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Abstract

Spatio-temporal forecasting is crucial in many domains, such as transportation,
meteorology, and energy. However, real-world scenarios frequently present chal-
lenges such as signal anomalies, noise, and distributional shifts. Existing solutions
primarily enhance robustness by modifying network architectures or training proce-
dures. Nevertheless, these approaches are computationally intensive and resource-
demanding, especially for large-scale applications. In this paper, we explore a novel
test-time computing paradigm, namely learning with calibration, ST-TTC, for
spatio-temporal forecasting. Through learning with calibration, we aim to capture
periodic structural biases arising from non-stationarity during the testing phase and
perform real-time bias correction on predictions to improve accuracy. Specifically,
we first introduce a spectral-domain calibrator with phase-amplitude modulation
to mitigate periodic shift and then propose a flash updating mechanism with a
streaming memory queue for efficient test-time computation. ST-TTC effectively
bypasses complex training-stage techniques, offering an efficient and generalizable
paradigm. Extensive experiments on real-world datasets demonstrate the effec-
tiveness, universality, flexibility and efficiency of our proposed method. Our code
repository is available at https://github.com/Onedean/ST-TTC.

1 Introduction

Spatio-temporal forecasting (STF) aims to predict the future state of dynamic systems from histori-
cal spatio-temporal observations and underpins many real-world applications, such as traffic flow
forecasting [24], air quality forecasting [51], and energy consumption forecasting [76]. Although
spatio-temporal neural networks [32, 33, 61], which couple spatial neural operators with temporal
neural operators, have achieved remarkable progress on these tasks, their deployment in practical
environments remains fraught with challenges. These observations, typically collected by sensors, are
frequently corrupted by noise, outliers (e.g., spikes or dropouts due to hardware failure) [85], and more
commonly, non-stationary distribution shifts arising from sensor aging and seasonal patterns [74].

To enhance generalization and performance, prior work has focused primarily on out-of-distribution
(OOD) learning for ST data during the training phase: designing architectures that resist pertur-
bations [31, 49, 68, 84], augmenting training data with noise or adversarial examples [3, 46, 97],
and introducing specialized loss functions or regularizers [43, 98] to counteract distribution drift.
However, these methods share fundamental limitations: they assume that the training data sufficiently
captures all future target domain invariance, a premise that is rarely valid in real-world settings.
Concurrently, an emerging paradigm of continual fine-tuning [10, 11, 35, 38, 69, 70, 71] has become
popular in spatio-temporal learning by continuously tuning the model to adapt to dynamic changes.
Though promising, it still divides the target domain into multiple periods of training and testing and
relies on period-specific training data to optimize model, thereby failing in data-scarse scenarios.
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Table 1: Formal comparison of different spatio-temporal learning paradigms for generalization from
the perspective of data and learning. s denotes the source domain, ¢ denotes the target domain, x
and y denote the samples and labels sampled from X and Y, respectively. OOD learning expects
inputs sampled from any environment e* ~ £ to be valid, while others are only optimized for the
current training or test environment e. In particular, continual fine-tuning divides the target domain
into multiple stages and optimizes for a specific stage 7 environment e”. X means not involved.
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Figure 1: Conceptual visualization comparison of different spatio-temporal learning paradigms under
test environment. (a) Test-Time Training requires the use of additional pretext tasks in the training
and test phases to optimize the self-supervision head or the overall model parameters fy. (b) Online
Continual Learning, by optimizing some internal parameters fy sy of the model, requires additional
modifications to the internal architecture of the network. Our (c) Test-Time Computing method only
requires a lightweight calibrator gg, which is a seamless and lightweight plug-and-play module.

Recently, leveraging test-time information has attracted widespread attention for its ability to signifi-
cantly improve language model performance on complex reasoning tasks [, 64]. In computer vision,
this concept has already been extensively developed: test-time training (TTT) was first introduced
by [66], which defines an auxiliary self-supervised task applied to both training and test samples
to better balance bias and variance [20]. A similar idea was adapted to spatio-temporal forecasting
in TTT-ST [9]. Unlike language and vision settings—where obtaining ground-truth labels for test
samples at inference time is nearly impossible—STF benefits from label autocorrelation [14]: each
observation strongly depends on its predecessor, and training instances are constructed from sliding
windows, which provide access to historical samples and their true labels. Moreover, this property
makes STF also require timeliness [600], that is, the additional computing time during inference must
be less than the window-stride interval. A recent STF method, DOST [72], explores online continual
learning, which initially explored this direction. It uses historical test sample labels to dynamically
adapt the modified model architecture. Though promising, these approaches typically involve complex
self-supervised tasks or structural adaptations and still fall short of the timeliness demands of STF.

To address this gap, we propose Test-Time Computing of Spatio-Temporal Forecasting (ST-TTC),
an attractive complementary paradigm. ST-TTC achieves learning with calibration by iteratively
leveraging available test information during inference, enabling seamless integration with diverse
models. This adapts the model to evolving spatio-temporal patterns, thereby calibrating predictions.
Our principal insight is that performance degradation during test time is primarily driven by non-
stationary distributional shifts stemming from progressive periodic biases. Therefore, we propose a
spectral domain calibrator. This involves appending a lightweight module, operating in the frequency



domain, subsequent to the backbone network. This module calibrates biases by learning minor, node-
specific amplitude and phase correction factors. Furthermore, a flash gradient updating mechanism
with a streaming memory queue, ensures universal, rapid, and resource-efficient test-time computing.
Table | provides a formal comparison of our method against existing learning paradigms, and Figure |
offers a conceptual visualization of learning with test domain. In summary, our contributions are:

* We propose a novel test-time computing paradigm of spatio-temporal forecasting, termed ST-TTC .

* We systematically explore the goals and means of achieving this paradigm. Concretely, we introduce
a spectral domain calibrator with phase-amplitude modulation to mitigate periodic shift and present
a flash updating mechanism with a streaming memory queue for efficient test-time computation.

* Experimental results on real-world spatio-temporal datasets in different fields, scenarios, and
learning paradigms demonstrate the effectiveness and universality of ST-TTC .

2 Related Work

Spatio-Temporal Forecasting. Spatio-temporal sequences can be regarded as spatially extended
multivariate time series. Although one can trivially apply multivariate forecasting methods [5, 7, 52,

] independently at each location, such decoupling of spatial and temporal dependencies invariably
yields suboptimal results [61]. Classical spatio-temporal forecasting method instead relies on shallow
models or spatio-temporal kernels, including feature-based methods [53, ], state space models [2,

, 56], and Gaussian process models [18, 58]. Unfortunately, the overall nonlinearity of these
models is limited, and the high complexity of computation and storage further hinders the availability
of massive training instances [03]. In recent years, spatio-temporal neural networks [32, 33, 36]
have been widely adopted to learn the complex dynamics of such systems. Early work concentrated
on devising neural operators to extract spatial or temporal correlation [17, 47, 62, 83, 90] and on
designing fusion architectures to integrate them [12, 16, 23, 40, 54]. More recent efforts have explored
domain-invariant representation learning [49, s ] and continual model adaptation [10, 11, 89]
to better accommodate unseen environmental shifts. However, these methods still depend exclusively
on offline training data and thus cannot deliver truly timely and effective adaptation in real settings.

Test-Time Computing. Test-time computation is inspired by the human cognition [34], in which
additional computational effort is allocated during inference to improve task performance. This
insight has recently driven considerable interest in the nature language process community, fueled
by the success of reasoning-augmented language models (e.g., ol [29] and r1 [21]) that activate
and adapt internal computations at test time via supervised fine-tuning or reinforcement learning
(RL) [99]. While the generalization properties of RL-based adaptation remain debated [95], the
notion of supervised learning on unlabeled test data dates back to “transductive learning” [19] in
the 1990s and has demonstrated empirical benefits [0, 67]. In the computer vision domain, this
idea was formalized as Test-Time Training [66], which attaches an auxiliary self-supervised head
to enable online adaptation to each test instance—a paradigm subsequently generalized as test-time
adaptation [30, 44, 73, 77]. However, spatio-temporal forecasting has seen limited exploration of such
techniques. TTT-ST [9] applies TTT-style auxiliary objectives during training and continues to update
at inference, and DOST [72] further incorporates dynamic learning mechanisms within modified
model architectures for test-time updates. In addition, some methods [22, 100] are conceptually close
to ours, such as CompFormer [100], which proposes a test-time compensated representation learning
framework, but still requires access to additional training data. Notably, we formalize the test-time
computing of spatio-temporal forecasting, and propose a unified learning-with-calibration framework
that is general, lightweight, efficient, and effective for STF at test-time.

For more related work, we provide a more detailed introduction in Appendix A.

3 Preliminaries

Problem Definition. Let z € R”*¢ denote the multivariate time series recorded at each location
sensor, capturing the dynamic observations of C' measured features in 7' consecutive time steps.
Stacking these sequences for all N locations yields the spatio-temporal tensor X € RNY*T*CGiven

historical observations X" € RN*T"xC (and an optional spatial correlation graph G representing
the spatial relationships of N locations), spatio-temporal forecasting aims to learn a mapping fy :



(X" G) — XF € RNXT!%C where X/ is the signal for the next 7/ time steps. In practice,
according to [40, 61], the feature to be predicted is usually only the target variable.

Scenario Definition. In deep learning systems, batch-based testing is typically employed to exploit
parallelism. In real-world deployment, however, predictions must be produced for each incoming
time-step sample—i.e., with batch size B set to 1. At time index ¢, once the new sliding-window input

X, e RN xT"xC arrives, the true labels for all test samples before time index ¢ — Th — T +1 become
available. Thus, test-time computing of spatio-temporal forecasting can leverage this accumulated
historical information to enhance the accuracy of the current prediction, while ensuring that any
additional computation latency remains below a threshold defined by the sliding-window stride.

4 Methodology

Our test-time computing framework of spatio-temporal forecasting (ST-TTC) integrates two syner-
gistic components: 1) a spectral domain calibrator with phase-amplitude modulation; and 2) a flash
gradient update mechanism with streaming memory queue. In this section, we introduce these two
key components, respectively, from the perspective of what is computed and how it is computed.

4.1 What to Compute? Spectral Domain Calibrator with Phase-Amplitude Modulation

Motivation. Spatio-temporal data, such as traffic flow and air quality, often exhibit periodic patterns
(e.g., daily or weekly cycles). However, in real-world deployments, these patterns are not stationary;
they are dynamically influenced by various internal and external factors [75]. Such influences lead
to non-stationarities manifesting as fluctuations in amplitude (e.g., increased or decreased traffic
peaks due to seasonal changes) or phase shifts (e.g., peak hours are advanced or delayed due to
traffic congestion). Pre-training models typically fit fixed periodic patterns during training, which
makes them vulnerable to performance degradation under such persistent dynamic changes during
inference [74]. Therefore, we argue that the goal of test-time computation is: how to design an
effective calibrator that can efficiently capture such gradual systematic bias from the pattern to
correct the prediction errors caused by non-stationarity, while avoiding overfitting to random noise?

Key Challenges. While correction in the time domain is possible [22, ], it often requires extensive
parameterization, leading to increased model complexity and limited ability to capture evolving
periodic structures. Moreover, the coupled structural and branching modules [9, 72] are prone to
overfitting the random noise in the spatio-temporal evolution. To address this, we propose calibration
in the spectral domain, where periodic variations are more transparently expressed as changes in
the amplitude and phase of specific frequency components. Spectral correction offers a potentially
more direct and robust solution. However, this introduces two main challenges: @ the degree of
non-stationarity varies across spatial nodes; and @ full-spectrum parameterization is computationally
expensive. The core problem thus becomes how to design a lightweight, spatial-aware calibrator.

Implementation Details. To this end, we formally introduce the spectral domain calibrator (SD-
Calibrator), which is a lightweight plug-and-play module that performs spectral domain calibration
on the time domain prediction results of the pre-trained model, aiming to achieve efficient test-time
computation for spatio-temporal forecasting. Specifically, it can be divided into three steps:

* Spatial-aware Decomposition. To ensure spatial awareness, we apply a real-to-complex fast Fourier
transform (rFFT) along the time dimension of the backbone model’s prediction §j € RE*N*T
separately for each spatial node. This yields the frequency spectrum: Yy = rFFT(j) € CBXN*M,
where M = % + 1 is the number of unique frequency bins for real-valued signals. Then, we
decompose Y7 into its amplitude A = |Y;| € REXN*M and phase P = £Y; € RBXNXM,

* Group-wise Modulation. To ensure lightweight and balanced spectrum expression, we divide the M
frequency bins into G contiguous groups of size | M /G, and learn per-group, per-node amplitude
and phase offsets \* € REXNx1 A¢ ¢ REXNX1 (Note: Both A* and \? are initialized to 0 to
avoid incorrect calibration of predictions before learning). For each group g € {1, ..., G}, we apply

A; =A4,0(1+ X;),P!; = P, 4+ \?, and reconstruct the spectrum as Y]Z = U§:1 A;] © el P,

* Inverse Transform. Finally, the calibrated time-domain signal is obtained by Inverser rFFT §.q; =
irFFT (Yf) € RBXNXT along the frequency dimension.



For clarity, we provide a Algorithm workflow | and Pytorch-Style Pseudocode 2 in Appendix C.1.

Complexity Analysis. The full-spectrum parameterization learns independent amplitude and phase
offsets for each of the M = T'/2 + 1 frequency bins and N nodes, totaling 2N M parameters. In
contrast, our G-group design learns only 2N G parameters. Since G is a constant and M grows
linearly with 7', G < M is usually the case. For large-scale long-term scenario, this significantly
reduces memory footprint and gradient update cost while retaining interpretable per-band calibration.

Theoretical Analysis. We also provide a theoretical approximate bound on the output perturbation
induced by the SD-Calibrator, ensuring controlled deviation from the original prediction to prevent
overfitting (Please refer to Theorem | and the proof in Appendix B).

4.2 How to Compute? Flash Gradient Update with Streaming Memory Queue

Motivation. The SD-Calibrator provides an effective mechanism for output correction. To accommo-
date the dynamic nature of spatio-temporal data, its parameters (A\*, A?) must be continuously updated
during inference. Fortunately, as we discussed above, due to the streaming nature of spatio-temporal
data, unlike Visual and textual tasks, we have access to the true labels of historical samples. However,
simply accumulating all historical data for updates is not feasible due to the increasing computational
load and memory usage. Therefore, we argue that the key to test-time computation is: How to design
an efficient data selection and learning mechanism that leverages appropriate historical information
to tuning the SD-Calibrator without incurring a lot of computational overhead?

Key Challenges. Although retrieving similar sequences from historical training databases can
partially compensate for prediction errors [100], this assumption is unrealistic, as only test-time
information is available in our scenario. Moreover, selectively storing historical test samples via
memory bank primarily serves to mitigate catastrophic forgetting in the backbone model [72], which
misaligns with the learning objective of our SD-calibrator. To address this, we propose freezing the
backbone and updating only the calibrator using recent test samples for efficient test-time computing.
However, this strategy introduces two critical challenges: @ recent studies [37] have shown that
real-time updates may cause information leakage; and @ excessive updates can lead to overfitting of
the calibration parameters and increased computational burden. The core problem thus becomes how
to design a efficient calibration parameter learning mechanism without information leakage.

Implementation Details. To address these challenges, we introduce the flash gradient update strategy
coupled with a streaming memory queue. The process is as follows:

* Streaming Memory Queue. We maintain a first-in, first-out (FIFO) queue, denoted as Q, with a
maximum size equal to the prediction horizon 7. For each incoming test instance ¢, after making
a prediction, we store the input-label pair (X¢, Y;) into Q (Here is for engineering convenience. In
real deployment, data points can be merged at each step to form the true label). Once Q is full, for
every new test sample (X, Y,,) added, the oldest sample pair (X, Y,) is dequeued. This dequeued
sample (X,,Y,) is then used for the gradient update, thus avoiding the information leakage.

* Flash Gradient Update. Once we have (X,,Y,), we first obtain the backbone model’s prediction
for the historical input: Yob = fo(X,) (note: the backbone model weights fy are frozen). Then,
the SD-Calibrator gy processes this prediction: )Afocal =go (Yob). The loss function between the
calibrated prediction ?Ocal and the true historical label Y, is calculated, and only a single gradient
descent step is performed to update the parameters of the SD-Calibrator: A <— A — nV L. For the

next input sample X, the updated SD-Calibrator is used for prediction. Using this single-sample
single-step gradient descent strategy, we achieve lightning-fast parameter updates.

For clarity, we provide a Algorithm workflow 3 and Pytorch-Style Pseudocode 4 in Appendix C.2.

Complexity Analysis. The primary focus here is the time complexity. The Streaming Memory Queue
itself has an O(1) time complexity for enqueue and dequeue operations. The Lightning Gradient
Update is performed only once for each incoming test sample. Each update involves: 1). Forward
propagation of the backbone and calibrator (dominated by the computational cost O(NTlogT') of
rFFT and irFFT) 2). Backward propagation of the calibrator (dominated by parameter cost O(NG)).

Theoretical Analysis. We also show that this single update step leads to a controlled adjustment,
ensuring that the calibrator makes progress on the newest sample it’s trained on, without causing
erratic behavior, under standard assumptions. (Please refer to Proposition 2 in Appendix B).



5 Experiments

In this section,we conduct extensive experiments to answer the following research questions (RQs):

* RQ1: Can ST-TTC have a consistent improvement on various types of models and datasets? Can
ST-TTC outperform previous learning methods that leverage test data? (Effectiveness)

* RQ2: Can ST-TTC effective in various real-world scenarios, including few-shot learning, long-
term forecasting, and large-scale forecasting? (Universality)

* RQ3: Can ST-TTC further enhance the performance of existing learning paradigms that utilize
training data, such as OOD Learning and continual learning? (Flexibility)

* RQ4: How does ST-TTC work? Which components or strategies are crucial? Are these compo-
nents or strategies sensitive to parameters or design? (Mechanism & Robustness)

* RQS: What is the time and parameter cost of ST-TTC during test-time computation, and how does
it compare to other advanced methods? (Efficiency & Lightweight)

5.1 Experimental Setup

Datasets. We employ publicly available benchmark datasets widely used in the literature to cover
typical spatio-temporal forecasting scenarios in the traffic domain (PEMS-03, PEMS-04, PEMS-07,
PEMS-08 [65]), the meteorological domain (KnowAir [79]), and the energy domain (UrbanEV [39]).
In addition, we also leverage the traffic-speed benchmark METR-LA [40], the large-scale spatio-
temporal benchmark LargeST [48], and dynamic-stream benchmarks (Energy-Stream, Air-Stream,
PEMS-Stream [10]) to assess our methods across varied settings and learning paradigms. Unless
otherwise specified, all datasets are chronologically split into training, validation and test sets in a 6 :
2 : 2 ratio. For more detailed description of each dataset, please see the Appendix D.1.

Baseline. For the default evaluation, we cover various widely used spatio-temporal backbones, which
can be divided into three categories: (1) Transformer-based: STAEformer [47] and STTN [86]; (2)
Graph-based: GWNet [83] and STGCN [90]; (3) MLP-based: STID [62] and ST-Norm [15]. For
the baselines that leverage test information, we cover three types: (1) popular test-time adaptation
methods in vision: TTT-MAE [20] and TENT [73]; (2) Online time series forecasting methods:
OnlineTCN [105], FSNet [57] and OneNet [81]; (3) Comparable online spatio-temporal forecasting
methods: CompFormer [100] and DOST [72]. For the baselines on large-scale benchmarks, we use
the efficient PatchSTG [17] as the backbone. For the baseline of OOD learning scenarios, we use the
advanced STONE [68] as the default method. For the continual learning scenario, we use EAC [10]
and STKEC [70] as the default methods. We follow the default parameter settings of the models for
all scenarios according to the corresponding literature. For details of each method, see Appendix D.2.

Protocol. Following prior benchmarks [61], we employ a 12-to-12 forecasting protocol—using the
previous 12 time steps to predict the next 12 steps and their mean—evaluated with mean absolute
error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE). For
simplicity, all experiments share the same hyperparameters of our ST-TTC : the calibration module
learning rate Ir is set to le-4, the memory-queue sample count n used for updating is 1, and the
number of groups m to 4. To ensure fairness, each experiment is repeated five times, with results
reported as mean + standard deviation (denoted in gray +). More protocol details, see Appendix D.3.

5.2 Effectiveness Study (RQ1)

Consistent Effectiveness. Table 2 presents the results of our method for 12-step future prediction
across six models on six public datasets. The X column denotes the results of standard testing, while
the v* column indicates results obtained with our proposed ST-TTC approach. The best results in
the X and v columns are highlighted in bold blue and pink fonts, respectively. We also compute
the relative improvement, denoted by the A column. Based on these results, we make the following
observations: @ The application of our test-time computation method, ST-TTC , consistently yields
performance gains across various backbone architectures and dataset combinations. ® From a model-
centric perspective, our approach can further enhance the performance of even the top-performing
methods across different metrics and datasets. ® From a data-centric perspective, UrbanEV shows
more significant relative improvement, likely due to its more pronounced distribution shift.



Table 2: Performance comparison of different models w/ and w/o ST-TTC on common benchmarks.

Models | Transformer-based Graph-based MLP-based

STAEformer [47] STTN [86] GWNet [3] STGCN [90] STID [62) ST-Norm [15]
Wl ST-TTC X A% | X A% | X A% | X A% | X A | A%)
MAE 17.00. 16.75:010 ] 1.47 | 18.12+ 17.88:050 | 1.32 16.42:019 | 1.85 | 18.41-035 18.08+0, 4179 1748000 17.29:001 | 1.09 17.03:01> | 1.39
PEMS-03  RMSE Lose L 167 [ 31,0205 30.48:00 L 1.74 048 27.90:013 | 2.04 | 31.74:004 31.10:086 | 2.02 [ 29.10:022 28.74:021 | 1.24 28.71:004 | 1.95
MAPE(%) 0 10.00 | 18.43-1 19 18.01+100 | 2.28 ) 16.49. 1 1.26 | 18.90:075 18.68:041 | 1.16 | 17.50+0 1739001 1 0.63 2 16.92:05 | 1.63
MAE 6 4 0.77 | 20.63:005 20.48:0, 10.73 37 20.49. 10.39 [ 20.70:014 20.57:002 | 0.63 | 19.97:0. 19.86:00¢ | 0.55 0 20.08:0 4 0.69
PEMS-04 RMSE | 10833314000 3282000 1 0.97 | 32 S 824905 1 0.46 | 330100 3280020 1 0.94|32.62:000 32.49:000 | 0.40 | 3: 127
MAPE(%) 0 10.40 | 14.74 14.53:041 | 1.42 14.43 10.07 [ 14.15:006 14.040005 | 0.78 | 12.78:0 12.72:006 1 0.47 0 1 0.29
MAE 0 11,20 2 §123.08:075 1 0.94] 22,620 71 0.71 | 24.26- s L 177 21.72:005 21.55:005 | 0.78 | 22,6 2 © 10.84
PEMS-07 RMSE 048 | 1.20 | 3 0 37.24051 [ 0.83 | 36.8T:003 3 1 0.68 | 39.31.000 3 ) 11,73 36.24:006 36.00:000 | 0.66 | 38.14: 37.77:w00 1 0.97
MAPE(%) | 8.92 10.56 9.98. 1 0.99 10.41 | 10.57-01% 4 1.80 | 9.05:005  9.00:0 10.55 | 99405  9.86-0: | 0.80
MAE v 1074 o 10.70|16.37:021 16.28:020 | 0.55 | 17.33:0.1 10.92|15.61:000 15.52:002 | 0.58 | 16.69:006 16.56:004 | 0.78
PEMS-08 ~ RMSE o 1047 ) 10.52| 2614500 26.05:02 | 0.34 | 27.49- 1065 25.70:005 25.60:005 | 0.39 | 26.94:010 26.80:010 1 0.52
MAPE(%) .3 10.53 w1 0.62]10.95:050 10.79:005 | 1.46 | 11.63: v 1 0.86| 9.82:01 9.76+0. 1 0.61 | 11.46:050 11.19:03 | 2.36
MAE  [17.13:000 17.06-015 | 0.41 o 4047 [17.03:007 16.94:007 | 0.53 | 17.03:00 » 1041 1 17.98:000 1 0.50 1701000 1 0.35
KnowAir ~ RMSE | 26.13:020 26062010 | 0.27 |2 4019 26.12:015 26.05:014 § 0.27 | 26.140.17 2 1027 | 2 102 2717002 4 0.22 | 26.45:007 26.39:000 | 0.23
MAPE(%) | 62.14+1 61.66-155 1 0.77 ) L 151 | 64.51000 63.62:008 | 1.38 | 63.12:09 4 0.67 | 70.00+1 69.07-135 L 1.33 | 60.76:031 60.50:063 | 0.43
MAE | 287200 2852002 L 0.70| 3.04:000  2.99:000 L 1.64] 2.89:005 285000 | 1.38| 3.29:000 323:000 | 1.82] 28300 27900 [ 1.41] 3.09:00 3.0400 | 1.62
UrbanEV ~ RMSE | 5.00:00  4.98:000 1 0.40 5.03:00 L 1.18| 4872007 48lwooe | 1.2 5.63:0 » 1195 | 474000 467000 | 1.48 ]| 53100 5.22:000 | 1.69
MAPE(%) | 27.14:0 26.75:058 | 1.44 |2 s 28.22:020 | 1.8429.10:05 28.47. 12.16 | 31.67:007 31.45 1 0.70 | 27.60:0 27.15:045 | 1.63 | 29.53:057 29.26:057 | 0.91

Competitive Effectiveness. We further compare Table 3: Performance comparison of the advanced
our method against various advanced approaches method with ST-TTC on METR-LA benchmark.
that can leverage test-time information. Since the Marker T indicates the results are statistically sig-
official source code of CompFormer and DOST is  nificant (t-test with p-value < 0.01).

not available and uses additional data informa- Method ‘ MAE  RMSE ‘ wio Training - wlo Modifying
tion, it leads to an unfair comparison. Nev- ~
. . The training / validation / test set split used below is 70% / 10% / 20%.
ertheless, we still mclqde .all repo.rted METR- TTTMAE20] | 347000 743005 X
LA benchmark values (indicated with *) using TENT (73] 484005 8.53:0.10
a unified GWNet backbone, categorized into reg- ~ CompFormer" [100] | 346:00 719005 x
. . L _ oot 72100

ular and online settings as presented in Table 3, ST 3600 7
based on their respective papers. Addltlonally, The training / validation / test set split used below is 20% / 5% / 75%

: OnlineTCN* [105] 478005 8.70:004 X
we implemented the popular TTT-MAE method FSNet (57] | 579000 1106005 X
as a surrogate for the unavailable T77-ST method. OneNet* [511 | 494.00:  8.80-000 x
Our observations are as follows: @ For the reg- DOST*[72] | 438:0:2 826003 X
ular setting, our method achieves competitive re- ST-TTC | 37720071 73500101 |

sults with more stable standard deviations. While

other methods like CompFormer demonstrate similar performance, they often utilize more training in-
formation and computational resources. @ In the online setting, our method significantly outperforms
existing approaches without requiring more complex model architecture modifications.

5.3 Universality Study (RQ2)

To demonstrate the universality of ST-TTC across diverse real-world scenarios, we explore various
forecasting scenarios in the literature, including few-shot [94], long-term [59], and large-scale [25].

Few-Shot Scenario. To simulate limited training data, we retrained models using only the first 10%
of existing training sets to investigate a more common and challenging few-shot scenario. Figure 2
shows the relative performance gains with ST-TTC (For full results, please refer Table 6 in the
Appendix). We observe: @ ST-TTC provides more significant improvements in the few-shot setting
compared to the full-shot case in Table 2, with about half exceeding 2%. @ KnowAir shows the
largest gain compared to other datasets, likely because its four-year long period leads to a substantial
test distribution shift in the few-shot scenario, where our method adapts well.
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Figure 2: Relative improvements of different models w/ ST-TTC in the few-shot setting.
Long-Term Scenario. In real-world scenarios, long-term forecasting helps to further plan future

decisions. We predicted 24 future steps from 24 past steps to explore more complex temporal changes.
As shown in Figure 3, we present the relative performance improvement of the advanced STID model
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Figure 3: Left: relative improvement of long-term setting. Right: visualization study of PEMS-08.

with our ST-TTC method, and give a test set prediction visualization case on the PEMS-08 dataset
(see Figure 9 in the Appendix for more examples). Our observations include: @ ST—TTC consistently
improves long-term forecasting, even more than short-term (Table 2), likely due to more learnable
information in longer windows. @ As the and jorange| box shows, our method learns test-time
history, capturing both the global traffic decline and local fluctuations, leading to effective calibration.

Large-Scale Scenario. Beyond current regional MAPE (%) Inference & Training Time

datasets, state or national-level spatio-temporal fore-
casting can involve tens of thousands of stations and
longer time frames. We explore large-scale scenarios
using the popular LargeST benchmark (comprising
SD, GBA, GLA, and CA subsets). Figure 4 illus-
trates the 12-step prediction performance gains of
the state-of-the-art efficient spatio-temporal model
PatchSTG [17] with our ST-TTC , along with a com-
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parison of inference time complexity (For full re- 2 HLT

sults, see Table 7 in Appendix). We observe: @ Our
ST-TTC consistently yields further performance im-
provements across all datasets, even surpassing the
improvement of the second-best baseline over the
PatchSTG on some datasets. @ The additional inference time is at most 3.82 minutes, which is a clear
advantage for the achieved performance gains compared to the training time cost of up to 14 hours.
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Figure 4: Performance on LargeST.

5.4 Flexibility Study (RQ3)

To illustrate the flexibility of ST-TTC in accommodating existing learning paradigms, we explore its
integration with two training data-leveraging paradigms: OOD learning and Continual Learning.

OOD Learning Setting. Following prior work [68],
we use the SD dataset to simulate spatio-temporal
shift. For the temporal dimension, we use 1-8/2019,
9-10/2019, and 11-12/2020 for training, validation,

All Nodes

New Nodes

—@— MAE
RMSE

20~ -

30-

and testing, respectively. For the spatial dimension,

we randomly mask 10% of nodes in the test set and 101 [

Improvement (%)

consider three proportions of new nodes (10% / 15% 5,""/. 5,'/./.
/20%) relative to the training node to mimic varying

degrees of shift. In Figure 5, we present the 12-step 0% oe 1% o Yiow 1% 20%
average prediction performance gains of the advanced Shift Degree Shift Degree

OOD learning model STONE with our ST-TTC , eval- _ L .

uated on all nodes and new nodes to demonstrate gen- rigure 5: Relative improvement using our
eralizability and scalability (Full results in Table 8). ST~ TTC in the OOD learning setting.

We observe that: @ The STONE model with ST-TTC consistently achieves performance benefits,
significantly outperforming all previous settings, indicating that existing OOD models are still insuf-
ficient for true OOD generalization, while our method is highly effective. @ For both all and new
nodes, our improvements become more pronounced as the shift increases, further demonstrating our
effectiveness in handling both generalizability and scalability in challenging scenarios.

Continual Learning Setting. Following prior work [10], we used multi-period streaming spatio-
temporal data to examine our ST-TTC ’s integration with continual learning method. Table 4 shows
the improved 12-step forecasting of advanced continual learning models EAC and STKEC with
our ST-TTC . We observed: @ Consistent performance gains for both models across all datasets;
STKEC with ST-TTC even achieved comparable performance to best model EAC. (2) Energy-



Table 4: Performance comparison in continual learning setting.

Methods w/ ST_TTC Air-Stream PEMS-Stream Energy-Stream %. 15-
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Figure 6: Energy-Stream’s Shift.

Stream achieves significant improvement over other datasets, as the ST-TTC effectively learns and
calibrates temporal changes, as shown by the frequency analysis (drastic shift changes) in Figure 6.

5.5 Mechanism & Robustness Study (RQ4)
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Figure 7: Left: Strategy comparison. Middle: Effect of I w.r.t m . Right: Effect of n w.r.z s.

We follow the OOD setup (challenging setting with 20% new nodes) to evaluate our ST-TTC .

Strategy Study. We compare different strategies: 1) simple nonlinear time domain calibration (7ime),
2) learning only phase or amplitude modulation factors (Pha. / Amp.), 3) node-share modeling
(Node), and (4) random selection or retrieval of the most similar samples (Rand. / Sim.). As shown in
Figure 7 left, we observe: @ Frequency-domain calibration significantly outperforms time-domain
calibration, with amplitude modulation being the primary contributor; @ Sharing nodes leads to
performance degradation due to spatial heterogeneity in spatio-temporal data; ® Random sample
selection reduces performance, and retrieving similar samples offers negligible gains while incurring
higher computational cost. Our proposed update strategy is already near-optimal.

Parameter study. We analyze the sensitivity of two parameter groups. As shown in the middle and
right of Figure 7: @ Higher learning rates and fewer groups generally lead to poorer performance,
likely due to limited parameter capacity hindering stable learning; @ Increasing the number of
samples or update steps has minimal impact on performance (fluctuations < 1%), but significantly
increases time cost, highlighting the rationale of our flash update mechanism.

5.6 Efficiency & Lightweight Study (RQS5)

METR-LA Benchmark

P
g
8

Result Analysis. We use GWNer as the backbone and
compare ST-TTC with other test-time adaptation methods
on METR-LA in terms of total inference time and memory
usage. As shown in Figure 8, ST-TTC achieves the best
overall efficiency (excluding the GWNet baseline), being
4.64x faster and reducing memory usage by 37.12% com-
pared to the least efficient method, which is much smaller
than the sliding size (5 min.), meeting the time require-
ment.
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Figure 8: time and memory.
6 Conclusion

In this paper, we investigate the objectives of test-time computation in spatio-temporal forecasting
and explore effective approaches for its implementation. We propose ST-TTC , a novel paradigm that
uses a flash gradient update with streaming memory queue to learning a spectral-domain calibrator
via phase-amplitude modulation, effectively addressing non-stationary errors. Extensive experiments
confirm its effectiveness, universality, and flexibility. In future work, we aim to explore how to
enhance the internal computational capacity of spatio-temporal foundation models during test time.
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A More Related Work

A.1 Spectral Domain Learning.

Many recent forecasting models leverage spectral (Fourier or wavelet) representations to capture
periodic or multiscale patterns in spatio-temporal data. For example, PastNet [82] integrates a Fourier-
domain convolutional operator to embed physical inductive biases, achieving state-of-the-art results
in weather and traffic prediction. FourierGNN [88] builds a learnable Fourier-graph operator that
conducts graph convolutions in the frequency domain, reducing convolutional complexity from O(n?)
to O(n). Wavelet-based methods like WDNO [27] perform diffusion modeling in the wavelet domain
to capture abrupt spatio-temporal changes and multi-resolution features. In the pure time-series setting,
approaches such as FITS [87] interpolate in the complex Fourier domain and discard negligible high-
frequency components to maintain accuracy with very few parameters, and TimeKAN [28] explicitly
decomposes multivariate series into multiple frequency bands using Kolmogorov—Arnold networks.
These works demonstrate how frequency-domain learning can improve forecasting efficiency and
accuracy by isolating dominant spectral components. Different from these methods, our method
combines spectral domain feature extraction with calibration-aware test-time computation to achieve
reliable and calibrated forecasts even under changing conditions.

A.2  Online Learning for Forecasting.

Traditional online forecasting methods include adaptive filters like Kalman filters and recursive
least squares that update linear models on streaming data. Recently, deep-learning approaches have
been proposed to handle nonstationarity in an online fashion. For instance, FSNet [57] implements
a complementary “fast and slow” learning system: a fast-adapting component for sudden pattern
changes and a slow memory component for repeating trends. OneNet [81] runs two parallel neural
forecasters (one modeling temporal dependencies, one modeling cross-variable dependencies) and
uses reinforcement learning to dynamically weight their predictions under concept drift. These
methods continuously update model parameters or ensemble weights as new data arrive. A recent
study [37] pointed out the information leakage problem of previous online time series prediction
methods, where the model makes predictions and then evaluates them based on the historical time
steps that have been back-propagated for parameter updates. By redefining the setting to focus
on predicting unknown future steps and evaluating unobserved data points, they propose a two-
stream framework for online prediction, DSOF, which is conceptually similar to previous methods,
generating predictions in a coarse-to-fine manner through a teacher-student model. Compared with
these methods, we focus on the more difficult spatio-temporal predictions while not requiring complex
network architecture design. Instead, we propose a calibration-aware framework that focuses on
adjusting predictions online instead of learning predictions.

A.3 Test-Time Adaptation.

Recent test-time adaptation techniques can be grouped by their adaptation strategy. Entropy mini-
mization methods adjust a trained model to increase prediction confidence on unlabeled test data.
For example, [73] propose TENT, which adapts model parameters by minimizing the entropy of its
predictions on each test batch and updating batch-normalization layers online. Feature alignment
methods recalibrate feature distributions using test inputs; for instance, adaptive batch-normalization
techniques re-estimate BN statistics on the target data to align feature distributions without labels.
Self-supervised adaptation uses auxiliary tasks on the test data to refine the model. Test-Time Train-
ing [20, 26, 66, 78] converts each test input into a self-supervised learning problem (e.g. predicting
image rotations) and updates model parameters before making a prediction. Similarly, SHOT [45]
freezes the source classifier and updates the feature extractor on unlabeled target data using pseudo-
labeling and information maximization. Each of these paradigms improves generalization under
distribution shift without access to target labels. In contrast, unlike these methods that exploit self-
supervisory information, our spatio-temporal prediction setting can use labels from historical test
information, enabling explicit optimization of the objective at test time, ensuring real-time adaptivity.
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B Theoretical Analysis

B.1 Approximate Bound on Output Perturbation

Theorem 1 (Approximate Bound on Output Perturbation). Let Y € CBXNXM pbe the original
frequency-domain representation of the backbone’s prediction y € RB*NXT and ¢/ € REXNXT pe
the calibrated output. Suppose the amplitude and phase modulation parameters satisfy |)\3| < €q

and \)\Z)| < ey forall groups g € {1,...,G}. Then, the ly-norm of the calibration error satisfies:

ly" = yll2 < (ea + €0) 1Y 12,

where ||Y||2 is the {a-norm of Y.

Proof. Let AY =Y’ —Y denote the frequency-domain perturbation. For each group g, the calibrated
spectrum is Y, = Ay (1 + )\g)ej (Py+27), Expanding Y, around A\ = 0, )\g’ = 0, we approximate:
V)& Yy (L4 XY +jA9),
where higher-order terms (e.g., /\a/\d’) are neglected under small €., €4. Thus, the perturbation is:

AYy ~ Yy(AY +jA2).
The /5-norm of AY is bounded by:
G

G
IAY[3=3" > |AYy,? Z aten) Y YoulP=(a+ Y3

g=1 feGroup g g=1 f€Group g

By Parseval’s theorem [55], ||y’ — y|l2 = ||AY||2, hence:

ly" = ylla < (/€& + GlIY ]2 < (ea + €)Y ]2
O

Remark 1. This theorem guarantees that the calibration-induced perturbation is sub-linearly
bounded by the modulation parameters €, €. By constraining these parameters (e.g., via regular-
ization during test-time adaptation), SD-Calibrator ensures the calibrated output does not deviate
excessively from the original prediction, thereby avoiding overfitting to transient noise. The group-
wise parameterization further reduces the effective degrees of freedom (from O(NM) to O(NG)),
inherently limiting the risk of over-parameterization.

B.2 Controlled Descent on Streaming Memory Queues

Assumption 1 (Lipschitz Continuous Gradient of the Loss). The loss function Lp()\) =

L(gx(fo(Xo )) Y(k)) is differentiable with respect to )\, and its gradient ¥ Ly ()\) is Lipschitz
continuous Wlth constant L, > 0. That is, for any g, \y:

IVALr(Aa) = VaLr(Mp)ll2 < Lel|Aa — All2

According to the descent Lemma [50], this implies:
L.
LX) < Le(Aa) + (VaLe(Xa), Ao = Aa) + TN = Aal3

Assumption 2 (Bounded Gradient). The norm of the gradient of the loss function with respect to the

calibrator parameters X is bounded for any sample (X, ék), Yo(k) ) from the queue and any reasonable
parameter set \:
IVALk(Ak)ll2 < Gias

for some constant G 45 > 0.

This is a common assumption, especially if the output of the calibrator and the true labels are within
a certain range, and the calibrator g is well-behaved.
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Proposition 2 (Controlled Descent on Streaming Memory Queues). Let the above assumptions hold.

For the k-th update step using the dequeued sample pair (X,gk), Yo(k)), if the learning rate 1 satisfies

0<n< L%, then the single gradient descent step on the SD-Calibrator parameters \ ensures a

decrease in the loss function for that specific sample:

L.n
2

LoOvest) < Lu(h) — 1 (1 - ) 1ALk ()2

Furthermore, the change in the calibrator parameters is bounded:

IAk1 — Akll2 < 1Gmas

Proof. Let Ly, (X) = L(gx(fo(X 5’“’))7 Yo(k)) be the loss for the k-th dequeued sample. The parameter
update rule is Ag11 = A\ — nVaLg(Ag).

From Assumption 1, we have:
LkOhkin) < L)+ (TaLu() st = M) + oA = Al
Substitute A\gr1 — A\p = —VaLi(Ag):
Li(u1) < L) + (VaLeOw), ~nVaLuOw)) + 22 = n¥aLi(u) B

Len?
2

Li(Mes1) < Le(Ae) = nllVaLe(Xe) 13 + [VaLk (ARl

Factor out ||V Ly (Ax)|3:

2

For the loss to decrease (or stay the same if gradient is zero), we require the term
0 (1 - Lc”) VL (A2 = 0. Since 7 > 0 and [|[VaLx ()| = 0, we need (1 - M) > 0.

L,
LeOvert) < Lu(h) — 1 (1 - ”) I9ALe ()2

2 = 2

This implies 1 > £, so £ > n. Thus, if 0 < n < £, the loss Ly(Ag+1) on the sample

2
(X v 9y s strictly reduced if Vy Li () # 0.

For the bound on parameter change:
[Ae+1 = Akllz = [ = nV ALk (An)ll2 = 0l V ALk (Ar)l|2
Using Assumption 2, ||V Li(Ag)ll2 < Gmaz:
[Ak+1 = Aellz < 1Gmaa

This completes the proof. O

Remark 2. The proposition demonstrates that each single-step update is not arbitrary but moves the
SD-Calibrator’s parameters \ in a direction that reduces the prediction error on the specific historical

sample (Xék)7 Yo(k)) used for the update, provided the learning rate 1 is chosen appropriately (i.e.,
small enough, specifically n < 2/L.). The condition on n ensures that the update step does not
overshoot. The second part, || Ap+1 — Mkll2 < 1Gmaz, shows that the magnitude of change in the
parameters \ during each update is bounded. This is crucial for preventing the calibrator from
experiencing excessively large or erratic parameter shifts from one step to the next, which could lead
to instability or overfitting to noisy individual samples.

C Method Details

C.1 Spectral Domain Calibrator

Algorithm Workflow. We summarize the algorithm workflow of Section 4.1 in Algorithm I.

Algorithm Pseudo-code. We further present Algorithm | in the form of pytorch pseudo code in
Algorithm 2 for easy understanding.
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Algorithm 1 Spectral Domain Calibrator

Require: Pre-trained backbone fy, Test input x, Horizon length 7', Number of nodes IV, Groups G
Ensure: Calibrated output ¢!
1: Get the backbone predlctlons 9= fo(x) € RVXT
2: Compute M < 5 L1
> I: Spatial-aware Decomposition
3: Apply real-to-complex FFT along time dimension for each node: Y; < rFFT(j) € CNxM
4: Decompose: A < |Yy|, P« ZYy
> II: Group-wise Modulation
5: forg=1,...,G do
6 Get index: start + (g — 1)|M/G| +1 i M 9=0
: et group index: star g , en glM/G| otherwise
Get learnable offsets: A2 € RNV*!, A\ € RNV !
Modulate group-slice: A}, <= A[:, start : end] ® (1+ Ay), P = P[:, start : end] + )

9:  Reconstruct slice: Y{[:, start : end] < A}, © el o
10: end for

> III: Inverse Transform
11: Inverse FFT: ! +— rkFFT(Y}) € RN*T

12: return §°!

C.2 Lightning Gradient Update

Algorithm Pseudo-code. We summarize the algorithm workflow of Section 4.2 in Algorithm 3.

Algorithm Workflow. We further present Algorithm 3 in the form of pytorch pseudo code in
Algorithm 4 for easy understanding.

D Experimental Details

D.1 Datasets Details
Our experiments are carried out on 14 real-world datasets from diffrent domain. The statistics of
these spatio-temporal datasets are shown in Table 5.

We follow the conventional practice [40] to define the graph topology for all spatio-temporal datasets
except Know-Air. Specifically, we construct the adjacency matrix A for each dataset using a threshold
Gaussian kernel, defined as follows:

A[ij] _ {exp ( d?g) if exp (

) >randi #j
0 otherwise

where d;; represents the distance between sensors ¢ and j, o is the standard deviation of all distances,
and r is the threshold. We follow the recommended parameter settings in all corresponding papers.

For the KnowAir dataset, we follow the original paper [79] and calculate the correlation between
nodes to construct the adjacency matrix. Intuitively, most aerosol pollutants are distributed within
a certain range above the ground. In addition, the mountains along the two cities will hinder the
transmission of pollutants to the PMs 5 direction. Based on these intuitions, we constrain the weights
in the adjacency matrix by the following formula:

A[ij] = H(d@ — dij) . H(T)”Lg — mij), where
dij = [lpi = psll,  mij = Asttpl){h()\pi + (1= A)p;) —maxth(pi), h(pj)}},
€(0,
where p; is the location (latitude, longitude) of node i, h(p) is the height of location p, and || - || is
the L2-norm of the vector. H(-) is the Heaviside step function, where H (z) = 1 if and only if z > 0.

dg and my are the distance and altitude thresholds, respectively. Specifically, we also set the distance
threshold dy = 300 km and the altitude threshold my = 1200 meters.
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Algorithm 2 PyTorch-style pseudocode: SD-Calibrator Class

class SD_Calibrator (nn.Module) :

mrmn

Spectral Domain Calibrator with Phase-Amplitude Modulation

mrmn

def _ _init_ (self, num_nodes, freqg bins, groups=4):
nmmn
Args:
num_nodes: number of spatial nodes (N)
freq bins: number of frequency bins (M =T // 2 + 1)
groups: number of frequency groups (G)

mmn

super () .__init__ ()
self.groups = groups
self.group_size = freq bins // groups

# Learnable offsets for amplitude and phase: (G, N, 1)
self.lambda_amp = nn.Parameter (
torch.zeros (groups, num_nodes, 1)
)
self.lambda_phi = nn.Parameter (
torch.zeros (groups, num_nodes, 1)

)

def forward(self, y_pred):
mmrn
Args:
y_pred: prediction from backbone, shape (B, 1, N, T)
B defaults to 1, because only one sample can be tested
Returns:
calibrated prediction, shape (B, 1, N, T)
mmn
B, _, N, T = y_pred.shape
y = y_pred[:, 0] # (B, N, T)

Yf = torch.fft.rfft(y, dim=-1) # (B, N, M)
A = torch.abs(Yf)
P = torch.angle(Yf)

Yf corr = torch.zeros_like(Yf)
for g in range(self.groups):

start = g * self.group_size
if g == self.groups - 1
end =T // 2 + 1
else
end = (g + 1) * self.group_size

lam_a = self.lambda_amp[g].unsqueeze(0) # (1, N, 1)
lam_p = self.lambda_phi[g] .unsqueeze (0)

A_g = A[:, :, start:end] = (1 + lam_a)
P = P[:, :, start:end] + lam_p

Yf _corr[:, :, start:end] A_g » torch.exp(lj = P_qg)

y_time = torch.fft.irfft(Yf_corr, n=T, dim=-1)
return y_time.unsqueeze (1) # (B, 1, N, T)
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Algorithm 3 Flash Gradient Update Mechanism

Require: Test spatio-temporal sample stream {x;} 2, Pre-trained backbone fy, Streaming memory
queue Q, Queue size T' (equal to horizon length)
Ensure: Spectral domain calibrator gg, Prediction collection of test samples {75} 2
1: Initialize Calibrator module g = (A%, A?), empty queue Q
2: for each timestept = 1,2, ... do
3:  Receive x4, compute default prediction §; = fp(x)
> I: Streaming Memory Queue
4:  Use Algorithm 1 to obtain the calibration results: ¢ = gg(95%; \)
5:  Record ground truth: y, (collected by the value of xz, available T" time steps in the future)
6:  Q.enqueue((x, yt))
> II: Flash Gradient Update
7. iflen(Q) > T then

8: (20, Yo) = Q.dequeue()

9: Use Algorithm 1 to obtain the calibration results: % = fy(z,)
10: Update: A < A — nV\L(y,, J54)

11:  endif

12: end for

13: return gy, {9¢9}E

Algorithm 4 PyTorch-style pseudocode: Flash Gradient Update Function

def st_ttc_test(self, test_loader, node_num, T, groups):

mmn

Flash Gradient Update with Streaming Memory Queue

mmn

SDC = SD_Calibrator (node_num, T//2+1, groups) .to(self.device)

optimizer = torch.optim.Adam(SDC.parameters (), lr=le-4)
loss_fn = self._select_criterion()
SMQ, preds = Queue (maxsize=T), []

for x, y in test_loader:
X, v = x.to(self.device), y.to(self.device)
with torch.no_grad() :
y_pred = self.model (x)
y_corr = SDC(y_pred)

# Use y_corr for inference
y_corr = self.scaler.inverse_transform(y_corr)
preds.append(y_corr.cpu() .detach () .numpy ())

SMQ.put ((x, v))
if SMQ.full():
x_old, y_old = SMQ.get ()
with torch.no_grad():
y_pred_old = self.model (x_old)

SDC.train ()
y_corr_old
y_corr_old

SDC (y_pred_old)
self.scaler.inverse_transform(y_corr_old)

loss = loss_fn(y_corr_old, y_old)
loss.backward()
optimizer.step ()
optimizer.zero_grad()
SDC.eval ()

return preds
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Table 5: Summary of datasets used for our experiments. Degree: the average degree of each node.
Data Points: multiplication of nodes and frames. M: million (10°).

Source Dataset Nodes Time Range Frames Sampling Rate Data Points
PEMSO03 358 09/01/2018 — 11/30/2018 26,208 5 minutes 9.38M
[65] PEMS04 307 01/01/2018 — 02/28/2018 16,992 5 minutes 5.22M
PEMSO07 883 05/01/2017 — 08/06/2017 28,224 5 minutes 24.92M
PEMSO08 170 07/01/2016 — 08/31/2016 17,856 5 minutes 3.04M
[39] UrbanEV 275 09/01/2022 — 02/28/2023 4344 1 hour 1.19M
[79] Know-Air 184 01/01/2015 — 12/31/2018 11688 3 hours 2.15M
[40] METR-LA 207 03/01/2012 — 06/27/2012 34,272 5 minutes 7.09M
CA 8,600 01/01/2019 — 12/31/2019 35,040 15 minutes 30.13M
GLA 3,834 01/01/2019 — 12/31/2019 35,040 15 minutes 13.43M
LargeST [48]
GBA 2,352 01/01/2019 — 12/31/2019 35,040 15 minutes 8.87TM
SD 716 01/01/2019 — 12/31/2020 70,080 15 minutes 5.02M
. 1087 — 1154

Air-Stream 1193 — 1202 01/01/2016 - 12/31/2019 34065 1 hour 15.79M

[10] 655 — 715 — 786
PEMS-Stream |— 822 — 834 — 850 07/10/2011 - 09/08/2017 61,992 5 minutes 34.30M

— 871

Energy-Stream _>1 (132; _)1 1133 4 Unknown (245 days) 34,560 10 minutes 1.63M

D.2 Baseline Details

In our paper, we cover various spatio-temporal forecasting methods under various learning paradigms.
The following is a classification and brief introduction of these advanced methods:

Classical Learning Methods for Spatio-Temporal Forecasting.

STAEformer [47]: STAEformer is a spatial-temporal adaptive embedding transformer that makes
vanilla transformer state-of-the-art for spatio-temporal forecasting. It introduces a novel archi-
tecture to effectively capture the dynamic spatial and temporal dependencies in spatio-temporal
data. https://github.com/XDZhelheim/STAEformer

STTN [86]: STTN is a spatial-temporal transformer network designed for traffic flow fore-
casting. It leverages dynamic directed spatial dependencies and long-range temporal depen-
dencies to enhance the accuracy of long-term traffic predictions. https://github.com/
xumingxingsjtu/STTN

GWNet [83]: GWNet is a graph wavenet model for deep spatial-temporal graph modeling. It
effectively captures the complex spatial and temporal patterns in spatio-temporal data using
a combination of graph convolutional networks and dilated causal convolutions. https://
github.com/nnzhan/Graph-WaveNet

STGCN [90]: STGCN is a spatio-temporal graph convolutional network framework for traffic
forecasting. It integrates graph convolutional networks with temporal convolutional networks
to model the spatial and temporal dependencies in traffic data. https://github.com/
hazdzz/stgcn

STID [62]: STID is a simple yet effective baseline for spatio-temporal forecasting. It addresses
the indistinguishability of samples in spatial and temporal dimensions by attaching spatial and
temporal identity information, achieving competitive performance with concise and efficient
models. https://github.com/GestaltCogTeam/STID

ST-Norm [15]: ST-Norm is a method that applies spatial and temporal normalization for multi-
variate time series forecasting. It enhances the performance of forecasting models by normalizing
the spatial and temporal features of the data. https://github.com/JLDeng/ST-Norm
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Efficient Learning Methods for Large-Scale Spatio-Temporal Forecasting.

* PatchSTG [17]: PatchSTG is an attention-based dynamic spatial modeling method that uses irreg-
ular spatial patching for efficient large-scale spatio-temporal forecasting. It reduces computational
complexity by segmenting large-scale inputs into balanced and non-overlapped patches, captur-
ing local and global spatial dependencies effectively. https://github.com/lmissher/
patchstg

OOD Learning Methods for Spatio-Temporal Forecasting.

* STONE [68]: STONE is a state-of-the-art spatio-temporal OOD learning framework that effec-
tively models spatial heterogeneity and generates temporal and spatial semantic graphs. It intro-
duces a graph perturbation mechanism to enhance the model’s environmental modeling capability
for better generalization. https://github.com/PoorOtterBob/STONE-KDD-2024

Continual Learning Methods for Spatio-Temporal Forecasting.

e EAC [10]: EAC is a state-of-the-art method for exploring the rapid adaptation of models in the
face of dynamic spatio-temporal graph changes during supervised finetuning. It follows the
principles of expand and compress to address the challenges of retraining models over new data
and catastrophic forgetting. https://github.com/Onedean/EAC

e STKEC [70]: STKEC is a continual learning framework for traffic flow prediction on expand-
ing traffic networks. It introduces a pattern bank to store representative network patterns and
employs a pattern expansion mechanism to incorporate new patterns from evolving networks with-
out requiring historical graph data. https://github.com/wangbinwul3116175205/
STKEC

In addition to these advanced spatio-temporal forecasting models, we also cover various competitive
baselines that learn with test information, mainly in the following three categories:

Popular test-time training methods

o TTT-MAE [20]: TTT-MAE is a test-time training method that uses masked autoencoders to
adjust the model during inference. It helps improve the performance of the model on unseen
data by effectively utilizing test-time information. We adapt it to the backbone model of the
spatiotemporal network, which is divided into a feature extractor and a prediction head as well as
a self-supervisory head. https://github.com/Rima-ag/TTT-MAE

e TENT [73]: TENT is a method for adjusting the model at test time by normalizing the activation
function to reduce the offset between the training distribution and the test distribution. It
enhances the generalization ability of the model without retraining on labeled test data. Although
it is theoretically designed mainly for the cross entropy loss function, that is, classification
tasks, we can still directly apply it to our prediction scenarios. https://github.com/
DequanWang/tent

Classical online time series forecasting methods

e OnlineTCN [105]: OnlineTCN is an online learning method based on a time convolutional
network. It can adapt to new data sequentially and is very suitable for real-time prediction
applications where data arrives continuously. https://github.com/locuslab/TCN

* FSNet [57]: FSNet proposes a fast and slow learning network for online time series prediction
that can handle both sudden changes and repeated patterns. In particular, FSNet improves on
a slowly learning backbone by dynamically balancing fast adaptation to recent changes and
retrieval of similar old knowledge. F'SNet implements this mechanism through the interaction
between two complementary components of the adapter to monitor each layer’s contribution to
missing events, and an associative memory that supports remembering, updating, and recalling
repeated events. https://github.com/salesforce/fsnet

* OneNet [81]: OneNet dynamically updates and combines two models, one focusing on modeling
dependencies across time dimensions and the other focusing on cross-variable dependencies.
The approach integrates reinforcement learning-based methods into a traditional online convex
programming framework, allowing the two models to be linearly combined with dynamically
adjusted weights, thereby addressing the main drawback of classical online prediction methods
that are slow to adapt to concept drift. https://github.com/yfzhangll4/OneNet
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Advanced spatio-temporal forecasting methods using test information.

e CompFormer [100]: CompFormer proposes a test-time compensated representation learning
framework, including a spatiotemporal decomposed database and a multi-head spatial transformer
model. The former component explicitly separates all training data along the time dimension
according to periodic features, while the latter component establishes connections between recent
observations and historical sequences in the database through a spatial attention matrix. This
enables it to transfer robust features to overcome abnormal events

e DOST [72]: DOST proposes a novel online continuous learning framework tailored to the
characteristics of spatiotemporal data. DOSTadopts an adaptive spatiotemporal network equipped
with variable independent adapters to dynamically address the unique distribution changes of
each urban location. In addition, to adapt to the gradual nature of these transformations, a
wake-sleep learning strategy is used, which intermittently fine-tunes the adapters during the
online stage to reduce computational overhead.

D.3 Protocol Details

Metrics Detail. We use different metrics such as MAE, RMSE, and MAPE. Formally, these metrics
are formulated as following:

Yi — Yi
Yi

1 n
MAE = =Y " |y; — 3], RMSE =
n
=1

where n represents the indices of all observed samples, y; denotes the ¢-th actual sample, and ; is
the corresponding prediction.

Parameter Detail. For the hyper-parameter settings of all baseline methods, we follow the parameter
settings recommended by the corresponding references. For our paper, except for the robustness
study section, all other experimental hyper-parameters are set uniformly: the learning rate Ir is le-4,
and the number of groups m is set to 4. All experiments are conducted on a Linux server equipped
with a 1 x AMD EPYC 7763 128-Core Processor CPU (256GB memory) and 4 x NVIDIA RTX
A6000 (48GB memory) GPUs. To carry out benchmark testing experiments, all baselines are set to
run for a duration of 100~ 150 epochs by default (depends on the corresponding paper), with specific
timings contingent upon the method with early stop mechanism. The number of early stopping steps
is set to 10.

E More Results

E.1 Complete Results Table

We provide complete information of the experimental tables in the main text as Table 6, 7, 8

E.2 Visualization Case

We provide more visualization examples of test set predictions to illustrate the effectiveness of our
calibration, as shown in Figure 9

F More Discussion

F.1 Distinction between Spatio-Temporal Forecasting and Long-Term Time Series

As stated in the paper, our work adheres to the common settings of previous short-term and long-term
spatio-temporal forecasting studies (e.g., 12 — 12, 24 — 24) [59, 61]. However, we are fully aware
of the 96 — 96 — 720 settings prevalent in current long-term time series forecasting. We wish to
share our insights regarding this:

@ There has been a long-standing debate concerning the long-term predictability of time series [4, 8],
which we do not intend to overly critique here. Nevertheless, it is important to note that in spatio-
temporal forecasting, specifically in traffic flow theory research, previous studies [101] utilizing
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Table 6: Performance comparison of different models w/ and w/o ST-TTC in the few-shot scenario.

Models ‘ Transformer-based Graph-based MLP-based
STAEformer [47] STTN [50] GWNet 53] STGCN [90] STID [62] ST-Norm [15]
w/ ST-TTC X X X X X X

MAE 23.57090  22.96+0.93 21.15:092 | 21.7009s  21.43:092 21.79:050 21.28:0.54 | 21.81:02 21.57s024  21.13:03 20.74:0.28

PEMS-03 RMSE 37.90- 37.10:1.59 33.87:153 | 34.52:140 34.28:1.40 9 34.08:080 | 35.58:053 3518052 33.76:045  33.07:0.35
MAPE(%) | 21.49: 21.23:1.03 21132128 | 21.30=1.04 19.70:0.57 21.59:077 | 21.46:086 21272073 22.57:3.03  22.04:2.22

MAE 35.104425 3457408 29.76:037  29.44:031 | 33.224150  32.87:195  29.97:051  29.66:0.53 | 29.64:067  29.49:065  30.66+0 30.31:0.14

PEMS-04 RMSE 50.94+486  50.23:450  44.17:075  43.89:081 | 50.09:050  49.73:273  45.96:126 4547128 | 44.81:103  44.62:1.10  45.86:050  45.33:0.49
MAPE(%) | 23.55:328  23.40:326  23.51+127  22.54:071 | 22,9735 22432307 20.80:1.19  20.72:109 | 22.90<177  22.70:172 21.75:067  21.72+0.60

MAE 30.45:0 29.70:039  31.70:082  31.22:0.69 | 33.17:065  32.82:063 32.64:072 31.88:077 | 31.42:100 3091105  31.14:006  30.50:0.05

PEMS-07  RMSE 47.89:08 46.89:076  46.571.10  45.96:093 | 49.83:050  49.36:057 48.65:0.14  47.61:0.05 | 47.51:08 46.71:097 47.45:043  46.54:0.42
MAPE(%) | 13.87:027  13.53:023 14.58:002  14.45:013 | 15.04=070  14.74:058 1713140  16.282099 | 15.27=115  15.032120 14.60:067  14.18x0.46

MAE 36.98+73 35.47:6.03 24.17:042  23.81:041 | 26.21:055  25.94:097 25.97:005  25.31:021 | 24.03:02 23.75:028 24342009  24.06:0.07

PEMS-08 ~ RMSE | 54.61:1046  52.43:837 36.89:045  36.61:0.50 | 40.81:005  40.51=111  38.53:015  37.80:0.10 37.36:077  37.45:016  37.20:0.20
MAPE(%) | 27.38:955  26.19:820 18.10:052  17.65:0.54 | 17.00<1.10  16.52:125  20.16<191  17.84=0.58 14.43-020  15.28:059  14.99+0.29

MAE 18.48:050  18.16:035  20.47:0 19.85:0.23 | 19.32x 19.04:029  20.59:026  20.09:025 | 22.58:120  21.72:094  21.52:039  20.92:0.36

KnowAir RMSE 27.20:009 2697008 28.95:0.4 28.51:0.46 | 27.79:013  27.58:015  29.05:020  28.65:021 | 30.25:103  29.69:083  29.28+0 28.86:0.41
MAPE(%) | 72.37+ 70.14:459  85.39:+152 8121163 | 80.49:543  78.49:540  84.80:240  82.13:215 | 102.09:660  95.69:508  95.24:206 9111150

MAE 3.39:0.12 3.36:0.07  4.12:006 4052006 | 3.92:000 3.88:000  4.21:000  4.10=0.10 3.31=0.00 3.24:005  4.85:000  4.75:011

UrbanEV ~ RMSE 6.15:021 6.05:0.16  6.81:0.06 6.71x005 | 6.64-0.12 6.59:0.11  6.74:0.1 6.61:0.17 5.51=0.1¢ 5.42:008  8.54:027 8.36-027
MAPE(%) | 31.60:019 31332047 38.41s145 37324133 | 35.792100  34.95:100 40.93:145  39.57:152 | 31.42:050  30.75:050 43.20:108 42264125

Table 7: PatchSTG with ST-TTC in LargeST Benchmark.

D Horizon 3 Horizon 6 Horizon 12 Average
atasets Methods
MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)
PatchSTG 14.53 24.34 9.22 16.86 28.63 1111 20.66 36.27 14.72 16.90 29.27 11.23
SD w/ ST-TTC  14.44 24.07 8.70 16.66 28.18 10.93 20.37 35.68 14.27 16.72 28.83 11.11
A 10.6% |1.1% 15.6% 112% | 1.6% 1 1.6% 114% | 1.6% 13.1% J11% 1 1.5% 1 1.1%
PatchSTG 16.81 28.71 12.25 19.68 33.09 14.51 23.49 39.23 18.93 19.50 33.16 14.64
GBA w/ ST-TTC  16.65 28.31 12.12 19.30 32.40 14.35 22.96 38.33 18.30 19.16 3249 14.48
A 11.0% | 1.4% 11.1% 119% |2.1% 11.1% 123% 12.3% 13.3% 117% | 2.0% 11.1%
PatchSTG 15.84 26.34 9.27 19.06 31.85 11.30 2332 39.64 14.60 18.96 32.33 11.44
GLA w/ ST-TTC  15.78 26.08 9.15 18.76 31.29 11.21 22.86 38.89 14.35 18.69 31.78 11.36
A 104% | 1.0% 11.3% 11.6% |18% 1 0.8% 120% |1.9% 11.7% 114% | 1.7% 10.7%
PatchSTG 14.69 24.82 10.51 17.41 29.43 12.83 21.20 36.13 16.00 17.35 29.79 12.79
CA w/ ST-TTC  14.59 24.61 10.40 17.14 28.97 12.51 20.76 35.38 15.54 17.10 29.31 12.53
A 107% 10.8% 1 1.0% 11.6% | 1.6% 12.5% 121% 121% 12.9% 11.4% | 1.6% 12.0%

residual analysis have indicated that, after minimizing periodicity, the correlation between traffic
data beyond one hour and the past hour’s observations is significantly limited for most sensors.
Furthermore, typical traffic sensor data collection frequency is approximately 5 minutes. Therefore,
for practical traffic forecasting and decision-making scenarios, which usually focus on the next 1-2
hours (i.e., max 24 steps), our settings are more aligned with real-world applications.

® Given that spatio-temporal forecasting can be considered a complex extension of time series
forecasting, the additional dimension of sensor count (up to hundreds or thousands) results in an
order of magnitude higher data training cost. This is a secondary reason why existing spatio-temporal
forecasting often considers 12-step settings.

® Another notable finding is that a recent study on the accuracy law of deep time series forecast-
ing [80], emerging subsequent to this paper, identifies a significant exponential relationship between
the minimum prediction error of current deep forecasting models and the complexity of window
series patterns. Adopting a Spectral-domain perspective similar to that of this paper, it defines the
complexity of series patterns as the total variance of the amplitude spectrum distribution, thereby
characterizing the intrinsic heterogeneity of series variations within each relevant window. This ap-
proach aligns with ours and provides a novel perspective to explain the learnability and effectiveness
of the single-step gradient descent in our calibrator. While the study focuses solely on univariate time
series forecasting, this limitation does not inherently undermine its relevance. It is worth noting that
the study concludes that mainstream time series models have not yet reached saturation on traffic
scenario-based benchmarks. However, we hold a different view, arguing that this conclusion primarily
stems from the study’s exclusive use of time series forecasting models, while neglecting mainstream
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Figure 9: show case.

modeling models. For further in-depth discussions, we suggest that

future research should address this aspect.

F.2 Limitation

In this paper, we propose a novel paradigm for spatio-temporal forecasting: test-time computing.
Although there are still many potential areas for improvement, given the superiority and generality
of our ST-TTC , we believe this provides a pathway for future exploration of larger-scale and more
effective test-time computation. While we have taken a small step in this direction, several limitations

warrant attention:

@ Our current study does not

true zero-shot generalization.

guidance and insights.

involve testing on spatio-temporal foundation models. The fundamental
reason behind this is our belief that true spatio-temporal foundation models do not yet exist. Although
some preliminary exploratory work has been done [92, 93, 42, 41, 91], they are far from achieving
However, considering their future inevitability, we believe that further
improving the paradigm of test-time computation, especially how to activate and scale the internal ca-
pabilities of spatio-temporal foundation models during testing, goes beyond the design philosophy of
our proposed learning with calibration. Nevertheless, our experiments still provide some preliminary
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Table 8: Performance of spatio-temporal shift dataset SD-ratio(%) on all nodes and unknown new
nodes at different spatio-temporal shift levels.

Dataset  Horizon Methods All Node New Node

MAE RMSE MAPE(%) MAE RMSE MAPE(%)

STONE 40.74+424  58.43:367  45.82:930  46.25:7.02  66.97=705  47.57+8.02

12 w/ ST-TTC 39.41:382 57.44:367 38.02:519  44.65:669 65.06:695 41.85+587

SD-10% A 13.3% 1 1.7% 1 17.0% 13.5% 12.9% 1 12.0%
STONE 30.18+1.19  42.83+138  39.44+3.03  32.79:277  46.68:387  40.12:030

Avg. w/ ST-TTC 28.29:104 41.50:1.16  28.66=132  30.66:263 44.44+332  30.80=1.54

A 16.3% 13.1% $27.3% 1 6.5% 1 4.8% 123.2%
STONE 35.31:046  52.87+057  34.05+1.73  43.65+085 66.07+128  30.47+1.40

12 w/ ST-TTC 34.86:0.15 52.25:054  29.80:079  41.93:062 63.17:029  27.70+0.03

SD-15% A 1 1.3% 1 1.2% 4 12.5% 13.9% 1 4.4% 19.1%
STONE 28.45+005  41.30=026  36.02:291  33.20x0.60 49.19:097  29.77+3.00

Avg. w/ ST-TTC  26.59=022  39.90:000  24.96:1.00  30.65:029 46.24:052  22.50:0.38

A 1 6.5% 1 3.4% 130.7% 1 7.7% 1 6.0% 1 24.4%

STONE 36.13:076  53.87044  34.19+108  41.64+123 63.19:211  37.38:3.20

12 w/ ST-TTC 35.08:1.08 52.37:067  30.55+1.13  40.10+141  60.77+207  33.70:2.73

SD-20% A 12.9% 12.8% 1 10.6% 13.7% 13.8% 19.8%
STONE 28.86+0.13  41.72+0.14  34.89+1.15  31.46+095 46.06+1.60  36.35+4.23

Avg. w/ ST-TTC 26.67=020 39.71:008  24.92:081  28.94-079 43.29:132  26.60:2.49

A 17.6% 1 4.8% 1 28.6% 1 8.0% 1 6.0% 126.8%

@ [t is undoubtedly encouraging that our current calibration mechanism is more effective in large-scale
and out-of-distribution scenarios. However, for commonly used small spatio-temporal benchmark
datasets, the performance improvement is not yet significant. Therefore, how to effectively improve
the performance of test-time computation on small-scale spatio-temporal datasets still requires
exploration, and we reserve further improvement efforts for future research.

® We observed in our experiments that utilizing a larger amount of test information that is more
similar to the current test sample does not significantly affect the results. This is certainly beneficial for
real-time efficiency requirements. However, considering our current efficiency is already sufficiently
good, further exploration is needed on how to potentially slow down the test-time computing process
to make it more scalable and improve forecasting effectiveness.

F.3 Future Work

Building upon the research direction presented in this paper, we envision future work encompassing
two main aspects:

@ Exploring how to integrate retrieval-augmented techniques to filter more effective learning samples
from arbitrary external scenarios, thereby combining them with our test-time computation framework
to optimize performance on small-scale datasets.

® Investigating the construction of real spatio-temporal foundation models that encapsulate internal
compressed knowledge, and exploring how to activate this internal capability during test time.

G Broader Impacts

This paper aims to promote the real-world usability of spatio-temporal forecasting models. We
propose a novel paradigm, namely test-time computing of spatio-temporal forecasting. This paradigm
shows significant generalization, universality across multiple scenarios, multiple tasks, multiple
learning paradigms, and scalability to improve performance, providing valuable insights for future
research and application value for practitioners. This paper focuses mainly on scientific research and
has no obvious negative impact on society.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly state our differences and contributions compared to the existing
literature in the introduction and presentation.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the current limitations and directions for future work in detail in
the Appendix.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide some complexity analysis and theoretical discussion, but this paper
focuses more on empirical studies, where we use a large number of real-world datasets and
settings to verify our effectiveness.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We describe all the protocols of the experiments in this paper in detail.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We use public benchmark datasets for testing and provide training weights
and testing logs. Due to the simplicity of the method, we also provide an anonymous code
repository and pseudo-code to easily reproduce the main experimental results.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We describe all the settings of the experiments in this paper in detail.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We repeated all experiments five times and reported the means and standard
deviations.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the computing environment used and the required computing
resources in detail in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research methods aim to advance spatio-temporal forecasting, the data
comes from standard public benchmarks, and there are no ethical issues involved.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We provide a discussion of the broad implications in the Appendix.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our approach does not involve these risks of generative models.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We use publicly available methods and open source benchmark datasets.

Guidelines:

* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
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Justification: We provide anonymous repositories during the review period and promise to
open source related assets after acceptance.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

15.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not involve human research subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not involve human research subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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