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Abstract

As AI systems increasingly conduct complex multi-turn interactions, reliable eval-1

uation becomes critical yet challenging. Current LLM-as-judge approaches suffer2

from severe biases and struggle with lengthy conversations, while monolithic eval-3

uation misses quality variations across dialogue segments. We present MELISSA,4

a framework that hierarchically decomposes conversations and learns bias cor-5

rections from human judgments, requiring no model fine-tuning. Evaluating 1006

AI-conducted technical interviews with expert annotations reveals surprising in-7

sights: bias correction alone reduces error by over 50%, indicating LLMs struggle8

with scale calibration rather than quality discrimination; properly aligned GPT-9

4o-mini outperforms unaligned Claude 3.51, enabling order-of-magnitude cost10

reductions; and optional audit mechanisms show mixed results—while potentially11

providing confidence signals, they often introduce unnecessary edits that degrade12

performance when models already produce well-calibrated evaluations, highlight-13

ing the importance of empirical validation over intuitive design. These findings14

demonstrate that simple calibration transforms weak models into reliable judges,15

while reinforcing that high-quality human data remains essential for automated16

evaluation systems.17

1 Introduction18

The proliferation of AI systems in complex, multi-turn interactions—from customer service to19

technical interviews—has created an urgent need for reliable evaluation methods. Traditional human20

evaluation, while remaining the gold standard, faces scalability constraints: expert annotators are21

expensive, evaluation is time-consuming, and maintaining consistency across evaluators proves22

challenging. These limitations have driven the development of automated evaluation approaches,23

with the LLM-as-judge paradigm emerging as a promising solution. Early studies reported substantial24

agreement between LLM judges and human evaluators [Zheng et al., 2023], spurring adoption across25

various applications including dialogue systems [Fu et al., 2023], chatbot responses [Wang et al.,26

2023], and complex reasoning tasks [Liu et al., 2023].27

However, systematic investigations have revealed fundamental reliability issues in LLM-based evalua-28

tion. Position bias—where models favor responses based on their position rather than quality—causes29

consistency rates as low as 22.7% [Shi et al., 2024]. Self-enhancement bias leads models to overrate30

their own outputs by 8.91% on average [Ye et al., 2024]. Even minor prompt template variations can31

cause 76-point accuracy swings, suggesting extreme brittleness in evaluation behavior [Sclar et al.,32

2023]. The CALM framework identifies 12 distinct bias types affecting LLM judges, with robustness33

rates varying from 0.566 to 0.832 across models and tasks. While architectural innovations like34

PORTIA demonstrate consistency improvements through specialized designs [Li et al., 2024], these35

approaches require substantial engineering effort and still leave significant reliability gaps.36

1All references to Claude models in this paper refer to the Sonnet variant of each version.
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The challenges compound dramatically in multi-turn settings, where conversations span dozens37

of exchanges across diverse topics. Current monolithic approaches attempt global assessment of38

entire conversations, missing critical quality variations across segments. LLMs exhibit 15-30%39

performance degradation when evaluating multi-turn versus single-turn interactions [Bai et al., 2024,40

MT-Eval Team, 2024], struggle with dialogue-level phenomena like consistency and coherence41

[Chen et al., 2024], and fail to capture professional assessment nuances [Kwon et al., 2024]. As42

conversations grow longer—our technical interviews often exceed 20 minutes—computational costs43

become prohibitive when using state-of-the-art models, while smaller models lack the capability for44

accurate holistic assessment. Existing hierarchical approaches show promise: LLM-Rubric achieves45

2× error reduction through multi-dimensional evaluation [Hashemi et al., 2024], HRM proves more46

stable across granularities [Wang et al., 2025], and ConvBench reveals evaluation failure cascades47

[Liu et al., 2024a]. Yet none address the fundamental calibration problem we identify: LLMs can48

distinguish quality levels but systematically miscalibrate their scores relative to human scales.49

We introduce MELISSA (Multi-level Evaluation with LLM-based Integrated Scoring and Alignment),50

a framework combining hierarchical decomposition with learned bias correction that requires no51

model fine-tuning and can be implemented with standard prompting. Our contributions include: (1)52

Novel dataset: 100 AI-conducted technical interviews by Zara [Zhou et al., 2024, Allbert et al.,53

2025] with expert human annotations, addressing the critical gap in publicly available benchmarks54

for extended multi-turn evaluation. (2) Practical framework: MELISSA employs L hierarchical55

levels with relevance weighting, N independent evaluation passes for robustness, and constrained56

optimization for learning weights and biases. The framework requires only standard LLM API57

calls—no fine-tuning, specialized training, or reward model modifications. (3) Critical insights58

on bias correction: Through systematic ablation, we demonstrate that bias correction dominates59

performance improvements—reducing error by over 50% even with uniform weights—while weight60

optimization provides smaller refinements. This finding suggests LLMs’ primary challenge lies61

in scale calibration rather than quality discrimination, challenging prior emphasis on architectural62

complexity [Wang et al., 2024, Liu et al., 2024b, He et al., 2024]. (4) Enabling weak models:63

Proper alignment enables dramatically smaller models to match larger ones: calibrated GPT-4o-64

mini outperforms unaligned Claude 3.5, reducing evaluation costs by orders of magnitude while65

maintaining quality. (5) Understanding audit mechanisms: Our experiments reveal that prompting66

LLMs to audit their own evaluations often triggers unnecessary edits that degrade performance—some67

models show 80% deterioration. This finding, supporting literature on self-correction failures [Kamoi68

et al., 2024], led us to make auditing optional and highlights the importance of empirical validation69

over intuitive design choices. (6) Practical evaluation metric: We propose Threshold Absolute70

Error (TAE) as a simple complement to MAE, recognizing that predictions within ±0.5 of targets are71

functionally equivalent in discrete 5-point scoring systems commonly used in practice.72

While recent benchmarks expand evaluation scope—Arena Hard’s 500 queries [LMSYS Team, 2024],73

WildBench’s 0.98 correlation with humans [Lin et al., 2024], LiveBench’s contamination resistance74

[LiveBench Team, 2024]—MELISSA provides a complementary process framework rather than fixed75

test sets. Our results reinforce that high-quality human data remains fundamental: the performance76

ceiling of any learning-based evaluation system is bounded by its training data quality [Northcutt et al.,77

2021, Plank, 2022]. As automated evaluation becomes prevalent, human judgment paradoxically78

becomes more, not less, critical for maintaining alignment with human values.79

2 The MELISSA Framework80

MELISSA evaluates multi-turn interactions through a systematic pipeline that decomposes complex81

conversations into a hierarchy of L evaluation levels with relevance-aware aggregation.82

2.1 Overview and Problem Setup83

Let C be a conversation with T turns between agents (human or artificial). We decompose this conver-84

sation into L hierarchical levels, where level ℓ ∈ {1, . . . , L} contains units Uℓ = {uℓ,1, . . . , uℓ,|Uℓ|}.85

Each unit represents a conversational segment at that level’s granularity—individual turns at Level 1,86

topical sections at intermediate levels, and the complete conversation at Level L.87

For each criterion c in the evaluation criteria set C, MELISSA produces a final score Sc by hierarchi-88

cally aggregating evaluations across all levels, with relevance weighting and optional bias correction.89
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We use N independent evaluation trials per unit for robustness, with scores denoted sinit
c,ℓ,u,n for initial90

evaluations and saudit
c,ℓ,u,n when optional auditing is enabled. Relevance weights rc,u determine each91

unit’s contribution, leading to relevance-weighted means s̄c,ℓ at each level. The framework learns92

weights wc and bias terms bc to align with human judgments. See Appendix A for complete notation.93

2.2 Hierarchical Decomposition94

The framework operates on L hierarchical levels, where L ≥ 2 can be chosen based on application95

requirements. The optimal choice of L and unit boundaries depend on both the application domain96

and specific evaluation criterion.97

General level structure. The hierarchical decomposition typically follows this pattern: Level 198

captures individual exchanges between agents (turns), assessing immediate responsiveness and local99

coherence. Intermediate levels (2 through L− 1) contain progressively larger conversational units100

that group related content, such as topical sections or conversation phases. Level L encompasses the101

complete interaction transcript, evaluating overall trajectory and outcomes. This multi-granularity102

approach enables MELISSA to capture both local quality variations and global coherence patterns103

that single-level evaluation would miss.104

Criterion-specific adaptation. Different criteria may benefit from different hierarchical structures105

even within the same conversation. For instance, in a technical interview, "Technical Depth" might106

decompose along topical boundaries (algorithms, system design, databases), while "Communication107

Skills" might align better with conversational phases (introduction, technical discussion, closing).108

This flexibility enables precise evaluation by matching the hierarchical structure to how each quality109

dimension naturally manifests. The key insight is that optimal decomposition varies not just by110

conversation type but by what aspect of quality is being measured. See Appendix G for more details.111

2.3 Relevance Weighting112

Not all conversational units contribute equally to every evaluation criterion. We introduce relevance113

weighting to focus evaluation on pertinent content:114

rc,u = frel(u, c) ∈ [0, 1] or {0, 1}, (1)

where frel is typically implemented via an LLM prompted to assess the relevance of unit u for115

criterion c. This can be:116

• Binary filtering (rc,u ∈ {0, 1}): Excludes irrelevant units entirely117

• Continuous weighting (rc,u ∈ [0, 1]): Assigns importance weights118

For example, greeting exchanges might receive rTQQ,u = 0 for Technical Question Quality while119

rHLI,u = 1 for Human-like Interaction.120

2.4 Multi-Pass Evaluation with Optional Audit121

To ensure statistical robustness, each evaluation unit is assessed through N independent trials:122

sinit
c,ℓ,u,n = feval(u, c, ℓ) ∀u ∈ Uℓ, n ∈ {1, . . . , N} (2)

where feval is realized through an LLM with appropriate prompting that specifies the evaluation123

criterion, level context, and scoring scale. Multiple trials improve robustness through averaging and124

enable variance assessment. When additional confidence is needed, an optional audit stage reviews125

each initial score:126

saudit
c,ℓ,u,n = faudit(u, s

init
c,ℓ,u,n, c) (3)

where faudit prompts an LLM to review and potentially revise the initial score. The audit mechanism127

is particularly useful when initial evaluations show high variance or when deployment requires128

additional confidence guarantees.129
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2.5 Hierarchical Aggregation130

Algorithm 1 MELISSA Evaluation Pipeline
Require: Conversation C, Criteria C, Parameters (N ,

L, audit flag)
Ensure: Final scores {Sc} for all criteria

1: Decompose C into L hierarchical levels
{U1, . . . , UL}

2: for each criterion c ∈ C do
3: Assess relevance rc,u for all units using Eq. 1
4: Perform N independent evaluations for relevant

units using Eq. 2
5: if audit enabled then Review each score using

Eq. 3
6: Compute relevance-weighted level scores s̄c,ℓ

using Eq. 4
7: if human scores available then
8: Learn optimal w∗

c and b∗c via constrained
optimization (Section 3)

9: else Use uniform weights: wc,ℓ = 1/L, bc = 0
10: Aggregate final score using Eq. 5
11: end for
12: return {Sc : c ∈ C}

Level scores are computed using relevance-131

weighted averaging:132

s̄c,ℓ =

∑
u∈Uℓ

rc,u ·
(

1
N

∑N
n=1 sc,ℓ,u,n

)
∑

u∈Uℓ
rc,u

(4)

where sc,ℓ,u,n = saudit
c,ℓ,u,n if audit is enabled, oth-133

erwise sc,ℓ,u,n = sinit
c,ℓ,u,n. For binary relevance134

weights, this simplifies to averaging only over135

units where rc,u = 1. Final scores combine136

level scores with learned or default weights:137

Sc = αc ·

(
L∑

ℓ=1

wc,ℓ · s̄c,ℓ

)
+ bc (5)

where wc = (wc,1, . . . , wc,L) are level weights,138

αc is a scale alignment factor (typically 1 when139

scales match), and bc is a bias correction term.140

Parameters can be set to defaults (uniform141

weights, αc = 1, bc = 0) or learned from human judgments (Section 3).142

Algorithm 1 presents the simplified MELISSA pipeline. See Algorithm 2 in Appendix B for a more143

detailed implementation.144

3 Parameter Learning145

While MELISSA can operate with default uniform weights, learning optimal parameters from human146

judgments significantly improves alignment and reduces evaluation error. This section describes the147

optimization procedure for learning level weights and bias terms.148

3.1 Optimization Objective149

Given m conversations with human scores {y(i)c }mi=1 for criterion c, we minimize the mean squared150

error between predictions and human judgments:151

min
wc∈RL,bc∈R

m∑
i=1

(
y(i)
c − αc ·

L∑
ℓ=1

wc,ℓ · s̄(i)c,ℓ + bc
)2

(6)

subject to
L∑

ℓ=1

wc,ℓ = 1, wc,ℓ ≥ 0 ∀ℓ ∈ {1, . . . , L}

where S(i)
c = αc ·

∑L
ℓ=1 wc,ℓ · s̄(i)c,ℓ + bc is our prediction for sample i, and s̄

(i)
c,ℓ denotes the relevance-152

weighted level score (as defined in Eq. 4) computed for sample i at level ℓ. The constraints ensure153

weights form a valid probability distribution over levels. We fit this model using MSE loss to ensure154

strict alignment during optimization, penalizing all deviations from human judgments.155

where ŷ
(i)
c is our prediction for sample i, and s̄

(i)
c,ℓ denotes the relevance-weighted level score (as156

defined in Eq. 4) computed for sample i at level ℓ. The scale alignment factor αc is fixed as the ratio157

between the maximum possible human score and the maximum model-generated score, ensuring158

proper scale matching when these differ. In our experiments with matching 1-5 scales, αc = 1. The159

constraints ensure weights form a valid probability distribution over levels.160

This is a convex optimization problem (quadratic objective with linear constraints), which we solve161

using standard convex optimization solvers. While MELISSA can operate with default uniform162
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weights (wc = 1/L) and zero bias (bc = 0), our experiments (Section 5) demonstrate that learning163

these parameters from human judgments significantly improves alignment. We conduct ablation164

studies to analyze the relative importance of weight optimization versus bias correction, revealing165

insights into how LLM judges differ from human evaluators and how proper alignment enables166

smaller models to achieve competitive performance.167

3.2 Evaluation Metrics168

We distinguish between training and evaluation metrics:169

Training: Mean Squared Error (MSE) as in Eq. 6 enforces strict alignment during optimization,170

penalizing all deviations from human judgments regardless of magnitude. This stricter approach171

during training ensures the model learns accurate calibration across the entire score range. The172

smooth gradients provided by MSE are an additional benefit for optimization stability.173

Evaluation: Before introducing our metrics, it is important to understand the nature of predicted and174

ground truth values in our framework. MELISSA’s raw predictions from individual LLM evaluations175

are integers on the 1-5 scale when N = 1. However, our final predictions ŷci are real-valued due176

to two factors: (1) averaging across N independent trials, and (2) the weighted linear combination177

across levels with learned weights and bias. Ground truth human scores yci are inherently integers178

when provided by a single expert, but become non-integer when averaged across multiple experts.179

Specifically, with k experts providing integer scores, the averaged ground truth can only take values180

from the set { j
k : j ∈ Z, k ≤ j ≤ 5k}. See Section 4 for details on our human evaluation protocol.181

We report two complementary metrics:182

• Mean Absolute Error (MAE): Standard metric for comparison with prior work183

MAE =
1

m

m∑
i=1

|yi − ŷi| (7)

• Threshold Absolute Error (TAE): Acknowledges that predictions within ±τ of the target184

are functionally equivalent:185

TAEτ (y, ŷ) = max(0, |y − ŷ| − τ) (8)

For our 1-5 scale evaluations, we use τ = 0.5, recognizing that differences smaller than half a scale186

point are practically meaningless. This threshold is particularly appropriate because in real-world187

applications, scores are typically rounded to the nearest integer for display and decision-making on188

Likert scales. With TAE, a prediction of 3.4 receives zero loss when the ground truth is 3 (since189

|3.4− 3| = 0.4 < 0.5), correctly recognizing that both values round to the same integer. By training190

with the stricter MSE but evaluating with the practical TAE, we ensure rigorous learning while191

measuring what actually matters for deployment.192

4 Dataset193

The Critical Role of Human Data in LLM-as-Judge Systems. While LLM-as-judge frameworks194

promise scalable evaluation, their effectiveness fundamentally depends on high-quality human ground195

truth for alignment and validation. Paradoxically, the rise of automated evaluation makes human data196

more crucial, not less—without rigorous human judgments to anchor LLM evaluations, these systems197

risk drifting into self-referential loops that diverge from human values. We present a novel dataset of198

100 AI-conducted technical interviews with expert human evaluations, uniquely combining several199

critical properties: extended interactions (typically 20+ minutes), genuine technical complexity from200

real interview scenarios, and multiple expert annotations per conversation—characteristics essential201

for training and evaluating hierarchical evaluation frameworks like MELISSA.202

AI-Conducted Technical Interviews. Our dataset consists of 100 technical interviews conducted by203

Zara [Zhou et al., 2024], an industry-grade AI interviewer trained to conduct professional technical204

assessments. Zara’s training leverages speech-to-text, LLM, and text-to-speech pipelines to create205

a naturalistic interview experience [Allbert et al., 2025], enabling it to effectively probe technical206

competencies while maintaining conversational flow. Each interview in our dataset represents207

a genuine interaction between human candidates and Zara, covering technical topics in Python,208
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PL/SQL, and data analytics. Unlike scripted dialogues or synthetic conversations, these interviews209

reflect the full complexity of professional technical assessment: follow-up questions, clarification210

requests, partial answers, and the natural flow of technical discussion. The extended length of these211

interviews (often exceeding 20 minutes) is particularly valuable for hierarchical evaluation research.212

Short conversations can be evaluated holistically without decomposition, but lengthy, multi-topic213

interactions like ours necessitate the hierarchical approach that MELISSA provides. This positions214

our dataset at the intersection of two critical trends: the rise of AI agents in professional settings and215

the need for reliable evaluation methods for such complex, extended interactions.216

Expert Human Evaluation Protocol. Recognizing that human judgment quality directly determines217

the ceiling for LLM-as-judge performance, we implemented a rigorous multi-rater evaluation protocol.218

Three experts independently scored each interview on both Technical Question Quality (TQQ) and219

Human-like Interaction (HLI) using a 1-5 scale, with accompanying confidence scores (1-3 scale)220

enabling quality-aware aggregation. After data cleaning, final scores averaged the remaining high-221

confidence evaluations, ensuring robust ground truth that captures both agreement and legitimate222

disagreement. Human evaluators followed structured guidelines aligned with MELISSA’s prompts223

(Appendices E and F), ensuring consistency between human and automated assessment. This careful224

attention to human data quality reflects a fundamental principle: the performance ceiling of any225

learning-based evaluation system is bounded by its training data quality [Northcutt et al., 2021, Plank,226

2022].227

5 Experimental Evaluation228

5.1 Experimental Setup229

We evaluate MELISSA on the dataset of 100 AI-conducted technical interviews described in Sec-230

tion 4. Our experiments assess multiple aspects of the framework: alignment configurations, audit231

effectiveness, hierarchical decomposition value, and training loss comparisons.232

MELISSA configuration. We instantiate MELISSA with L = 3 levels: individual turns (Level 1),233

topical sections (PYTHON, PL/SQL, DATA ANALYTICS) at Level 2, and complete conversations234

(Level 3). Each evaluation uses N = 5 independent trials. With both human and model scores235

on 1-5 scales, the scale alignment factor αc = 1 throughout. For relevance filtering, since nearly236

all components in technical interviews contribute to both Technical Question Quality (TQQ) and237

Human-like Interaction (HLI) criteria, we set the relevance function to the constant frel(u, c) = 1,238

effectively including all units. In other applications with more irrelevant content (e.g., lengthy239

off-topic discussions), relevance filtering would provide computational savings.240

Alignment configurations. We conduct systematic ablation studies across four configurations:241

• No Alignment (NA): Uniform weights wc = 1/3, bias bc = 0242

• Bias Only (B): Uniform weights wc = 1/3, optimized bias bc243

• Weight Alignment (WA): Optimized weights wc, bias bc = 0244

• Weight and Bias (WA+B): Both weights and bias optimized245

Models evaluated. We test five LLM judges: GPT-4o, GPT-4o-mini, Claude 3.5, Claude 3.7, and246

Claude 4, evaluating on both Technical Question Quality (TQQ) and Human-like Interaction (HLI)247

criteria.248

Metrics. We report Mean Absolute Error (MAE) for comparison with prior work and Threshold249

Absolute Error (TAE) with τ = 0.5 for practical assessment. Additionally, we compare training with250

MSE versus TAE loss functions.251

5.2 Results and Analysis252

5.2.1 Main Results: Alignment Effectiveness253

Table 1 presents both MAE and TAE results across models and alignment configurations:254

Finding 1: Bias correction dominates performance improvements. Bias-only alignment (B)255

consistently outperforms weight-only alignment (WA) across both metrics. For Claude 3.5’s TQQ,256
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Table 1: Performance on TQQ and HLI. Both MAE and TAE (τ = 0.5) reported (lower is better).

Criterion Metric Config Model
Claude 3.5 Claude 3.7 Claude 4 GPT-4o GPT-4o-mini

TQQ

MAE

NA 0.955 0.836 1.439 0.532 1.092
WA 0.867 0.822 1.285 0.500 1.040
B 0.424 0.458 0.570 0.415 0.559
WA+B 0.425 0.398 0.454 0.407 0.405

TAE

NA 0.205 0.217 0.513 0.183 0.291
WA 0.137 0.232 0.349 0.148 0.258
B 0.120 0.094 0.175 0.088 0.128
WA+B 0.121 0.096 0.138 0.085 0.101

HLI

MAE

NA 0.517 0.405 0.612 0.388 0.563
WA 0.512 0.386 0.642 0.327 0.471
B 0.338 0.408 0.441 0.408 0.492
WA+B 0.354 0.381 0.419 0.394 0.451

TAE

NA 0.073 0.099 0.066 0.066 0.111
WA 0.055 0.084 0.068 0.055 0.091
B 0.079 0.099 0.085 0.081 0.101
WA+B 0.062 0.083 0.071 0.064 0.094

error drops from 0.955 MAE (0.205 TAE) with NA to 0.424 MAE (0.120 TAE) with B, versus only257

0.867 MAE (0.137 TAE) with WA. This pattern holds across all models, with bias correction alone258

achieving 50-60% error reduction. The combined WA+B approach achieves the best performance in259

most cases, demonstrating the value of comprehensive alignment. This reveals a fundamental insight260

about LLM-based evaluation: the dominance of bias correction over weight optimization indicates261

that LLM judges’ primary challenge lies not in distinguishing quality levels but in calibrating their262

internal scales to match human judgment standards.263

Finding 2: Smaller models become viable through alignment. GPT-4o-mini with full alignment264

(WA+B) achieves 0.405 MAE (0.101 TAE) on TQQ, dramatically outperforming unaligned Claude265

3.5 at 0.955 MAE (0.205 TAE) and approaching GPT-4o’s aligned performance. This transformation266

is crucial: it demonstrates that MELISSA’s framework enables not just GPT-4o-mini but potentially267

even smaller, more economical models to serve as reliable judges. The hierarchical decomposition268

and learned alignment effectively compensate for raw model capability differences, opening the door269

for cost-effective evaluation at scale with models that would otherwise be considered too weak for270

complex evaluation tasks.271

5.2.2 Weight and Bias Analysis272

Table 3 in Appendix D reveals systematic patterns in learned parameters:273

Finding 3: Consistent positive bias with implications for default settings. All post-audit, and the274

majority of pre-audit optimized bias values are non-negative across every model-criterion combination,275

ranging from 0.0 to 1.2. This universal pattern indicates LLM judges systematically underestimate276

human scores. Notably, Human-Like Interaction (HLI) generally requires smaller bias adjustments277

across all models compared to Technical Question Quality (TQQ), with average biases of 0.28 versus278

0.89 respectively. Based on Table 6 in Appendix D, unaligned TQQ evaluations underestimate human279

scores by an average of 0.886 points, while HLI underestimation averages only 0.283 points. This280

over half-point (>10%) difference suggests that LLM and human evaluations align more naturally281

for conversational assessment than technical evaluation. This occurs because LLMs possess more282

comprehensive technical knowledge than individual human evaluators, leading them to apply stricter283

standards when assessing question quality. Given this consistent positive bias pattern, we recommend284

practitioners without human data for alignment use a default bias of bc ≈ 0.5 rather than zero, which285

would substantially improve unaligned performance.286
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Figure 1: Impact of audit mechanism on evaluation performance. (a) Direct comparison shows consis-
tent degradation from audit across models, particularly severe without alignment. (b) Comprehensive
view reveals negative impact (red cells) is most pronounced for TQQ with unaligned models. Similar
patterns for MAE metrics and HLI criteria are shown in Appendix H.

Finding 4: Section-level weights indicate potential for simpler architectures in some settings.287

Level 2 (section) weights frequently approach or equal zero after optimization (often < 0.1), indicating288

that for this particular application—technical interviews evaluated by strong LLMs with context289

windows far exceeding interview length—intermediate hierarchical levels provide minimal orthogonal290

information beyond turn-level and holistic evaluations. This suggests L = 2 might suffice for similar291

scenarios where powerful models can maintain coherence across entire conversations. However,292

this finding is specific to our experimental setting; for longer conversations, weaker models, or293

applications where topical boundaries are more significant, intermediate levels would likely prove294

more valuable. The framework’s flexibility to adapt L based on application needs remains a key295

strength. The computational implications of varying L are analyzed in Appendix C.296

5.2.3 Audit Mechanism Analysis297

Finding 5: Audit mechanism proves counterproductive for strong models. Figures 1(a) and 1(b)298

compare pre-audit versus post-audit performance across all models and alignment configurations.299

Pre-audit NA baseline significantly outperforms post-audit across all models, with average MAE300

degradation of 15-20% (TAE degradation: 20-30%). For example, Claude 4’s TQQ degrades from301

0.513 TAE pre-audit to 0.946 TAE post-audit without alignment. This degradation appears to stem302

from an inherent bias in LLM judges toward making edits when prompted to audit, even when303

initial evaluations are accurate. The audit mechanism seems to introduce an urge to modify scores304

regardless of their quality, resulting in unnecessary changes that reduce accuracy. Interestingly, after305

full alignment (WA+B), the performance gap narrows considerably—both pre- and post-audit achieve306

similar final performance (difference <5% MAE, <10% TAE), suggesting that optimization can307

compensate for audit-introduced noise. However, given that modern LLMs possess context windows308

far exceeding our interview lengths and demonstrate strong initial performance, the audit mechanism309

provides no benefit and often harms results. We thus position audit as strictly optional, potentially310

valuable only for substantially weaker models or extremely long conversations that challenge context311

limits.312
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5.2.4 Training Loss Comparison313

We compared models trained with MSE versus our proposed TAE loss:314

Finding 6: MSE training superior for both metrics. Models trained with MSE achieve equal or315

better performance on both MAE and TAE metrics compared to TAE-trained models. While one might316

expect training directly on TAE to optimize that specific metric, MSE’s smooth gradients and strict317

alignment during training prove more effective. The stricter MSE objective during training ensures318

better calibration across the entire score range, which translates to improved performance even on the319

more lenient TAE metric. Complete performance comparisons across all training configurations are320

provided in Tables 4 and 5 in Appendix D.321

5.2.5 Implications322

These findings establish several practical guidelines for deploying MELISSA:323

(1) Always apply bias correction: Even without weight optimization, adding a bias term (default324

bc ≈ 0.5 if no human data available) provides substantial improvements.325

(2) Hierarchical depth depends on context: For strong models evaluating moderate-length conver-326

sations, L = 2 may suffice. Increase L for weaker models or longer content.327

(3) Skip audit for modern LLMs: The audit mechanism’s bias toward unnecessary edits makes it328

counterproductive for capable models. Reserve it for scenarios with genuine uncertainty.329

(4) Train with MSE, evaluate with TAE: The combination provides optimal training dynamics330

while measuring practical performance.331

(5) Leverage smaller models: Proper alignment enables dramatically smaller and cheaper models to332

achieve competitive evaluation quality, making large-scale deployment economically feasible.333

6 Conclusion334

MELISSA demonstrates that effective multi-turn evaluation requires neither model fine-tuning nor335

architectural complexity—simple bias correction and hierarchical decomposition suffice. Critically,336

the framework adapts to any conversation length or type, works with any LLM from GPT-4o-mini to337

Claude 4, and automatically adjusts its parameters based on human evaluations. This adaptability,338

grounded in human judgment as the fundamental input, ensures MELISSA remains effective across339

diverse applications while maintaining alignment with human values. Our experiments on 100 AI-340

conducted technical interviews reveal three key insights: (1) bias correction dominates performance341

improvements, reducing error by over 50% and suggesting LLMs’ evaluation challenge lies in scale342

calibration rather than quality discrimination; (2) proper alignment enables GPT-4o-mini to outper-343

form unaligned Claude 3.5, making reliable evaluation economically viable at scale; and (3) audit344

mechanisms require careful empirical validation—while potentially providing confidence signals,345

they often degrade performance when models already produce well-calibrated initial evaluations.346

The framework’s practical impact extends beyond cost savings. Organizations can plug in any avail-347

able LLM, evaluate conversations of any length through adaptive hierarchical decomposition, and348

continuously improve performance by incorporating new human annotations. The learned weights349

automatically adjust to different evaluation criteria and conversation types, while relevance weighting350

ensures focus on pertinent content. Most importantly, MELISSA requires only standard API calls351

and convex optimization—no specialized infrastructure or model modifications.352

Limitations and Future Work. Automatically determining optimal hierarchical levels for different353

criteria remains challenging. The audit mechanism’s mixed results suggest developing better triggers354

for when auditing adds value. Extending validation beyond technical interviews would establish355

broader applicability. Additionally, while TAE better reflects practical requirements than MAE,356

developing metrics that fully capture human judgment nuances remains open. Our findings reinforce357

that human annotations are not just helpful but foundational—they are the starting point, the alignment358

target, and the quality ceiling for any LLM-based evaluation system. MELISSA’s effectiveness359

ultimately depends on continued investment in high-quality human evaluation data, underscoring that360

as automated evaluation scales, human judgment becomes more, not less, critical.361
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A Notation Reference435

Table 2 provides a comprehensive reference for all notation used throughout the MELISSA framework.436

Table 2: Complete notation used in the MELISSA framework
Symbol Description
C Complete conversation with T turns
T Total number of turns in conversation
L Number of hierarchical levels
ℓ Level index, where ℓ ∈ {1, . . . , L}
Uℓ Set of units at level ℓ
uℓ,j The j-th unit at level ℓ
|Uℓ| Number of units at level ℓ
N Number of independent evaluation trials per unit
C Set of evaluation criteria
c A specific criterion, where c ∈ C
sinit
c,ℓ,u,n Initial score for criterion c, level ℓ, unit u, trial n
saudit
c,ℓ,u,n Audited score (when audit enabled)
rc,u Relevance weight for unit u on criterion c
s̄c,ℓ Relevance-weighted mean score for criterion c at level ℓ
s̄
(i)
c,ℓ Relevance-weighted mean score for sample i in training set
wc Weight vector for criterion c, where wc = (wc,1, . . . , wc,L)
wc,ℓ Weight for level ℓ and criterion c
bc Bias term for criterion c
αc Scale alignment factor for criterion c
Sc Final aggregated score for criterion c

S
(i)
c Final aggregated score for sample i in training set

y
(i)
c Human ground truth score for sample i, criterion c
m Number of training samples
feval LLM evaluation function
frel Relevance assessment function
faudit Audit function (optional)

B Detailed Algorithm Implementation437

Algorithm 2 provides the complete implementation details of the MELISSA evaluation pipeline,438

including all nested loops and computational steps that are abstracted in the simplified version439

presented in the main text (Algorithm 1).440
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Algorithm 2 MELISSA Complete Evaluation Pipeline (Detailed Implementation)
Require: Conversation C, Criteria set C, Number of trials N , Levels L, Audit flag
Require: Human scores y = {yc

i } for optimization (optional)
Ensure: Final scores {Sc} for each criterion c ∈ C

1: // Stage 1: Hierarchical Decomposition
2: Segment C into L levels: {U1, U2, . . . , UL}
3: ▷ Uℓ contains units at level ℓ (e.g., turns, sections, full conversation)
4: for each criterion c ∈ C do
5: // Stage 2: Relevance Assessment
6: for ℓ = 1 to L do
7: for each unit u ∈ Uℓ do
8: rc,u ← frel(u, c) ▷ Relevance ∈ [0, 1] or {0, 1}
9: end for

10: end for
11: // Stage 3: Initial Evaluation
12: for ℓ = 1 to L do
13: for each unit u ∈ Uℓ where rc,u > 0 do
14: for n = 1 to N do
15: sinit

c,ℓ,u,n ← feval(u, c, ℓ) ▷ LLM evaluation
16: end for
17: end for
18: end for
19: // Stage 4: Optional Audit
20: if Audit enabled then
21: for ℓ = 1 to L do
22: for each unit u ∈ Uℓ where rc,u > 0 do
23: for n = 1 to N do
24: saudit

c,ℓ,u,n ← faudit(u, s
init
c,ℓ,u,n, c)

25: end for
26: end for
27: end for
28: sc,ℓ,u,n ← saudit

c,ℓ,u,n for all ℓ, u, n
29: else
30: sc,ℓ,u,n ← sinit

c,ℓ,u,n for all ℓ, u, n
31: end if
32: // Stage 5: Compute Level Scores with Relevance Weighting
33: for ℓ = 1 to L do
34: s̄c,ℓ ←

∑
u∈Uℓ

rc,u·( 1
N

∑N
n=1 sc,ℓ,u,n)∑

u∈Uℓ
rc,u

35: end for
36: if y provided then
37: Build design matrix X ∈ Rm×L where Xi,ℓ = s̄c,ℓ,i
38: ▷ m = number of samples, Xi,ℓ = level-ℓ score for sample i
39: Solve constrained optimization:
40: w∗

c , b
∗
c ← argminwc,bc

∑m
i=1(y

c
i −

∑L
ℓ=1 wc,ℓXi,ℓ − bc)

2

41: subject to:
∑L

ℓ=1 wc,ℓ = 1 and wc,ℓ ≥ 0 for all ℓ
42: else
43: Set uniform weights: wc,ℓ ← 1/L for all ℓ, and bc ← 0
44: end if
45: // Stage 6: Final Aggregation
46: Sc ←

∑L
ℓ=1 wc,ℓ · s̄c,ℓ + bc

47: Clip Sc to target score range (e.g., [1, 5])
48: end for
49: return Final scores {Sc : c ∈ C}

C Mathematical Derivations441

C.1 Closed-Form Solution for Bias-Only Configuration442

When using uniform weights (wc,ℓ = 1/L for all ℓ) and optimizing only the bias term, the optimal443

bias has a closed-form solution. Given m training samples, the bias that minimizes MSE is:444
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b∗c =
1

m

m∑
i=1

(
y(i)
c −

1

L

L∑
ℓ=1

s̄
(i)
c,ℓ

)
(9)

This represents the average difference between human scores and the unweighted mean of level445

scores across all training samples.446

C.2 Computational Complexity Analysis447

The computational complexity of MELISSA depends on the conversation structure and parameter448

choices:449

• Evaluation complexity: For a conversation with T turns organized into L levels, the total450

number of LLM calls is O(N ×
∑L

ℓ=1 |Uℓ|).451

• Typical case: When Level 1 contains individual turns (|U1| = T ) and higher levels have452

constant-size units, complexity simplifies to O(NT +NL).453

• With audit: If audit is enabled, the complexity doubles to O(2NT + 2NL).454

• Optimization: The constrained least squares optimization has complexity O(mL2) for m455

training samples.456

D Detailed Experimental Results457

This section provides comprehensive experimental results including weight decomposition, perfor-458

mance metrics across different training configurations, and systematic error analysis.459

D.1 Learned Weights and Biases460

Table 3 shows the complete decomposition of learned weights and bias terms for all models under461

different alignment configurations. Several patterns emerge: (1) bias terms are consistently positive,462

indicating systematic underestimation by LLM judges; (2) section-level weights (Level 2) are often463

near zero, suggesting limited orthogonal information; (3) TQQ requires larger bias corrections than464

HLI across all models.465

D.2 Pre-Audit vs Post-Audit Performance466

Table 4 presents the complete MAE results comparing pre-audit and post-audit performance across467

all models and alignment configurations. The systematic degradation from audit, particularly for468

unaligned models, is evident across all model-criterion pairs.469

Table 5 shows the corresponding TAE results, confirming that audit degradation persists across both470

metrics.471

D.3 Systematic Bias Analysis472

Table 6 reveals the systematic underestimation bias in unaligned models. Negative values indicate473

that LLM judges score lower than human evaluators on average.474

The data shows that TQQ exhibits much larger underestimation (-0.886 average) compared to HLI475

(-0.283 average), explaining why TQQ requires larger bias corrections. This pattern intensifies with476

audit, where TQQ underestimation reaches -1.308 for Claude 4.477

D.4 Comparison of Training Losses478

Table 7 compares models trained with TAE loss versus MSE loss (both evaluated using TAE metric).479

MSE-trained models consistently achieve equal or better performance, justifying our choice of MSE480

for training despite TAE being the target metric.481
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Table 3: Decomposition of weights and bias across models for L = 3 instantiation. All scores on 1-5
scale. Turn/Section/Holistic columns show the learned weights for each level. Bias shows the learned
bias term. Avg Abs Error shows the final MAE after optimization.

Model Alignment Category Turn Section Holistic Bias Avg Abs Error

4o-mini

NA HLI 0.3333 0.3333 0.3333 0.0000 0.5633
TQQ 0.3333 0.3333 0.3333 0.0000 1.0917

WA HLI 0.9254 0.0000 0.0746 0.0000 0.4714
TQQ 0.4805 0.0000 0.5195 0.0000 1.0403

B HLI 0.3333 0.3333 0.3333 0.5851 0.4917
TQQ 0.3333 0.3333 0.3333 1.0864 0.5588

WA+B HLI 0.4936 0.3486 0.1578 0.5535 0.4514
TQQ 0.8544 0.0000 0.1456 1.1135 0.4045

4o

NA HLI 0.3333 0.3333 0.3333 0.0000 0.3882
TQQ 0.3333 0.3333 0.3333 0.0000 0.5318

WA HLI 0.0107 0.0820 0.9074 0.0000 0.3266
TQQ 0.0000 0.0000 1.0000 0.0000 0.5000

B HLI 0.3333 0.3333 0.3333 0.2365 0.4080
TQQ 0.3333 0.3333 0.3333 0.4982 0.4146

WA+B HLI 0.1012 0.1031 0.7958 0.2009 0.3940
TQQ 0.2085 0.0000 0.7915 0.3744 0.4068

Claude 3.5

NA HLI 0.3333 0.3333 0.3333 0.0000 0.5168
TQQ 0.3333 0.3333 0.3333 0.0000 0.9548

WA HLI 0.3332 0.2421 0.4247 0.0000 0.5118
TQQ 0.0000 0.5886 0.4114 0.0000 0.8673

B HLI 0.3333 0.3333 0.3333 0.5180 0.3378
TQQ 0.3333 0.3333 0.3333 0.8120 0.4236

WA+B HLI 0.7655 0.0000 0.2345 0.5826 0.3541
TQQ 0.9394 0.0606 0.0000 1.0902 0.4249

Claude 3.7

NA HLI 0.3333 0.3333 0.3333 0.0000 0.4053
TQQ 0.3333 0.3333 0.3333 0.0000 0.8361

WA HLI 0.4877 0.0303 0.4820 0.0000 0.3856
TQQ 0.0806 0.2603 0.6591 0.0000 0.8223

B HLI 0.3333 0.3333 0.3333 0.3727 0.4084
TQQ 0.3333 0.3333 0.3333 0.6393 0.4576

WA+B HLI 0.7222 0.0736 0.2042 0.4241 0.3810
TQQ 0.7805 0.0578 0.1617 0.8126 0.3977

Claude 4

NA HLI 0.3333 0.3333 0.3333 0.0000 0.6121
TQQ 0.3333 0.3333 0.3333 0.0000 1.4391

WA HLI 0.6045 0.0172 0.3783 0.0000 0.6417
TQQ 0.1132 0.8860 0.0008 0.0000 1.2852

B HLI 0.3333 0.3333 0.3333 0.7371 0.4414
TQQ 0.3333 0.3333 0.3333 1.1546 0.5698

WA+B HLI 0.7851 0.0488 0.1661 0.7531 0.4192
TQQ 0.7152 0.2311 0.0537 1.2008 0.4540

E Human Evaluation Guidelines482

These guidelines were provided to the three expert evaluators for each interview to ensure consistent,483

high-quality human annotations.484

E.1 Evaluation Overview485

Evaluators assess the AI interviewer’s performance (not the candidate’s) on technical interviews.486

Each interview receives scores on two criteria using 1-5 Likert scales, with accompanying confidence487

ratings.488

E.2 Evaluation Process489

1. Review the complete interview recording (audio + transcript)490

2. Score the AI interviewer on:491

• Technical Question Quality (TQQ)492
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Table 4: Mean Absolute Error (MAE) comparing pre-audit and post-audit performance for TQQ and
HLI across all models and alignment configurations. MSE training loss used throughout.

Model Version Alignment Pre-Audit TQQ Pre-Audit HLI Post-Audit TQQ Post-Audit HLI

4o-mini

NA 0.7418 0.4152 1.0917 0.5633
WA 0.7062 0.3856 1.0403 0.4714
B 0.4179 0.4209 0.5588 0.4917
WA+B 0.3825 0.4110 0.4045 0.4514

4o

NA 0.5985 0.3668 0.6755 0.3882
WA 0.5028 0.3319 0.5000 0.3266
B 0.4149 0.4057 0.4146 0.4080
WA+B 0.4064 0.3971 0.4068 0.3940

Claude 3.5

NA 0.6338 0.3814 0.9548 0.5168
WA 0.5116 0.3527 0.8673 0.5118
B 0.3909 0.3837 0.4236 0.3378
WA+B 0.4204 0.3628 0.4249 0.3541

Claude 3.7

NA 0.6242 0.4009 0.8361 0.4053
WA 0.6568 0.4016 0.8223 0.3856
B 0.4765 0.4019 0.4576 0.4084
WA+B 0.5038 0.4008 0.3977 0.3810

Claude 4

NA 0.9949 0.4303 1.4391 0.6121
WA 0.8018 0.4051 1.2852 0.6417
B 0.5343 0.3775 0.5698 0.4414
WA+B 0.4973 0.3707 0.4540 0.4192

Table 5: Threshold Absolute Error (TAE, τ = 0.5) comparing pre-audit and post-audit performance
for TQQ and HLI across all models and alignment configurations. MSE training loss used throughout.

Model Version Alignment Pre-Audit TQQ Pre-Audit HLI Post-Audit TQQ Post-Audit HLI

4o-mini

NA 0.2912 0.1109 0.6175 0.1924
WA 0.2577 0.0906 0.5687 0.1448
B 0.1275 0.1009 0.2264 0.1419
WA+B 0.1009 0.0942 0.1087 0.1228

4o

NA 0.1825 0.0662 0.2497 0.0684
WA 0.1477 0.0545 0.1500 0.0530
B 0.0883 0.0805 0.0905 0.0820
WA+B 0.0847 0.0636 0.0860 0.0636

Claude 3.5

NA 0.2051 0.0734 0.4766 0.1137
WA 0.1370 0.0550 0.4041 0.1114
B 0.1200 0.0788 0.1518 0.0763
WA+B 0.1210 0.0617 0.1134 0.0844

Claude 3.7

NA 0.2174 0.0987 0.4010 0.0849
WA 0.2323 0.0840 0.3785 0.0742
B 0.0942 0.0992 0.1048 0.1003
WA+B 0.0959 0.0833 0.0734 0.0857

Claude 4

NA 0.5132 0.0658 0.9458 0.2046
WA 0.3494 0.0680 0.7852 0.2290
B 0.1751 0.0854 0.2374 0.1170
WA+B 0.1384 0.0712 0.1480 0.0933

• Human-like Interaction (HLI)493

3. Provide 2-3 sentence justification for each score494

4. Rate confidence level (1-3) for each evaluation495

E.3 Important Instructions496

• No AI assistance for scoring decisions (AI may only be used to clarify unfamiliar technical497

terms)498
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Table 6: Net error (LLM score minus human score) for unaligned models, showing systematic
underestimation bias. Negative values indicate LLM judges score lower than humans. Average across
100 interviews.

Model Version Pre-Audit TQQ Pre-Audit HLI Post-Audit TQQ Post-Audit HLI
4o-mini -0.5909 -0.1307 -0.9664 -0.3537
4o -0.4551 0.0265 -0.5679 -0.0336
Claude 3.5 -0.4667 0.1111 -0.8657 -0.3823
Claude 3.7 -0.4220 0.2031 -0.7225 -0.1282
Claude 4 -0.8607 -0.1834 -1.3080 -0.5163
Average -0.5591 0.0053 -0.8861 -0.2828

Table 7: TAE performance comparison: models trained with TAE loss vs MSE loss. Despite training
directly on TAE, the TAE-trained models do not outperform MSE-trained models, demonstrating the
superiority of MSE’s smooth gradients for optimization.

Model Version Alignment Pre-Audit TQQ Pre-Audit HLI Post-Audit TQQ Post-Audit HLI

4o-mini

NA 0.2912 0.1109 0.6175 0.1924
WA 0.2551 0.0911 0.5053 0.1419
B 0.1275 0.1088 0.2269 0.1526
WA+B 0.0961 0.0979 0.1052 0.1260

4o

NA 0.1825 0.0662 0.2497 0.0684
WA 0.1475 0.0578 0.1500 0.0523
B 0.0883 0.0869 0.0918 0.0892
WA+B 0.0937 0.0668 0.0949 0.0691

Claude 3.5

NA 0.2051 0.0734 0.4766 0.1137
WA 0.1490 0.0620 0.3687 0.1118
B 0.1236 0.0819 0.1518 0.0816
WA+B 0.1267 0.0754 0.1090 0.1000

Claude 3.7

NA 0.2174 0.0987 0.4010 0.0849
WA 0.2192 0.0999 0.3818 0.0742
B 0.0937 0.1036 0.1066 0.0954
WA+B 0.1102 0.1025 0.0726 0.0954

Claude 4

NA 0.5132 0.0658 0.9458 0.2046
WA 0.3474 0.0675 0.8659 0.2239
B 0.1721 0.1172 0.2377 0.1334
WA+B 0.1264 0.1044 0.1444 0.1055

• Focus exclusively on interviewer performance, not candidate quality499

• Complete the entire interview before assigning scores500

• Maintain consistent standards across all evaluations501

• Use the full 1-5 scale; avoid clustering scores around the middle502

E.4 Detailed Scoring Criteria503

Technical Question Quality (TQQ) - 1-5 Scale:504

• 5 (Excellent): Precisely targeted questions that are perfectly clear and probe real skills at505

appropriate depth. Questions are highly relevant to the role and technical level. Demonstrates506

deep understanding of the subject matter. Hard to suggest improvements.507

• 4 (Good): Well-targeted questions with clear wording and good balance of theory and508

practice. Questions assess meaningful skills relevant to the role. Minor improvements509

possible but overall high quality.510

• 3 (Okay): On-topic and clear but somewhat generic. Tests basic skills relevant to the role.511

Functional but unremarkable. Several areas for improvement are apparent.512

• 2 (Poor): Tangentially related to role, unclear wording, focuses on trivia rather than skills,513

technically shallow or slightly off-target. Many obvious improvements needed.514
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• 1 (Very Poor): Off-topic or confusing questions that fail to assess relevant skills. May515

include technical errors or completely inappropriate questions for the role level.516

Human-like Interaction (HLI) - 1-5 Scale:517

• 5 (Excellent): Completely natural conversation with thoughtful follow-ups. Responds518

appropriately to candidate’s answers. Warm and professional tone. Nearly impossible to tell519

it’s AI. Creates comfortable interview environment.520

• 4 (Good): Mostly natural flow with good responses to candidate. Professionally appropriate521

tone and pacing. Occasionally sounds AI-like but not distracting. Minor improvements522

possible.523

• 3 (Okay): Acceptable interaction with some awkward moments. Noticeably AI but main-524

tains professional standards. Some missed opportunities for follow-up. Several improve-525

ments needed.526

• 2 (Poor): Stilted responses that often ignore candidate context. Overly formal or inappropri-527

ately casual. Obviously robotic. Many improvements needed for natural interaction.528

• 1 (Very Poor): Completely robotic interaction that feels inappropriate or uncomfortable.529

May include non-sequiturs, inappropriate responses, or complete failure to maintain conver-530

sation flow.531

Confidence Level (1-3 Scale):532

• 3 (Confident): Understand the technical domain well, familiar with interview best practices,533

sure about score534

• 2 (Somewhat Confident): Some unfamiliar technical terms but understand overall quality,535

reasonably sure about score536

• 1 (Not Confident): Very unfamiliar with technical topic or unsure about evaluation criteria,537

significant uncertainty about score538

F MELISSA Evaluation Prompts539

The following prompts were used for MELISSA’s LLM-based evaluations. These prompts were540

carefully designed to align with human evaluation guidelines while being suitable for LLM judges.541

Level-specific context is added to these base prompts during evaluation.542

F.1 Technical Question Quality (TQQ) Evaluation Prompt543

You are evaluating the quality of an interviewer’s technical questions.544

545

Evaluate how well-formed and well-phrased the interviewer’s questions546

are, and how effectively they assess a candidate’s qualifications and547

skill level for the given role.548

549

Consider the following aspects:550

- Relevance to the stated role and required skills551

- Clarity of wording and specificity552

- Technical appropriateness and depth553

- Whether they test real, practical skills vs memorized trivia554

- Progression and follow-up quality555

556

Scoring Scale (1-5):557

5 (Excellent): Precisely targeted questions that are perfectly clear558

and probe real skills at appropriate depth. Questions are highly559

relevant to the role. Hard to suggest improvements.560

561

4 (Good): Well-targeted questions with clear wording and good balance562

of theory and practice. Questions assess meaningful skills. Minor563
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improvements possible.564

565

3 (Okay): On-topic and clear but somewhat generic. Tests basic skills.566

Functional but unremarkable. You could definitely improve several567

things.568

569

2 (Poor): Tangentially related to role, unclear wording, focuses on570

trivia, technically shallow or slightly off. Many obvious571

improvements needed.572

573

1 (Very Poor): Off-topic or confusing questions that fail to assess574

relevant skills. May include technical errors.575

576

Example of Score 2: Asking a senior backend engineer "What does HTML577

stand for?" or "Name three programming languages" - these are trivial,578

don’t test real skills, and are too basic for the role level.579

580

Example of Score 4: Asking "Can you walk me through how you’d design a581

REST API for a social media feed, considering scalability and caching582

strategies?" - well-targeted, clear, tests real skills, though could583

probe deeper into specific trade-offs.584

585

Provide your evaluation as a single integer from 1 to 5.586

F.2 Human-Like Interaction (HLI) Evaluation Prompt587

You are evaluating how naturally and professionally an AI interviewer588

behaves and interacts in an interview setting.589

590

Consider the following aspects:591

- Natural speech patterns and conversation flow592

- Responsiveness to candidate answers593

- Professional and encouraging tone594

- Appropriate follow-up questions595

- Overall comfort level created for the candidate596

597

Scoring Scale (1-5):598

5 (Excellent): Completely natural conversation with thoughtful599

follow-ups. Warm and professional tone. Nearly impossible to tell600

it’s AI. Hard to suggest improvements.601

602

4 (Good): Mostly natural flow with good responses to candidate.603

Professionally appropriate. Occasionally sounds AI-like. Minor604

improvements possible.605

606

3 (Okay): Acceptable interaction with some awkward moments. Noticeably607

AI but not distracting. You could definitely improve several things.608

609

2 (Poor): Stilted responses that ignore candidate context. Overly610

formal or cold. Obviously robotic. Many obvious improvements needed.611

612

1 (Very Poor): Completely robotic interaction that feels inappropriate613

or uncomfortable. Fails to maintain professional interview614

environment.615

616

Example of Score 2: Responding "Thank you for your answer. Next617

question:" after every response, never acknowledging what the candidate618

said or adjusting based on their answers, using overly formal language619

like "Please proceed to elaborate upon your methodology."620
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621

Example of Score 4: "That’s an interesting approach using microservices622

there. I’m curious though - how did you handle the data consistency623

challenges that came up?" - natural follow-up that shows listening,624

though the transition could be slightly smoother.625

626

Provide your evaluation as a single integer from 1 to 5.627

F.3 Relevance Assessment Prompt628

Assess whether this conversation segment is relevant for evaluating629

[CRITERION_NAME].630

631

For Technical Question Quality: Is this segment part of technical632

assessment, or is it administrative/social content?633

634

For Human-like Interaction: Does this segment involve meaningful635

interaction between interviewer and candidate?636

637

Return 1 if relevant, 0 if not relevant.638

G Implementation Guidelines for Different Values of L639

This section provides practical guidance for selecting the number of hierarchical levels based on640

application characteristics.641

G.1 L = 2 (Minimal Hierarchy)642

Structure:643

• Level 1: Individual turns644

• Level 2: Complete conversation645

Suitable for:646

• Brief interactions (< 10 turns)647

• Single-topic conversations648

• Quick customer service exchanges649

• Simple Q&A sessions650

Advantages: Minimal computational overhead, simple implementation, suitable for strong models651

with large context windows.652

G.2 L = 3 (Balanced Hierarchy)653

Structure:654

• Level 1: Individual turns655

• Level 2: Topical sections or conversation phases656

• Level 3: Complete conversation657

Suitable for:658

• Medium-length conversations (10-50 turns)659

• Multi-topic discussions660

• Technical interviews (as in our experiments)661
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• Educational tutoring sessions662

Advantages: Good balance between granularity and efficiency, captures both local and global663

patterns, works well with mid-sized models.664

G.3 L = 4 (Extended Hierarchy)665

Structure:666

• Level 1: Individual turns667

• Level 2: Sub-topics (e.g., specific algorithms)668

• Level 3: Major topics (e.g., data structures, system design)669

• Level 4: Complete conversation670

Suitable for:671

• Long conversations (50-200 turns)672

• Complex multi-phase interactions673

• Comprehensive technical assessments674

• Medical consultations with multiple symptoms/systems675

Advantages: Fine-grained evaluation, better for weaker models that struggle with long contexts,676

enables detailed diagnostic information.677

G.4 L ≥ 5 (Highly Structured)678

When to consider:679

• Very long conversations (200+ turns)680

• Hierarchical content structure (e.g., multi-day conversations)681

• When using small models with limited context windows682

• When detailed segment-level feedback is required683

Implementation considerations:684

• Consider automated segmentation using topic modeling685

• Balance computational cost against granularity gains686

• May require criterion-specific level definitions687

• Ensure sufficient samples at each level for meaningful aggregation688

G.5 Adaptive Selection Guidelines689

To choose optimal L for your application:690

1. Start with conversation length:691

• T < 10: Use L = 2692

• 10 ≤ T < 50: Use L = 3693

• 50 ≤ T < 200: Use L = 4694

• T ≥ 200: Consider L ≥ 5695

2. Adjust based on model capability:696

• Strong models (GPT-4 class): Reduce L by 1697

• Weak models (GPT-3.5 class): Increase L by 1698

3. Consider topic diversity:699

• Single topic: Reduce L by 1700

• Multiple distinct topics: Use recommended L701

• Highly structured content: Increase L by 1702
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H Additional Audit Comparison Results703

This section presents the complete set of audit impact visualizations. While Figure 1 in the main text704

focuses on TAE performance for TQQ, the following figures provide comprehensive coverage across705

all metric-criterion combinations.706
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Figure 2: Pre-audit vs post-audit MAE performance for Technical Question Quality. Consistent with
TAE results, audit degrades performance across all models, with most severe impact on unaligned
configurations. The degradation pattern is particularly pronounced for Claude 4, which shows a 44%
increase in error with audit under no alignment.
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Figure 3: Pre-audit vs post-audit TAE performance for Human-like Interaction. While audit impact is
generally less severe for HLI than TQQ, degradation remains consistent across models. The reduced
impact on HLI suggests that audit bias varies by evaluation criterion, with conversational assessment
being more robust to unnecessary edits.
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Figure 4: Pre-audit vs post-audit MAE performance for Human-like Interaction. The pattern confirms
that audit-induced degradation affects both criteria and metrics. Notably, alignment (particularly
WA+B) substantially reduces the audit degradation, suggesting that proper calibration can partially
compensate for audit bias.

These comprehensive results confirm our main finding: audit mechanisms consistently degrade perfor-707

mance across all evaluation dimensions, with the effect being most severe for technical assessments708
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without proper alignment. The universal nature of this degradation across models, metrics, and709

criteria strongly suggests an inherent bias in LLM judges toward making unnecessary edits when710

prompted to review their evaluations.711
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