by recent work (Somepalli et al.
2021), including Bank (BK) (Moro, Cortez, and Rita 2014),
Blastchar (BC) (Ouk, Dada, and Kang 2018), Arrhythmia
(AT) (Liu, Ting, and Zhou 2008; Ouk, Dada, and Kang
2018), Arcene (AR) (Asuncion and Newman 2007), Shop-
pers (SH) (Sakar et al. 2019), Volkert (VO) (Guyon et al.
2019a) and MNIST (MN) (Xiao, Rasul, and Vollgraf 2017).

Preprocessing of Datasets. We represent categorical fea-
tures using a backward difference encoder (Potdar, Par-
dawala, and Pai 2017). Regarding missing data, we discard
any features that are missing for all samples. For the re-
maining missing values, we employ imputation strategies
based on the feature type. Numerical features are imputed
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Dataset size 48842 65196 83733 98050 108000 500000 518012 20640 515345 709877 1200192
Feature size 14 27 54 28 128 2000 54 8 90 699 136

Method/Dataset AD ↑ HE ↑ JA ↑ HI ↑ AL ↑ EP ↑ CO ↑ CA ↓ YE ↓ YA ↓ MI ↓
TabNet 0.850 0.378 0.723 0.719 0.954 0.8896 0.957 0.510 8.909 0.823 0.751
SNN 0.854 0.373 0.719 0.722 0.954 0.8975 0.961 0.493 8.895 0.761 0.751
AutoInt 0.859 0.372 0.721 0.725 0.945 0.8949 0.934 0.474 8.882 0.768 0.750
MLP 0.852 0.383 0.723 0.723 0.954 0.8977 0.962 0.499 8.853 0.757 0.747
DCN2 0.853 0.385 0.723 0.723 0.955 0.8977 0.965 0.484 8.890 0.757 0.749
NODE 0.858 0.359 0.726 0.726 0.918 0.8958 0.985 0.464 8.784 0.753 0.745
ResNet 0.854 0.396 0.727 0.727 0.963 0.8969 0.964 0.486 8.846 0.757 0.748
FT-Transormer 0.859 0.391 0.729 0.729 0.960 0.8982 0.970 0.459 8.855 0.756 0.746

XGBoost 0.874 0.377 0.724 0.728 0.924 0.8799 0.964 0.431 8.819 0.732 0.742
CatBoost 0.873 0.388 0.727 0.729 0.948 0.8893 0.950 0.423 8.837 0.740 0.743

SwitchTab (Self-Sup.) 0.867 0.387 0.726 0.724 0.942 0.8928 0.971 0.452 8.857 0.755 0.751
SwitchTab 0.881 0.389 0.731 0.733 0.951 0.8987 0.989 0.442 8.822 0.744 0.742

Table 1: Comparison of different methods on the previous benchmark. For each dataset, the best results are shown in bold.
Reported results are averaged over three trials. Notations: ↓∼ RMSE for regression task, ↑∼ accuracy for classification task.

using the mean value, while categorical features are filled
with the most frequent category found within the dataset.
Furthermore, we ensure uniformity by scaling the dataset
using a Min-Max scaler. When dealing with image-based
data, we flatten them into vectors, thus treating them as tab-
ular data, following the approach established in prior works
(Yoon et al. 2020; Somepalli et al. 2021).

Model Architectures. For feature corruption, we uni-
formly sample a subset of features for each sample to gen-
erate a corrupted view at a fixed corruption ratio of 0.3. For
the encoder f , we employ a three-layer transformer with two
heads. The input and output sizes of the encoder are always
aligned with the feature size of the input. Both projectors ps
and pm consist of one linear layer, followed by a sigmoid
activation function. Additionally, the decoder d remains a
one-layer network with a sigmoid activation function. Dur-
ing the pre-training stage with labels, we introduce an addi-
tional one-layer network for prediction. In the downstream
fine-tuning stage, we append a linear layer after the encoder
f to accommodate classification or regression tasks.

Training Details. Importantly, we maintain consistent set-
tings throughout the evaluation of SwitchTab. Although fur-
ther gains might be attainable with further exploration of hy-
perparameters, we intentionally refrain from doing so to en-
sure the proposed approach can be easily generalized across
diverse datasets and domains. For all the pre-training, we
train all models for 1000 epochs with the default batch size
of 128. We use the RMSprop optimizer (Hinton, Srivastava,
and Swersky 2012) with an initial learning rate set as 0.0003.
During the fine-tuning stage, we set the maximum epochs as
200. Adam optimizer with a learning rate of 0.001 is used.

Results on Previous Benchmarks
We conduct a comprehensive performance comparison of
SwitchTab with different methods across 11 datasets from
previous benchmarks, as shown in Table 1. To ensure a fair
and direct comparison, we report the accuracy of the clas-

sification tasks, following the metrics employed in previous
studies. It is worth noting that we meticulously fine-tuned
the results in accordance with the established paradigm
(Kolesnikov, Zhai, and Beyer 2019). Upon analyzing the
results, we find that SwitchTab consistently achieves opti-
mal or near-optimal performance in most of the classifica-
tion tasks. These outcomes underscore the effectiveness and
superiority of SwitchTab in representation learning for clas-
sification scenarios. However, in regression tasks, we ob-
serve that traditional methods like XGBoost or CatBoost
still dominate and achieve the best results. Nonetheless,
SwitchTab remains highly competitive and outperforms var-
ious deep learning approaches in these regression scenarios.
We report the averaged results over 10 random seeds.

Results on Additional Public Datasets
Beyond the previous benchmarks, we continue the perfor-
mance comparisons on additional public datasets and sum-
marize the results in Table 2. The results encompass evalu-
ations using both traditional models and more recent deep
learning techniques. In the majority of cases, SwitchTab
showcases remarkable improvements, surpassing all base-
line methods and reinforcing its superiority across diverse
datasets and scenarios. However, it is essential to acknowl-
edge that on the dataset AT, SwitchTab achieved sub-optimal
results when compared to the baselines. This observation
aligns with previous research conclusions that the tabular
domain poses unique challenges where no single method
universally dominates (Gorishniy et al. 2021). Nevertheless,
this outcome merits further investigation to discern the spe-
cific factors contributing to this variation in performance.

Plug-and-Play Embeddings
As mentioned earlier, SwitchTab excels in effectively ex-
tracting salient features which could significantly influence
the decision boundaries for classification tasks. In the plug-
and-play setting, our experiment results demonstrate that
these salient features have immense value when integrated
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Dataset size 45211 7043 452 200 12330 58310 518012
Feature size 16 20 226 783 17 147 54

Dataset BK BC AT AR SH VO⋆ MN⋆

Raw Feature (x) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Salient Feature (s) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Logistic Reg. 0.907 0.918 0.892 0.902 0.862 0.869 0.916 0.922 0.870 0.882 0.539 0.551 0.899 0.921
Random Forest 0.891 0.902 0.879 0.899 0.850 0.885 0.809 0.846 0.929 0.933 0.663 0.672 0.938 0.945
XGboost 0.929 0.938 0.906 0.912 0.870 0.904 0.824 0.843 0.925 0.931 0.690 0.693 0.958 0.964
LightGBM 0.939 0.942 0.910 0.915 0.887 0.903 0.821 0.831 0.932 0.944 0.679 0.686 0.952 0.963
CatBoost 0.925 0.937 0.912 0.919 0.879 0.899 0.825 0.877 0.931 0.942 0.664 0.682 0.956 0.968
MLP 0.915 0.923 0.892 0.902 0.902 0.912 0.903 0.904 0.887 0.910 0.631 0.642 0.939 0.948

VIME 0.766 - 0.510 - 0.653 - 0.610 - 0.744 - 0.623 - 0.958 -
TabNet 0.918 - 0.796 - 0.521 - 0.541 - 0.914 - 0.568 - 0.968 -
TabTransformer 0.913 - 0.817 - 0.700 - 0.868 - 0.927 - 0.580 - 0.887 -
SAINT 0.933 - 0.847 - 0.941 - 0.910 - 0.931 - 0.701 - 0.977 -
ReConTab 0.929 - 0.913 - 0.907 - 0.918 - 0.931 - 0.680 - 0.968 -

SwitchTab(Self-Sup.) 0.917 - 0.903 - 0.900 - 0.904 - 0.931 - 0.629 - 0.969 -
SwitchTab 0.942 - 0.923 - 0.928 - 0.922 - 0.958 - 0.708 - 0.982 -

Table 2: Comparison of different methods on classification task. For each method, we report three categories 1) raw features
only, 2) salient features only, 3) plug and play using salient features. The best results are shown in bold. Columns added with ⋆
are multi-class classification tasks, reporting accuracy. The other results of binary classification tasks are evaluated with AUC.

Dataset BK BC AT AR SH VO⋆ MN⋆

SwitchTab
(No Switching) 0.918 0.909 0.902 0.896 0.912 0.689 0.968

SwitchTab 0.942 0.923 0.928 0.922 0.958 0.708 0.982

Table 3: Ablation of model performance w.r.t the switching
process. Columns added with ⋆ are multi-class classifica-
tion tasks, reporting their accuracy. The other results of bi-
nary classification tasks are evaluated with AUC.

with original data as additional features. Notably, the per-
formance of all traditional methods can be boosted, improv-
ing the evaluation metrics (e.g., AUC) from 0.5% to 3.5%
(in absolute difference) across various datasets, as illustrated
in the dark gray columns Table 2. Meanwhile, we also re-
port results when using only the salient features as input
in the supplementary. While the improvement is relatively
marginal, it aligns with our expectations. The absence of
mutual information in this scenario leads to a less substantial
performance boost.

Visualization and Discussions
In this section, we visualize the features learned by
SwitchTab using the BK dataset, which is designed for bi-
nary classification tasks. After pre-training, we feed the first
batch with data from one class and the second batch with
data from the other class, and then visualize the correspond-
ing feature vectors. As shown in Figure 4, the embeddings
m1 and m2 from SwitchTab, although extracted from two
different classes, heavily overlap with each other. This sub-
stantiates the fact that the mutual information is switchable.
However, the salient feature s1 and the salient feature s2 are
distinctly separated, playing a dominant role in capturing the
unique properties of each class and decisively contributing
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Figure 4: t-SNE visualization of mutual and salient features
in two dimensional space.

to the classification boundaries.

Ablation Studies
In this section, we investigate essential modules of

SwitchTab, including the importance of the switching pro-
cess and the feature corruption rate. We use all of the
datasets in Table 2, with all the same data preprocessing and
optimization strategies.

Contribution of Switching Process. To demonstrate that
the superior performance of the proposed model directly re-
sults from the critical switching process, we report the re-
sults with and without reconstructing the concatenated fea-
tures from switched pairs, i.e., (s1,m2) and (s2,m1), keep-
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Ratio 0.0 0.1 0.2 0.3 0.4 0.5 0.6
BK 0.927 0.938 0.940 0.942 0.932 0.903 0.898

BC 0.911 0.920 0.923 0.923 0.917 0.910 0.902

AT 0.916 0.922 0.925 0.928 0.927 0.920 0.913

AR 0.913 0.915 0.918 0.922 0.925 0.920 0.914

SH 0.948 0.956 0.956 0.958 0.947 0.934 0.922
VO⋆ 0.683 0.694 0.699 0.708 0.709 0.700 0.692
MN⋆ 0.969 0.971 0.977 0.982 0.978 0.966 0.957

Table 4: Ablation of feature corruption ratio. Multi-class
classification tasks with ⋆ are reporting accuracy. The other
binary classification tasks are evaluated with AUC.

ing the feature corruption ratio at 0.3 for all experiments.
Notably, without the switching mechanism, the framework
deteriorates to a simpler auto-encoder structure and results
in obvious drop in evaluation metrics (e.g., AUC) in Table 3.

Feature Corruption Ratio. We also explore the optimal
feature corruption ratio in Table 4. Through extensive anal-
ysis, we find that the optimal corruption ratio is approxi-
mately 0.3. Therefore, we adopt this value as the default for
all previously reported experiments. However, it is essential
to emphasize that this selected ratio may not be consistently
optimal for each dataset. We also observe that datasets with
higher feature dimensions, such as AR or VO, tend to ben-
efit from larger corruption ratios, since they are more likely
to have redundant features. This observation is aligned with
previous conclusions on tabular data from (Grinsztajn, Oy-
allon, and Varoquaux 2022). Conversely, for datasets with
low-dimensional features such as BC, smaller corruption ra-
tios could also yield superior results in our experiments.

Conclusion
Motivated by the profound success of representation learn-
ing in computation vision and natural language processing
domains, we want to extend this success to tabular data do-
main. Differentiating from other related studies to address
this issue from a contrastive learning perspective, we intro-
duce SwitchTab, a novel pre-training framework for repre-
sentation learning from the perspective of generative mod-
els. The learned embeddings from SwitchTab could not only
achieve superior performance on downstream tasks but also
represent a distinguishable salient feature space that can en-
hance a broader range of traditional methods as plug-and-
play embeddings. We firmly believe that this work consti-
tutes a critical step towards achieving more representative,
explainable, and structured representations for tabular data.
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