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Abstract

Post-training quantization is a key technique for
reducing the memory and inference latency of
large language models by quantizing weights and
activations without requiring retraining. How-
ever, existing methods either (1) fail to account
for the varying importance of hidden features to
the end loss or, when incorporating end loss, (2)
neglect the critical interactions between model
weights. To address these limitations, we propose
GuidedQuant, a novel quantization approach that
integrates gradient information from the end loss
into the quantization objective while preserving
cross-weight dependencies within output chan-
nels. GuidedQuant consistently boosts the per-
formance of state-of-the-art quantization methods
across weight-only scalar, weight-only vector, and
weight-and-activation quantization. Additionally,
we introduce a novel non-uniform scalar quantiza-
tion algorithm, which is guaranteed to monoton-
ically decrease the quantization objective value,
and outperforms existing methods in this category.
We release the code at https://github.
com/snu-mllab/GuidedQuant.

1. Introduction
Large language models (LLMs) have shown remarkable
capabilities across a range of tasks, from text generation to
complex reasoning. However, these advancements come at
the cost of substantial memory usage and inference latency.
Quantization provides an effective solution to these chal-
lenges. Weight-only quantization methods quantize only the
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Table 1. Summary of results of GuidedQuant applied to state-of-
the-art PTQ methods on the Llama-2-7B model. Wiki2-4K and
Wiki2-2K represent perplexity on WikiText2 dataset with con-
text size of 4096 and 2048, respectively. W4A4KV4 indicates
quantization of all weight, activation, and KV cache to 4 bits.

Method Bits↓ Wiki2-4K↓
Type Original 16 5.12

Weight-only
Scalar

SqueezeLLM 2.01 39.58
LNQ (Ours) 2.01 23.31
LNQ + GQuant (Ours) 2.01 8.83

Weight-only
Vector

QTIP 2.00 6.82
QTIP + GQuant (Ours) 2.00 6.11

Method Bits↓ Wiki2-2K↓
Type Original 16 5.47

Weight-and-
Activation

SpinQuant W4A4KV4 5.95
SpinQuant + GQuant (Ours) W4A4KV4 5.89

model weights, reducing data transfer and thus accelerating
inference in memory-bound scenarios such as small-batch
inference (Gholami et al., 2024; Kim et al., 2024; Tseng
et al., 2024b). On the other hand, weight-and-activation
quantization methods quantize both the model weights
and activations. In addition to reducing data transfer, these
methods also speed up arithmetic operations, making them
particularly beneficial for large-batch scenarios such as
pre-filling input tokens or generating batched samples
(Ashkboos et al., 2024; Liu et al., 2024). Weight-only
quantization techniques have used three grid types: uniform
scalar (Frantar et al., 2023), non-uniform scalar (Kim et al.,
2024), and vector quantization (Tseng et al., 2024b; van
Baalen et al., 2024), each with its own advantages (see
Section 5 for details). In contrast, weight-and-activation
methods typically use a uniform scalar grid, as using a
non-uniform grid would require dequantization before multi-
plication, preventing the use of faster arithmetic operations.

Quantization benefits come at the cost of performance degra-
dation. Quantization-Aware Training (QAT) methods rely
on retraining the quantized model to mitigate this, which
is prohibitively expensive at the scale of modern LLMs. In
constrast, Post-Training Quantization (PTQ) methods quan-
tize the pretrained model using a small calibration dataset or
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Figure 1. Top: The proposed GuidedQuant’s layer-wise quantization objective (4). Bottom-left: Its equivalent quadratic form (6).
Bottom-right: The approximated objective (7) proposed in Section 3.2. We denote the input, weight, and quantized weight matrices as
X ∈ Rn×din , W ∈ Rdin×dout , and Ŵ ∈ Rdin×dout , respectively. The groups J1, . . . , Jg form a partition of the set {1, . . . , dout}, and
zj ∈ Rdout denotes the j-th column of Z = XW.

no data, without retraining the entire model. Most existing
PTQ methods for LLMs rely on a surrogate objective rather
than the end loss to make quantization feasible.

One common PTQ strategy, which we refer to as layer-
wise output-based quantization, aims to quantize each layer
by minimizing the mean squared error between the layer’s
original output and the quantized one (Nagel et al., 2020;
Frantar et al., 2023; Egiazarian et al., 2024; Chee et al.,
2024; Tseng et al., 2024a;b; Liu et al., 2024). However, this
strategy treats all hidden features equally, overlooking their
varying impact on the end loss.

Alternatively, methods such as Choi et al. (2017); Kim et al.
(2024) leverage gradient information from the end loss to
assess the impact of individual weight errors. This is done
by computing the gradient of the end loss with respect to
weights via a single backpropagation step on a calibration
dataset. Saliency scores are then assigned to weights based
on these gradients, and the model is quantized by approx-
imately minimizing the sum of saliency-weighted weight
errors. This objective corresponds to a quadratic approxima-
tion of the change in the end loss, based on its second-order
Taylor expansion, where the Hessian is approximated by the
diagonal of the empirical Fisher information matrix (Has-
sibi & Stork, 1992). A key limitation of this approach is
that it ignores cross-weight interactions, which are crucial
for overall performance.

Contributions In this work, we propose GuidedQuant, a
novel PTQ approach that integrates gradient information
from the end loss while preserving cross-weight dependen-
cies within output channels. In particular, GuidedQuant

computes saliency scores for layer outputs using the gra-
dients of the end loss with respect to these outputs. Each
layer is then quantized independently by approximately min-
imizing the sum of saliency-weighted output errors. Unlike
previous methods that assume a diagonal Hessian, this ob-
jective is equivalent to a refined quadratic approximation
assuming a block-diagonal Hessian, again approximated by
the empirical Fisher information matrix. While cross-layer
and cross-output channel interactions are still ignored, de-
pendencies within output channels are preserved, enabling
a more accurate estimation of quantization’s impact on the
end loss.

Computing and storing the diagonal blocks of the Fisher
matrix for a given layer is too expensive for modern LLMs.
To address this, we partition the layer’s outputs into a small
number of groups and average the Fisher matrix’s blocks
within each group (Figure 1). Other block-diagonal Fisher
matrix approximations of the Hessian have been used for
pruning CNNs (Singh & Alistarh, 2020) and BERT LLMs
(Kurtic et al., 2022) with arbitrary blocks along the diagonal,
and for quantizing CNNs (Li et al., 2021) with diagonal
blocks corresponding to the model’s residual blocks (see
Appendix E.11 for more details). However, our work is
the first to make this approach computationally and storage-
efficient at the scale of modern LLMs.

GuidedQuant can be applied as a direct plug-in to any layer-
wise output-based PTQ method. We demonstrate its effec-
tiveness by integrating it into the current state-of-the-art
methods for weight-only vector quantization, QTIP (Tseng
et al., 2024b), and weight-and-activation quantization, Spin-
Quant (Liu et al., 2024), which are both layer-wise output-
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based PTQ methods. GuidedQuant consistently improves
their performance (Table 1).

For weight-only scalar quantization, the current state-of-
the-art methods are SqueezeLLM (Kim et al., 2024) and
GPTVQ 1D (van Baalen et al., 2024). Since GPTVQ 1D
is a layer-wise output-based PTQ method, GuidedQuant
can be applied to it. However, GPTVQ 1D employs a
suboptimal algorithm for minimizing layer-wise output er-
rors. To address this, we introduce a novel Layer-wise
Non-uniform Quantization method, LNQ, which minimize
layer-wise output errors using an alternating minimization
algorithm, where the codebook is optimized in closed-form,
and assignments are optimized via a coordinate descent
(CD) algorithm. LNQ outperforms GPTVQ 1D and matches
or surpasses SqueezeLLM. Applying GuidedQuant to LNQ
further improves its performance, achieving state-of-the-art
results (Table 1).

2. Preliminaries
Consider a neural network with L linear layers, trained with
a loss function ` and a calibration data of size n. We de-
note the loss computed on the i-th data point as `i. Let
W(l) ∈ Rd

(l)
in ×d

(l)
out be the weight matrix of the l-th linear

layer, where each column vector w(l)
j ∈ Rd

(l)
in corresponds

to an output channel. We denote its quantized approximation
as Ŵ(l). The input and output feature maps of this layer are
X(l) ∈ Rn×d(l)

in and Z(l) ∈ Rn×d(l)
out , respectively. The out-

put of the linear layer is computed as Z(l) = X(l)W(l),
and the output after quantization as Ẑ(l) = X(l)Ŵ(l).
Let w = [vec(W(1))>, · · · , vec(W(L))>]> and ŵ =

[vec(Ŵ(1))>, · · · , vec(Ŵ(L))>]> be the vectors of
weights in all L layers before and after quantization, where
vec(W`) corresponds to stacking the columns of W`.

Most existing PTQ methods for LLMs are layer-wise output-
based quantization methods, which quantize each layer by
approximately minimizing the objective

‖X(l)W(l)−X(l)Ŵ(l)‖2F =

n∑
i=1

d
(l)
out∑

j=1

(
Z

(l)
ij − Ẑ

(l)
ij

)2
(1)

ignoring the varying impact of outputs on the end loss `.
Existing methods employ various heuristics to minimize this
objective, such as AdaRound (Nagel et al., 2020), CD meth-
ods (Nair & Suggala, 2024; Behdin et al., 2023; Egiazarian
et al., 2024; Chee et al., 2024), OBQ (Frantar & Alistarh,
2022), GPTQ1 (Frantar et al., 2023), GPTVQ (van Baalen
et al., 2024), and AQLM (Egiazarian et al., 2024).

A more accurate proxy objective, first introduced in early
pruning methods (LeCun et al., 1989; Hassibi & Stork,

1Also referred to as OPTQ.

1992), is the following quadratic approximation of the
change in the end loss

`(ŵ)− `(w) ≈ 1
2 (ŵ −w)>∇2`(w)(ŵ −w). (2)

This approximation is derived from the second-order Taylor
approximation of `, assuming that the trained model has
converged and thus the gradient is close to zero. Since com-
puting the Hessian is infeasible even for small models, a pop-
ular approach first proposed in Hassibi & Stork (1992) ap-
proximates the Hessian by the empirical Fisher information
matrix F = 1

n

∑n
i=1∇`i(w)∇`i(w)>, which yields the

following quadratic approximation, (ŵ −w)>F(ŵ −w).

SqueezeLLM (Kim et al., 2024) is a weight-only non-
uniform scalar PTQ method for LLMs which uses this
quadratic approximation, but further approximates the
Fisher information matrix by its diagonal diag(F), ignoring
off-diagonal entries. The resulting objective is given by

(ŵ −w)>diag(F)(ŵ −w) =
∑
k

Fkk(ŵk − wk)2. (3)

For non-uniform scalar quantization, minimizing this ob-
jective corresponds to solving a weighted k-means problem
in 1D, which can be solved exactly using a dynamic pro-
gramming algorithm (Grønlund et al., 2017). SqueezeLLM
instead employs Lloyd’s algorithm with k-means++ initial-
ization (Lloyd, 1982; Arthur & Vassilvitskii, 2007), which
is only guaranteed to achieve a Θ(log k) approximation in
expectation, where k is the number of clusters, but is faster
in practice (Hyun, 2024). However, the diagonal approxi-
mation is highly inaccurate, as both the Hessian matrix and
its Fisher approximation are usually strongly non-diagonal,
as observed in prior work for small CNNs (Hassibi & Stork,
1992; Singh & Alistarh, 2020). We also confirm this observa-
tion for the Fisher matrix of Llama-2-7B in Figures 3 and 4.

For additional related work, see Appendix A.

3. GuidedQuant
In this section, we introduce our PTQ approach Guid-
edQuant. We first propose a layer-wise quantization ob-
jective that more accurately approximates the impact of
quantization on the final loss compared to surrogate objec-
tives used in existing PTQ methods. We then present a sim-
plified version of this objective, making it computationally
and memory efficient for LLMs with up to 70B parameters.

3.1. Objective

As discussed earlier, most existing PTQ methods treat all
output features as equally important, by employing the sur-
rogate objective in Eq. (1). In contrast, we propose to
modify this objective to account for the varying impact of
each output feature on the final loss.
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Figure 2. Non-uniform scalar quantization results on Llama-2-7B
with different objectives: layer-wise output error objective (1) used
in LNQ (Algorithm 2), weighted k-means objective (3) used in
SqueezeLLM, and our approximated GuidedQuant objective (7)
used in LNQ combined with GuidedQuant. We report perplexity on
WikiText2 with a context size of 4096. Results are from Table 3.

To that end, we approximate the change in the end loss `
resulting from the output feature Z(l)

ij changing to Ẑ(l)
ij after

quantization, using a first-order Taylor expansion, assuming
independence of output features:

`(Ẑ
(l)
ij )− `(Z(l)

ij ) ≈ ∂`

∂Z
(l)
ij

(Ẑ
(l)
ij − Z

(l)
ij ).

Accordingly, we propose to scale each output error by the
gradient of the end loss with respect to that output, leading
to the following layer-wise objective:∥∥∥∥ ∂`

∂Z(l)
� (X(l)W(l) −X(l)Ŵ(l))

∥∥∥∥2
F

=

n∑
i=1

d
(l)
out∑

j=1

(
∂`

∂Z
(l)
ij

(Z
(l)
ij − Ẑ

(l)
ij )

)2

, (4)

where� denotes the element-wise multiplication. This crite-
rion was previously proposed in Molchanov et al. (2019) for
pruning neurons and filters in vision models, where pruning
the jth neuron in layer l corresponds to setting ŵ

(l)
j = 0.

We note that the objective in Eq. (4) can be viewed as a sim-
plification of the second-order Taylor approximation of the
change in the end loss given in Eq. (2), where the Hessian
is approximated by the empirical Fisher information matrix,
and where interactions between weights belonging to differ-
ent layers or output channels of the same layer are ignored.
In other words, we adopt a block-diagonal approximation
of the Fisher matrix F where we only keep the d(l)in × d

(l)
in

blocks F
(l)
j = 1

n

∑n
i=1( ∂`i

∂w
(l)
j

)( ∂`i
∂w

(l)
j

)> corresponding to

interactions within each output channel j of every layer l,
and ignore all off-block entries.

Remark 3.1. The sum of the layer-wise objective in Eq. (4)
over all layers is equal to the following quadratic approxi-
mation of the change in the end loss

n

L∑
l=1

d
(l)
out∑

j=1

(w
(l)
j − ŵ

(l)
j )>F

(l)
j (w

(l)
j − ŵ

(l)
j ). (5)

The proof of Remark 3.1 follows from the chain rule, and
is given in Appendix B. A similar observation was made in
Molchanov et al. (2019).

Assuming that the quantization grid used is separable over
layers, which is typically the case, minimizing the objective
in Eq. (5) is equivalent to independently minimizing

d
(l)
out∑

j=1

(w
(l)
j − ŵ

(l)
j )>H

(l)
j (w

(l)
j − ŵ

(l)
j ), (6)

for every layer, where H
(l)
j = nF

(l)
j , or equivalently the

layer-wise objective in Eq. (4).

Thus our proposed objective is a more accurate approxima-
tion of the change in the end loss than the layer-wise output
error objective (1), which assumes ∂`

∂Z(l) ∝ I, as well as
the weighted k-means objective (3) used in SqueezeLLM,
which ignores all off-diagonal entries in the Fisher matrix
including those within the blocks F

(l)
j . As a result, our

approach achieves better performance, even with the ad-
ditional approximation discussed in Section 3.2, as high-
lighted in Figure 2 for non-uniform scalar quantization, and
later across other formats in Section 5.

In Figures 3 and 4, we visualize a submatrix of the Fisher
information matrix corresponding to the first two output
channels in the linear layers of the first Transformer block
of Llama-2-7B. The visualization confirms that the Fisher
matrix exhibits strong off-diagonal values and a prominent
block-diagonal structure, with blocks corresponding to F

(l)
j

for the two output channels j ∈ {1, 2}.

3.2. Averaging Approximation

The layer-wise output error objective (1) can be written as

d
(l)
out∑

j=1

(
w

(l)
j − ŵ

(l)
j

)>
H(l)

(
w

(l)
j − ŵ

(l)
j

)
,

where H(l) = X(l)>X(l) ∈ Rd
(l)
in ×d

(l)
in . Most existing

heuristics for optimizing this objective, such as GPTQ (Fran-
tar et al., 2023) and CD (Nair & Suggala, 2024; Behdin
et al., 2023), require access only to H(l) and not X(l).
Thus, the Hessian matrix H(l) is typically precomputed,
which reduces the peak memory usage during optimiza-
tion, since X(l) ∈ Rn×d(l)

in is much larger than H(l), given

4



GuidedQuant: Large Language Model Quantization via Exploiting End Loss Guidance

that d(l)in � n. Additionally, the precomputed Hessian can
be reused across multiple quantization configurations and
bit-widths, amortizing the cost of its computation.

Our proposed objective (6) can be seamlessly integrated
into any layer-wise output based quantization method by
replacing H(l) by H

(l)
j = nF

(l)
j for each output channel j.

However, precomputing and storing H
(l)
j for all j incurs a

memory cost of Θ((d
(l)
in )2d

(l)
out) and a time complexity of

Θ(n(d
(l)
in )2d

(l)
out) per layer l. This is infeasible at the scale

of modern LLMs, where both d(l)in and d(l)out exceed 103, and
n is much larger than both.

To address this challenge, we partition the output channels
of each layer into g distinct groups (g � d

(l)
out) and replace

the individual Hessian matrices H(l)
j within each group k

by a shared matrix H
(l)
k , obtained by averaging H

(l)
j within

the group. Formally, let J (l)
1 , . . . , J

(l)
g be a partition of

the set {1, . . . , d(l)out}. For each group k = 1, . . . , g, we
define H

(l)
k = 1

|J(l)
k |

∑
j∈J(l)

k

H
(l)
j . The resulting layer-wise

objective then becomes

g∑
k=1

∑
j∈J(l)

k

(
w

(l)
j − ŵ

(l)
j

)>
H

(l)
k

(
w

(l)
j − ŵ

(l)
j

)
. (7)

Note that by the chain rule, we can write

H
(l)
j = X(l)>Diag

(
∂`

∂z
(l)
j

)2

X(l),

where Diag( ∂`

∂z
(l)
j

)2 is the diagonal matrix whose diagonal

entries are the element-wise square of the gradient of ` with
respect to the jth column z

(l)
j of Z(l). We can thus compute

H
(l)
k by averaging the squared gradients:

H
(l)
k = X(l)>Diag

 1

|Jk|
∑
j∈Jk

(
∂`

∂z
(l)
j

)2
X(l).

This averaging approximation reduces the number of d(l)in ×
d
(l)
in Hessian matrices that need to be computed for each

layer l from d
(l)
out to g (Figure 1). Computing and storing

H
(l)
k for all k requires a significantly lower memory cost

of Θ((d
(l)
in )2g) and time complexity of Θ(n(d

(l)
in )2g) per

layer l (assuming the squared gradients averages are already
computed), making the method scalable. To partition the
output channels, we use a simple strategy that groups ev-
ery d(l)out/g consecutive channels into a single group. This
simple approach works well in practice, though more sophis-
ticated clustering algorithms may yield additional benefits.

Algorithm 1 GuidedQuant
input Layer-wise quantization algorithm Q, number of

groups g, number of linear layers L

1: J (l)
k ← {

d
(l)
out

g (k − 1) + 1, . . . ,
d
(l)
out

g k},∀l ∈ [L], k ∈ [g]

2: s
(l)
k ←

1
|Jk|

∑
j∈Jk

( ∂`

∂z
(l)
j

)2,∀l ∈ [L], k ∈ [g]

3: for all l ∈ [L], k ∈ [g] do
4: H

(l)
k ← X(l)>Diag(s

(l)
k )X(l)

5: Ŵ(l)
[
:, J

(l)
k

]
← Q

(
H

(l)
k ,W(l)

[
:, J

(l)
k

])
6: end for

output Ŵ(1), . . . ,Ŵ(L).

In our implementation, we scale the gradients by a large
constant (we used 103 in all experiments) while computing
the averaged Hessians Hk to prevent underflow.

GuidedQuant quantizes each layer independently by ap-
proximately minimizing the layer-wise objective in Eq. (7).
A complete overview of GuidedQuant is provided in Algo-
rithm 1. As discussed, the layer-wise quantization algorithm
Q can be any layer-wise output based quantization method.
The gradient computation (Line 2) requires a single back-
propagation step on the calibration dataset. During this step,
we only store the averaged squared gradients s

(l)
k , which

requires O(ngL) storage.

The total memory cost of GuidedQuant (without the back-
propagation step) is then O(Lg(d2in + n)), and its total time
complexity is O

(
Lg(nd2in + TQ(din, dout/g))

)
, where

din, dout are the largest input and output channel dimensions
across all L layers and TQ(d1, d2) is the time complexity of
quantizing a d1 × d2-weight matrix using Q. Each step in
the for loop (Lines 3-6) can be done in parallel for all groups
and layers. As previously discussed, the Hessian matrices
Hk’s only need to be computed once, and can be reused for
different quantization configurations and bit-widths.

4. Layer-wise Non-uniform Quantization
The choice of the layer-wise output based quantization
method Q in GuidedQuant is critical to its overall perfor-
mance. For weight-only non-uniform scalar quantization,
the current state-of-the-art layer-wise output based quan-
tization method is the 1D variant of GPTVQ (van Baalen
et al., 2024), which alternates between optimizing the code-
book via gradient descent and the assignments via GPTQ
algorithm (Frantar et al., 2023). However, both of these
steps can be improved. Given fixed assignments, the code-
book admits an optimal closed form solution. Also, for
optimizing assignments, recent works have demonstrated
that coordinate descent (CD) methods outperform GPTQ in
uniform weight-only quantization (Behdin et al., 2023; Nair
& Suggala, 2024). In this section, we introduce Layer-wise
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Algorithm 2 LNQ
input Hessian of the objective H ∈ Rdin×din , input weight

W ∈ Rdin×dout , initial assignment P(j) ∈ Rdin×m for
each output channel j.

1: H = LL> {Cholesky decomposition}
2: for j ∈ {1, . . . , dout} do
3: for t = 1 to T do
4: c(j) ←

(
P(j)>LL>P(j)

)−1
P(j)>LL>wj

5: ŵj ← P(j)c(j)

6: for k = 1 to K do
7: for i = 1 to din do
8: c

(j)
q∗← argmin

Ŵij∈{c(j)1 ,...,c
(j)
m }
(ŵj−wj)

>H(ŵj−wj)

9: Ŵij ← c
(j)
q∗

10: ∀q ∈ {1, . . . ,m} : P
(j)
iq =

{
1 if q = q∗,

0 otherwise.
11: end for
12: end for
13: end for
14: c(j) ←

(
P(j)>LL>P(j)

)−1
P(j)>LL>wj

15: end for
output Ŵ = [P(1)c(1), . . . ,P(dout)c(dout)].

Non-uniform Quantization (LNQ), an alternating minimiza-
tion algorithm which leverages the closed form solution
for the codebook and employs CD to optimize the assign-
ments. We then discuss its theoretical guarantees, as well as
the memory cost and computational complexity under our
efficient implementation.

4.1. Optimization Problem

We omit the layer index l for notational simplicity through-
out this section. Following prior work, we assign to each
output channel a separate codebook, though LNQ can be
easily adapted to finer-granularity grouping. Non-uniform
scalar quantization maps each scalar weight in the column
wj ∈ Rdin to one of m = 2b real values {c(j)1 , . . . , c

(j)
m },

where b ∈ N is the target bit-width. The quantized
weights ŵj can then be expressed as ŵj = P(j)c(j), where
c(j) ∈ Rm is the vector containing the codebook values
{c(j)1 , . . . , c

(j)
m }, and P(j) ∈ {0, 1}din×m is the assignment

matrix such that P (j)
iq = 1 if Wij is assigned to c(j)q , and

P
(j)
iq = 0 otherwise.

The optimization problem for layer-wise output-based non-
uniform scalar quantization can then be written as follows:

minimize
P(j)∈{0,1}din×m

c(j)∈Rm

dout∑
j=1

‖Xwj −XP(j)c(j)‖22

subject to P(j)1m = 1din
, (8)

where 1 is the vector of all ones. Note that the optimization
for each column j is independent of other columns, and can
be done in parallel.

4.2. LNQ Algorithm

We propose LNQ, an alternating minimization algorithm,
which iteratively updates the codebook c(j) and assignment
matrix P(j) for each j, optimizing one while keeping the
other fixed. Alternating minimization is a common strategy
used by most non-uniform quantization methods, including
SqueezeLLM and GPTVQ. LNQ quantizes each layer inde-
pendently. We present an overview of LNQ, applied to one
layer with weights W ∈ Rdin×dout in Algorithm 2.

Given fixed assignment matrices P(j), Problem (8) reduces
to a standard least-squares problem, which admits a closed-
form optimal solution c(j)∗ = (XP(j))†Xwj , where †
denotes the Moore–Penrose pseudoinverse. We assume that
the matrix P(j)>HP(j) is invertible, where recall that H =
X>X. Under this assumption, the closed-form solution
becomes:

c(j)∗ =
(
P(j)>HP(j)

)−1
P(j)>Hwj . (9)

In practice, P(j)>HP(j) is not always invertible, even when
H is invertible (for example if no weight is assigned to a
given codebook value c(j)q ). To address this, we add a small
constant λ = 10−7 to the diagonal of the matrix, as com-
monly done in prior work (Frantar & Alistarh, 2022; Frantar
et al., 2023; van Baalen et al., 2024). In our implementation,
we use torch.linalg.lstsq function to compute the
least squares solution in Eq. (9), which takes XP(j) and
Xwj as inputs. However, since X is not explicitly stored,
we compute the Cholesky decomposition of H = X>X, de-
noted as H = LL>, and instead provide L>P(j) and Lwj

to the solver. Because Cholesky decomposition requires
H to be positive definite, we ensure this by adding a small
constant to the diagonal of H.

For fixed codebooks c(j), Problem (8) can be equivalently
written as

minimize
ŵj∈{c(j)1 ,...,c

(j)
m }din

dout∑
j=1

(ŵj −wj)
>H(ŵj −wj). (10)

This problem corresponds to a closest vector problem with
box constraints, which is NP-Hard to approximate within
any constant factor approximation for m ≥ 2 (Arora et al.,
1997, Theorem 1). Existing heuristics for solving it include
OBQ (Frantar & Alistarh, 2022) which does not scale to
LLMs with billions of parameters; its faster variant GPTQ
(Frantar et al., 2023); LDLQ (Chee et al., 2024), which is a
more efficient implementation of GPTQ; greedy CD (Nair
& Suggala, 2024); and cyclic CD (Behdin et al., 2023; Chee
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et al., 2024; Egiazarian et al., 2024). Recent works show
that both greedy CD (Nair & Suggala, 2024) and cyclic CD
(Behdin et al., 2023) outperform GPTQ on this problem
when using a uniform grid. We thus adopt the cyclic CD
algorithm, since it performs similarly to the greedy variant
while being significantly less expensive (Nair & Suggala,
2024, Appendix D). In Appendix E.6, we present an ablation
study that further support this choice, showing that cyclic
CD matches or outperforms GPTQ when used within LNQ
for non-uniform scalar quantization.

Cyclic CD is an iterative algorithm which iterates over coor-
dinates in a fixed order, minimizing at each iteration the ob-
jective with respect to one coordinate, while keeping all oth-
ers fixed. The minimization for each coordinate (Line 8 in
Algorithm 2) has a closed form solution, as shown in Behdin
et al. (2023, Lemma 1) and Chee et al. (2024, Section B.2):

Roundj

(
Wi,j −

Hi,[din]\i

Hi,i
(Ŵ[din]\i,j −W[din]\i,j)

)
,

(11)
where Roundj(·) denotes rounding to the nearest point in
the grid {c(j)1 , . . . , c

(j)
m }.

CD is a descent method when initialized with a feasible
solution ŵj ∈ {c(j)1 , . . . , c

(j)
m }din , i.e., it monotonically

decreases the objective function value. It can be used as
a standalone solver for problem (10) initialized with the
original weights W, as in Nair & Suggala (2024); Behdin
et al. (2023), or to refine the output of another quantization
method, as done in the uniform quantization method QuIP,
which runs CD after LDLQ (Chee et al., 2024).

In LNQ, at each iteration, we initialize CD with the quan-
tized weights corresponding to the current assignment and
codebook ŵj = P(j)c(j) for each j. For the first iter-
ation, any feasible assignment matrix can be used. In
our experiments, we initialize with the assignments from
SqueezeLLM. Since the codebooks are updated optimally
and CD acts as descent method with feasible initialization, it
follows that LNQ itself is a descent method and it converges.
Refer to Appendix B for the proof.

Proposition 4.1. For any j ∈ [dout], let fj(c,P) =

‖Xwj −XPc‖22, and let c(j)t and P
(j)
t denote c(j) and

P(j) at the t-th iteration of LNQ. Then, fj(c
(j)
t ,P

(j)
t ) ≥

fj(c
(j)
t+1,P

(j)
t ) ≥ fj(c

(j)
t+1,P

(j)
t+1) for all t, and the se-

quence {fj(c(j)t ,P
(j)
t )}t≥1 converges.

Since LNQ is a layer-wise output based method, Guid-
edQuant can be easily applied to it. In Section 5.1, we
demonstrate the efficacy of LNQ both as a standalone ap-
proach and in combination with the GuidedQuant objective.

Time Complexity. Computing the Cholesky decomposi-
tion of H (Line 1) requires O(d3in), optimizing the code-

Table 2. End-to-end inference throughput of Llama-2 models on
RTX 4090 GPU. OOM indicates an Out-of-Memory error, meaning
the GPU lacks memory to run model inference. See Appendix D.1
for experimental setup details.

Llama-2-7B Llama-2-13B Llama-2-70B

Type Bits↓ Tok/s↑ Bits↓ Tok/s↑ Bits↓ Tok/s↑
Original 16 67 16 OOM 16 OOM

Uniform scalar 2.00 334 2.00 200 2.00 47
Non-uniform scalar 2.01 347 2.01 203 2.01 47
Vector 2.00 200 2.00 121 2.00 38

Uniform scalar 3.00 260 3.00 150 3.00 OOM
Non-uniform scalar 3.03 264 3.02 148 3.01 OOM
Vector 3.00 176 3.00 103 3.00 OOM

Uniform scalar 4.00 214 4.00 121 4.00 OOM
Non-uniform scalar 4.05 209 4.04 116 4.03 OOM
Vector 4.00 151 4.00 89 4.00 OOM

book (Line 4 and 14) requires O(d2inm), and optimiz-
ing the codes (Lines 6-12) requires O(d2inK) time com-
plexity. The total time complexity of LNQ algorithm is
O(d3in + d2indoutT (m + K)). Here, T and K denotes the
number of iterations for alternating optimization and the
number of cycles in coordinate descent, respectively. We
provide a detailed analysis of the time complexity in Ap-
pendix C.2. We discuss in Appendix C.3 how to signifi-
cantly speedup the implementation of CD on GPU, using
precomputation and lazy batch-updates. Precomputation is
also used in Behdin et al. (2023); Chee et al. (2024), while
lazy batch-updates is only used in Chee et al. (2024) (though
not discussed in the paper). These tricks do no change the
theoretical time complexity of CD, but they yield up to 3×
speedups in practice.

5. Experiments
In this section, we demonstrate the versatility and effective-
ness of our method across various quantization schemes. We
first explore different quantization scenarios and identify the
formats best suited to each setting, ultimately focusing on
three main approaches: weight-only scalar, weight-only vec-
tor, and weight-and-activation quantization. By integrating
the GuidedQuant objective into existing methods, our re-
sults consistently achieve state-of-the-art PTQ performance.
Refer to Appendix D.2 for details on how we incorporate
GuidedQuant objective into existing methods. Additional
experiments and details, including the overall cost of our
method, the effect of the number of groups g, and the end-
to-end fine-tuning results, are provided in Appendix E.

5.1. Weight-only Quantization

Experimental Setup. Weight-only quantization primar-
ily accelerates inference latency in low-batch scenarios,
where memory bandwidth constitutes the main bottleneck

7
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Table 3. Weight-only scalar post-training quantization results without fine-tuning with end-to-end loss. Wiki2 and C4 denotes perplexity
on WikiText2 and C4, respectively. The perplexity is measured with the context size of 4096.

Llama-2-7B Llama-2-13B Llama-2-70B

Method Bits↓ Wiki2↓ C4↓ Bits↓ Wiki2↓ C4↓ Bits↓ Wiki2↓ C4↓
Original 16 5.12 6.63 16 4.57 6.05 16 3.12 4.97

QuIP – – – 2.00 13.48 16.16 2.01 5.90 8.17
SqueezeLLM 2.01 39.58 44.05 2.01 16.24 19.20 2.01 9.17 13.03
GPTVQ 1D 2.03 51.87 47.33 2.03 9.53 12.62 2.03 6.03 8.44
LNQ (Ours) 2.01 23.31 26.71 2.01 8.78 11.80 2.01 5.23 7.31
LNQ + GuidedQuant (Ours) 2.01 8.83 11.15 2.01 7.26 9.17 2.01 5.04 7.04

GPTQ 3.00 8.06 10.61 3.00 5.85 7.86 3.00 4.40 6.26
QuIP – – – 3.00 5.12 6.79 3.01 3.87 5.67
SqueezeLLM 3.03 5.74 7.44 3.02 4.99 6.60 3.01 3.53 5.31
GPTVQ 1D 3.03 6.17 8.02 3.03 5.13 6.76 3.03 3.55 5.35
LNQ (Ours) 3.03 5.89 7.74 3.02 5.02 6.68 3.01 3.50 5.31
LNQ + GuidedQuant (Ours) 3.03 5.57 7.22 3.02 4.91 6.49 3.01 3.47 5.27

GPTQ 4.00 5.49 7.20 4.00 4.78 6.34 4.00 3.35 5.15
QuIP – – – 4.00 4.76 6.29 4.00 3.58 5.38
SqueezeLLM 4.05 5.23 6.78 4.04 4.67 6.15 4.03 3.20 5.04
GPTVQ 1D 4.06 5.27 6.83 4.06 4.67 6.17 4.03 3.20 5.04
LNQ (Ours) 4.05 5.26 6.82 4.04 4.67 6.17 4.03 3.20 5.04
LNQ + GuidedQuant (Ours) 4.05 5.21 6.75 4.04 4.65 6.14 4.03 3.20 5.03

(Gholami et al., 2024). Among weight-only techniques,
three quantization formats are commonly used: uniform
scalar, non-uniform scalar, and vector quantization (Fran-
tar et al., 2023; Kim et al., 2024; Tseng et al., 2024b). With
fixed bit-width constraints, non-uniform scalar quantiza-
tion generally outperforms uniform scalar quantization, as
its search space encompasses that of uniform scalar quan-
tization. Meanwhile, vector quantization can outperform
non-uniform scalar quantization by exploiting additional
redundancies across weight dimensions.

Despite this, non-uniform scalar quantization offers advan-
tages in inference latency. Table 2 compares end-to-end
single-batch inference latency across these formats using
the state-of-the-art GPU kernels: LUT-GEMM (Park et al.,
2024a) for uniform scalar, Any-Precision-LLM (Park et al.,
2024b) for non-uniform scalar, and QTIP (Tseng et al.,
2024b) for vector quantization. Results show that vec-
tor quantization incurs higher latency due to its decoding
overhead (Tseng et al., 2024b), whereas uniform and non-
uniform scalar quantization have similar latency with mini-
mal decoding overhead. Consequently, non-uniform scalar
and vector quantization remain the primary formats of inter-
est for weight-only quantization. In this context, we apply
our GuidedQuant to both formats, achieving state-of-the-art
performance in each.

For our experiments, we demonstrate the effectiveness of
our method on the Llama-2 model family (Touvron et al.,
2023), evaluating on 7B, 13B and 70B model. We use
the RedPajama dataset (Computer, 2023) for calibration,

following prior work (Egiazarian et al., 2024; Tseng et al.,
2024a;b), with 1024 sentences, each containing 4096 tokens.
We report perplexity on the WikiText2 (Merity et al., 2016)
and C4 (Raffel et al., 2020) validation sets.

Scalar Post-training Quantization Results. We summa-
rize the results of weight-only scalar quantization in Table 3,
comparing our approach with GPTQ (Frantar et al., 2023),
SqueezeLLM without mixed precision (Kim et al., 2024),
QuIP (Chee et al., 2024), and GPTVQ 1D (van Baalen et al.,
2024). For GPTQ and QuIP, we report the results from
Egiazarian et al. (2024), which used the same or a larger
calibration dataset, while for GPTVQ 1D, we reproduce
the results with the same calibration data while adjusting
the group size to align with the average bit-width for a fair
comparison (see Appendix C.4 for details).

We evaluate the performance of LNQ both with and without
the GuidedQuant objective. Notably, LNQ combined with
GuidedQuant consistently outperforms all baselines across
various bit-widths and model sizes. Additionally, LNQ with
the layer-wise reconstruction objective surpasses GPTVQ
1D in all settings, demonstrating that our approach improves
upon GPTVQ 1D by addressing its suboptimal optimization.

Vector Post-training Quantization Results. For vector
post-training quantization (PTQ), we present the results in
Table 4. We apply GuidedQuant to the state-of-the-art vector
PTQ baseline, QTIP (Tseng et al., 2024b). We implement
it on both the 1MAD and 3INST variants and report the
variant that performs better among these two. Refer to
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Table 4. Weight-only vector post-training quantization results without fine-tuning to the end-to-end loss. Wiki2 and C4 denotes perplexity
on WikiText2 and C4, respectively. The perplexity is measured with the context size of 4096.

Llama-2-7B Llama-2-13B Llama-2-70B

Method Bits↓ Wiki2↓ C4↓ Bits↓ Wiki2↓ C4↓ Bits↓ Wiki2↓ C4↓
Original 16 5.12 6.63 16 4.57 6.05 16 3.12 4.97

GPTVQ 2D 2.13 10.66 12.81 2.13 7.55 9.82 2.13 5.06 7.09
GPTVQ 4D 2.25 7.89 10.25 2.25 6.36 8.43 2.25 4.44 6.28
QuIP# 2.00 8.22 11.01 2.00 6.06 8.07 2.00 4.16 6.01
AQLM 2.02 6.59 8.54 2.19 5.37 7.16 2.07 3.94 5.72
QTIP 2.00 6.82 8.96 2.00 5.52 7.39 2.00 3.87 5.69
QTIP + GuidedQuant (Ours) 2.00 6.11 7.99 2.00 5.33 7.05 2.00 3.80 5.61

GPTVQ 2D 3.13 5.63 7.32 3.13 4.87 6.45 3.13 3.38 5.18
QuIP# 3.00 5.60 7.34 3.00 4.90 6.50 3.00 3.41 5.20
AQLM 3.04 5.46 7.08 3.03 4.82 6.37 3.01 3.36 5.17
QTIP 3.00 5.38 6.99 3.00 4.74 6.28 3.00 3.27 5.09
QTIP + GuidedQuant (Ours) 3.00 5.28 6.87 3.00 4.71 6.22 3.00 3.25 5.08

GPTVQ 2D 4.13 5.24 6.77 4.13 4.65 6.13 4.13 3.18 5.01
QuIP# 4.00 5.22 6.79 4.00 4.65 6.15 4.00 3.18 5.02
AQLM 4.04 5.21 6.75 3.94 4.65 6.14 4.14 3.19 5.03
QTIP 4.00 5.17 6.71 4.00 4.62 6.10 4.00 3.16 5.00
QTIP + GuidedQuant (Ours) 4.00 5.16 6.68 4.00 4.61 6.09 4.00 3.15 5.00

Appendix E.10 for results on different variants. We compare
our approach with the following baselines: GPTVQ (van
Baalen et al., 2024), QuIP# (Tseng et al., 2024a), AQLM
(Egiazarian et al., 2024), and QTIP (Tseng et al., 2024b).
For QuIP#, AQLM, and QTIP, we report the results from
their respective papers, as they used the same or larger
calibration datasets than ours. For GPTVQ, we report the
reproduced results using our calibration data. Our method
consistently outperforms all vector quantization baselines
across different bit-widths and model sizes as well.

5.2. Weight-and-activation Quantization

Weight-and-activation quantization methods apply uniform
quantization on both weights and activations to leverage the
faster matrix multiplication units in the hardware (Ashkboos
et al., 2024; Liu et al., 2024). State-of-the-art methods for
weight-and-activation quantization include QuaRot (Ashk-
boos et al., 2024) and SpinQuant (Liu et al., 2024), which
use rotation matrices to reduce the activation outliers be-
fore applying the uniform quantization. We incorporate our
GuidedQuant objective into the weight quantization process
of these methods, guiding the model to quantize the weights
more accurately. Specifically, we implement GuidedQuant
on top of the SpinQuant using GPTQ weight quantizer and
present the results in Table 5. Following prior work, we use
the WikiText2 dataset (Merity et al., 2016) for calibration,
with 128 sentences, each containing 2048 tokens (Ashkboos
et al., 2024; Liu et al., 2024). Our objective consistently
improves the perplexity compared to the baseline methods,

Table 5. Weight-and-activation quantization results on Llama-2
models. L-2-7B, L-2-13B and L-2-70B denote Llama-2-7B,
Llama-2-13B, and Llama-2-70B model, respectively. Wiki2 de-
notes perplexity on Wikitext2 with the context size of 2048.

L-2-7B L-2-13B L-2-70B

Bits Method Wiki2↓ Wiki2↓ Wiki2↓
16 Original 5.47 4.88 3.32

W4A4KV4
QuaRot 6.08 5.39 3.80
SpinQuant 5.95 5.24 3.71
SpinQuant + GQuant (Ours) 5.89 5.19 3.71

W4A4KV16
QuaRot 6.02 5.34 3.77
SpinQuant 5.90 5.22 3.68
SpinQuant + GQuant (Ours) 5.84 5.17 3.68

demonstrating its effectiveness.

6. Conclusion
We introduced GuidedQuant, a novel PTQ approach that
integrates gradient information from the end loss while
preserving cross-weight dependencies within output chan-
nels. GuidedQuant improves state-of-the-art methods across
quantization formats, including weight-only scalar, weight-
only vector, and weight-and-activation quantization. Fur-
thermore, we identified inefficiencies in the current state-
of-the-art methods for non-uniform scalar quantization and
proposed LNQ, a new algorithm that, when combined with
GuidedQuant, improves over the state-of-the-art perfor-
mance. These contributions advance the efficiency and
accuracy of quantization for modern LLMs.
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A. Additional Related Work
There’s a large body of work on neural network compression, even when considering only quantization for LLMs, making a
complete overview infeasible. Instead, we focus here on the works most related to ours.

Hessian-based Compression Neural networks compression based on the second-order Taylor approximation of the end
loss (Eq (2)) dates back to the early works of LeCun et al. (1989) and Hassibi & Stork (1992). OBD (LeCun et al., 1989)
introduced this approach for pruning, under the assumption that the Hessian matrix is diagonal. OBS (Hassibi & Stork, 1992)
improved upon this by dropping the diagonal assumption and instead approximating the Hessian by the empirical Fisher
information matrix. However, applying OBS to large neural networks remains computationally intractable. To address this,
various more efficient Hessian approximations have been proposed, including the K-FAC approximation (Martens & Grosse,
2015; Zeng & Urtasun, 2018; Wang et al., 2019; Tycho F. A. van der Ouderaa, 2024), block-diagonal Fisher approximation
(Singh & Alistarh, 2020; Kurtic et al., 2022; Li et al., 2021), and diagonal Fisher approximation (Choi et al., 2017; Theis
et al., 2018; Kim et al., 2024; Bai et al., 2024). Other strategies directly estimate inverse-Hessian vector products (Frantar
et al., 2021). The most similar approaches to GuidedQuant are ones that employ block-diagonal Fisher approximation,
which achieve a good trade-off between approximation accuracy and computation and storage cost. However, these methods
remain intractable at the scale of modern LLMs (see Appendix E.11).

Gradient-based Compression Various compression methods are based on a first-order Taylor approximation of the end
loss, with respect to output feature maps or gates applied to them (Molchanov et al., 2017; 2019; You et al., 2019), or weights
(Ding et al., 2019). The one most similar to GuidedQuant is (Molchanov et al., 2019), which employs the same criterion
in Eq. (4) to prune filters and neurons in vision models. However, as explained in Section 3.2, adopting this criterion for
quantizing modern LLMs is infeasible, without the averaging approximation we propose.

Non-uniform Scalar PTQ for LLMs PTQ encompasses a vast array of work, so we focus on non-uniform scalar PTQ
methods for LLMs that use look-up tables (codebooks) for weight decoding, which are closely related to our LNQ algorithm.
One approach is zero-shot quantization, which requires no calibration data: Dynamic Tree Quantization (Dettmers
et al., 2021) defines a new data type with dynamic exponential bits and stores decoded values in the codebook; Quantile
Quantization (Dettmers & Zettlemoyer, 2023) saves quantile values of the weight distribution; and QLoRA (Dettmers
et al., 2023) introduces the NF4 data type using quantiles of a standard normal distribution. These methods share a global
codebook, with each layer maintaining its own scale parameters. HIGGS (Malinovskii et al., 2024b) further refines this
by adopting MSE-optimal grids for the standard normal distribution and applying rotation matrices to approximate Gaussian
weight distributions. Another line of work involves one-shot quantization methods that optimize the output quantization
error using calibration data. For instance, SqueezeLLM (Kim et al., 2024) optimizes separate channel-wise codebooks via
the k-means algorithm, while a 1D variant of GPTVQ (van Baalen et al., 2024) alternates between optimizing assignments
with the GPTQ algorithm and refining codebooks with gradient descent. The GPTVQ 1D shows the strongest performance
among this line of research. Although not a scalar PTQ method, the vector quantization variant of AQLM (Egiazarian
et al., 2024) also follows a similar paradigm, optimizing assignments through CD and codebooks via gradient descent.

B. Proofs
Here, we prove Remark 3.1 and Proposition 4.1, each restated here for convenience.

Remark 3.1. The sum of the layer-wise objective in Eq. (4) over all layers is equal to the following quadratic approximation
of the change in the end loss
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(l)
j )>F

(l)
j (w

(l)
j − ŵ
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Hence,
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over l ∈ [L] on both sides yields the claim.

Proposition 4.1. For any j ∈ [dout], let fj(c,P) = ‖Xwj −XPc‖22, and let c(j)t and P
(j)
t denote c(j) and P(j) at the t-th

iteration of LNQ. Then, fj(c
(j)
t ,P

(j)
t ) ≥ fj(c(j)t+1,P

(j)
t ) ≥ fj(c(j)t+1,P

(j)
t+1) for all t, and the sequence {fj(c(j)t ,P

(j)
t )}t≥1

converges.

Proof. We first show that the objective value is non-increasing in LNQ. For all t ≥ 1, we have P
(j)
t 1m = 1din

and thus
the corresponding quantized weights ŵj = P

(j)
t c

(j)
t are feasible Hence, CD is initialized with a feasible solution at each

iteration t, so it acts as a descent method. Then,

fj(c
(j)
t ,P

(j)
t ) ≥ fj(c(j)t+1,P

(j)
t ) (since c

(j)
t+1 = argmin

c(j)∈Rm

fj(c,Pt))

≥ fj(c(j)t+1,P
(j)
t+1), (since CD does not increase the objective value)

for all t ≥ 1. Since fj(c,P) is bounded below by 0, the sequence {fj(c(j)t ,P
(j)
t )} is monotonically non-increasing and

bounded below. Hence, it converges to its infimum by the monotone convergence theorem.

C. Hyperparameters and Details
In this section, we clarify the hyperparameters and details of the methods discussed in the main paper.

C.1. GuidedQuant

The proposed GuidedQuant method has a single hyperparameter: the number of group g used to average the Hessian
matrices Hj (see Section 3.2). For weight-only quantization experiments, we set g = 4 for Llama-2-7B and Llama-2-13B,
and g = 2 for Llama-2-70B. For weight-and-activation quantization experiments, we set g = 1. For the hyperparameter g,
we selected the number of groups to be as large as possible within the limits of our computational and memory constraints.
Notably, GuidedQuant also maintains strong performance with smaller values of g (see Appendix E.5).

Computing the Hessian (Line 4 in Algorithm 1) and running the quantization algorithm Q (Line 5 in Algorithm 1) for each
group and layer can be parallelized. We parallelize Hessian computation across groups. For quantization, we parallelize
across groups in LNQ + GuidedQuant, while in QTIP + GuidedQuant and SpinQuant + GuidedQuant, we run this step in a
sequential manner to minimally change the codebase of the original methods.

C.2. LNQ

The proposed LNQ method has two hyperparameters: (1) the number of iterations during which we alternate between
optimizing c and P (T in Algorithm 2), and (2) the number of coordinate descent iterations over the output dimensions (K
in Algorithm 2). For Llama-2-7B and Llama-2-13B, we use T = 2 and K = 4, and for Llama-2-70B, we use T = 1 and
K = 4 in all the experiments.
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Algorithm 3 Efficient CD algorithm with precomputation

input Hessian of the objective H ∈ Rdin×din , input weight W ∈ Rdin×dout , current codebook c(j) ∈ Rm and current
quantized weight Ŵ ∈ Rdin×dout . Initialize Q ∈ {1, . . . ,m}din×dout (rounded indices).

1: H̃← diag(H)−1H , U← StrictUpper(H̃).

2: for k = 1 to K do
3: B← U(Ŵ −W)
4: for i = 1 to din do
5: Ŵi,: ← Round(Wi,: −Bi,:), Qi,: ← RoundIdx(Wi,: −Bi,:)

6: B(i+1):,: ← B(i+1):,: + U(i+1):,i(Ŵi,: −Wi,:)
7: end for
8: end for

9: ∀i ∈ [din], j ∈ [dout], q ∈ [m] : P
(j)
iq =

{
1 if q = Qij ,

0 otherwise.
{Extracting assignment matrix}

output P(1), . . . ,P(dout).

We further explain a derivation of the time complexity of the proposed LNQ algorithm (Algorithm 2), discussed in Section 4.2.
First, the time complexity of the Cholesky decomposition for a matrix H ∈ Rdin×din is O(d3in) (Line 1).

For optimizing the codebook (Line 4 and 14), we analyze the computational cost within the loop as follows:

• Computing L>P(j) requires O(d2inm) time.

• Computing L>wj requires O(d2in) time.

• torch.linalg.lstsq function uses QR decomposition of L>P(j) to compute least squares solution, which
requires O(dinm

2) time.

Since din � m, the dominant cost is O(d2inm).

For computing ŵj = P(j)c(j) (Line 5), the cost is O(dinm).

In CD, the cost of the minimizing the objective for each coordinate i (Line 8, Eq. (11)) is O(din +m). Since din � m, the
dominant cost is O(din). Considering loop iterations, optimizing the code (Lines 6-12) takes O(d2inK) time complexity.

Therefore, the cost of Lines 4-12 is O(d2in(m + K)), and the cost of Lines 2-15 is O(d2indoutT (m + K)). Including the
Cholesky decomposition, the total time complexity of LNQ algorithm is O(d3in + d2indoutT (m+K)).

C.3. Efficient Implementation of CD Algorithm in LNQ

In the LNQ algorithm (Algorithm 2), computing the solution across all output channels j ∈ [dout] is independent and thus
fully parallelizable. Therefore, we perform the coordinate descent (CD) updates for each output channel in parallel.

Coordinate-wise Closed-form Solution. For a given quantized weight matrix Ŵ ∈ Rdin×dout , the CD update for the
i-th input coordinate can be computed in parallel using the coordinate-wise closed-form solution as follows (Behdin et al.,
2023, Lemma 1):

Ŵi,: ← Round

(
Wi,: −

Hi,[din]\i

Hi,i

(
Ŵ[din]\i,: −W[din]\i,:

))
, (12)

where Round(·) : R1×dout → R1×dout rounds j-th element to the nearest point in the grid {c(j)1 , . . . , c
(j)
m }. We adopt this

coordinate-wise closed-form solution within the CD loop.

Precomputation Trick. On GPUs, the coordinate-wise CD update in Eq. (12) can be accelerated by precomputing parts
of the update that remain unchanged during previous coordinate updates. Specifically, when updating the i-th coordinate,
the components of Ŵ corresponding to coordinates (i+ 1) to din remain fixed and can therefore be precomputed before
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Algorithm 4 Efficient CD algorithm with precomputation and lazy batch-updates

input Hessian of the objective H ∈ Rdin×din , input weight W ∈ Rdin×dout , current codebook c(j) ∈ Rm and current
quantized weight Ŵ ∈ Rdin×dout . Initialize Q ∈ {1, . . . ,m}din×dout (rounded indices).

1: H̃← diag(H)−1H , U← StrictUpper(H̃).

2: for k = 1 to K do
3: B← U(Ŵ −W)
4: for s = 1, b+ 1, 2b+ 1, . . . , din − b+ 1 do
5: for i = s to s+ b− 1 do
6: Ŵi,: ← Round(Wi,: −Bi,:), Qi,: ← RoundIdx(Wi,: −Bi,:)

7: B(i+1):(s+b),: ← B(i+1):(s+b),: + U(i+1):(s+b),i(Ŵi,: −Wi,:)
8: end for
9: B(s+b):,: ← B(s+b):,: + U(s+b):,s:(s+b)(Ŵs:(s+b),: −Ws:(s+b),:)

10: end for
11: end for

12: ∀i ∈ [din], j ∈ [dout], q ∈ [m] : P
(j)
iq =

{
1 if q = Qij ,

0 otherwise.
{Extracting assignment matrix}

output P(1), . . . ,P(dout).

entering the CD loop:

B :=
Hi,[din]\i

Hi,i

(
Ŵ[din]\i,: −W[din]\i,:

)
=

Hi,1:i

Hi,i

(
Ŵ1:i,: −W1:i,:

)
︸ ︷︷ ︸

Cannot be precomputed before the CD loop

+
Hi,(i+1):

Hi,i

(
Ŵ(i+1):,: −W(i+1):,:

)
︸ ︷︷ ︸

Can be precomputed before the CD loop

.

To take advantage of this, we precompute the second term (which corresponds to future coordinates) for all i ∈ [din] in
parallel using matrix operations before entering the CD loop:

B← StrictUpper(H̃)(Ŵ −W),

where H̃ is obtained by dividing each row of H by the corresponding diagonal entry Hi,i, and StrictUpper(·) extracts the
strictly upper triangular part of the matrix.

During the CD loop, we use the precomputed B to compute the coordinate-wise update in Eq. (12), and after updating the
i-th coordinate, we incrementally update B to reflect the new value of Ŵi,::

Ŵi,: ← Round(Wi,: −Bi,:)

B(i+1):,: ← B(i+1):,: + StrictUpper(H̃)(i+1):,i(Ŵi,: −Wi,:).

The full CD algorithm incorporating this precomputation strategy is provided in Algorithm 3.

This acceleration trick has been proposed in QuIP (Chee et al., 2024, Appendix B.2.) and QuantEase (Behdin et al., 2023).
It is worth noting that this precomputation trick does not change the theoretical time complexity, but improves practical
performance by exploiting the GPU parallelization. In particular, the CD update for the i-th coordinate in Equation (12)
requires 2dout(din − 1) FLOPs without precomputation, while with precomputation, the cost is reduced to 2dout(din − i)
FLOPs.

Lazy Batch-updates. After incorporating the precomputation trick, we observe that the update steps within the CD loop
(Lines 4–7 in Algorithm 3) resemble the OBQ update scheme used in the GPTQ method (Frantar & Alistarh, 2022; Frantar
et al., 2023). In OBQ, each iteration involves rounding a single coordinate and adjusts the not-yet-rounded coordinates
accordingly. Analogously, our CD update with precomputation rounds Wi,: −Bi,: for the i-th coordinate and incrementally
updates B(i+1):,: to reflect the new values of Ŵi,:.
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Table 6. Hyperparameters that we used in reproducing GPTVQ (van Baalen et al., 2024) in Table 3 and Table 4.

Weight VQ Codebook sharing Scaling Codebook
Table bits dim group size block size bit-width Avg bits

Table 3

2 1 1024 – 8 2.03
3 1 2048 – 8 3.03
4 1 8192 256 8 4.03
4 1 4096 128 8 4.06

Table 4

2 2 2048 – 8 2.13
2 4 32768 – 8 2.25
3 2 16384 64 8 3.13
4 2 65536 64 8 4.13

Both OBQ and our CD update suffer from a low compute-to-memory ratio: although each iteration involves relatively few
FLOPs, it requires frequent reading and writing to large matrices. As a result, these updates tend to be memory-bound and
suffer from poor GPU utilization. To mitigate this, GPTQ introduces lazy batch-updates, in which a batch of coordinates
(with batch size b = 128) is processed together. Within each batch, updates are applied sequentially to each coordinate,
while corrections are made only for the remaining unprocessed coordinates within the batch. Once all b coordinates in the
batch are updated, a global correction step is performed for the rest of the matrix. This strategy improves memory efficiency
by reducing the frequency of global updates.

We adopt this lazy batch-updates approach in our CD implementation with precomputation trick. Specifically, we restrict
updates to the relevant portion of B within each block of b coordinates, and defer global updates to B until the entire block
has been processed. This significantly reduces memory-bound operations and enhances GPU utilization. The final efficient
CD algorithm incorporating both precomputation trick and lazy batch-updates is given in Algorithm 4.

QuIP (Chee et al., 2024) also supports lazy batch-updates in their open-source code, though it is not mentioned in their
paper. QuantEase (Behdin et al., 2023) does not use this approach in their implementation. As with the precomputation
trick, lazy batch-updates do not change the theoretical time complexity. However, they substantially accelerate the overall
algorithm in practice by better utilizing GPU resources.

Speedup Factor To demonstrate the speedup achieved by our optimization techniques for the CD algorithm, we report
the quantization time for quantizing the Llama-2-7B model into 4-bit precision on a single RTX 6000 Ada GPU. Without
any optimizations, adopting the naive strategy of exhaustively evaluating the objective function for all coordinate choices
and selecting the option with the lowest value takes 3.9 hours to quantize the entire model. Applying the coordinate-wise
closed-form solution described in Eq. (12) reduces this time to 2.7 hours. Incorporating the precomputation trick further
lowers it to 1.2 hours. Finally, applying lazy batch-updates brings the total quantization time down to just 0.9 hours. Overall,
these optimizations yield more than a 4× speedup in end-to-end quantization time on GPU.

C.4. GPTVQ

In the original GPTVQ paper (van Baalen et al., 2024), the authors used 128 sentences from the WikiText2 dataset (Merity
et al., 2016), each containing 2048 tokens, as a calibration data. For a fair comparison, we reproduced their method using
their open-sourced code but used 1024 sentences of RedPajama dataset (Computer, 2023), each containing 4096 tokens. We
adopted their default hyperparameters except for the group size and block size, which we adjusted to match the average bit
width when comparing with different methods in Table 3. We provide a complete list of GPTVQ hyperparameters for each
table in Table 6.

D. Details on Experimental Setup
This section provides a detailed explanation of the experimental settings used.
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Table 7. End-to-end inference throughput of Llama-2 models on RTX 4090 GPU, including the vector quantization kernel after fusing the
query/key/value projection matrices into one linear layer and the up/gate projection matrices into another when measuring the throughput.
OOM indicates an Out-of-Memory error, meaning the GPU lacks memory to run model inference.

Llama-2-7B Llama-2-13B Llama-2-70B

Type Bits↓ Tok/s↑ Bits↓ Tok/s↑ Bits↓ Tok/s↑
Original 16 67 16 OOM 16 OOM

Uniform scalar 2.00 334 2.00 200 2.00 47
Non-uniform scalar 2.01 347 2.01 203 2.01 47
Vector 2.00 200 2.00 121 2.00 38
Vector (fused) 2.00 248 2.00 153 2.00 42

Uniform scalar 3.00 260 3.00 150 3.00 OOM
Non-uniform scalar 3.03 264 3.02 148 3.01 OOM
Vector 3.00 176 3.00 103 3.00 OOM
Vector (fused) 3.00 209 3.00 123 3.00 OOM

Uniform scalar 4.00 214 4.00 121 4.00 OOM
Non-uniform scalar 4.05 209 4.04 116 4.03 OOM
Vector 4.00 151 4.00 89 4.00 OOM
Vector (fused) 4.00 176 4.00 103 4.00 OOM

D.1. End-to-end Inference Throughput Experiments (Table 2)

In Table 2, we measure each model’s inference throughput in generating 100 tokens on RTX 4090 GPU, after integrating the
kernels with into a PyTorch-based inference pipeline optimized with the torch.compile function (Ansel et al., 2024;
Gray, 2019). For QTIP, our chosen vector quantization kernel, we adopt the HYB variant of it as its GPU kernel is publicly
available, though it is possible to implement fast GPU kernels with other variants as well (Tseng et al., 2024b).

For the base model and for models quantized using uniform or non-uniform scalar formats, we fuse the query/key/value
projection matrices into one linear layer and the up/gate projection matrices into another when measuring the throughput.
This fusion trick can be applied to QTIP as well, provided the matrices are fused before quantization and the scale parameters
are shared across layers. However, in the main paper, we present QTIP results without fusion to match the original
experimental setup (and reported numbers) from their work, in which they quantize the layers independently without fusing
them. Meanwhile, scalar quantization methods quantize the layer in an output channel-wise manner, and this allows fusing
matrices even when layers are quantized separately.

For completeness, we include Table 7, which also shows QTIP’s fused end-to-end throughput (measured using dummy
values) to illustrate the impact of fusion, restating the relevant results from Table 2. Although the fusion boosts the
throughput, it does not change the conclusion that QTIP still runs more slowly than the scalar quantization methods.

D.2. Implementation Details for Different Quantization Types

GuidedQuant employs a quantization algorithm Q as a subroutine (Line 8 in Algorithm 1). In this section, we clarify
which specific quantization algorithm Q each method uses, which GuidedQuant builds upon in Algorithm 1. We integrate
GuidedQuant with three different quantization methods: (1) LNQ for weight-only scalar quantization, (2) QTIP for weight-
only vector quantization, and (3) SpinQuant for weight-and-activation quantization. LNQ adopts the algorithm shown in
Algorithm 2, QTIP uses the BlockLDLQ algorithm proposed in Tseng et al. (2024a), and SpinQuant employs the GPTQ
algorithm introduced in Frantar et al. (2023).
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Table 8. Total GPU cost incurred during the quantization process for LNQ and QTIP, both with and without GuidedQuant, across various
group sizes g. We specify the number and type of GPU used in the parentheses. R6A denotes the RTX 6000 Ada GPU.

LNQ QTIP

Model Method GPU Cost - 2 bits GPU Cost - 3 bits GPU Cost - 4 bits GPU Cost - 2 bits GPU Cost - 3 bits GPU Cost - 4 bits

Llama-2-7B Layer-wise (LNQ, QTIP) 0.5 h (1×R6A) 0.6 h (1×R6A) 0.9 h (1×R6A) 1.3 h (1×R6A) 1.2 h (1×R6A) 1.2 h (1×R6A)
Layer-wise + GQuant (g = 1) 0.5 h (1×R6A) 0.6 h (1×R6A) 0.9 h (1×R6A) 1.3 h (1×R6A) 1.2 h (1×R6A) 1.2 h (1×R6A)
Layer-wise + GQuant (g = 2) 0.6 h (1×R6A) 0.7 h (1×R6A) 0.9 h (1×R6A) 1.5 h (1×R6A) 1.4 h (1×R6A) 1.5 h (1×R6A)
Layer-wise + GQuant (g = 4) 0.7 h (1×R6A) 0.7 h (1×R6A) 0.9 h (1×R6A) 1.9 h (1×R6A) 1.9 h (1×R6A) 1.9 h (1×R6A)

Llama-2-13B Layer-wise (LNQ, QTIP) 0.9 h (1×R6A) 1.1 h (1×R6A) 1.6 h (1×R6A) 3.0 h (1×R6A) 2.7 h (1×R6A) 2.7 h (1×R6A)
Layer-wise + GQuant (g = 1) 0.9 h (1×R6A) 1.1 h (1×R6A) 1.6 h (1×R6A) 3.0 h (1×R6A) 2.7 h (1×R6A) 2.7 h (1×R6A)
Layer-wise + GQuant (g = 2) 1.1 h (1×R6A) 1.2 h (1×R6A) 1.6 h (1×R6A) 2.4 h (1×R6A) 2.2 h (1×R6A) 2.3 h (1×R6A)
Layer-wise + GQuant (g = 4) 1.2 h (1×R6A) 1.3 h (1×R6A) 1.7 h (1×R6A) 3.0 h (1×R6A) 3.0 h (1×R6A) 3.0 h (1×R6A)

Llama-2-70B Layer-wise (LNQ, QTIP) 2.6 h (1×R6A) 3.3 h (1×R6A) 5.1 h (1×R6A) 12.0 h (1×R6A) 10.8 h (1×R6A) 11.0 h (1×R6A)
Layer-wise + GQuant (g = 1) 2.6 h (1×R6A) 3.3 h (1×R6A) 5.1 h (1×R6A) 12.0 h (1×R6A) 10.8 h (1×R6A) 11.0 h (1×R6A)
Layer-wise + GQuant (g = 2) 3.7 h (1×R6A) 4.7 h (1×R6A) 6.8 h (1×R6A) 13.0 h (1×R6A) 11.9 h (1×R6A) 12.0 h (1×R6A)

Table 9. Total GPU cost and disk usage incurred during the gradient and Hessian caching processes for each objective—weighted k-means
(SqueezeLLM), layer-wise (LNQ, QTIP), and GuidedQuant. We specify the number and type of GPU used in the parentheses. R6A and
A100 denote the RTX 6000 Ada GPU and the A100 GPU, respectively. The calibration data are 1024 sentences of the RedPajama dataset,
each containing 4096 tokens.

Gradient Caching Hessian Caching

Model Method GPU Cost Disk Size GPU Cost Disk Size

Llama-2-7B Weighted k-means (SqueezeLLM) 0.3 h (1×A100) 13 GiB – –
Layer-wise (LNQ, QTIP) – – 0.3 h (4×R6A) 27 GiB
Layer-wise + GQuant (g = 1) 0.3 h (1×A100) 2 GiB 0.3 h (4×R6A) 27 GiB
Layer-wise + GQuant (g = 2) 0.3 h (1×A100) 4 GiB 0.4 h (4×R6A) 53 GiB
Layer-wise + GQuant (g = 4) 0.3 h (1×A100) 7 GiB 0.8 h (4×R6A) 106 GiB

Llama-2-13B Weighted k-means (SqueezeLLM) 0.6 h (2×A100) 25 GiB – –
Layer-wise (LNQ, QTIP) – – 0.5 h (4×R6A) 52 GiB
Layer-wise + GQuant (g = 1) 0.6 h (2×A100) 3 GiB 0.5 h (4×R6A) 52 GiB
Layer-wise + GQuant (g = 2) 0.6 h (2×A100) 7 GiB 0.9 h (4×R6A) 104 GiB
Layer-wise + GQuant (g = 4) 0.6 h (2×A100) 13 GiB 1.5 h (4×R6A) 208 GiB

Llama-2-70B Weighted k-means (SqueezeLLM) 2.7 h (6×A100) 129 GiB – –
Layer-wise (LNQ, QTIP) – – 3.5 h (4×R6A) 366 GiB
Layer-wise + GQuant (g = 1) 2.7 h (6×A100) 5 GiB 3.5 h (4×R6A) 366 GiB
Layer-wise + GQuant (g = 2) 2.7 h (6×A100) 9 GiB 5.8 h (4×R6A) 731 GiB

E. Additional Results and Discussions
E.1. Quantization Cost

In this section, we present a detailed breakdown of the computational costs associated with our method, as summarized in
Table 8 and Table 9. The layer-wise quantization methods on which we build typically require two phases: (1) caching the
Hessian matrices to disk, and (2) loading them to quantize weights based on these cached Hessian matrices. It is worth
noting that the cost of the first phase (caching) can be amortized if one needs to quantize the same model multiple times
at different bit-widths or configurations, as the Hessian matrices can be reused. We report the weight quantization cost in
Table 8, and the Hessian-caching cost in Table 9.

From Table 8, observe that for g = 1, the quantization is identical to standard layer-wise quantization, since the Hessian size
is the same. Even for g = 2 or g = 4, the quantization cost does not increase by more than 50%. This is because while
more Hessian matrices are employed, each weight block to be quantized becomes correspondingly smaller, leaving the total
computation unchanged. All these steps can be performed in an embarrassingly parallel manner; for example, quantizing
Llama-2-70B using our LNQ algorithm takes less than three hours when using 8 RTX 6000 Ada GPUs.

We further report the cost of caching Hessian matrices in Table 9, along with the number of GPU used and the disk size
requirements. Note that while we used 4 GPUs for caching, this process is also fully parallelizable; using fewer GPUs will
simply take longer (it can run on a single GPU), whereas additional GPUs can shorten the total time. Finally, our method’s
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Table 10. Weight-only scalar post-training quantization results on Llama-3 models. Wiki2 and C4 denotes perplexity on WikiText2 and
C4, respectively. The perplexity is measured with the context size of 8192.

Llama-3-8B Llama-3-70B

Method Bits↓ Wiki2↓ C4↓ Bits↓ Wiki2↓ C4↓
Original 16 5.54 7.10 16 2.59 5.78

SqueezeLLM 2.01 16322 1501 2.01 38.53 38.15
LNQ (Ours) 2.01 133.00 72.75 2.01 24.22 19.71
LNQ + GuidedQuant (Ours) 2.01 30.80 20.41 2.01 10.21 11.06

SqueezeLLM 3.03 7.39 8.84 3.02 4.12 6.44
LNQ (Ours) 3.03 7.28 8.46 3.01 4.57 6.61
LNQ + GuidedQuant (Ours) 3.03 6.99 8.10 3.01 3.90 6.27

SqueezeLLM 4.05 5.91 7.43 4.03 2.91 5.91
LNQ (Ours) 4.05 5.90 7.40 4.03 3.05 5.94
LNQ + GuidedQuant (Ours) 4.05 5.80 7.32 4.03 2.89 5.89

Table 11. Weight-only scalar post-training quantization results on Llama-2 models, including end-to-end throughput. Wiki2 and C4
denotes perplexity on WikiText2 and C4, respectively. The perplexity is measured with the context size of 4096. Throughput is evaluated
on an RTX 3090 GPU, reported as the average of 5 runs with standard deviation in parentheses. OOM indicates an Out-of-Memory error,
meaning the GPU lacks memory to run model inference.

Llama-2-7B Llama-2-13B Llama-2-70B

Method Bits↓ Wiki2↓ C4↓ Tok/s↑ Bits↓ Wiki2↓ C4↓ Tok/s↑ Bits↓ Wiki2↓ C4↓ Tok/s↑
Original 16 5.12 6.63 64.8 (0.1) 16 4.57 6.05 OOM 16 3.12 4.97 OOM

SqueezeLLM 2.01 39.58 44.05 245.1 (1.8) 2.01 16.24 19.20 140.5 (0.5) 2.01 9.17 13.03 31.5 (0.0)
LNQ (Ours) 2.01 23.31 26.71 244.6 (0.6) 2.01 8.78 11.80 141.1 (0.4) 2.01 5.23 7.31 31.6 (0.1)
LNQ + GuidedQuant (Ours) 2.01 8.83 11.15 244.4 (2.9) 2.01 7.26 9.17 141.2 (0.5) 2.01 5.04 7.04 31.6 (0.1)

SqueezeLLM 3.03 5.74 7.44 207.3 (1.6) 3.02 4.99 6.60 118.0 (0.5) 3.01 3.53 5.31 OOM
LNQ (Ours) 3.03 5.89 7.74 207.3 (2.1) 3.02 5.02 6.68 118.0 (0.6) 3.01 3.50 5.31 OOM
LNQ + GuidedQuant (Ours) 3.03 5.57 7.22 207.6 (1.7) 3.02 4.91 6.49 117.9 (0.6) 3.01 3.47 5.27 OOM

SqueezeLLM 4.05 5.23 6.78 161.8 (1.5) 4.04 4.67 6.15 89.8 (0.1) 4.03 3.20 5.04 OOM
LNQ (Ours) 4.05 5.26 6.82 161.7 (1.6) 4.04 4.67 6.17 89.7 (0.1) 4.03 3.20 5.04 OOM
LNQ + GuidedQuant (Ours) 4.05 5.21 6.75 162.0 (1.8) 4.04 4.65 6.14 89.8 (0.1) 4.03 3.20 5.03 OOM

disk-space requirement is proportional to the number of groups g. However, we highlight that for constrained disk space,
choosing a smaller number of groups can still capture most of the performance benefits (Table 13).

E.2. Results on Llama-3 Models

In this section, we present the results of evaluating LNQ and LNQ combined with GuidedQuant on Llama-3-8B and
Llama-3-70B models, comparing with SqueezeLLM under a weight-only scalar quantization setting. We present the results
in Table 10. We use RedPajama dataset (Computer, 2023) for calibration with 1024 sentences, each containing 4096 tokens.
We set the number of groups to be g = 1 for Llama-3-8B and Llama-3-70B, and set the hyperparameters for LNQ (and LNQ
+ GuidedQuant) to be T = 2,K = 4 for Llama-3-8B and T = 1,K = 4 for Llama-3-70B model. LNQ with GuidedQuant
consistently outperforms the baselines, demonstrating the robustness and effectiveness of our approach.

E.3. Additional Inference Throughput Results

GuidedQuant leverages existing CUDA kernels (Any-Precision-LLM kernel (Park et al., 2024b) for weight-only scalar and
QTIP kernel (Tseng et al., 2024b) for weight-only vector quantization) and optimizes assignment and codebook values, thus
achieving improved performance without sacrificing inference throughput. To validate this, we compare weight-only scalar
PTQ results on Llama-2 models across methods using the same CUDA kernel, as shown in Table 11. Specifically, we report
perplexity and end-to-end throughput for SqueezeLLM, LNQ, and LNQ + GuidedQuant, all using the Any-Precision Kernel
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Table 12. Weight-only scalar post-training quantization results, evaluated on zero-shot and few-shot downstream tasks. Zero-shot Avg
denotes the average accuracy across eight zero-shot tasks: BoolQ, PIQA, SIQA, HellaSwag, WinoGrande, ARC-easy, ARC-challenge,
and OBQA. For the few-shot benchmark, MMLU (5-shot) denotes accuracy on the MMLU benchmark in a 5-shot setting. We report the
standard error in parentheses and bold the best results, as well as those whose accuracy score falls within the top score ± standard error.

Llama-2-7B Llama-2-13B

Method Bits↓ Zero-shot Avg↑ MMLU (5-shot)↑ Bits↓ Zero-shot Avg↑ MMLU (5-shot)↑
Original 16 59.88 (0.43) 45.97 (0.41) 16 62.80 (0.43) 54.93 (0.40)

SqueezeLLM 2.01 41.80 (0.41) 24.75 (0.36) 2.01 42.44 (0.41) 24.47 (0.36)
GPTVQ 1D 2.03 37.35 (0.40) 26.56 (0.37) 2.03 46.34 (0.41) 29.63 (0.38)
LNQ (Ours) 2.01 40.30 (0.40) 26.76 (0.37) 2.01 49.51 (0.42) 32.51 (0.39)
LNQ + GuidedQuant (Ours) 2.01 50.39 (0.43) 31.53 (0.39) 2.01 53.98 (0.43) 40.15 (0.41)

SqueezeLLM 3.03 57.55 (0.43) 40.59 (0.41) 3.02 61.16 (0.43) 49.94 (0.40)
GPTVQ 1D 3.03 54.92 (0.43) 41.08 (0.41) 3.03 60.38 (0.43) 52.06 (0.40)
LNQ (Ours) 3.03 56.85 (0.43) 42.18 (0.41) 3.02 60.61 (0.43) 51.62 (0.40)
LNQ + GuidedQuant (Ours) 3.03 58.16 (0.43) 43.38 (0.41) 3.02 61.00 (0.43) 52.67 (0.40)

SqueezeLLM 4.05 59.41 (0.43) 44.79 (0.41) 4.04 62.32 (0.43) 54.52 (0.40)
GPTVQ 1D 4.06 59.23 (0.43) 45.06 (0.41) 4.06 62.37 (0.43) 54.95 (0.40)
LNQ (Ours) 4.05 59.14 (0.43) 44.51 (0.41) 4.04 62.40 (0.43) 54.79 (0.40)
LNQ + GuidedQuant (Ours) 4.05 59.41 (0.43) 45.16 (0.41) 4.04 62.17 (0.43) 54.39 (0.40)

(Park et al., 2024b). Throughput is measured on an RTX 3090 GPU as the average of 5 runs, with standard deviation in
parentheses. Results confirm that our methods (LNQ and LNQ + GuidedQuant) achieve better perplexity while maintaining
the same throughput as other method using the identical kernel.

E.4. Evaluations on Zero-shot and Few-shot Downstream Benchmarks

In this section, we provide the evaluations on zero-shot and few-shot downstream tasks of our methods (LNQ and LNQ
+ GuidedQuant) alongside baselines (SqueezeLLM and GPTVQ 1D) under the weight-only scalar quantization settings,
using Llama-2-7B and Llama-2-13B models, in Table 12. The evaluation includes eight zero-shot tasks: BoolQ (Clark
et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi
et al., 2019), ARC-easy (Clark et al., 2018), ARC-challenge (Clark et al., 2018), and OBQA (Mihaylov et al., 2018). For a
few-shot benchmark, we include results on the MMLU (Hendrycks et al., 2021) benchmark in a 5-shot setting. We evaluate
on these tasks using version 0.4.3 of the lm-evaluation-harness library (Gao et al., 2024).

Table 12 reports both accuracy and standard error for all methods. We highlight the best-performing results, as well as
those whose accuracy falls within the top score ± standard error, under the same bit width constraint. The results show that
LNQ combined with GuidedQuant consistently matches or surpasses baseline performance, with notable improvements in
extreme quantization scenarios, such as 2-bit quantization.

E.5. Results on Varying the Number of Groups g

In this section, we present results on how varying the number of groups g (introduced in Section 3.2) affects performance,
focusing on whether fewer groups preserve accuracy or introduce trade-offs when averaging the Hessian within each group.
Table 13 summarizes the impact of changing g under a non-uniform scalar quantization scheme. While increasing g can
moderately improve results in extreme cases (e.g., quantizing models into 2 bits), performance differences across the number
of groups remain minimal in other scenarios. Note that for weight-only quantization experiments, we chose g = 4 for
Llama-2-7B and Llama-2-13B, and g = 2 for Llama-2-70B. Still, smaller number of groups are sufficient for achieving
most of the performance gains, making them a practical choice for resource-constrained scenarios.

E.6. Ablation Study on Assignments Optimization in LNQ

In this section, we evaluate our choice of using cyclic CD algorithm instead of GPTQ to solve Problem (8) for a fixed
codebook c(j) in LNQ. In particular, we compare two variants of LNQ with the GuidedQuant objective: the variant described
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Table 13. Results with different number of groups g in weight-only post-training quantization results on non-uniform scalar quantization
format, without fine-tuning to the end-to-end loss. Wiki2 and C4 denotes perplexity on WikiText2 and C4, respectively, which are
measured with the context size of 4096.

Number of Llama-2-7B Llama-2-13B Llama-2-70B

Method groups g Bits↓ Wiki2↓ C4↓ Bits↓ Wiki2↓ C4↓ Bits↓ Wiki2↓ C4↓
Original – 16 5.12 6.63 16 4.57 6.05 16 3.12 4.97

LNQ – 2.01 23.31 26.71 2.01 8.78 11.80 2.01 5.23 7.31
LNQ + GuidedQuant 1 2.01 9.00 11.35 2.01 7.32 9.29 2.01 5.11 7.06

2 2.01 8.82 11.20 2.01 7.18 9.22 2.01 5.04 7.04
4 2.01 8.83 11.15 2.01 7.26 9.17 – – –

LNQ – 3.03 5.89 7.74 3.02 5.02 6.68 3.01 3.50 5.31
LNQ + GuidedQuant 1 3.03 5.55 7.23 3.02 4.92 6.49 3.01 3.46 5.27

2 3.03 5.57 7.22 3.02 4.92 6.49 3.01 3.47 5.27
4 3.03 5.57 7.22 3.02 4.91 6.49 – – –

LNQ – 4.05 5.26 6.82 4.04 4.67 6.17 4.03 3.20 5.04
LNQ + GuidedQuant 1 4.05 5.21 6.75 4.04 4.65 6.14 4.03 3.20 5.03

2 4.05 5.22 6.75 4.04 4.65 6.14 4.03 3.20 5.03
4 4.05 5.21 6.75 4.04 4.65 6.14 – – –

Table 14. Ablation study on optimizing discrete assignment P in Problem (8). We compare two algorithms for optimizing discrete
assignments; GPTQ and coordinate descent algorithm. Wiki2 and C4 denotes perplexity on WikiText2 and C4, respectively, which are
measured with the context size of 4096.

Optimization Llama-2-7B Llama-2-13B Llama-2-70B

Method method for P Bits↓ Wiki2↓ C4↓ Bits↓ Wiki2↓ C4↓ Bits↓ Wiki2↓ C4↓
Original – 16 5.12 6.63 16 4.57 6.05 16 3.12 4.97

LNQ + GQuant GPTQ 2.01 9.65 11.83 2.01 7.96 11.65 2.01 4.92 6.93
Coordinate Descent 2.01 8.83 11.15 2.01 7.26 9.17 2.01 5.04 7.04

LNQ + GQuant GPTQ 3.03 5.58 7.25 3.02 4.91 6.50 3.01 3.47 5.27
Coordinate Descent 3.03 5.57 7.22 3.02 4.91 6.49 3.01 3.47 5.27

LNQ + GQuant GPTQ 4.05 5.22 6.75 4.04 4.65 6.14 4.03 3.20 5.03
Coordinate Descent 4.05 5.21 6.75 4.04 4.65 6.14 4.03 3.20 5.03

in Section 4.2, which updates the assignments using cyclic CD, and alternative variant that uses GPTQ for assignments
updates. Both variants update the codebook using the closed-form solution in (9). We report the results on Llama-2-7B
model, evaluated on WikiText2 and C4 datasets, in Table 14. Our experiments show that CD consistently outperforms or
matches GPTQ, validating our choice of using CD to optimize the assignment matrix P(j).

E.7. End-to-end Fine-tuning Results

Recent weight-only quantization methods have explored fine-tuning quantized models using extensive data and compute to
improve performance for low-bit models (Tseng et al., 2024a;b; Malinovskii et al., 2024a). In Table 15, we summarize the
performance of quantized models after further fine-tuning on end loss using more data and compute for scalar weight-only
quantization. We implement PV-Tuning (Malinovskii et al., 2024a) in non-uniform scalar quantization setting and report the
performance of both our model and SqueezeLLM after fine-tuning with it. For SqueezeLLM and LNQ + GuidedQuant, we
obtain the results using the official open-source implementation of PV-Tuning. Our fine-tuning setup uses training data from
RedPajama dataset (Computer, 2023), with a context size of 4096 tokens, a batch size of 128 sentences, and fine-tuning for
128 steps in 2-bit quantization and 32 steps in 3-bit quantization. For GPTQ (uniform scalar quantization), we report the
results from the PV-Tuning paper (Malinovskii et al., 2024a).
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Table 15. Weight-only quantization results on Llama-2-7B model after fine-tuning with end-to-end loss. For scalar quantization methods,
we report the performance after fine-tuning with PV-Tuning (Malinovskii et al., 2024a).

Method Bits↓ Wiki2↓ C4↓
Type Original 16 5.12 6.63

Weight-only
Scalar

GPTQ 2.14 8.43 10.82
SqueezeLLM 2.01 6.78 8.82
LNQ + GQuant (Ours) 2.01 6.53 8.53

SqueezeLLM 3.03 5.53 7.23
LNQ + GQuant (Ours) 3.03 5.50 7.14

Table 16. Weight-and-activation quantization results on Llama-2-7B model, while quantizing weights into 2- and 3-bits. Wiki2 denotes
perplexity on Wikitext2 with the context size of 2048. WxAyKVz indicates quantizing weights into x-, activations into y-, and KV cache
to z-bits, respectively.

Method Bits↓ Wiki2↓
Original 16 5.12

SpinQuant W2A4KV4 100.22
SpinQuant + GQuant (Ours) W2A4KV4 36.05

SpinQuant W3A4KV4 6.61
SpinQuant + GQuant (Ours) W3A4KV4 6.29

The results in Table 15 show that our method remains superior, though the gap narrows at larger bit-widths. We hypothesize
that existing PTQ methods, which rely on less accurate surrogate objectives, have smaller gaps at higher bit-widths, allowing
fine-tuning to narrow the difference. However, in more extreme compression settings, where the gap is wider, our method
maintains its advantage even after fine-tuning.

E.8. Results on Smaller Bit-width in Weight-and-activation Quantization

In weight-and-activation quantization, we further conduct an additional experiments with lower bit-widths for weights,
specifically 2-bit and 3-bit, while keeping activations and KV caches at 4-bit precision (denoted as W2A4KV4 and
W3A4KV4, respectively), on Llama-2-7B model. The results, shown in Table 16, demonstrate that GuidedQuant outperforms
baseline methods by larger margin in these more extreme scenarios, highlighting the strength of our approach under stricter
bit-width constraints.

E.9. Comparison with mixed-precision variant of SqueezeLLM

The dense-and-sparse variant of SqueezeLLM (Kim et al., 2024), which preserves a small fraction of weights in 16-bit
precision to maintain accuracy, is orthogonal to our method and can be combined with it. Accordingly, in Table 17, we
report results for SqueezeLLM, LNQ, and LNQ + GuidedQuant methods, with the dense-and-sparse approach applied to all
of them, using the identical experimental setting with Table 3. Following the original SqueezeLLM paper, we retain 0.45%
of the weights in 16-bit and evaluate with 2-, 3-, and 4-bit quantization on the Llama-2-7B model. The results show that
LNQ with GuidedQuant consistently outperforms the baselines in the dense-and-sparse setting as well, demonstrating the
superiority and robustness of our method.

E.10. Results on Different QTIP Variants (1MAD, 3INST, HYB)

The original QTIP paper introduced three variants of their method: 1MAD, 3INST, and HYB (Tseng et al., 2024b). Both
1MAD and 3INST are look-up table-free methods, while HYB incorporates a small look-up table that fits within the L1
cache of modern GPUs. The authors reported post-training quantization results without fine-tuning for the 1MAD and
3INST formats, while quantization with fine-tuning was reported for the HYB format. To maintain consistency, we report
the better-performing variant between 1MAD and 3INST in Table 4 for both QTIP and our method (QTIP + GuidedQuant).
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Table 17. Weight-only scalar post-training quantization results on Llama-2-7B model, evaluated under a dense-and-sparse setting,
preserving 0.45% of the weights in 16 bits. Wiki2 and C4 denotes perplexity on WikiText2 and C4, respectively. The perplexity is
measured with the context size of 4096.

Method Bits↓ Wiki2↓ C4↓
Original 16 5.12 6.63

SqueezeLLM (0.45%) 2.22 10.64 14.10
LNQ (0.45%) (Ours) 2.22 8.26 10.34
LNQ + GuidedQuant (0.45%) (Ours) 2.22 8.00 10.18

SqueezeLLM (0.45%) 3.24 5.58 7.23
LNQ (0.45%) (Ours) 3.24 5.49 7.15
LNQ + GuidedQuant (0.45%) (Ours) 3.24 5.48 7.12

SqueezeLLM (0.45%) 4.27 5.22 6.75
LNQ (0.45%) (Ours) 4.27 5.20 6.74
LNQ + GuidedQuant (0.45%) (Ours) 4.27 5.20 6.73

For completeness, the full performance results across 1MAD and 3INST are provided in Table 18.

It is worth noting that QTIP has only open-sourced the CUDA acceleration kernel for HYB, although it is theoretically
possible to implement kernels for 1MAD and 3INST. Therefore, we also include the post-training quantization results
(without fine-tuning) for the HYB format as well, summarized in Table 18. The results show that the variations among QTIP
methods have minimal impact on the results, and our method consistently outperforms all others in Table 4, regardless of the
QTIP variant chosen.

E.11. Discussion on Block-diagonal Fisher Approximation

In this section, we review existing neural network compression methods that use a block-diagonal Fisher matrix approxi-
mation of the Hessian and highlight their differences from GuidedQuant. In particular, we discuss WoodFisher (Singh &
Alistarh, 2020) for pruning CNNs, Optimal BERT Surgeon (Kurtic et al., 2022) for pruning BERT models, and BRECQ (Li
et al., 2021) for quantizing CNNs.

WoodFisher and Optimal BERT Surgeon use blocks of arbitrary size B ×B along the diagonal to reduce the storage cost.
WoodFisher explores B size of {20, 100, 1000, 5000, 12288, 37000} in ResNet-20 (He et al., 2015), while Optimal BERT
Surgeon uses B = 50, since the larger block size does not fit in the memory. BRECQ leaves the blocks that correspond
to the parameters within each residual block in CNNs, and further uses a first-order Taylor approximation on the residual
block’s outputs to estimate the second-order error for each block to avoid the need to handle prohibitively large matrices.

The proposed GuidedQuant maintains the blocks corresponding to each output channel, resulting the B size to be 4096 to
11008 for Llama-2-7B model. Directly computing these block-diagonal matrices would be infeasible, requiring over 110
TB for and more than 13, 000 GPU hours on RTX 6000 Ada GPU for Llama-2-7B. To address this, GuidedQuant averages
the Fisher diagonal blocks within each group, approximately preserving dependencies within each output channel at the
scale of modern LLMs. We present the theoretical complexity of GuidedQuant in Section 3.2, report its practical cost in
Table 9, and report the performance of approximating more (opting for smaller number of groups) in Appendix E.5.

In Figures 3 and 4, we illustrate submatrices of the scaled Fisher information matrix, nF(l)
j × 106, for the linear layers in

the first Transformer block of the Llama-2-7B model, alongside corresponding approximation results. Here, n denotes
the number of calibration data, and the results are computed using calibration data from the RedPajama dataset, which
consists of 1024 sentences with 4096 tokens each. Since each linear layer in the model contains din × dout weights, fully
visualizing its Fisher information matrix would yield a matrix of size dindout×dindout, which is computationally prohibitive.
Therefore, we restrict our visualization to the submatrix corresponding to the first two output channels of each layer. Since
each output channel has din weights, this results in visualizing a 2din × 2din matrix. Within the Transformer block of the
Llama-2-7B model, there are seven linear layers: self attn.q proj, self attn.k proj, self attn.v proj,
self attn.o proj, mlp.gate proj, mlp.up proj, and mlp.down proj. For the first six layers, din = 4096,
so we visualize an 8192× 8192 matrix, while for the final layer (mlp.down proj) with din = 11008, an 22016× 22016
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Table 18. Weight-only post-training quantization results on different QTIP variants (1MAD, 3INST, HYB), without fine-tuning to the
end-to-end loss. Wiki2 and C4 denotes perplexity on WikiText2 and C4, respectively, which are measured with the context size of 4096.

Llama-2-7B Llama-2-13B Llama-2-70B

Variant Method Bits↓ Wiki2↓ C4↓ Wiki2↓ C4↓ Wiki2↓ C4↓
Original 16 5.12 6.63 4.57 6.05 3.12 4.97

1MAD QTIP 2.00 7.05 9.14 5.59 7.46 3.87 5.70
QTIP + GQuant (Ours) 2.00 6.11 7.99 5.33 7.05 3.80 5.61

QTIP 3.00 5.38 6.99 4.74 6.28 3.27 5.09
QTIP + GQuant (Ours) 3.00 5.28 6.87 4.71 6.22 3.25 5.08

QTIP 4.00 5.17 6.71 4.62 6.10 3.16 5.00
QTIP + GQuant (Ours) 4.00 5.16 6.68 4.61 6.09 3.15 5.00

3INST QTIP 2.00 6.82 8.96 5.52 7.39 3.90 5.69
QTIP + GQuant (Ours) 2.00 6.16 7.99 5.33 7.04 3.82 5.61

QTIP 3.00 5.40 7.01 4.74 6.28 3.27 5.09
QTIP + GQuant (Ours) 3.00 5.30 6.87 4.70 6.22 3.26 5.08

QTIP 4.00 5.17 6.71 4.62 6.10 3.16 5.00
QTIP + GQuant (Ours) 4.00 5.16 6.68 4.61 6.09 3.15 5.00

HYB QTIP 2.00 6.84 9.03 5.62 7.46 3.93 5.74
QTIP + GQuant (Ours) 2.00 6.19 8.06 5.36 7.10 3.84 5.64

QTIP 3.00 5.39 7.03 4.76 6.31 3.28 5.10
QTIP + GQuant (Ours) 3.00 5.32 6.89 4.72 6.24 3.27 5.09

QTIP 4.00 5.19 6.73 4.63 6.12 3.17 5.01
QTIP + GQuant (Ours) 4.00 5.18 6.70 4.61 6.10 3.16 5.00

matrix is visualized.

We compare two approximation strategies:

• WoodFisher: This approach retains the blocks size of B × B along the diagonal. The storage requirement for this
method is B din dout.

• GuidedQuant: Here, the block size is set to din × din and blocks are averaged within groups. This strategy requires
g d2in storage, where g is the number of groups.

To ensure a fair comparison, we choose the WoodFisher block size as B = dg dout/dine. Specifically, we choose g = 4
for the GuidedQuant, which results in B = 4 for the self-attention projection layers, B = 2 for the mlp.gate proj and
mlp.up proj layers, and B = 11 for the mlp.down proj layer.

The visualizations reveal that the original Fisher information matrix exhibits strong off-diagonal values and a prominent
block-diagonal structure with blocks of size din × din. This indicates stronger interactions among weights within the same
output channel compared to those across different channels. Overall, the GuidedQuant approximation captures significantly
more of this structural detail than the WoodFisher-style block-diagonal approximation, which retains only arbitrarily sized
diagonal blocks.
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Figure 3. Visualization of the scaled Fisher information matrix, nF(l)
j ×10

6, for the first two output channels in the self attn.q proj,
self attn.k proj, self attn.v proj, and self attn.o proj layer of the first Transformer block in Llama-2-7B model.
Left: the original Fisher matrices; Middle: the WoodFisher style block-diagonal approximation (block size B = 4 for all of the layers);
Right: the GuidedQuant approximation (the number of groups g = 4). Both approximations are compared under an equal storage budget.
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Fisher (Original) WoodFisher GuidedQuant (Ours)
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Figure 4. Visualization of the scaled Fisher information matrix, nF(l)
j × 106, for the first two output channels in the mlp.gate proj,

mlp.up proj, and mlp.down proj layer of the first Transformer block in Llama-2-7B model. Left: the original Fisher matrices;
Middle: the WoodFisher style block-diagonal approximation (block size B = 2, B = 2, and B = 11, respectively); Right: the
GuidedQuant approximation (the number of groups g = 4). Both approximations are compared under an equal storage budget.
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