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ABSTRACT

Vision-Language Models (e.g., CLIP), with their immense capacity and exten-
sive exposure to vast data during pre-training, have demonstrated a strong abil-
ity to capture real-world concepts. When fast adapted to downstream tasks
with only a few labeled samples, parameter-efficient methods, such as prompt-
based and adapter-based approaches, which adjust only a small portion of the
parameters, have proven effective in reducing the escalating costs in large vision-
language models. However, conventional efficient fine-tuning techniques, using
task-specific objectives like cross-entropy loss, often lead to overfitting the down-
stream data distributions. This overfitting diminishes the model’s ability to retain
its original generalization capacity, especially on out-of-distribution (OOD) sam-
ples. Unlike the pretraining stage, where rich textual descriptions are available,
fine-tuning is typically constrained to using only class names. This creates subop-
timal text-image alignment in the shared feature space, as it may exacerbate image
feature variance within the same class. To address this issue, we propose Proto-
typical Evolutionary Adaptation (PEA), leveraging off-the-shelf image centroids
as prototypes to regulate image feature variance, mitigating the excessive feature
variance within the same class caused by selective bias. Additionally, we intro-
duce learnable shift vectors to capture the dynamics of class prototypes, ensuring
that they remain compact and informative. Experiments across diverse datasets
and model architectures in few-shot learning demonstrate that our approach con-
sistently outperforms existing methods while maintaining robust generalization
under varying distribution shifts.

1 INTRODUCTION

Vision-Language Models (VLMs) like CLIP have demonstrated impressive zero-shot classification
abilities by learning a shared semantic space between visual and textual modalities. This success
is driven by the model’s ability to leverage vast datasets of web-scale image-text pairs during pre-
training, allowing it to classify images into various categories using only prompts, such as “a photo
of a [class]”, without any additional training. While CLIP excels in these zero-shot tasks, its per-
formance can be further enhanced in downstream tasks with limited labeled data. To address this,
recent research has focused on developing parameter-efficient fine-tuning methods that reduce the
number of trainable parameters while improving performance on few-shot learning tasks.

Parameter-efficient methods, such as prompt-based approaches like CoOp (Zhou et al., 2022c) and
adapter-based (Gao et al., 2024) approaches like CLIP-Adapter, have made significant strides in
adapting CLIP to few-shot learning tasks. These approaches introduce minimal additional param-
eters while achieving considerable performance improvements. However, despite their efficiency,
these methods often suffer from overfitting on limited downstream data, particularly when relying
solely on class names for fine-tuning, leading to a reduction in generalization performance, espe-
cially on out-of-distribution (OOD) samples(Kumar et al., 2022).

To address these limitations, we propose Prototypical Evolutionary Adaptation (PEA), a novel ap-
proach that builds upon the class prototype methodology. While conventional class-prototype meth-
ods such as Nearest Mean Classifier (NMC) use static prototypes based on feature averages, these
prototypes can be biased and insufficient in capturing the true distribution of class features. Our
method introduces dynamic prototypes that evolve throughout the fine-tuning process, leveraging
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Figure 1: Overview of Prototypical Evolutionary Adaptation. The static class prototype within the
visual feature space can be affected by selection bias, as well as the limited K images per class.
To address this, we propose PEA, which dynamically calibrates the biased prototypes during the
learning process to ensure they are more accurate and informative.

learnable shift vectors that adjust the prototypes based on the underlying feature variance. This
approach helps mitigate overfitting and enhances the representational capacity of the prototypes,
ensuring they remain compact and informative across varying class distributions.

Moreover, we regulate the intra-class variance by leveraging off-the-shelf image centroids and ad-
justing them with learnable shift vectors, allowing PEA to better capture the diversity within each
class. This calibration reduces the impact of biased prototypes that result from the limited avail-
ability of training samples in few-shot scenarios. By dynamically evolving these prototypes, PEA
maintains the generalization power of the pre-trained model while improving alignment between the
visual and textual modalities.

Extensive experiments across a variety of datasets and tasks demonstrate that PEA consistently
outperforms existing few-shot learning methods, achieving robust generalization under distribution
shifts. Our approach not only exceeds the performance of training-free methods but also provides
comparable or better results than training-required methods, while maintaining efficiency in param-
eter usage. These results highlight the effectiveness of PEA as a powerful and scalable method for
few-shot learning with VLMs.

2 RELATED WORKS

Vision Language Models (VLMS) In recent years, VLMS have attracted significant attention
from researchers, emerging as a promising paradigm and have been successfully applied to numer-
ous visual tasks. A notable example is CLIP (Radford et al., 2021), which leverages weak super-
vision by using the linguistic description of each image as a training signal. It underwent training
on a vast corpus of 400 million web-crawled images and texts, achieving results competitive with
supervised baseline. Then a crops of works (Goel et al., 2022; Li et al., 2022; Zhai et al., 2023)
explored vision-language pretraining to obtain versatile applicable representations. Although, these
pretrained VLMS have learned transferable representations for both vision and languages, adapt-
ing to downstream tasks remains a challenging research problem. There have been many tailored
methods proposed to adapt VLMS for few-shot classification (Zhou et al., 2022c;a), semantic seg-
mentation (Lin et al., 2023; He et al., 2023) and object dection (Mao et al., 2023; Wu et al., 2023).

Efficient transfer leaning. Given the large size of pre-trained VLMs like CLIP (Radford et al.,
2021), efficiently fine-tuning these models for downstream tasks has become a central focus of re-
cent research. The goal of parameter-efficient transfer learning is to achieve optimal performance
with minimal modifications to the pre-trained model, which is particularly important in few-shot
learning scenarios where labeled data is scarce. One prominent approach is prompt tuning, which
optimizes only the input prompts while keeping the backbone of the model frozen. Methods like
CoOp (Zhou et al., 2022c) introduced learnable textual prompts that adapt to downstream tasks
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through back-propagation, allowing the model to leverage the rich knowledge embedded in the
pre-trained weights. By tuning just the prompts, this approach minimizes the need to modify the
model’s core parameters, making it both efficient and effective for few-shot learning. However,
despite strong performance gains, prompt tuning has been shown to face limitations in generaliza-
tion, particularly when dealing with unseen classes. To address these challenges, CoCoOp (Zhou
et al., 2022a) extends CoOp by incorporating visual features into the prompt generation process,
enhancing the model’s ability to generalize from base classes to novel ones. Another key strategy
in parameter-efficient fine-tuning is adapter-based methods. Instead of fine-tuning the entire model,
these methods introduce lightweight adapter modules that adjust the visual and textual representa-
tions of CLIP. CLIP-Adapter (Gao et al., 2024) refines the original vision and language embeddings
by training task-specific adapters, which are inserted into pre-trained layers. This approach retains
the efficiency of the model by limiting the number of trainable parameters while still improving
task-specific performance. However, despite their efficiency, adapter-based methods still require
additional computational cost during inference stage.

Few-shot learning. Few-shot learning approaches are typically divided into two main categories:
metric-based methods and optimization-based methods. Metric-based methods aim to map sam-
ples into an embedding space where classification is performed based on the distance between
the query samples and class prototypes. These methods rely on predefined, task-agnostic distance
metrics to measure similarity between the samples and the class representatives. Commonly used
metrics include cosine similarity, which calculates the cosine of the angle between two vectors in
the embedding space, and Euclidean distance, which measures the straight-line distance between
two points. One of the most well-known metric-based methods is Prototypical Networks (Snell
et al., 2017), which computes a single prototype for each class and classifies new samples based on
their proximity to these prototypes. While these methods are efficient, they may struggle to adapt
to more complex tasks where a single prototype per class does not capture intra-class variations.
Optimization-based methods, on the other hand, aim to learn optimal initial model parameters that
can be quickly fine-tuned for new tasks using only a few labeled examples. Model-Agnostic Meta-
Learning (MAML) (Finn et al., 2017) is a prominent example of this approach. In MAML, the
model is trained to be sensitive to changes in task-specific data, allowing it to adapt rapidly with
minimal updates. During the meta-training phase, MAML optimizes the model parameters on a set
of base tasks so that it can quickly adapt to novel tasks with only a few gradient steps. In this paper,
we utilize the limited supervision signal to better calibrate the biased mean estimation of frozen
visual features rather than learning the metric.

3 PROBLEM SETTING AND PRELIMINARIES

Throughout the paper, we consider canonical image classification tasks using pre-trained
VLMS (Radford et al., 2021; Goel et al., 2022; Zhai et al., 2023). Although our primary focus
is on CLIP (Radford et al., 2021), it is important to highlight that the discussion could be extend to
other VLMS, which shares similar characteristics.

Problem setting. Our objective is to efficiently fine-tune pre-trained vision-language models for
various target downstream tasks, especially when only a limited number of examples are accessible
for each category. Concretely, this problem can be denoted as a N -way K-shot classification task.
In this context, the support set S = {(xm, ym)}M=N×K

m=1 consists of N distinct classes, with K
labeled examples provided for each class, resulting in a total of M samples.

CLIP Zero-shot inference (Radford et al., 2021). Classic CLIP is composed of of an image
encoder Ev and a text encoder Et parameterized by θv, θt respectively. These encoders map the
input into a shared D-dimensional representation space. Given the query image x and a set of class
names C, CLIP demonstrates the ability to predict the target label y in a zero-shot manner. To
achieve this, each class name is embedded within a manually tailored template to generate a prompt
(e.g., a photo of a [class name]). CLIP processes both the prompt and the query image to obtain a
class-specific embedding tc = Et(c) for each class and the sample embedding u = Ev(x). Then
we can compute the probability of assigning the query image into category k using the dot product
similarity, which is equivalent to cosine similarity, between the class embedding tk and the query
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A type of dog that is usually
golden in colour.

Easily recognizable by their
long, shiny gold fur.

Husky

Car

A large, slightly wavy-haired dog.

Husky

Shiba Inu
Car

(a) Linear Probing (b) Enhanced textual features generated via LLMs
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Retriever
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Figure 2: Motivation

image embedding u, normalized by a temperature factor τ :

P (y = k |x) = Softmax(⟨ tk , u⟩/τ) = exp(⟨tk, u⟩ /τ)∑C
c=1 exp(⟨tc, u⟩ /τ)

. (1)

Linear Probe (Wortsman et al., 2022) and Adaper (Gao et al., 2024). One of the most straight-
forward methods for adapting VLMS is Linear Probing (LP) (Radford et al., 2021; Wortsman et al.,
2022). In this case, an additional linear layer w ∈ RD×K is appended to the top of the supported
data sample embeddings. The goal is to learn a set of class-wise prototypes, wc, that can generate
softmax class scores for any given query visual embedding u.

P̂ (y = k |x) = Softmax(⟨ wk , u⟩/τ) = exp(⟨wk, u⟩ /τ)∑C
c=1 exp(⟨wc, u⟩ /τ)

. (2)

Formally, these class-specific prototypes, wc, are optimized by minimizing the cross-entropy loss on
the support samples, as shown in Equation 2. To enhance the generalization performance, inspired
by Equation 1, the initialization of these learnable prototypes can be guided by CLIP’s zero-shot
prototypes, tk, as also suggested in Wortsman et al. (2022); Kumar et al. (2022), which benefits the
acceleration of convergence. Besides, it is worth noting that, in the absence of additional training,
LP degenerates to zero-shot classification.

Furthermore, as mentioned in (Liang et al., 2022), the pre-training contrastive loss tends to maintain
the modality gap, meaning that image and text embeddings occupy distinct regions in the shared
embedding space. With this inherent gap, the mismatch objective between pre-training and LP will
exacerbate the model’s ability to generalize across various downstream tasks (Goyal et al., 2023). A
simple rescue to this is Adaper (Gao et al., 2024; Zhang et al., 2022; Zhu et al., 2023), which trains
a simple 2-layer bottleneck multilayer perception to output transformed sample embeddings instead
of the original sample embeddings. Formally, given a hidden layer of dimension H , a ReLU acti-
vation function σ, and adapter weights W1 ∈ RD×H and W2 ∈ RH×D, we compute the "adapted"
embeddings as follows: f(u) = WT

2 σ(WT
1 u). Adapters finally learn transformations to align sam-

ple embeddings to class embeddings. We can make a transformation to this formula as ũ = f(u) to
fit Equation 2.

4 METHOD

In this section, we formally introduce our method PEA, where the overall pipeline is shown in
Figure 1. Specifically, we start by explaining our motivation and then discuss how to evolve class
prototypes. Finally, we present the complete algorithm.

4.1 MOTIVATION

In real-world scenarios, objects that share the same label can exhibit vastly different characteristics,
as their appearances vary dramatically in terms of color, texture, shape, background, and style. These
differences, ranging from subtle to significant, could be further amplified in the feature space after
extraction by VLMS. As illustrated in Figure 2, the extracted visual features are highly diverse,
and some have low similarity scores with their ground-truth class names. This rich visual diversity
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challenges the effectiveness of simple prompt templates like ’a photo of a [class]’, as such prompts
may not sufficiently capture the detailed variations present in these images.

With the widespread use of GPT-3 (Brown, 2020) to generate descriptions, Menon & Vondrick
(2023); Pratt et al. (2023); Roth et al. (2023) circumvented the challenges posed by rich visual di-
versity and leverage the knowledge embedded in Large Language Models(LLMs) for the automatic
generation of class-specific descriptions. These descriptions aim to enhance the diversity of tex-
tual representations by focusing on the discriminative features of image categories, which are then
aligned with the query images. However, in Figure 2, the detailed textual descriptions generated by
LLMs may still exhibit low similarity scores with the features extracted from the query images. Fur-
thermore, as pointed in Zhou et al. (2022b), even minor modifications to the prompt, e.g., changing
the prompt ’a photo of [class]’ to ’a photo of a [class]’, can give rise to a performance improvement
of up to 6%. This sensitivity to specific wording suggests that overly detailed descriptions may
actually degrade downstream performance due to the nuanced nature of language.

Since broad and generic class templates can be considered as the class centroids of detailed class-
specific descriptions within the textual feature space, it is natural to extend this concept to the visual
domain to account for rich visual diversity. A straightforward method to tackle this issue is to align
the textual class prototypes with the visual class prototypes. However, this approach may suffer from
selection bias in that the support dataset is randomly divided, and the informative class centroid is
also affected by the number of shots (K-shot). Specifically, a larger K leads to a more accurate
estimation of the class centroid. Motivated by these challenges, we propose PEA to address the
issues for accurate class centroid estimation.

4.2 PEA: PROTOTYPE EVOLUTIONARY ADAPTATION

To harness the powerful visual representations learned by large-scale pre-trained VLMS while over-
coming the limitations of full adaptation and LP, class-prototype methods have been introduced.
These methods extract features from the last layer of the pre-trained model and aggregate them to
construct representative prototypes for each class. The most straightforward of these is the Nearest
Mean Classifier (NMC) (Mensink et al., 2013), which computes a class prototype c̄y for each class
y by averaging the feature representations of the supporting samples belonging to that class:

c̄y =
1

N ×K

N×K∑
m=1

1(y = ym) · um, (3)

where 1(·) denotes the indicator function. During inference, NMC assigns each test sample to the
class whose class prototype is most similar to the sample’s feature vector. This similarity is measured
by either the smallest Euclidean distance (Janson et al., 2022) or the highest cosine similarity (Zhou
et al., 2024) between the test sample’s feature embedding and the class prototypes. Considering the
dot product similarity measure, the predicted class label is obtained by:

ȳ = argmax
y∈{1,··· ,C}

P̄ (y |x), P̄ (y |x) :=
exp(⟨ c̄y , u⟩/τ)∑C
k=1 exp(⟨c̄k, u⟩ /τ)

(4)

Throughout the entire few-shot learning process, we keep the CLIP model frozen and the clas-
sifier is implemented using class prototypes and can be represented by N prototypes, i.e., W =
[c̄1, · · · , c̄N ].

Though we already have a basic estimation of each class’s mean centroid, this first-order moment
during estimation lacks detailed statistical information about the true class distribution. Instead of
indirectly altering feature embeddings through prompt tuning or image transformation to achieve
unbiased estimations or capture higher-order statistical moments, we propose to directly introduce
a learnable shift to the class prototypes to calibrate biased prototypes in its infancy. Since this
adjustment dynamically calibrates the biased prototypes, resulting more informative class centroid.
This is why we refer to it as Prototype Evolutionary Adaptation (PEA). The evolved prototype c̄′y
can then be notated by:

c̄′y = c̄y + α ·∆c (5)

The hyperparameter α regulates the extent to which biased prototypes are adjusted during the evolu-
tion process. When α is small, the evolved prototypes remain close to the original biased prototypes,
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Table 1: Comparison to state-of-the-art methods on 11 classification tasks. We report RN-50
CLIP model on 16-shot datasets. Prompt-learning and CALP methods results are directly extracted
from Zhou et al. (2022c); Silva-Rodriguez et al. (2024). Bold denotes the highest results.

Method Pets Flowers FGVC DTD EuroSAT Cars Food SUN Caltech UCF ImageNet Average
ZS 85.77 66.14 17.28 42.32 37.56 55.61 77.31 58.52 86.29 61.46 58.18 58.77
Rand LP 71.63 92.73 34.63 60.60 73.38 69.20 66.92 63.07 87.55 70.94 52.24 67.54
ZS-LP 86.27 95.82 34.82 66.43 83.16 75.49 75.86 69.72 92.98 76.54 61.00 74.37
CLAP 88.51 94.21 33.59 66.41 80.07 75.12 78.55 70.78 91.93 76.29 65.02 74.57
CoOp 87.02 94.49 31.46 62.51 83.69 73.60 74.48 68.36 91.99 76.90 61.91 73.33
PLOT 87.21 94.67 31.49 65.60 82.23 72.80 77.09 69.96 92.24 77.26 63.01 73.94
Tip-Adapter 81.90 78.41 21.96 54.79 67.90 58.83 72.96 64.00 88.44 64.52 57.81 64.61
APE 87.98 91.96 31.23 67.38 78.40 70.45 78.37 69.59 92.29 74.49 63.43 73.23
TaskRes 86.28 95.82 34.82 66.45 83.15 75.48 75.86 69.72 93.00 76.54 61.01 74.38
PEA 88.99 96.06 33.90 68.50 78.56 75.90 77.42 69.73 93.35 79.41 64.88 75.15

preserving much of their initial characteristics. Conversely, a larger α value causes the evolved pro-
totypes to incorporate more features from the base prototypes, effectively reducing the initial bias.
Then the class-wise probabilities can be formulated as:

P̄ (y |x) :=
exp(⟨c̄′y + ty, u⟩/τ)∑C

k=1 exp(⟨c̄′k + tk, u⟩ /τ)
=

exp
(
⟨ c̄′y, u ⟩/τ + ⟨ ty, u ⟩/τ

)
∑C

k=1 exp(⟨c̄′k + tk, u⟩ /τ)
(6)

Connection to other parameter-efficient fine-tuning methods. As discussed in (Kumar et al.,
2022; Mukhoti et al., 2023), full fine-tuning can distort pretrained features and degrade perfor-
mance, especially under mild distribution shifts. LP leverages the advantage of inheriting frozen
pretrained features, achieving good performance under distribution shifts; however, it often results
in unsatisfactory downstream performance.

A simple yet efficient remedy proposed in Wortsman et al. (2022); Ilharco et al. (2022); Kim et al.
(2024) involves patching pretrained models by linearly interpolating weights between zero-shot
models and fine-tuned models. This method implicitly edits the frozen representations in the weight
space. Another line of work (Zhou et al., 2022c;a) aims to learn soft prompts by optimizing a con-
tinuous set of prompt vectors, which interferes with the frozen representations through the input
space.

The most relevant works to ours are Yu et al. (2023); Sui et al. (2024), which steer the frozen
features directly within the embedding space. Both methods focus on the textual feature space, and
the experiments show that they yield only marginal improvements when applied to the visual feature
space. In contrast, we exploit the intrinsic properties of the visual feature space. By only calibrating
the biased prototypes, we further enhance few-shot learning with altering the frozen representations.

5 EXPERIMENTS

5.1 SETUP

Datasets. To evaluate the effectiveness of our few-shot learning approach, we conducted exper-
iments on a diverse set of 11 publicly available image classification datasets, following the pro-
tocols established in prior works (Gao et al., 2024; Yu et al., 2023; Zhang et al., 2022). These
datasets encompass a wide range of image recognition tasks: Generic object recognition: Ima-
geNet (Deng et al., 2009), Caltech101 (Fei-Fei et al., 2004), Fine-grained recognition: Oxford
Pets (Parkhi et al., 2012), Stanford Cars (Krause et al., 2013), Flowers102 (Nilsback & Zisserman,
2008), Food101 (Bossard et al., 2014), FGVCAircraft (Maji et al., 2013), Satellite imagery classi-
fication: EuroSAT (Helber et al., 2019), Action recognition: UCF101(Kay et al., 2017), Texture
classification: DTD (Cimpoi et al., 2014), Scene recognition: SUN397 (Xiao et al., 2010). For the
few-shot learning setup, we randomly selected K examples per class, where K ∈ {1, 2, 4, 8, 16},
to fast finetune our models. We used the standard test sets provided with each dataset for evalua-
tion, adhering to the same data splits as in previous studies (Yu et al., 2023; Zhou et al., 2022c).
To assess the robustness of our methods to domain shifts, we performed out-of-distribution (OOD)

6
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Figure 3: Results of few-shot classification on the 11 datasets. We evaluate the performance of our
proposed method against different methods under 1, 2, 4, 8, and 16-shot settings.

Table 2: Out-of-distribution generalization results. ’Source’ refers to in-distribution accuracy,
while ’Target’ represents out-of-distribution performance. All methods finetuned on 16 images per
class from source dataset. Bold indicates best performance. Relative improvements are obtained for
each methods with respect to zero-shot prediction.

Method Visual Backbone Source Target
Imagenet -V2 -Sketch -A -R Avg.

Zero-Shot ICML’21

ResNet-50

60.35 51.49 33.33 21.67 55.93 40.61
Rand. Init LP ICML’21 52.24(−8.11)↓ 41.85 15.93 10.72 29.95 24.61(−16.00)↓
CLIP-Adapter IJCV’23 59.02(−1.33)↓ 48.15 14.63 15.75 46.29 31.21(−9.40)↓
TIP-Adapter ECCV’22 57.81(−2.54)↓ 50.32 33.59 21.88 56.98 40.69(+0.08)↑
TaskRes(e) CVPR’23 60.85(+0.50)↑ 56.47 32.80 19.90 55.93 41.28(+0.67)↑
ZS-LP CVPR’24 61.00(+0.65)↑ 51.09 27.90 16.95 50.37 36.58(−4.03)↓
CLAP CVPR’24 65.02(+4.67)↑ 56.09 34.55 21.52 59.48 42.91(+2.30)↑
PEA 64.35(+4.00)↑ 56.26 36.34 23.07 61.34 44.25(+3.64)↑

Zero-Shot ICML’21

ViT-B/16

68.71 60.76 46.18 47.76 73.98 57.17
Rand. Init LP ICML’21 62.95(−5.76)↓ 52.48 29.22 29.40 50.54 40.41(−16.76)↓
CLIP-Adapter IJCV’23 68.46(−0.25)↓ 59.55 39.88 38.83 64.62 50.72(−6.45)↓
TIP-Adapter ECCV’22 53.81(−14.90)↓ 45.69 29.21 36.04 55.26 41.55(−15.62)↓
TaskRes(e) CVPR’23 70.84(+2.13)↑ 62.15 43.76 43.91 71.59 55.35(−1.82)↓
ZS-LP CVPR’24 69.73(+1.02)↑ 60.40 41.63 41.94 70.64 53.65(−3.52)↓
CLAP CVPR’24 73.38(+4.67)↑ 65.00 48.35 49.53 77.26 60.04(+2.87)↑
PEA 72.45(+3.74)↑ 65.32 49.48 51.37 78.05 61.01(+3.84)↑

experiments. Using ImageNet (Deng et al., 2009) as the source domain for adaptation, we evaluated
our method on four of its variants as target domains: ImageNetV2 (Recht et al., 2019), ImageNet-
Sketch (Wang et al., 2019), ImageNet-A (Hendrycks et al., 2021b), ImageNet-R (Hendrycks et al.,
2021a). In this scenario, the model was trained using only a few labeled samples from the source do-
main (ImageNet), and the target datasets were exclusively used for testing. This setup allowed us to
evaluate the model’s domain generalization capabilities without any exposure to the target domains
during training.

Training details. In our experiments, we leveraged pre-trained features from CLIP (Radford et al.,
2021) using two primary backbone architectures: ResNet-50 (He et al., 2016) and ViT-B/16 (Doso-
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vitskiy et al., 2021). The main experiments were conducted with both ResNet-50 and ViT-B/16,
while the ablation studies specifically utilized ResNet-50 as the backbone. To make full use of the
frozen features to accelerate the training process, so we extracted all the pre-trained features from the
support sets and performed adaptation experiments based on these features. Following the method-
ology in Yu et al. (2023); Zhou et al. (2022b), we applied data augmentation during the feature
extraction stage, including random zooms, crops, and flips. Each support sample was augmented
20 times to enhance the diversity of the training data. We employed the same text prompts for each
dataset as specified in Yu et al. (2023); Zhou et al. (2022c). Training was carried out over 200 epochs
using the SGD optimizer with a momentum of 0.9, inspired by the training strategies in Yu et al.
(2023). We set the default initial learning rate to 2 × 10−3 to prevent underfitting on the support
sets. The learning rate was scheduled to decrease during training following a cosine decay pattern.
All experiments are conducted on a single NVIDIA GeForce RTX 4090. To ensure robustness, all
experiments were run with three different random seeds, and the results were averaged across these
runs. Our method introduces a calibration strength parameter, denoted as α, which adjusts the in-
fluence of the prototypes during adaptation. By default, α is set to 0.5 for all datasets, providing
a balance between the biased and evolved prototypes. We also explored the impact of varying α
values in our ablation studies.

Baselines. To evaluate the effectiveness of our proposed method, we compare it against several
baseline approaches, which we organize into four distinct groups based on their methodologies and
how they interact with pre-trained models. (1) Zero-shot and random LP (Radford et al., 2021):
This group serves as a basic benchmark. It includes the zero-shot CLIP model, which uses prompts
like “a photo of a [class]” without any additional training. Additionally, a linear classifier with
random initialization is trained on top of the frozen pre-trained CLIP visual encoder’s features. (2)
Improved LP Methods (Wortsman et al., 2022; Silva-Rodriguez et al., 2024): These methods en-
hance standard linear probing by leveraging prior knowledge from textual embeddings. Classifier
weights are initialized using class name prototypes derived from textual features, providing a better
starting point for learning. They also introduce additional constraint terms during training to more
effectively capture class-specific characteristics. (3) Prompt Tuning Methods (Implicit Represen-
tation Editing via Input Space) (Zhou et al., 2022c; Chen et al., 2023): Techniques like Context
Optimization (CoOp) learn continuous prompt vectors through back-propagation. (4) Methods Di-
rectly Altering the Feature Space (Yu et al., 2023): This group includes approaches like TaskRes,
which directly steers the frozen features in the textual embedding space using a task-specific residual
connection.

5.2 RESULTS

Few-shot results. We compare our proposed method, PEA, with several baseline methods in the
few-shot learning setting, as summarized in Table 1. Across 12 datasets, PEA consistently demon-
strates superior performance, achieving the highest average accuracy of 75.15%. Notably, it excels
on datasets such as Oxford Pets (88.99%), Flowers102 (96.06%), and UCF101 (79.41%). Further-
more, as shown in Figure 3, we observe that as the number of images per class increases, the more
informative class centroids lead to significant performance improvements.

6 CONCLUSION

In this paper, we revisit classic prototype-based methods in Vision-Language Models (VLMs) and
propose a novel approach called Prototypical Evolutionary Adaptation (PEA). PEA refines the pro-
cess of obtaining accurate class prototypes within the visual feature space by dynamically calibrat-
ing them throughout the fine-tuning process. This accurate class propotype will benefit the linear
probing in the context of few-shot leanring. We conduct extensive experiments to evaluate the
effectiveness of PEA on CLIP few-shot classification tasks and out-of-distribution generalization.
Our method consistently outperforms state-of-the-art adapter-based and prompt-based approaches,
demonstrating its superior performance. In future work, we aim to explore the application of PEA
in other tasks and scenarios, such as test-time adaptation.
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