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ABSTRACT

This paper investigates how non-differentiability affects three different aspects
of the neural network training process. We first analyze fully connected neural
networks with ReLU activations, for which we show that the continuously differ-
entiable neural networks converge faster than non-differentiable neural networks.
Next, we analyze the problem of L1 regularization and show that the solutions
produced by deep learning solvers are incorrect and counter-intuitive even for the
L1 penalized linear model. Finally, we analyze the Edge of Stability problem,
where we show that all convex, non-smooth, Lipschitz continuous functions display
unstable convergence, and provide an example of a result derived using twice dif-
ferentiable functions which fails in the once differentiable setting. More generally,
our results suggest that accounting for the non-linearity of neural networks in the
training process is essential for us to develop better algorithms, and to get a better
understanding of the training process in general.

1 INTRODUCTION

Gradient descent (GD) and its variants (Duchi et al. (2011); Kingma & Ba (2014); Lydia & Francis
(2019); McMahan & Streeter (2010); Shi & Li (2021); Tieleman et al. (2012); Zhang (2018) to
state a few) have played a pivotal role in driving the substantial progress achieved in image and
language processing over the past two decades. These algorithms find widespread use in model
training because they iteratively approach stationary points, where the loss function’s gradient is zero
(Bertsekas, 1997). Although GDs are designed for continuously differentiable loss functions, they are
extensively used in the training of neural networks that lack differentiability. Remarkably, GD applied
to non-differentiable neural networks (which we refer to as "Non-differentiable gradient descents" or
NDGDs) exhibit asymptotic convergence to stationary points under mild regularity conditions (Bolte
& Pauwels, 2021; Davis et al., 2020), mirroring the behavior of their differentiable counterparts.

The loss functions for non-differentiabile neural networks take a special form – they are often times
differentiable almost everywhere. As a consequence, NDGDs seldom encounter non-differentiable
points during the training process. This characteristic has led standard references in the field to assume
that neural networks can be treated like differentiable functions, considering point discontinuities as
inconsequential (see Section 6.1.5 of Stevens et al. (2020) for instance). This assumption has sparked
renewed interest in studying the dynamics of gradient descents amidst complex loss landscapes
(Ahn et al. (2022b); Dauphin et al. (2014); Reddi et al. (2019)), with fewer studies explicitly
addressing non-differentiability Bertoin et al. (2021); Bolte & Pauwels (2021); Davis et al. (2020).
Additionally, this assumption has led several theoretical papers to develop results for continuously
differentiable functions, and then claim that their results hold for all cases by running simulations
on non-differentiable functions (Experiment 6 in Ahn et al. (2022b), Section 3.1 in Ma et al. (2022),
Section 6 in Zhang et al. (2022) to state a few).

In this paper, we show that this assumption is flawed, and analyze three cases where accounting for
the non-differentiability dramatically alters the dynamics of the problem. Our contributions in the
three cases are as follows:

• Convergence analysis of ReLU networks - We prove that the structural properties of
NDGD and GD are not identical, and show that the convergence rates for NDGD sequences
are much slower than GD sequences.
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• Solution to the LASSO problem - We show that the solution to the LASSO problem is
incorrect and counterintuitive even in the simplest case of the L1 penalized linear model.

• The Edge of Stability - We show that the NDGD sequence for convex, non-differentiable,
Lipschitz continuous functions never diverge to ∞ irrespective of the learning rate, and
provide an example of a result developed for twice differentiable functions which fails in
the once differentiable case.

In a broader context, our results show that treating NDGDs and GDs as equivalent significantly limits
our understanding of the training process. Consequently, our results suggest that a way forward
might be to treat the the dynamics of these two systems as distinct entities, rather than assuming their
similarity, as is commonly done.

2 PRELIMINARIES

In the three sections that follow, we show how disregarding the non-differentiability of the loss
function severely limits our understanding of different aspects of training dynamics. Each of these
sections is largely self-contained, complete with a literature review, problem setup, and analysis. In
this section, we cover the background and terminology which is common to all of these sections.

NDGD v/s GD: The crux of our analyses lies in the structural differences between GDs and NDGDs.
For a continuously differentiable loss function, f(β), the well-studied GD sequence (Bertsekas, 1997;
Boyd et al., 2004) is described by the recursion

βt+1 = βt − α∇f(βt), (1)

where α is the learning rate, and β0 is a randomly initialized starting point.

For a continuous non-differentiable loss function, g(β), the NDGD recursion is given by

β̃t+1 = β̃t − α∇̃g(β̃t), (2)

where ∇̃g(β̃t) = ∇g(β̃t) if the gradient exists at β̃t, else it is a heuristic measure 1.

Convex non-differentiable loss functions: In this paper, we show the problems with this assump-
tion using a variety of convex loss functions. The majority of our analysis is performed on the
penalized single layer neural network regression problem with a non-positive response vector, which
Kumar (2023) has shown to be convex. The loss function for this problem is given by

L1(β;Z,y, λ1, λ2) = ||y −max(0,Zβ)||2 + λ1||β||1 + λ2||β||22, (3)

where β is a P × 1 parameter vector, Zm is an N × P data matrix whose ith column is given by zi,
y is a N × 1 non-positive response vector, λ1 ≥ 0 is the LASSO penalty, and λ2 ≥ 0 is the ridge
penalty. Throughout this paper, we denote the learning rate by α, and the ith entry in the parameter
vector after k iterations is βk[i], with 0 ≤ i ≤ P − 1.

The subgradient method: Our analysis heavily relies on the observation that for a convex non-
differentiable loss functions, the NDGD recursion described in (2) effectively implements the sub-
gradient method (Bertsekas, 1997; Shor, 2012). The theoretical properties of this method are well
studied in the optimization literature, with a concise overview of key findings available in the lecture
notes of Boyd et al. (2003) and Tibshirani (2015). The subgradient method and GD recursions have
different properties, and these differences play a key role in our subsequent discussions. We reference
the relevant portions from the lecture notes as they arise.

Constant, diminishing, and reducing step sizes: Our formulations in equations (1) and (2) employ
a constant learning rate. This choice bears some explaining, for which we first recall some definitions
from the optimization literature (see Chapter 1 of Bertsekas (1997) for details). In the GD literature,
the training regimen described in equation (1) is called a constant step-size regime. In this regime,

1https://rb.gy/g74av
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the GD is initialized using the specified algorithm, and iterated with a constant learning rate until the
loss stops decreasing. Although constant step-size GDs approach the stationary point, they rarely
converge to it except in special cases.

To ensure provable convergence to the stationary point, theoretical studies often adopt the diminishing
step-size regime. This regime is characterized by the iteration

βt+1 = βt − αt∇f(βt), (4)

where limt→∞ αt = 0, and
∑

t αt → ∞. Convergence results in this regime are derived under ideal
conditions, and provide guarantees that the recursion will reach the stationary point at least in the
theoretical limit.

In practice, diminishing step-size GDs are implemented with a stopping criteria which determines
when the solution produced by the GD is good enough to end training. The combination of the
diminishing step-size regime and stopping criteria commonly used in the neural network literature is
what we term the "reducing" step-size regime. In this regime, training unfolds as follows: commencing
with a weight of β0, GD runs for some N0 iterations with a learning rate of α0, followed by N1

iterations with a reduced learning rate of α1 < α0, and so on, until the engineer is satisfied with the
solution. Essentially, the reducing step-size regime involves chaining together a finite number (say T )
of constant step-size GD runs, with the (i+1)th run having an initialization of βu and a learning rate
of αi, where u =

∑i−1
j=0 Nj . In the reducing step size regime, the theoretical guarantees described

in the diminishing step-size regime may not be realized. Nevertheless, the limiting dynamics of the
sequence in this regime are exactly those of a constant step-size GD, with learning rates and weight
initializations chosen corresponding to the values at the beginning of the T th run. Accordingly, in this
paper, we exclusively study the constant step-size problem, assuming that the weights and learning
rates have been appropriately chosen.

3 NDGD AND CONVERGENCE ANALYSIS

Recent theoretical work has shown that in the diminishing step-size regime, the NDGD sequence will
converge to a local optimal solution under fairly general conditions. Unfortunately, these regularity
conditions are rarely satisfied in practice. To illustrate this point, consider the Assumption A.3 in
Davis et al. (2020), which requires that in the diminishing step size regime, the sum of the learning
rates should diverge. As we previously stated, this is a standard assumption even in the thoeretical
convergence analysis of GDs. However, the prevelant step-size reduction we observed in most training
scripts involves decaying the learning rate by a constant multiplicative factor at predefined intervals
(StepLR in PyTorch2). With this decay scheme, the learning rates form a convergent geometric series,
thus violating the assumption.

For the differentiable case, we know that even when the learning rates form a convergent geometric
series, the GD sequence will come within some vicinity of the optimal solution. Therefore, the
question arises if the same holds true for NDGD sequences. More precisely, can we state that the
dynamics of NDGD and GD sequences are identical?

NDGD and GD dynamics are not identical: The dynamics of the two sequences are not identical,
and we demonstrate this by arriving at a contradiction. Suppose the sequence {βk}∞k=0 obtained by
running NDGD on L2(β;Z1,q1) = L1(β;Z1,q1, 0, 0.01) has the same properties as a GD sequence.
Then, the entire NDGD sequence can be characterized using the "Capture Theorem" as described
below

Proposition 1. Let xk+1 = xk−α∇f(xk) be a sequence generated by running GD on a continuously
differentiable function, f(x) such that f(xk+1) ≤ f(xk). If x∗ is an isolated local minimum of f(x)
in a unit ball around x∗, and ||x0 − x∗|| < 1, then ||xk − x∗|| < 1 for all k > 0.

Proof. Result follows by using ϵ̄ = 1 in Proposition 1.2.5 of Bertsekas (1997). ■

2https://rb.gy/pub4s
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Figure 1: Plot of the loss function (L2(βk;Z1,q1)), and infinity norm (||βk||∞) of the parameter
vector as a function of the iteration number (k). Although the loss function is monotone decreasing,
the infinity norm of the weights does not "capture", hence demonstrating that the dynamics of NDGD
and GD are not identical

Therefore, if ||β0||∞ < 1, and L2(βk+1;Z1,q1) ≤ L2(βk;Z1,q1) for all k ≥ 0, then we expect
||βk||∞ < 1 for all k ≥ 0. To validate this claim, we first generate a 20× 500 matrix Z1 with entries
uniformly sampled on [−1, 1]. Next, we generate a 20× 1 vector q1 with entries uniformly sampled
on [−1, 0]. Finally, we generate the sequence {βt}∞t=0, by running NDGD on L2(β;Z1,q1) with
the entries in β0 uniformly sampled on [−1, 1]. As seen in Figure 1, although the loss function is
a monotone decreasing function of the iteration number, the infinity norm of the NDGD sequence
eventually takes values greater than 1, hence establishing the contradiction. The non-capturing
described in Figure 1 is to be expected; as stated in Section 1 of Boyd et al. (2003), "Unlike the
ordinary gradient method, the subgradient method is not a descent method; the function value can
(and often does) increase".

Convergence analysis and L-smoothness: Given that the dynamics of GD and NDGD differ, the
question arises what assumptions are appropriate for the study of convergence analysis in neural
network training. Majority of the analyses in the literature (Défossez et al. (2020); Reddi et al.
(2019); You et al. (2019); Zhang et al. (2022) to state a few) assume that the loss function, f(β) is
continuously differentiable, and is L− smooth, i.e., there exists a constant L, such that

||∇f(x)−∇f(y)|| ≤ L||x− y|| (5)

for all x, y in the domain of f . However, this assumption breaks down for non-differentiable functions,
where the gradient does not even exist at various points in the domain. This leads us to a pertinent
inquiry: Can we salvage this assumption by confining its validity to a local context, possibly within a
specific interval centered around the local optimal solution?

Unfortunately, even this cannot be done since ReLU networks typically have non-differentiable
minima, except for trivial cases; as stated in Laurent & Brecht (2018), "local minima of ReLU
networks are generically nondifferentiable. They cannot be waved away as a technicality, so any
study of the loss surface of such network must invoke nonsmooth analysis". Moreover, assuming
that the loss function is L − smooth grossly over-estimates the speed of convergence of NDGDs.
To illustrate this, consider that in order to achieve an error level of ϵ, GD applied to an L− smooth
convex loss function, f , would require O(1/ϵ) steps for convergence. In contrast, NDGD applied to
a convex non-differentiable loss function, g, satisfying the Lipschitz condition

||g(x)− g(y)|| ≤ L||x− y|| (6)

would take O(1/ϵ2) steps (see Section 7.1.3 of Tibshirani (2015) for the result, and a visual illustration
of how much slower O(1/ϵ2) is than O(1/ϵ)). Thus, it is likely that the vast literature on the
convergence analysis of GDs for loss functions satisfying (5) likely have little bearing on the dynamics
of convergence in modern non-smooth neural networks. More generally, we expect the speed of
convergence for differentiable neural networks to be much faster than that of non-differentiable neural
networks.

Experiments with NDGD convergence: To validate our intuition in a more general setting, we run
experiments on different deep architectures described in Cohen et al. (2021). Each experiment entails
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(a) Fully connected neural networks (b) Convolutional neural networks

Figure 2: Comparison of the speeds of convergence for differentiable and non-differentiable neural
network architectures. In every cases, we observe that convergence is faster on the differentiable
architecture. We have verified in each case that the ReLU training has not stalled completely, but is
slow progressing.

executing two sets of simulations that are identical in all aspects except for the choice of activation
functions: one utilizes the differentiable tanh function, while the other employs the non-differentiable
ReLU function. All simulations are conducted on an identical subset of 2000 images from CIFAR-10,
utilizing the supplementary code in the above mentioned paper 3; architecture details can be found in
the appendix. Our hypothesis is that differentiable neural networks ought to converge significantly
faster than non-differentiable neural networks. As illustrated in Figure 2, this hypothesis is borne out
true for fully connected neural networks regardless of their depth (Figure 2a), as well as for more
intricate architectures like convolutional neural networks (Figure 2b).

The way forward: In this section, we show that NDGDs lacks the same convergence speed as GDs.
Therefore, one possiblity to speed up the training process might be to focus on differentiable neural
network architectures. Research into differentiable neural networks are in its early days (Agrawal
et al., 2019; Amos & Kolter, 2017; Miconi, 2016), but work on this subject could provide valuable
insights into we can speed up training.

4 NDGD AND THE LASSO PENALTY

Zero weights play a critical role in model compression (Blalock et al., 2020; Han et al., 2015a;b;
Li et al., 2016), and it is desirable to force weights down to zero whenever we can do so without
sacrificing too much accuracy. A common approach to induce sparsity is to penalize the L1 norm
of the model weights, with the penalizing factor commonly referred to as the LASSO penalty. In
the statistics literature, loss functions involving penalized L1 norms are typically minimized using
specialized algorithms designed for different use cases (Efron et al., 2004; Friedman et al., 2008;
Mazumder & Hastie, 2012; Tibshirani, 1996; Tibshirani et al., 2005; Zou & Hastie, 2005). However
when training neural networks, the penalized L1 norm is used with arbitrary non-convex functions,
with the understanding that running NDGD on the problem results in a near sparse optimal solution
(Bengio, 2012; Goodfellow et al., 2016). As stated in Scardapane et al. (2017), "Even if (the LASSO)
has a non differentiable point in 0, in practice this rarely causes problems to standard first- order
optimizers. In fact, it is common to simultaneously impose both weight-level sparsity with the L1

norm, and weight minimization using the L2 norm, resulting in the so-called elastic net penalization".
This expectation is not being met in reality, and there is strong evidence of users struggling with the
interpretation of their LASSO results in the PyTorch forums 4 5 6. Given the wide variety of critical
applications in which the LASSO finds use (Ghosh et al. (2021); Li et al. (2011); Li & Sillanpää
(2012); Ogutu et al. (2012) to state a few), it is critical to understand the reliability of the NDGD
solution for the LASSO problem.

3https://github.com/locuslab/edge-of-stability
4https://rb.gy/kh0qr
5https://rb.gy/2vsry
6https://rb.gy/6dfli
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NDGD solutions for the LASSO problem are not reliable: We show that NDGD produces
unreliable solutions even for the simple case of the LASSO penalized linear model. In particular,
we show that increasing the LASSO penalty can result in a NDGD solution with a larger L1 norm,
completely defeating the purpose of the penalty. We first analytically demonstrate the unreliability
for the simplest LASSO problem,

L3(β) = L1(β; 0, 0, λ1, 0) = λ1||β||1, (7)

with λ1 > 0, and then demonstrate the same issues for the general LASSO problem through
simulations. We begin by showing that for any non-zero learning rate, α, the NDGD sequence for (7)
will be non-sparse with probability 1.
Proposition 2. Let {βt}∞t=0 denote the sequence generated by running NDGD on (7), with a constant
learning rate, α, and the entries in β0 being uniformly sampled from [−1, 1]. Then βk will have all
non-zero entries with probability 1 for all k > 0

Proof. The NDGD iteration for (7) is described by the recursion

βi[k] =


βi−1[k]− αλ1 if βi−1[k] > 0

βi−1[k] + αλ1 if βi−1[k] < 0

0 if βi−1[k] = 0

. (8)

From (8), it is clear that if the kth entry in the vector becomes zero during any iteration, then it stays
zero for all subsequent iterations. Accordingly, suppose the kth entry in the NDGD sequence vector
becomes 0 for the first time after N iterations. Then we have

βN [k] = β0[k] + (N − 2m)αλ1 = 0, (9)

where m is the number of times the kth entry of the parameter exceeds 0 in the first N iterations. (9)
can only hold if β0[k], is an integer multiple of αλ1. Since the feasible values are countable, and the
set of initializations is uncountable, the probability of the occurrence has measure 0. ■

In the next proposition, we show that the sequence does not converge, but oscillates between two
fixed points.
Proposition 3. The sequence {βt}∞t=0 described in the previous proposition does not converge.
Furthermore, there is an integer N0 such that for every N ≥ N0, the sequence oscillates between
two vectors : γ1 and γ2, where ||γ1||∞ < αλ1, and ||γ2||∞ < αλ1.

Proof. We prove the results assuming β0[k] > 0; the proof is similar when β0[k] < 0. From
Proposition 2, we know that for any N > 0, βN [k] ̸= 0 with probability 1. Therefore, (8) implies
that starting from any β0[k] > 0, the NDGD sequence will decrease monotonically till it reaches a
value between 0 and αλ1. Accordingly, let βnk

[k] = γk for some nk ≥ 0, with γk ∈ (0, αλ1). Since
γk − αλ1 < 0, completing the recursion in (8) gives

βnk+m[k] =

{
γk − αλ1 if m is odd
γk if m is even,

(10)

The result follows by choosing N0 = max(n0, n2 . . . nP−1). ■

Equation (10) suggests the surprising result that with the same learning rate and initialization, a larger
value of λ1 can result in a NDGD solution with a larger L1 norm, which completely defeats the
purpose of the LASSO penalty. To better understand the issue, consider the 2D case, with the weights
initialized as β0 = [0.5053, 0.5053]. With λ1 = 1 and α = 0.01, Proposition 3 states that the NDGD
sequence will oscillate between [0.0053, 0.0053] and [−0.0047,−0.0047], but with λ1 = 100, and
the same learning rate and starting point, the solution will oscillate between [0.5053, 0.5053] and
[−0.4947,−0.4947]. Thus, at the point when NDGD appears to converge, the solution with λ1 = 1
will have an L1 norm of 0.01, but solution with λ1 = 100 case will have an L1 norm of atleast 0.99.
Furthermore, note that reducing the step-size does not resolve this paradox. If, in both cases, we
decrease the learning rate to α = 0.001 once the algorithm seems to have converged, then with λ1 = 1,
the NDGD sequence will oscillate between [0.0003, 0.0003] and [−0.0007,−0.0007]. However, with
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λ1 = 100, the NDGD sequence will oscillate between [0.0053, 0.0053] and [−0.0947,−0.0947],
and the paradox persists.

To demonstrate the same issue in the broader setting, consider the loss function for the general
LASSO problem given by

L4(β;W,y, λ1) =
1

N
||y −Wβ||22 + λ1||β||1, (11)

where W is an arbitrary 20× 500 dimensional data matrix, and y is an arbitrary 20× 1 response,
each of whose entries are sampled from the uniform distribution on [−1, 1]. We run NDGD on (11)
twice with the same learning rate and initialization, once with λ1 = 0.01, and once with λ1 = 10. At
the end of the two runs, the optimal solution with λ1 = 0.1 has an L1 norm of 1.62, and the optimal
solution with λ1 = 10 has an L1 norm of 25.4 i.e., a 1000 fold increase in the value of λ1 results in a
more than 15 fold increase in the L1 norm of the optimal solution!

The same pathology can be observed in more complex architectures like VGG16. To illustrate this,
we initialize VGG16’s weights using the pretrained values available in PyTorch. We then train the
model using gradient descent on the same subset of 2000 images from CIFAR-10 twice, employing
the L1-penalized cross-entropy loss. In the first instance, we use λ1 = 0.001, whereas in the second
instance, we use λ1 = 0.1. At the end of training we observe that the L1 norm of the optimal solution
is smaller in the first case (7312.07) than in the second (51707.23). We observe the same paradox
with the widely used Adam (Kingma & Ba, 2014) optimizer.

NDGD LASSO solutions and network pruning: Our intuition about the LASSO problem is that a
larger LASSO penalty results in a smaller L1 norm for the optimal solution (Hastie et al., 2015). This
intuition is the basis for implementing L1 penalization during the initial training phase of a neural
network, preceding network pruning. Indeed, this is what NVIDIA recommends for the training of
standard image classification networks like Retinanet and YOLOv4 7. The examples described above
contradict this notion, demonstrating that employing the L1 penalty alongside NDGDs can have an
adverse effect, actually amplifying the L1 norm of the optimal solution.

Connections to the subgradient method: The counter-intuitive behavior seen in the examples
above can be explained using the subgradient method. Since the loss function described in equation
(7) satisfies the Lipschitz condition (see equation (6)) with L = λ1, we have from Boyd et al. (2003)
(Section 2 on the Constant Step Size) that

lim
k→∞

||βk||1 < αλ1. (12)

Therefore, for the same value of α, the larger value of λ1 will result in a larger error in estimation,
which is precisely what we are seeing above.

Diminishing v/s reducing step sizes: This illustration also highlights the contrast between the
diminishing and reducing step size regimes outlined in the preliminaries. Under the diminishing
step-size regime, α → 0 in the theoretical limit, and therefore, Proposition 2 guarantees that the
optimal solution for (7) will be 0 for all λ1 > 0. On the other hand, in the reducing step-size regime,
α > 0 at the end of training, and therefore, the error in estimation becomes a critical determinant of
the optimal value.

NDGD and the way forward with sparsity: While NDGDs do not inherently generate sparse
solutions, iterative methods have been developed to produce sparse solutions for the L1 regularized
linear problem (see Table 1 in Bottou (2010)), and L1 regularized neural networks in general (Ma
et al., 2019; Siegel et al., 2020). The realization that NDGDs lack the capability to produce sparse
solutions predates the widespread adoption of deep learning. As mentioned in Xiao (2009), "...
stochastic gradient descent (SGD), has limited capability of exploiting problem structure in solving
regularized learning problems". Despite this, a prevalent misconception persists in the deep learning
literature, erroneously suggesting that such algorithms yield sparse solutions, and that the solutions
generated by deep learning frameworks like PyTorch (Paszke et al., 2017) ought to be comparable to

7See the recommendation of the regularizer in the Training config section of https://rb.gy/20y13m
and https://rb.gy/i1sb6s
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those generated using traditional machines learning frameworks like glmnet Friedman et al. (2021) or
scikit-learn Kramer & Kramer (2016). We point out that there exits a fundamental disparity between
traditional machine learning frameworks like glmnet and deep learning frameworks like PyTorch.
glmnet focuses on a narrow set of optimization problems, concealing implementation intricacies while
guaranteeing optimality. Conversely, PyTorch provides greater flexibility in constructing models
but lacks similar guarantees, placing the responsibility for solution quality on users. Attaining a
solution at a non-differentiable point poses a challenging problem, underscoring the significance of
exploring related studies and tools rather than opting for a simplistic implementation, particularly
when precision is paramount.

Connections to the Edge of Stability: Proposition 3 shows that the NDGD sequence for the
non-differentiable, Lipschitz continuous, convex loss function described in (7) will not diverge to ∞
for any finite value of α. This is the special case of unstable convergence, a topic we cover in greater
detail in the next section.

5 NDGD AND THE EDGE OF STABILITY

In recent years, there has been a growing interest on the topic of "unstable convergence". The
literature on the subject Ahn et al. (2022a;b); Arora et al. (2022); Chen & Bruna (2022); Cohen
et al. (2021); Li et al. (2022) is motivated by the finding that unlike convex quadratic forms, gradient
descent on neural networks do not diverge to ∞ even when the learning rate is greater than α∗ = 2/η,
where η is the dominant eigenvalue of the loss function’s Hessian. Instead, the loss function has
been empirically demonstrated to converge "unstably" 8, reducing non-montonically on the long run.
α = α∗ is referred to in the literature as the "Edge of Stability", since it separates regions of "stable
convergence" (α < α∗) from regions of "unstable convergence" (α > α∗).

The derivation of the Edge of Stability condition assumes that the loss function, f , is L− smooth
(see equation (5)). Since the result has been demonstrated in most convex optimization settings Jacot
et al. (2018); Li & Liang (2018), it is conjectured that the result ought to hold even in the case of
non-differentiable neural networks. This conjecture is incorrect even for non-smooth, differentiable
loss functions satisfying (6) as shown in the proposition below.
Proposition 4. All convex non-smooth loss functions having bounded subgradients, or satisfying
equation (6) will show unstable convergence.

Proof. Note that any loss function satisfying (6) has subgradients bounded above by L. Additionally,
as outlined in Section 1 of Section 1 of Boyd et al. (2003), the deductions derived from the subgradient
method hold equivalently for differentiable functions. This equivalence arises from the fact that
the only admissible value for the subgradient of a differentiable convex function at any given
point is, indeed, its gradient. Accordingly, from Section 3 of Boyd et al. (2003), we have that
limk→∞ f(xk)− f∗ ≤ αL2, hence the result. ■

In the previous section, we analytically derive the unstable convergence for the LASSO problem
described in (7). An example of a differentiable non-smooth convex function satisfying Proposition 4
is the Huber loss function, which finds use in many state of the art object detection models (Girshick,
2015; Liu et al., 2016; Ren et al., 2015). The Huber loss function is non-smooth because it is once
but not twice differentiable. For a regression problem involving an arbitrary 50× 1 response vector,
y = [y1, y2 . . . yN ]T , and an arbitrary 50× 200 data matrix, Z, the Huber loss function is defined as

L7(β) =
1

N

∑
l(i), where l(i) =

{
1
2 (yi − zTi β)

2 if
∣∣(yi − zTi β)

∣∣ < 1(
|yi − zTi β| − 1

2

)
otherwise

, (13)

where zi is the ith column of Z. Figure 3c shows that the NDGD sequence for (13) does not diverge
toward ∞, even with a high learning rate, such as α = 10, which aligns with our expectations. Fur-
thermore, Figure 3b reveals an intriguing loss pattern when α = 1: the loss initially increases before

8The most precise definition of (un)stableness we could was Definition 1.1 of Arora et al. (2022). Unfortu-
nately, this definition requires the existence of a Hessian at all points between the current and next iterate, which
is not true for ReLU networks. Accordingly, we use a generalization of their definition, assuming that unstable
convergence means "non-divergence to ∞"

8



Under review as a conference paper at ICLR 2024

(a) α = 0.1 (b) α = 1 (c) α = 10

Figure 3: Training curves for different values of α, with the Lipschitz continuous Huber loss function.
As the learning rate increases, the loss starts oscillating with larger frequencies, but never diverges to
∞. This is to be expected from Proposition 4, since the Huber loss function is convex, non-smooth
and has bounded subgradients.

the oscillations become noticeable. This peculiar behavior has been documented in the literature (Ahn
et al., 2022b; Arora et al., 2022), although a conclusive explanation for this phenomenon remains
elusive at this time.

Proposition 4 and the examples that follow show that the common approach of extrapolating results
developed for smooth loss functions to the non-smooth or non-differentiable case is problematic. In
the next subsection, we demonstrate the problems with this approach by providing an example of an
extrapolation which breaks down in the non-smooth case.

SUBQUADRATIC LOSSES AND UNSTABLE CONVERGENCE

In section 3.1 of Ma et al. (2022), the authors employ second-order finite differences to investigate
the curvature of VGG16 and ResNet in the vicinity of the local minimum. They conclude that
subquadratic growth of the loss function around this minimum point explains the edge of stability
phenomenon.

To challenge the broad applicability of this statement, consider the Huber loss function depicted in
Equation (13). This function is overparameterized and therefore possesses a global minimum of
0. Consequently, within the vicinity of this global minimum, the loss function exhibits quadratic
growth. In such instances, Ma et al. (2022)’s result states that we will not see unstable convergence.
However, contrary to their suggestions, Proposition 4 guarantees unstable convergence under these
circumstances, as evidenced in Figure 3. The discrepency arises because the Huber loss function
does not satisfy the condition of twice differentiability required by Definition 1 of their paper. This
counter-example underscores the problems with extrapolating results developed results under strong
assumptions (like L− smoothness or twice differentiability) to the general non-differentiable case.

The way forward: We have shown that our understanding of the Edge of Stability will be incom-
plete if we treat NDGDs akin to GDs. Furthermore, considering ReLU networks’ non-differentiable
minima, without further research into NDGD behavior around non-differentiable points our grasp
of training dynamics lacks completeness. Consequently, we propose employing the convex non-
differentiable single-layer neural network presented in Kumar (2023) as the toy problem for theory
development. Studying this neural network offers several advantages: 1) its convex nature renders it
more amenable to analysis compared to non-convex functions, 2) we possess analytical knowledge of
the global optimum, and 3) the global optimum exists at a point of non-differentiability—the setup
which is particularly relevant to ReLU networks.

6 CONCLUSION

In this paper, we highlight the impact of non-differentiability across three domains: convergence
analysis, the LASSO problem, and the edge of stability. In each of the cases, we show that non-
differentiability changes the dynamics of the training process, and introduces behaviors which cannot
be explained using the theory of gradient descents in continuously differentiable functoins. The goal
of our paper is identical to that of Bertoin et al. (2021) – to bring attention to non-differentiability
which is often ignored in neural networks.
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