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Abstract—Light field cameras capture a scene’s multi-
directional light field with one image, allowing the estimation
of depth. In this paper, we introduce a fully automatic method
for depth estimation from a single plenoptic image running a
RANSAC:-like algorithm for feature matching. The novelty about
our method is the global method to back project correspondences
found using photometric similarity to obtain a 3D virtual point
cloud and different methods to build a depth map from the 3D
point cloud generated. We use lenses with different focal-lengths
in a multiple depth map refining phase, generating a dense depth
map. Tests with simulations and real images are presented and
compared with the state of the art, showing comparable accuracy
for substantial less computational time.

I. INTRODUCTION

Light field cameras are built by placing a micro-lens array
behind the major optical lens of the system. This construction
allows for the formation of an array of smaller images that
compose the 4D light field and by easily sampling it. It is
then straightforward (but slow) to estimate the scene’s depth
due to the redundancy created by the same point being imaged
several times.

The concept behind plenoptic cameras was first addressed in
1908 by Lippmann [1] where he suggests the placement of an
array of lenses between the camera’s main lens and the film.
This approach allows the camera to capture the light field of a
scene. The concept was later refined by Ives [2] in 1930 but,
due to the lack of computational power or existence of digital
image sensors, little could be done to extract information from
the light field. Now with digital image sensors, this techno-
logy has several possible applications such as robotics, face
recognition, photography and filmography, augmented reality,
depth reconstruction, industrial inspection and more.

Concerning depth estimation from plenoptic images we are
able to achieve the scene depth with only one raw image,
which is also essential for image rendering.

In 2004 Dansearau and Bruton [3] proposed a method for
depth estimation using 2D gradient operations. They were
able to define the light field direction and thus the depth of
the corresponding elements within the light field. The areas
where the depth could not be estimated were filled by applying
region growing. Since plenoptic cameras are not immune to
spatial aliasing, which can result on depth estimation errors,
in 2009 Bishop and Favaro [4] applied a different approach to
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compensate the present aliasing, allowing to recover the depth
map from multiple views provided by the 4D light field.

Wanner and Goldluecke [5] presented in 2012 a technique
for depth estimations for 4D light fields, using dominant direc-
tions on epipolar plane images. By assuming that the 4D light
field can be sliced into 2D dimensions they started to locally
estimate the depth of the epipolar plane images and then
labeled the local estimations, integrating them on the global
depth maps by imposing spatial constraints. Recently, Fleis-
chmann and Koch [6] approach the depth estimation paradigm
with disparity between neighbor lenses. Their method requires
a very dense sampling of the light field. The micro-lens depth
maps are fused using a semi-global regularization process.
They further incorporate a semi-global coarse regularization
for insufficiently textured scenes.

In a different approach, Tao et al. [7] used a focal stack to
estimate depth in a depth-from-defocus approach, by simul-
taneously using defocus and correspondences. They combine
both cues using a Markov random field framework. Going
deeper into the focus, Lin et al. [8] proposed, most recently, an
approach based on the symmetry of the focal stack to estimate
depth. They prove that the focal stack is symmetric centered in
the in-focus slice, for non-occluded pixels. Occlusions are also
studied by Wang et al. [9]. They identify the occlusion edges,
most useful for object segmentation and, hence, to improve
the depth estimation quality. They prove that points in the
edge of objects in different depth planes do not meet the
standard photometric consistency equation and they derive new
expressions for these points.

Recently, Jeon et al. [10] presentedd a method for depth map
estimation based on finding correspondences in sub-aperture
images to build a cost volume for optimization. For weak
textured regions they use a propagation method to regularize
the depth map.

As for the image rendering, it consists in converting the
plenoptic image into a focused image the same way as a
conventional camera would see the world. Although the works
presented by Ng et al. [11] and Lumsdaine and Georgiev
[12] are fast, they present many artifacts and low resolution.
Another approach and the one that achieves the best results for
multi-focus LF cameras is proposed by Perwass and Wietzke
[13]. Having a scene dense depth map it is possible to back
trace each pixel into the image plane. This method allows the
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Fig. 1: (a) Plenoptic camera setup. (b top) Hexagonal layout of lenses where the lens type is identified by a number. (b bottom)
Sample from a Raytrix dataset with different blurs in different lens types.

render of a high resolution image with few artifacts which can
be achieved with a multi-focus plenoptic camera. The major
drawback is the high computational power required to process
the dense depth map and the image rendering.

In this paper we present a novel fully automatic algorithm
to estimate micro-lens depth maps from a single image of a
multi-focus plenoptic camera. Our algorithm rely on a robust
search for photometric similarity between micro-lenses and by
smart mixing images with different levels of blur. The obtained
point cloud is then filtered to improve the final depth map.
We are, in this paper, particularly interested in comparing
different approaches to create a fast, yet accurate, micro-
lens depth map from the 3D point cloud obtained by back
tracing correspondences. We achieve comparable results, in
terms of accuracy, when compared to the state of the art in a
considerable less computational time.

II. MULTI-FOCUS PLENOPTIC CAMERAS

A multi-focus plenoptic camera has a micro-lens array
placed in front of the image sensor where each micro-lens have
a different focal length from its neighbor lenses. In this paper
we are interested in the model presented in [13] and which
is represented in figure la. For this type of cameras a real
world object X (figure 1a) is projected through the camera’s
main lens into a virtual image Y;. This virtual image is then
projected through the micro-lens array into the image plane,
capturing multiple views of the object. There are lenses with
three different focal length, allowing to obtain a larger depth of
field. Lenses with different focal lengths will present different
blurs for the same depth and will be in focus for different depth
ranges. The most common lens type arrangement is hexagonal,
as illustrated by the top image of figure 1b. The bottom image
of figure 1b shows a sample of a scene at a constant depth
where it is possible to identify different lens types through
blur.

To clarify the different types of depth maps, notice that
we define three different concepts: (1) sparse depth map - it

is the raw depth map obtained by projecting the 3D virtual
points to the image plane and attributing a depth value for
each projected pixel, (2) coarse depth map - it is the depth
map obtained by attributing a depth values for each micro-lens
- it is a dense map, since all pixels have a depth value, but it
is not dense in a conventional camera point of view (it is not a
scene’s depth map as if the scene was taken by a conventional
pinhole camera) and (3) dense depth map - it is the depth map
obtained by replacing the photometric information with depth
information in a conventional camera point of view. This dense
depth map is closely related to the all-in-focus renderization of
a light field camera. In this paper we are particularly interested
in comparing different approaches to obtain the coarse depth
map from the point cloud, as stated in the introduction section.

III. DEPTH ESTIMATION
A. Feature Detection

Our algorithm to estimate a sparse depth map is based on
photometric similarities between pairs of micro-lens images.
Fleischmann and Koch [6] use a similar approach, based on
photometric similarity. We use SIFT to search for salient
points in the image. This method allows us to obtain the most
significant points in the image only by adjusting threshold
parameters. Regard that we use SIFT features for simplicity
and since they have good discriminatory capabilities, however,
any salient points detection can replace the use of SIFT.
Having the salient points, neighboring lenses are then searched
for photometric correspondences, by relying on stereo epipolar
geometry. Since we are provided a big number of salient points
and their respective correspondences, we apply a RANSAC-
method to obtain the best 3D point cloud. Our algorithm
then back projects the pairs of correspondences. Notice that
the distance from the micro-lens array and the image plane
is provided by the camera manufacturer (calibration data),
allowing to obtain a sparse 3D point cloud. We summarize
our method as follows:
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Fig. 2: (a) Model tested by the RANSAC-like algorithm. The green circle is the salient point and the red, green and blue
lines are the epipolar band where we search for correspondences. The green epipolar line is the main test line while the red
and blue lines represent the +-1 pixel tolerance. (b) and (c) 3D representation of the epipolar geometry between two and four
micro-lenses respectively. The green line is the epipolar line, the green circles are best photometric similarities and the red dot
it the estimated 3D point for the detected similarities.

e Step 1 - Selection of the epipolar lines. For each o Step 3 - Estimation of the 3D virtual points. A subset

salient point within a reference micro-lens image I,,
a subset of epipolar lines are considered based on a
group of target micro-lens images I,,, ..., I,, (neighbor
micro-lenses). The n epipolar lines for a point x in the
reference image are given by L; = {z +tv : t € R}
with v = (ca, — ¢q)/2r [6], where ¢,, and ¢, are the
coordinates of the center of the target micro-lens a; with
i € {1,...,n} and the reference micro-lens a with r radius
respectively.

e Step 2 - Find a correspondence. Photometric sim-

ilarities are searched within the target micro-lenses
along the n epipolar lines for possible disparities dj €
[0, dimaz], dmaz < 2r. So, it is calculated the sum of
absolute differences (SAD) (of equation (1)) [6] between
a local neighborhood Q(z) in the reference image and a
local neighborhood Q(2 — d;v) in the target image.

1
SAD(z,d;;a,a;) = —————— Z H(u,dj;a,a;).
A(.’E, ’ j) ueQ(x)
(1)
with

H(u,dj;a,a;) = |Io(u) — I, (u — djv)|1(u — d;v) .

Alz,v,d;) = Z 1(u—d;v).

u€eQ(x)
1 if
1(z) = i ||x||<r
0 else

By minimizing the SAD though equation (2) it is obtained
the pixel coordinates for the best photometric similarity
within each epipolar line of the neighbor micro-lenses.

X(a,a;) = argmin SAD(z,d;; a,a;) (2)

of lines are defined, representing one pixel tolerance for
the epipolar line (figure 2a), and are grouped two by two.
For each pair it is computed the 3D point that minimizes
the distance between P; and P, (figure 2b). The final 3D
point has the median of their coordinates

o Step 4 - Testing the model. Having an hypothetical 3D
point obtained in the previous step, we now need to test
the hypothesis for this virtual point. The chosen error
measurement is the distance of the virtual candidate point
to all the correspondence lines obtained in the previous
step.

o Step 5 - Assessment of the model. A threshold is defined
so we can distinguish the good from the bad estimations.
This allows to assume which lines are suited to add to
the model (labeled as inliers). If there is more than one
outlier, the model is discarded and we go back to the first
step. If not, we advance to step 6.

o Step 6 - Re-estimations of the 3D virtual point. This
step is similar to step 3. We re-estimate the 3D virtual
point using only the inliers. These lines are again grouped
two by two and the 3D point for every combination is the
point that minimizes the distance between them. The final
3D point is the median coordinates of all points generated
by every line combination.

e Step 7 - Error metrics. In this step we evaluate the
model in terms of error. It is a mean error from the
inliers’s distances obtained in step 3. It is also possible
to evaluate the model by the number of neighbor micro-
lenses where a correspondence is found.

o Step 8 - Repeat steps 1-7 for every salient point.

As for the lens pattern used in step 1 (where neighbor
lenses are searched for replications of a given salient point)
we use different combinations of lenses. Knowing that for a
multi-focus plenoptic camera there are lenses with different
focal lengths, we define lens groups based on the lens type
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Fig. 3: Illustration of the lens neighborhood, with every group
labeled from RO to RS, and lens type from O to 2. The lower
value in the micro-lens illustration is the lens type.

and the distance to the central lens. Figure 3 shows these
configurations. We do a smart mixture of lens groups that,
even mixing different blurs due to different focal lengths, is
able to optimize the depth estimated throughout the scene’s
depth ranges. Notice that the depth accuracy depends on the
stereo baseline, which is smaller for farther scene depths. Our
smart adaptive mixture of micro-lens is able to adjust baseline
and range. The neighborhood is limited to R because there
is no major correspondences beyond this distance.

The output of the previous algorithm is a 3D point cloud
of virtual points as projected by the main lens of the camera
to their virtual image. At a final stage, a coarse regularization
method will reproject the 3D points of the cloud to the micro-
lens images and, thus, build a micro-lens depth map based on
the depths projected. This topic is the main topic of this paper
and is further discussed in the next subsection.

B. Coarse Depth Map

The coarse depth map is a 2D depth map where each micro-
lens has a depth representation of its projected scene. We use
three methods for the reconstruction of the coarse depth map:
a depth map with one depth per micro-lens, another with
two depths per micro-lens and finally a depth map with a
surface fitting for each micro-lens. Regardless of the method,
we have to identify which features of the point set estimation
are projected through each micro-lens. Even though we do not
have the focal length value for each micro-lens, we project
every feature within the cone centered on every micro-lens
and with radius Ry.,s (this is of key importance since even
without calibration of the lenses we are able to reconstruct
depth). The Rj.ns projection is illustrated in figure 4.

1) Single Depth Per Micro-lens: The reconstruction of this
coarse depth map is related with the reprojection of the sparse
map points from the source virtual object into the image
plane through the center of the micro-lenses. First, we have
to identify which features of the sparse point set are projected
through each micro-lens. For each set of points projected into
each micro-lens a fine filter is applied. This filter allows a more
robust estimation for the depth of each micro-lens, being this

Micro-lens plane

Virtual image

Fig. 4: Generic illustration of R, radius projection cone for
one micro-lens and features that fall inside it.

depth the averaging of every point’s color intensity that follows
equation (3) for a local median p and standard deviation o,
of P(n) (local point set depth with n points) where 2, is
the point set depth domain. We then obtain a single depth per
micro-lens.

Pfilte'r'ed = {P(n) : P(n) € [ﬁ - Upvf)+ Up]an € QP] )

To densely fill every micro-lens without depth information
we use a propagation algorithm to its neighbor lens’s depth
value. The propagated depth is an averaging of the neighbor
lenses depth, since it is assumed a robust region growing when
there are at least three neighbor lenses with depth information.

2) Two Depths Per Micro-lens: One of our approaches to
improve the depth estimation is the sectioning of the micro-
lens into two depths (we aim at investigating if the simple and
fast approach of using only two depths can per si enhance the
accuracy). For this we use the clusterization algorithm k-means
[14], which is a self-learning (loop) algorithm based on vector
quantization. This method classifies a N —dimension point set
through & number of clusters. The main objective is to find k
centroids, each representing the center of a group of points.

This method allows us to separate the point set into groups.
Since it is sensitive to the initial randomly selected cluster
centers, it can be triggered several times to reduce the error
effect of the random initial conditions (we use the OpenCV
implementation, which is optimized to multithreading).

As for the micro-lens sectioning, similarly to the single
depth per lens approach, we identify which points fall inside
the projection cone with a radius R,,,, for each micro-lens.
Having a local point set for each micro-lens, without projecting
these points, we group them into 2 clusters and extract their
centers. This is illustrated in figure 5a.

Following, the clusters centers are projected into the image
plane through the micro-lens center, assigning them a color in-
tensity value of their respective virtual depth. As seen in figure
5b, the 2D line that sections the micro-lens (illustrated as n’)
intersects the center of the projected cluster that maximizes the
distance to the center of the micro-lens. This line is normal
to the line that intersects the centers of the projected clusters
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Fig. 5: (a) R4 projection cone, features that fall inside it (dense colored points) and cluster’s center (border colored circles).
(b) Clusters and R,,,, projection on the image plane. Normal line (continuous line) passing through the farthest cluster relative
to the micro-lens projected center. (c¢) Sectioned micro-lens with assigned depths equal to the clusters virtual depth.

(illustrated as m). The n’ line’s equation is then normalized
and scaled to the radius of the micro-lens. The assigned depth
for both partitions is equal to the average depth values of the
assigned cluster points (figure Sc).

The micro-lens sectioning only occurs if the two clusters
present a significant depth difference. Otherwise, we assume
a single depth per micro-lens.

3) Micro-lens Surface Fitting: Since one knows the depth
of the points reprojected to the micro-lens image, it is a natural
choice to fit these points depth to a surface (3D reconstruction
for each micro lens). We use a robust least squares approach.
This method is simple and its accuracy increases with the size
of the point set.

As stated by Ambrosius [15], given a set of n points
T1...Tn,Y1 ---Yn, With corresponding 21 ... z,, it is possible
to find a polynomial of degree p (arbitrary) that fits the data
with a minimum error in the least squares sense.

The generic polynomial is given by equation (4). We can
write this equation in matrix notation as shown in equation (5).
The left most matrix (X) is called the Vandermonde matrix.

2 = a1 +asz+asy+asr’y+aszy’ +acr iy +. . Aapyo)2’y?

“)

Xa=z @)

Knowing each point’s x,y and z coordinates and seeking
a polynomial of degree p = 2 we can easily determine the
coefficients a by inverting the Vandermonde matrix V' (using
the Moore-Penrose pseudo-inverse). By densely re-sampling
a micro-lens, it is possible to reconstruct its surface with the
second order surface fitting coefficients.

The least squares approximation is a fair approach when the
local micro-lens point set is dense, otherwise it might generate
inaccurate data for these less dense point sets.

IV. RESULTS

We compare the results of our method to the one of Fleis-
chmann and Koch [6]. We test both methods with synthetic
datasets produced by our simulator [16] and real world datasets

L
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Fig. 6: Generic example depth estimation of a micro-lens. (a)
Single depth per micro-lens estimation for the local micro-lens
point set. (b) Least squares approximation surface for the local
micro-lens point set.

provided by Raytrix. Table I shows the measures computation
time and mean absolute error for all the tested methods. From
this table we can see that our methods achieve comparable
accurate results with substantially less computation time. From
our methods, the two depths per micro-lens method presents
the best results and the one depth per micro-lens presents
the best computation time. We can see that there is a trade-
off between computation time and accuracy for the tested
algorithms. Detailed results are presented in supplementary
material.

V. CONCLUSION

In this paper we propose three new low-cost algorithms to
estimate the depth of a plenoptic image based on detected
features for a multi-focus plenoptic camera. Our methods
generate a coarse depth map with one depth, two depths
and a surface fitting per micro-lens. We test our methods
on synthetic and real world datasets, comparing them to the
method of Fleischmann and Koch [6]. This comparison shows
a compromise between computation time and accuracy for
the tested methods, where our algorithms achieves comparable
accurate results in substantially less computation time. With
our method we can estimate depth, even without the calibration
data of the micro-lens array, while Fleischmann and Koch only
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Fig. 7: Results for the synthetic Bunny dataset and Raytrix’s Watch dataset (excerpts) with the ground truth. (a/f) our coarse
depth estimation with one depth per micro-lens, (b/g) our coarse depth estimation with surface fitting per micro-lens, (c/h) our
coarse depth estimation with two depths per micro-lens, (d/i) Fleischmann and Koch’s disparity estimation, (e) ground truth.

TABLE I: Computational time (in seconds) and mean absolute error (in pixels) for both our and Fleischmann and Koch [6]

algorithms
Computation time MAE
Our single Our two Our micro-lens Our single Our two Our micro-lens
Datasets depth depths surface F&K depth depths surface F&K
per micro-lens | per micro-lens fitting per micro-lens | per micro-lens fitting
Bunny 1078s 2172s 2062s 3874s 0.497 0.384 0.388 0.195
Bolt 1305s 2668s 2119s 4473s 0.271 0.190 0.197 0.174
4plane 1665s 2989s 2314s 4300s 0.230 0.217 0.231 0.178

estimate disparities. The computation time of our algorithm
can still be improved with GPU parallel processing
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