© o N O g A~ W N =

MELISSA: Multi-level Evaluation with LLLM-based
Integrated Self-Scrutiny and Auditing

Anonymous Author(s)
Affiliation
Address

email

Abstract

As Al systems increasingly conduct complex multi-turn interactions, reliable eval-
uation becomes critical yet challenging. Current LLM-as-judge approaches suffer
from severe biases and struggle with lengthy conversations, while monolithic eval-
uation misses quality variations across dialogue segments. We present MELISSA,
a framework that hierarchically decomposes conversations and learns bias cor-
rections from human judgments, requiring no model fine-tuning. Evaluating 100
Al-conducted technical interviews with expert annotations reveals surprising in-
sights: bias correction alone reduces error by over 50%, indicating LLMs struggle
with scale calibration rather than quality discrimination; properly aligned GPT-
40-mini outperforms unaligned Claude 3.5[1_1 enabling order-of-magnitude cost
reductions; and optional audit mechanisms show mixed results—while potentially
providing confidence signals, they often introduce unnecessary edits that degrade
performance when models already produce well-calibrated evaluations, highlight-
ing the importance of empirical validation over intuitive design. These findings
demonstrate that simple calibration transforms weak models into reliable judges,
while reinforcing that high-quality human data remains essential for automated
evaluation systems.

1 Introduction

The proliferation of Al systems in complex, multi-turn interactions—from customer service to
technical interviews—has created an urgent need for reliable evaluation methods. Traditional human
evaluation, while remaining the gold standard, faces scalability constraints: expert annotators are
expensive, evaluation is time-consuming, and maintaining consistency across evaluators proves
challenging. These limitations have driven the development of automated evaluation approaches,
with the LLM-as-judge paradigm emerging as a promising solution. Early studies reported substantial
agreement between LLM judges and human evaluators [Zheng et al., |2023], spurring adoption across
various applications including dialogue systems [Fu et al., [2023]], chatbot responses [Wang et al.,
2023|], and complex reasoning tasks [Liu et al., 2023].

However, systematic investigations have revealed fundamental reliability issues in LLM-based evalua-
tion. Position bias—where models favor responses based on their position rather than quality—causes
consistency rates as low as 22.7% [Shi et al., [2024]]. Self-enhancement bias leads models to overrate
their own outputs by 8.91% on average [Ye et al.,|2024]. Even minor prompt template variations can
cause 76-point accuracy swings, suggesting extreme brittleness in evaluation behavior [Sclar et al.|
2023|. The CALM framework identifies 12 distinct bias types affecting LLM judges, with robustness
rates varying from 0.566 to 0.832 across models and tasks. While architectural innovations like
PORTTA demonstrate consistency improvements through specialized designs [Li et al.,[2024]], these
approaches require substantial engineering effort and still leave significant reliability gaps.

'All references to Claude models in this paper refer to the Sonnet variant of each version.
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The challenges compound dramatically in multi-turn settings, where conversations span dozens
of exchanges across diverse topics. Current monolithic approaches attempt global assessment of
entire conversations, missing critical quality variations across segments. LLMs exhibit 15-30%
performance degradation when evaluating multi-turn versus single-turn interactions [Bai et al., 2024,
MT-Eval Team| 2024]], struggle with dialogue-level phenomena like consistency and coherence
[Chen et al., |2024], and fail to capture professional assessment nuances [Kwon et al.| [2024]]. As
conversations grow longer—our technical interviews often exceed 20 minutes—computational costs
become prohibitive when using state-of-the-art models, while smaller models lack the capability for
accurate holistic assessment. Existing hierarchical approaches show promise: LLM-Rubric achieves
2x error reduction through multi-dimensional evaluation [Hashemi et al., 2024], HRM proves more
stable across granularities [Wang et al., 2025]], and ConvBench reveals evaluation failure cascades
[Liu et al., [2024a]]. Yet none address the fundamental calibration problem we identify: LLMs can
distinguish quality levels but systematically miscalibrate their scores relative to human scales.

We introduce MELISSA (Multi-level Evaluation with LLM-based Integrated Scoring and Alignment),
a framework combining hierarchical decomposition with learned bias correction that requires no
model fine-tuning and can be implemented with standard prompting. Our contributions include: (1)
Novel dataset: 100 Al-conducted technical interviews by Zara [Zhou et al., [2024} |Allbert et al.,
2025] with expert human annotations, addressing the critical gap in publicly available benchmarks
for extended multi-turn evaluation. (2) Practical framework: MELISSA employs L hierarchical
levels with relevance weighting, [V independent evaluation passes for robustness, and constrained
optimization for learning weights and biases. The framework requires only standard LLM API
calls—no fine-tuning, specialized training, or reward model modifications. (3) Critical insights
on bias correction: Through systematic ablation, we demonstrate that bias correction dominates
performance improvements—reducing error by over 50% even with uniform weights—while weight
optimization provides smaller refinements. This finding suggests LLMs’ primary challenge lies
in scale calibration rather than quality discrimination, challenging prior emphasis on architectural
complexity [Wang et al. 2024, [Liu et al., 2024bl [He et al., 2024]]. (4) Enabling weak models:
Proper alignment enables dramatically smaller models to match larger ones: calibrated GPT-4o-
mini outperforms unaligned Claude 3.5, reducing evaluation costs by orders of magnitude while
maintaining quality. (5) Understanding audit mechanisms: Our experiments reveal that prompting
LLMs to audit their own evaluations often triggers unnecessary edits that degrade performance—some
models show 80% deterioration. This finding, supporting literature on self-correction failures [Kamoi
et al.,[2024], led us to make auditing optional and highlights the importance of empirical validation
over intuitive design choices. (6) Practical evaluation metric: We propose Threshold Absolute
Error (TAE) as a simple complement to MAE, recognizing that predictions within £0.5 of targets are
functionally equivalent in discrete 5-point scoring systems commonly used in practice.

While recent benchmarks expand evaluation scope—Arena Hard’s 500 queries [LMSYS Team, [2024]],
WildBench’s 0.98 correlation with humans [Lin et al.,|2024], LiveBench’s contamination resistance
[LiveBench Team, 2024]—MELISSA provides a complementary process framework rather than fixed
test sets. Our results reinforce that high-quality human data remains fundamental: the performance
ceiling of any learning-based evaluation system is bounded by its training data quality [Northcutt et al.}
2021 |Plankl 2022]]. As automated evaluation becomes prevalent, human judgment paradoxically
becomes more, not less, critical for maintaining alignment with human values.

2 The MELISSA Framework

MELISSA evaluates multi-turn interactions through a systematic pipeline that decomposes complex
conversations into a hierarchy of L evaluation levels with relevance-aware aggregation.

2.1 Overview and Problem Setup

Let C be a conversation with 7" turns between agents (human or artificial). We decompose this conver-
sation into L hierarchical levels, where level £ € {1,..., L} contains units Uy = {ug,1,...,%p,|v,|}-
Each unit represents a conversational segment at that level’s granularity—individual turns at Level 1,
topical sections at intermediate levels, and the complete conversation at Level L.

For each criterion c in the evaluation criteria set C, MELISSA produces a final score S, by hierarchi-
cally aggregating evaluations across all levels, with relevance weighting and optional bias correction.
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We use N independent evaluation trials per unit for robustness, with scores denoted si™ for initial
evaluations and s™* when optional auditing is enabled. Relevance weights r.,, determine each
unit’s contribution, leading to relevance-weighted means 5. ¢ at each level. The framework learns

weights w, and bias terms b, to align with human judgments. See Appendix [A]for complete notation.

2.2 Hierarchical Decomposition

The framework operates on L hierarchical levels, where L > 2 can be chosen based on application
requirements. The optimal choice of L and unit boundaries depend on both the application domain
and specific evaluation criterion.

General level structure. The hierarchical decomposition typically follows this pattern: Level 1
captures individual exchanges between agents (turns), assessing immediate responsiveness and local
coherence. Intermediate levels (2 through L — 1) contain progressively larger conversational units
that group related content, such as topical sections or conversation phases. Level L encompasses the
complete interaction transcript, evaluating overall trajectory and outcomes. This multi-granularity
approach enables MELISSA to capture both local quality variations and global coherence patterns
that single-level evaluation would miss.

Criterion-specific adaptation. Different criteria may benefit from different hierarchical structures
even within the same conversation. For instance, in a technical interview, "Technical Depth" might
decompose along topical boundaries (algorithms, system design, databases), while "Communication
Skills" might align better with conversational phases (introduction, technical discussion, closing).
This flexibility enables precise evaluation by matching the hierarchical structure to how each quality
dimension naturally manifests. The key insight is that optimal decomposition varies not just by
conversation type but by what aspect of quality is being measured. See Appendix [G]for more details.

2.3 Relevance Weighting

Not all conversational units contribute equally to every evaluation criterion. We introduce relevance
weighting to focus evaluation on pertinent content:

Tew = frei(u, ¢) € [0,1] or {0, 1}, (1)

where f is typically implemented via an LLM prompted to assess the relevance of unit u for
criterion c. This can be:

* Binary filtering (r.,, € {0, 1}): Excludes irrelevant units entirely

* Continuous weighting (r. ,, € [0, 1]): Assigns importance weights

For example, greeting exchanges might receive r1qq,, = 0 for Technical Question Quality while
THLI,w = 1 for Human-like Interaction.

2.4 Multi-Pass Evaluation with Optional Audit

To ensure statistical robustness, each evaluation unit is assessed through N independent trials:

S wn = foval(u, ¢, 0) Yu€Up,ne{l,...,N} )

where feyq is realized through an LLM with appropriate prompting that specifies the evaluation
criterion, level context, and scoring scale. Multiple trials improve robustness through averaging and
enable variance assessment. When additional confidence is needed, an optional audit stage reviews
each initial score:

Sacl,lg,ii.,n = faudit(uu si:r?il}.,u,n7 C) (3)
where fyuqic prompts an LLM to review and potentially revise the initial score. The audit mechanism
is particularly useful when initial evaluations show high variance or when deployment requires
additional confidence guarantees.
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2.5 Hierarchical Aggregation

Level scores are computed using relevance- Algorithm 1 MELISSA Evaluation Pipeline
weighted averaging:

Require: Conversation C, Criteria C, Parameters (NN,
L, audit flag)

1N Ensure: Final scores {S.} for all criteria
Teow ' | —1 Se,l,u,n . . .
So0= Z“GUZ ' (N Lin=1 St ) (4) 1: Decompose C into L hierarchical levels
’ 2 uev, Teu {Uy,...,UL}
2: for each criterion ¢ € C do
where S ¢y = Siugiz ,, if audit is enabled, oth- 3: Assess relevance 7., for all units using Eq.[]
. T e/ For bi | 4: Perform N independent evaluations for relevant
CIWISE Sc.t,u,n = S0y ,, - FOI binary relevance units using Eq. ]
We.lghts’ this simplifies to averaging only over s if audit enabled then Review each score using
units where r., = 1. Final scores combine Eq.f
level scores with learned or default weights: 6: Compute relevance-weighted level scores S ¢
using Eq.
L 7: if human scores available then
5. = a - Z Weot * Feg | + be 5) 8: ~ Learn optimal w, and b} via constrained
= optimization (Section 3

9: else Use uniform weights: we ¢ = 1/L, b, = 0
where w, = (w1, ..., w.,1) are level weights, 10: Aggregate final score using Eq. ]
a is a scale alignment factor (typically 1 when 11: end for
scales match), and b, is a bias correction term. 12: return {Sc:ceC}
Parameters can be set to defaults (uniform
weights, a, = 1, b, = 0) or learned from human judgments (Section .

Algorithm [T] presents the simplified MELISSA pipeline. See Algorithm [2]in Appendix [B|for a more
detailed implementation.

3 Parameter Learning

While MELISSA can operate with default uniform weights, learning optimal parameters from human
judgments significantly improves alignment and reduces evaluation error. This section describes the
optimization procedure for learning level weights and bias terms.

3.1 Optimization Objective

Given m conversations with human scores {y((f) 7 for criterion ¢, we minimize the mean squared
error between predictions and human judgments:

m

L
. . 2
min > (59 —ac > wee 50+ be) (6)
=1

weERL b, eR  “
i=1

L
subject to ch,g =1, wee>0 We{l,...,L}

=1

where S8 = o - S5 wey - EEZ% + b, is our prediction for sample 4, and EEZ% denotes the relevance-
weighted level score (as defined in Eq. ) computed for sample i at level £. The constraints ensure
weights form a valid probability distribution over levels. We fit this model using MSE loss to ensure
strict alignment during optimization, penalizing all deviations from human judgments.

where gﬁ“ is our prediction for sample ¢, and 52 denotes the relevance-weighted level score (as

defined in Eq.[4) computed for sample ¢ at level £. The scale alignment factor « is fixed as the ratio
between the maximum possible human score and the maximum model-generated score, ensuring
proper scale matching when these differ. In our experiments with matching 1-5 scales, o, = 1. The
constraints ensure weights form a valid probability distribution over levels.

This is a convex optimization problem (quadratic objective with linear constraints), which we solve
using standard convex optimization solvers. While MELISSA can operate with default uniform
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weights (w. = 1/L) and zero bias (b, = 0), our experiments (Section demonstrate that learning
these parameters from human judgments significantly improves alignment. We conduct ablation
studies to analyze the relative importance of weight optimization versus bias correction, revealing
insights into how LLM judges differ from human evaluators and how proper alignment enables
smaller models to achieve competitive performance.

3.2 Evaluation Metrics

We distinguish between training and evaluation metrics:

Training: Mean Squared Error (MSE) as in Eq. [| enforces strict alignment during optimization,
penalizing all deviations from human judgments regardless of magnitude. This stricter approach
during training ensures the model learns accurate calibration across the entire score range. The
smooth gradients provided by MSE are an additional benefit for optimization stability.

Evaluation: Before introducing our metrics, it is important to understand the nature of predicted and
ground truth values in our framework. MELISSA’s raw predictions from individual LLM evaluations
are integers on the 1-5 scale when N = 1. However, our final predictions ¢ are real-valued due
to two factors: (1) averaging across N independent trials, and (2) the weighted linear combination
across levels with learned weights and bias. Ground truth human scores y5 are inherently integers
when provided by a single expert, but become non-integer when averaged across multiple experts.
Specifically, with k experts providing integer scores, the averaged ground truth can only take values
from the set {1 : j € Z,k < j < 5k}. See Sectionfor details on our human evaluation protocol.

We report two complementary metrics:

* Mean Absolute Error (MAE): Standard metric for comparison with prior work
1« R
MAE = E;m — il @)

* Threshold Absolute Error (TAE): Acknowledges that predictions within 7 of the target
are functionally equivalent:

TAE(y,§) = max(0, |y — g| — 7) (8)

For our 1-5 scale evaluations, we use 7 = 0.5, recognizing that differences smaller than half a scale
point are practically meaningless. This threshold is particularly appropriate because in real-world
applications, scores are typically rounded to the nearest integer for display and decision-making on
Likert scales. With TAE, a prediction of 3.4 receives zero loss when the ground truth is 3 (since
|3.4 — 3] = 0.4 < 0.5), correctly recognizing that both values round to the same integer. By training
with the stricter MSE but evaluating with the practical TAE, we ensure rigorous learning while
measuring what actually matters for deployment.

4 Dataset

The Critical Role of Human Data in LLM-as-Judge Systems. While LLM-as-judge frameworks
promise scalable evaluation, their effectiveness fundamentally depends on high-quality human ground
truth for alignment and validation. Paradoxically, the rise of automated evaluation makes human data
more crucial, not less—without rigorous human judgments to anchor LLM evaluations, these systems
risk drifting into self-referential loops that diverge from human values. We present a novel dataset of
100 Al-conducted technical interviews with expert human evaluations, uniquely combining several
critical properties: extended interactions (typically 20+ minutes), genuine technical complexity from
real interview scenarios, and multiple expert annotations per conversation—characteristics essential
for training and evaluating hierarchical evaluation frameworks like MELISSA.

AI-Conducted Technical Interviews. Our dataset consists of 100 technical interviews conducted by
Zara [[Zhou et al.,|2024], an industry-grade Al interviewer trained to conduct professional technical
assessments. Zara’s training leverages speech-to-text, LLM, and text-to-speech pipelines to create
a naturalistic interview experience [Allbert et al., 2025, enabling it to effectively probe technical
competencies while maintaining conversational flow. Each interview in our dataset represents
a genuine interaction between human candidates and Zara, covering technical topics in Python,
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PL/SQL, and data analytics. Unlike scripted dialogues or synthetic conversations, these interviews
reflect the full complexity of professional technical assessment: follow-up questions, clarification
requests, partial answers, and the natural flow of technical discussion. The extended length of these
interviews (often exceeding 20 minutes) is particularly valuable for hierarchical evaluation research.
Short conversations can be evaluated holistically without decomposition, but lengthy, multi-topic
interactions like ours necessitate the hierarchical approach that MELISSA provides. This positions
our dataset at the intersection of two critical trends: the rise of Al agents in professional settings and
the need for reliable evaluation methods for such complex, extended interactions.

Expert Human Evaluation Protocol. Recognizing that human judgment quality directly determines
the ceiling for LLM-as-judge performance, we implemented a rigorous multi-rater evaluation protocol.
Three experts independently scored each interview on both Technical Question Quality (TQQ) and
Human-like Interaction (HLI) using a 1-5 scale, with accompanying confidence scores (1-3 scale)
enabling quality-aware aggregation. After data cleaning, final scores averaged the remaining high-
confidence evaluations, ensuring robust ground truth that captures both agreement and legitimate
disagreement. Human evaluators followed structured guidelines aligned with MELISSA’s prompts
(Appendices[E]and[F), ensuring consistency between human and automated assessment. This careful
attention to human data quality reflects a fundamental principle: the performance ceiling of any
learning-based evaluation system is bounded by its training data quality [Northcutt et al., 2021} Plank]
2022].

5 Experimental Evaluation

5.1 Experimental Setup

We evaluate MELISSA on the dataset of 100 Al-conducted technical interviews described in Sec-
tion[d Our experiments assess multiple aspects of the framework: alignment configurations, audit
effectiveness, hierarchical decomposition value, and training loss comparisons.

MELISSA configuration. We instantiate MELISSA with L = 3 levels: individual turns (Level 1),
topical sections (PYTHON, PL/SQL, DATA ANALYTICS) at Level 2, and complete conversations
(Level 3). Each evaluation uses N = 5 independent trials. With both human and model scores
on 1-5 scales, the scale alignment factor o, = 1 throughout. For relevance filtering, since nearly
all components in technical interviews contribute to both Technical Question Quality (TQQ) and
Human-like Interaction (HLI) criteria, we set the relevance function to the constant fi(u,c) = 1,
effectively including all units. In other applications with more irrelevant content (e.g., lengthy
off-topic discussions), relevance filtering would provide computational savings.

Alignment configurations. We conduct systematic ablation studies across four configurations:
* No Alignment (NA): Uniform weights w. = 1/3, bias b, = 0
* Bias Only (B): Uniform weights w. = 1/3, optimized bias b,.
* Weight Alignment (WA): Optimized weights w, bias b, = 0
* Weight and Bias (WA+B): Both weights and bias optimized

Models evaluated. We test five LLM judges: GPT-40, GPT-40-mini, Claude 3.5, Claude 3.7, and
Claude 4, evaluating on both Technical Question Quality (TQQ) and Human-like Interaction (HLI)
criteria.

Metrics. We report Mean Absolute Error (MAE) for comparison with prior work and Threshold
Absolute Error (TAE) with 7 = 0.5 for practical assessment. Additionally, we compare training with
MSE versus TAE loss functions.

5.2 Results and Analysis

5.2.1 Main Results: Alignment Effectiveness

Table [T presents both MAE and TAE results across models and alignment configurations:

Finding 1: Bias correction dominates performance improvements. Bias-only alignment (B)
consistently outperforms weight-only alignment (WA) across both metrics. For Claude 3.5’s TQQ,



Table 1: Performance on TQQ and HLI. Both MAE and TAE (7 = 0.5) reported (lower is better).

Criterion Metric Config Model
Claude 3.5 Claude 3.7 Claude4 GPT-40 GPT-40-mini
NA 0.955 0.836 1.439 0.532 1.092
MAE WA 0.867 0.822 1.285 0.500 1.040
B 0.424 0.458 0.570 0.415 0.559
TQQ WA+B 0.425 0.398 0.454 0.407 0.405
NA 0.205 0.217 0.513 0.183 0.291
TAE WA 0.137 0.232 0.349 0.148 0.258
B 0.120 0.094 0.175 0.088 0.128
WA+B 0.121 0.096 0.138 0.085 0.101
NA 0.517 0.405 0.612 0.388 0.563
MAE WA 0.512 0.386 0.642 0.327 0.471
B 0.338 0.408 0.441 0.408 0.492
HLI WA+B 0.354 0.381 0.419 0.394 0.451
NA 0.073 0.099 0.066 0.066 0.111
TAE WA 0.055 0.084 0.068 0.055 0.091
B 0.079 0.099 0.085 0.081 0.101
WA+B 0.062 0.083 0.071 0.064 0.094

257 error drops from 0.955 MAE (0.205 TAE) with NA to 0.424 MAE (0.120 TAE) with B, versus only
258 0.867 MAE (0.137 TAE) with WA. This pattern holds across all models, with bias correction alone
259 achieving 50-60% error reduction. The combined WA+B approach achieves the best performance in
260 most cases, demonstrating the value of comprehensive alignment. This reveals a fundamental insight
261 about LLM-based evaluation: the dominance of bias correction over weight optimization indicates
262 that LLM judges’ primary challenge lies not in distinguishing quality levels but in calibrating their
263 internal scales to match human judgment standards.

264 Finding 2: Smaller models become viable through alignment. GPT-40-mini with full alignment
265 (WA+B) achieves 0.405 MAE (0.101 TAE) on TQQ, dramatically outperforming unaligned Claude
266 3.5 at 0.955 MAE (0.205 TAE) and approaching GPT-40’s aligned performance. This transformation
267 is crucial: it demonstrates that MELISSA’s framework enables not just GPT-40-mini but potentially
268 even smaller, more economical models to serve as reliable judges. The hierarchical decomposition
269 and learned alignment effectively compensate for raw model capability differences, opening the door
270 for cost-effective evaluation at scale with models that would otherwise be considered too weak for
271 complex evaluation tasks.

272 5.2.2 Weight and Bias Analysis

273 Table[3]in Appendix [D]reveals systematic patterns in learned parameters:

274 Finding 3: Consistent positive bias with implications for default settings. All post-audit, and the
275 majority of pre-audit optimized bias values are non-negative across every model-criterion combination,
276 ranging from 0.0 to 1.2. This universal pattern indicates LLM judges systematically underestimate
277 human scores. Notably, Human-Like Interaction (HLI) generally requires smaller bias adjustments
278 across all models compared to Technical Question Quality (TQQ), with average biases of 0.28 versus
279 0.89 respectively. Based on Table[f]in Appendix[D] unaligned TQQ evaluations underestimate human
280 scores by an average of 0.886 points, while HLI underestimation averages only 0.283 points. This
281 over half-point (>10%) difference suggests that LLM and human evaluations align more naturally
282 for conversational assessment than technical evaluation. This occurs because LLMs possess more
283 comprehensive technical knowledge than individual human evaluators, leading them to apply stricter
284 standards when assessing question quality. Given this consistent positive bias pattern, we recommend
285 practitioners without human data for alignment use a default bias of b. ~ 0.5 rather than zero, which
286 would substantially improve unaligned performance.
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Impact of Audit Mechanism on TQQ Evaluation Performance
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(b) Heatmap showing audit impact (A = pre- & post-audit performance difference) across all metrics and criteria

Figure 1: Impact of audit mechanism on evaluation performance. (a) Direct comparison shows consis-
tent degradation from audit across models, particularly severe without alignment. (b) Comprehensive
view reveals negative impact (red cells) is most pronounced for TQQ with unaligned models. Similar
patterns for MAE metrics and HLI criteria are shown in Appendix El

Finding 4: Section-level weights indicate potential for simpler architectures in some settings.
Level 2 (section) weights frequently approach or equal zero after optimization (often < 0.1), indicating
that for this particular application—technical interviews evaluated by strong LLMs with context
windows far exceeding interview length—intermediate hierarchical levels provide minimal orthogonal
information beyond turn-level and holistic evaluations. This suggests L = 2 might suffice for similar
scenarios where powerful models can maintain coherence across entire conversations. However,
this finding is specific to our experimental setting; for longer conversations, weaker models, or
applications where topical boundaries are more significant, intermediate levels would likely prove
more valuable. The framework’s flexibility to adapt L based on application needs remains a key
strength. The computational implications of varying L are analyzed in Appendix [C|

5.2.3 Audit Mechanism Analysis

Finding 5: Audit mechanism proves counterproductive for strong models. Figures[I[a) and [T(b)
compare pre-audit versus post-audit performance across all models and alignment configurations.
Pre-audit NA baseline significantly outperforms post-audit across all models, with average MAE
degradation of 15-20% (TAE degradation: 20-30%). For example, Claude 4’s TQQ degrades from
0.513 TAE pre-audit to 0.946 TAE post-audit without alignment. This degradation appears to stem
from an inherent bias in LLM judges toward making edits when prompted to audit, even when
initial evaluations are accurate. The audit mechanism seems to introduce an urge to modify scores
regardless of their quality, resulting in unnecessary changes that reduce accuracy. Interestingly, after
full alignment (WA+B), the performance gap narrows considerably—both pre- and post-audit achieve
similar final performance (difference <5% MAE, <10% TAE), suggesting that optimization can
compensate for audit-introduced noise. However, given that modern LLMs possess context windows
far exceeding our interview lengths and demonstrate strong initial performance, the audit mechanism
provides no benefit and often harms results. We thus position audit as strictly optional, potentially
valuable only for substantially weaker models or extremely long conversations that challenge context
limits.
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5.2.4 Training Loss Comparison

We compared models trained with MSE versus our proposed TAE loss:

Finding 6: MSE training superior for both metrics. Models trained with MSE achieve equal or
better performance on both MAE and TAE metrics compared to TAE-trained models. While one might
expect training directly on TAE to optimize that specific metric, MSE’s smooth gradients and strict
alignment during training prove more effective. The stricter MSE objective during training ensures
better calibration across the entire score range, which translates to improved performance even on the
more lenient TAE metric. Complete performance comparisons across all training configurations are
provided in Tables A and [5]in Appendix

5.2.5 Implications

These findings establish several practical guidelines for deploying MELISSA:

(1) Always apply bias correction: Even without weight optimization, adding a bias term (default
b. = 0.5 if no human data available) provides substantial improvements.

(2) Hierarchical depth depends on context: For strong models evaluating moderate-length conver-
sations, L = 2 may suffice. Increase L for weaker models or longer content.

(3) Skip audit for modern LLLMs: The audit mechanism’s bias toward unnecessary edits makes it
counterproductive for capable models. Reserve it for scenarios with genuine uncertainty.

(4) Train with MSE, evaluate with TAE: The combination provides optimal training dynamics
while measuring practical performance.

(5) Leverage smaller models: Proper alignment enables dramatically smaller and cheaper models to
achieve competitive evaluation quality, making large-scale deployment economically feasible.

6 Conclusion

MELISSA demonstrates that effective multi-turn evaluation requires neither model fine-tuning nor
architectural complexity—simple bias correction and hierarchical decomposition suffice. Critically,
the framework adapts to any conversation length or type, works with any LLM from GPT-40-mini to
Claude 4, and automatically adjusts its parameters based on human evaluations. This adaptability,
grounded in human judgment as the fundamental input, ensures MELISSA remains effective across
diverse applications while maintaining alignment with human values. Our experiments on 100 Al-
conducted technical interviews reveal three key insights: (1) bias correction dominates performance
improvements, reducing error by over 50% and suggesting LLMs’ evaluation challenge lies in scale
calibration rather than quality discrimination; (2) proper alignment enables GPT-40-mini to outper-
form unaligned Claude 3.5, making reliable evaluation economically viable at scale; and (3) audit
mechanisms require careful empirical validation—while potentially providing confidence signals,
they often degrade performance when models already produce well-calibrated initial evaluations.
The framework’s practical impact extends beyond cost savings. Organizations can plug in any avail-
able LLM, evaluate conversations of any length through adaptive hierarchical decomposition, and
continuously improve performance by incorporating new human annotations. The learned weights
automatically adjust to different evaluation criteria and conversation types, while relevance weighting
ensures focus on pertinent content. Most importantly, MELISSA requires only standard API calls
and convex optimization—no specialized infrastructure or model modifications.

Limitations and Future Work. Automatically determining optimal hierarchical levels for different
criteria remains challenging. The audit mechanism’s mixed results suggest developing better triggers
for when auditing adds value. Extending validation beyond technical interviews would establish
broader applicability. Additionally, while TAE better reflects practical requirements than MAE,
developing metrics that fully capture human judgment nuances remains open. Our findings reinforce
that human annotations are not just helpful but foundational—they are the starting point, the alignment
target, and the quality ceiling for any LLM-based evaluation system. MELISSA’s effectiveness
ultimately depends on continued investment in high-quality human evaluation data, underscoring that
as automated evaluation scales, human judgment becomes more, not less, critical.
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s A Notation Reference

436 Table[2|provides a comprehensive reference for all notation used throughout the MELISSA framework.

Table 2: Complete notation used in the MELISSA framework
Symbol Description

C Complete conversation with 7" turns
T Total number of turns in conversation
L Number of hierarchical levels
1 Level index, where £ € {1,...,L}
Uy Set of units at level ¢
Ug,j The j-th unit at level ¢
|Uy| Number of units at level ¢
N Number of independent evaluation trials per unit
C Set of evaluation criteria
c A specific criterion, where ¢ € C
lcml}un Initial score for criterion c, level ¢, unit u, trial n
53“2]Ln Audited score (when audit enabled)
Teu Relevance weight for unit « on criterion ¢
Sc. Relevance-weighted mean score for criterion c at level ¢
52 Relevance-weighted mean score for sample ¢ in training set
W Weight vector for criterion ¢, where w, = (w1, ..., W 1)
We,e Weight for level £ and criterion ¢
be Bias term for criterion ¢
Qe Scale alignment factor for criterion ¢
Se Final aggregated score for criterion c
Sél) Final aggregated score for sample ¢ in training set
yéz) Human ground truth score for sample ¢, criterion c
m Number of training samples
Jeval LLM evaluation function
frel Relevance assessment function
faudit Audit function (optional)

w7 B Detailed Algorithm Implementation

438 Algorithm [2| provides the complete implementation details of the MELISSA evaluation pipeline,
439 including all nested loops and computational steps that are abstracted in the simplified version
as0  presented in the main text (Algorithm|[T).
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441

442

443
444

Algorithm 2 MELISSA Complete Evaluation Pipeline (Detailed Implementation)

Require: Conversation C, Criteria set C, Number of trials IV, Levels L, Audit flag
Require: Human scores y = {y§} for optimization (optional)
Ensure: Final scores {S.} for each criterion ¢ € C

1: // Stage 1: Hierarchical Decomposition

2: Segment C into L levels: {U1,Us, ..., UL}
: > Uy contains units at level ¢ (e.g., turns, sections, full conversation)
4: for each criterion ¢ € C do
5 // Stage 2: Relevance Assessment
6: for /=1to L do
7.
8

»

for each unit v € U, do
: Teu < fre(u,c) > Relevance € [0, 1] or {0, 1}
9: end for
10: end for
11: // Stage 3: Initial Evaluation
12: for / =1to L do

13: for each unit v € U, where r., > 0 do

14: forn =1to N do

15: Seum  Joa(u, ¢, £) > LLM evaluation
16: end for

17: end for

18: end for

19: // Stage 4: Optional Audit
20: if Audit enabled then

21: for / = 1to L do

22: for each unit u € U, where 7., > 0 do
23: forn =1to N do N

24: s faua(u, 52, )
25: end for

26: end for

27: end for _

28: Se,t,un £ Szu;l’lum for all E, u,n

29: else B

30: Sebun  Sepun forall £,u,n

31: end if

32: // Stage 5: Compute Level Scores with Relevance Weighting
33: for {=1to L do

N
Z’MEU@ Tc,u‘(% >n=1 Sc,f,u,n)

34: Sc,0 < S, ren

35: end for

36: if y provided then

37: Build design matrix X € R™*% where X; o = 5.0,

38: > m = number of samples, X; ¢ = level-£ score for sample ¢
39: Solve constrained optimization:

40: wi, bl < argminw, b, Yoo (Y5 — ZzL:1 We, e Xi0 — be)?
41: subject to: Zle We,e = 1 and we¢ > 0 for all £

42: else

43: Set uniform weights: we,¢ < 1/L for all £, and b < 0

44: end if

45: // Stage 6: Final Aggregation

46:  Se 4 b Wi Fep + be

47: Clip S. to target score range (e.g., [1, 5])
48: end for

49: return Final scores {S. : c € C}

C Mathematical Derivations

C.1 Closed-Form Solution for Bias-Only Configuration

When using uniform weights (w. ¢ = 1/L for all £) and optimizing only the bias term, the optimal
bias has a closed-form solution. Given m training samples, the bias that minimizes MSE is:
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This represents the average difference between human scores and the unweighted mean of level
scores across all training samples.

C.2 Computational Complexity Analysis

The computational complexity of MELISSA depends on the conversation structure and parameter
choices:

* Evaluation complexity: For a conversation with 7" turns organized into L levels, the total
number of LLM calls is O(N x 25:1 |Ue)).

* Typical case: When Level 1 contains individual turns (|JU;| = T') and higher levels have
constant-size units, complexity simplifies to O(NT + NL).

* With audit: If audit is enabled, the complexity doubles to O(2NT + 2N L).

* Optimization: The constrained least squares optimization has complexity O(mL?) for m
training samples.

D Detailed Experimental Results

This section provides comprehensive experimental results including weight decomposition, perfor-
mance metrics across different training configurations, and systematic error analysis.

D.1 Learned Weights and Biases

Table 3| shows the complete decomposition of learned weights and bias terms for all models under
different alignment configurations. Several patterns emerge: (1) bias terms are consistently positive,
indicating systematic underestimation by LLM judges; (2) section-level weights (Level 2) are often
near zero, suggesting limited orthogonal information; (3) TQQ requires larger bias corrections than
HLI across all models.

D.2 Pre-Audit vs Post-Audit Performance

Table [ presents the complete MAE results comparing pre-audit and post-audit performance across
all models and alignment configurations. The systematic degradation from audit, particularly for
unaligned models, is evident across all model-criterion pairs.

Table[5]shows the corresponding TAE results, confirming that audit degradation persists across both
metrics.

D.3 Systematic Bias Analysis

Table [f]reveals the systematic underestimation bias in unaligned models. Negative values indicate
that LLM judges score lower than human evaluators on average.

The data shows that TQQ exhibits much larger underestimation (-0.886 average) compared to HLI
(-0.283 average), explaining why TQQ requires larger bias corrections. This pattern intensifies with
audit, where TQQ underestimation reaches -1.308 for Claude 4.

D.4 Comparison of Training Losses
Table [/|compares models trained with TAE loss versus MSE loss (both evaluated using TAE metric).

MSE-trained models consistently achieve equal or better performance, justifying our choice of MSE
for training despite TAE being the target metric.
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Table 3: Decomposition of weights and bias across models for L = 3 instantiation. All scores on 1-5
scale. Turn/Section/Holistic columns show the learned weights for each level. Bias shows the learned
bias term. Avg Abs Error shows the final MAE after optimization.

Model Alignment Category Turn  Section Holistic  Bias  Avg Abs Error
NA HLI 0.3333  0.3333  0.3333  0.0000 0.5633
TQQ 0.3333  0.3333 0.3333  0.0000 1.0917
WA HLI 0.9254  0.0000 0.0746  0.0000 0.4714
40-mini TQQ 0.4805  0.0000 0.5195  0.0000 1.0403
B HLI 0.3333  0.3333  0.3333  0.5851 0.4917
TQQ 0.3333  0.3333 0.3333 1.0864 0.5588
WA4B HLI 0.4936  0.3486  0.1578  0.5535 0.4514
TQQ 0.8544  0.0000 0.1456  1.1135 0.4045
NA HLI 0.3333  0.3333  0.3333  0.0000 0.3882
TQQ 0.3333  0.3333  0.3333  0.0000 0.5318
WA HLI 0.0107 0.0820  0.9074  0.0000 0.3266
4o TQQ 0.0000  0.0000  1.0000  0.0000 0.5000
B HLI 0.3333  0.3333  0.3333  0.2365 0.4080
TQQ 0.3333  0.3333  0.3333  0.4982 0.4146
WA4B HLI 0.1012  0.1031  0.7958  0.2009 0.3940
TQQ 0.2085 0.0000 0.7915 0.3744 0.4068
NA HLI 0.3333  0.3333 0.3333  0.0000 0.5168
TQQ 0.3333  0.3333  0.3333  0.0000 0.9548
WA HLI 0.3332  0.2421 0.4247  0.0000 0.5118
Claude 3.5 TQQ 0.0000 0.5886  0.4114  0.0000 0.8673
) B HLI 0.3333  0.3333 0.3333  0.5180 0.3378
TQQ 0.3333  0.3333  0.3333  0.8120 0.4236
WA+B HLI 0.7655  0.0000 0.2345  0.5826 0.3541
TQQ 0.9394  0.0606  0.0000 1.0902 0.4249
NA HLI 0.3333  0.3333  0.3333  0.0000 0.4053
TQQ 0.3333  0.3333  0.3333  0.0000 0.8361
WA HLI 0.4877 0.0303  0.4820  0.0000 0.3856
Claude 3.7 TQQ 0.0806  0.2603  0.6591  0.0000 0.8223
B HLI 0.3333  0.3333  0.3333 0.3727 0.4084
TQQ 0.3333  0.3333  0.3333  0.6393 0.4576
WA4B HLI 0.7222 0.0736  0.2042  0.4241 0.3810
TQQ 0.7805 0.0578  0.1617 0.8126 0.3977
NA HLI 0.3333  0.3333  0.3333  0.0000 0.6121
TQQ 0.3333  0.3333 0.3333  0.0000 1.4391
WA HLI 0.6045 0.0172  0.3783  0.0000 0.6417
Claude 4 TQQ 0.1132  0.8860 0.0008  0.0000 1.2852
B HLI 0.3333  0.3333  0.3333  0.7371 0.4414
TQQ 0.3333  0.3333 0.3333 1.1546 0.5698
WA4B HLI 0.7851 0.0488  0.1661  0.7531 0.4192
TQQ 0.7152  0.2311 0.0537 1.2008 0.4540

w2 E Human Evaluation Guidelines

483 These guidelines were provided to the three expert evaluators for each interview to ensure consistent,
484 high-quality human annotations.

485 E.1 Evaluation Overview

ags  Evaluators assess the Al interviewer’s performance (not the candidate’s) on technical interviews.
487 Each interview receives scores on two criteria using 1-5 Likert scales, with accompanying confidence
488 ratings.

489 E.2 Evaluation Process

490 1. Review the complete interview recording (audio + transcript)
491 2. Score the Al interviewer on:
492 * Technical Question Quality (TQQ)
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Table 4: Mean Absolute Error (MAE) comparing pre-audit and post-audit performance for TQQ and
HLI across all models and alignment configurations. MSE training loss used throughout.

Model Version Alignment Pre-Audit TQQ Pre-Audit HLI Post-Audit TQQ Post-Audit HLI

NA 0.7418 0.4152 1.0917 0.5633
40-mini WA 0.7062 0.3856 1.0403 0.4714
B 0.4179 0.4209 0.5588 0.4917
WA+B 0.3825 0.4110 0.4045 0.4514
NA 0.5985 0.3668 0.6755 0.3882
4o WA 0.5028 0.3319 0.5000 0.3266
B 0.4149 0.4057 0.4146 0.4080
WA+B 0.4064 0.3971 0.4068 0.3940
NA 0.6338 0.3814 0.9548 0.5168
Claude 3.5 WA 0.5116 0.3527 0.8673 0.5118
B 0.3909 0.3837 0.4236 0.3378
WA+B 0.4204 0.3628 0.4249 0.3541
NA 0.6242 0.4009 0.8361 0.4053
Claude 3.7 WA 0.6568 0.4016 0.8223 0.3856
B 0.4765 0.4019 0.4576 0.4084
WA+B 0.5038 0.4008 0.3977 0.3810
NA 0.9949 0.4303 1.4391 0.6121
Claude 4 WA 0.8018 0.4051 1.2852 0.6417
B 0.5343 0.3775 0.5698 0.4414
WA+B 0.4973 0.3707 0.4540 0.4192

Table 5: Threshold Absolute Error (TAE, 7 = 0.5) comparing pre-audit and post-audit performance
for TQQ and HLI across all models and alignment configurations. MSE training loss used throughout.

Model Version Alignment Pre-Audit TQQ Pre-Audit HLI Post-Audit TQQ Post-Audit HLI

NA 0.2912 0.1109 0.6175 0.1924
40-mini WA 0.2577 0.0906 0.5687 0.1448
B 0.1275 0.1009 0.2264 0.1419
WA+B 0.1009 0.0942 0.1087 0.1228
NA 0.1825 0.0662 0.2497 0.0684
4o WA 0.1477 0.0545 0.1500 0.0530
B 0.0883 0.0805 0.0905 0.0820
WA+B 0.0847 0.0636 0.0860 0.0636
NA 0.2051 0.0734 0.4766 0.1137
Claude 3.5 WA 0.1370 0.0550 0.4041 0.1114
B 0.1200 0.0788 0.1518 0.0763
WA+B 0.1210 0.0617 0.1134 0.0844
NA 0.2174 0.0987 0.4010 0.0849
Claude 3.7 WA 0.2323 0.0840 0.3785 0.0742
B 0.0942 0.0992 0.1048 0.1003
WA+B 0.0959 0.0833 0.0734 0.0857
NA 0.5132 0.0658 0.9458 0.2046
Claude 4 WA 0.3494 0.0680 0.7852 0.2290
B 0.1751 0.0854 0.2374 0.1170
WA+B 0.1384 0.0712 0.1480 0.0933
493 e Human-like Interaction (HLI)
494 3. Provide 2-3 sentence justification for each score
495 4. Rate confidence level (1-3) for each evaluation

496 E.3 Important Instructions

497 * No Al assistance for scoring decisions (Al may only be used to clarify unfamiliar technical
498 terms)
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Table 6: Net error (LLM score minus human score) for unaligned models, showing systematic
underestimation bias. Negative values indicate LLM judges score lower than humans. Average across
100 interviews.

Model Version Pre-Audit TQQ Pre-Audit HLI Post-Audit TQQ Post-Audit HLI

40-mini -0.5909 -0.1307 -0.9664 -0.3537
40 -0.4551 0.0265 -0.5679 -0.0336
Claude 3.5 -0.4667 0.1111 -0.8657 -0.3823
Claude 3.7 -0.4220 0.2031 -0.7225 -0.1282
Claude 4 -0.8607 -0.1834 -1.3080 -0.5163
Average -0.5591 0.0053 -0.8861 -0.2828

Table 7: TAE performance comparison: models trained with TAE loss vs MSE loss. Despite training
directly on TAE, the TAE-trained models do not outperform MSE-trained models, demonstrating the
superiority of MSE’s smooth gradients for optimization.

Model Version Alignment Pre-Audit TQQ Pre-Audit HLI Post-Audit TQQ Post-Audit HLI

NA 0.2912 0.1109 0.6175 0.1924
40-mini WA 0.2551 0.0911 0.5053 0.1419
B 0.1275 0.1088 0.2269 0.1526
WA+B 0.0961 0.0979 0.1052 0.1260
NA 0.1825 0.0662 0.2497 0.0684
4o WA 0.1475 0.0578 0.1500 0.0523
B 0.0883 0.0869 0.0918 0.0892
WA+B 0.0937 0.0668 0.0949 0.0691
NA 0.2051 0.0734 0.4766 0.1137
Claude 3.5 WA 0.1490 0.0620 0.3687 0.1118
B 0.1236 0.0819 0.1518 0.0816
WA+B 0.1267 0.0754 0.1090 0.1000
NA 0.2174 0.0987 0.4010 0.0849
Claude 3.7 WA 0.2192 0.0999 0.3818 0.0742
B 0.0937 0.1036 0.1066 0.0954
WA+B 0.1102 0.1025 0.0726 0.0954
NA 0.5132 0.0658 0.9458 0.2046
Claude 4 WA 0.3474 0.0675 0.8659 0.2239
B 0.1721 0.1172 0.2377 0.1334
WA+B 0.1264 0.1044 0.1444 0.1055

* Focus exclusively on interviewer performance, not candidate quality
» Complete the entire interview before assigning scores

e Maintain consistent standards across all evaluations

Use the full 1-5 scale; avoid clustering scores around the middle

E.4 Detailed Scoring Criteria
Technical Question Quality (TQQ) - 1-5 Scale:

* 5 (Excellent): Precisely targeted questions that are perfectly clear and probe real skills at
appropriate depth. Questions are highly relevant to the role and technical level. Demonstrates
deep understanding of the subject matter. Hard to suggest improvements.

* 4 (Good): Well-targeted questions with clear wording and good balance of theory and
practice. Questions assess meaningful skills relevant to the role. Minor improvements
possible but overall high quality.

* 3 (Okay): On-topic and clear but somewhat generic. Tests basic skills relevant to the role.
Functional but unremarkable. Several areas for improvement are apparent.

* 2 (Poor): Tangentially related to role, unclear wording, focuses on trivia rather than skills,
technically shallow or slightly off-target. Many obvious improvements needed.
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* 1 (Very Poor): Off-topic or confusing questions that fail to assess relevant skills. May
include technical errors or completely inappropriate questions for the role level.

Human-like Interaction (HLI) - 1-5 Scale:

5 (Excellent): Completely natural conversation with thoughtful follow-ups. Responds
appropriately to candidate’s answers. Warm and professional tone. Nearly impossible to tell
it’s Al. Creates comfortable interview environment.

* 4 (Good): Mostly natural flow with good responses to candidate. Professionally appropriate
tone and pacing. Occasionally sounds Al-like but not distracting. Minor improvements
possible.

* 3 (Okay): Acceptable interaction with some awkward moments. Noticeably Al but main-
tains professional standards. Some missed opportunities for follow-up. Several improve-
ments needed.

* 2 (Poor): Stilted responses that often ignore candidate context. Overly formal or inappropri-
ately casual. Obviously robotic. Many improvements needed for natural interaction.

* 1 (Very Poor): Completely robotic interaction that feels inappropriate or uncomfortable.
May include non-sequiturs, inappropriate responses, or complete failure to maintain conver-
sation flow.

Confidence Level (1-3 Scale):

* 3 (Confident): Understand the technical domain well, familiar with interview best practices,
sure about score

* 2 (Somewhat Confident): Some unfamiliar technical terms but understand overall quality,
reasonably sure about score

* 1 (Not Confident): Very unfamiliar with technical topic or unsure about evaluation criteria,
significant uncertainty about score

F MELISSA Evaluation Prompts

The following prompts were used for MELISSA’s LLM-based evaluations. These prompts were
carefully designed to align with human evaluation guidelines while being suitable for LLM judges.
Level-specific context is added to these base prompts during evaluation.

F.1 Technical Question Quality (TQQ) Evaluation Prompt
You are evaluating the quality of an interviewer’s technical questions.

Evaluate how well-formed and well-phrased the interviewer’s questions
are, and how effectively they assess a candidate’s qualifications and
skill level for the given role.

Consider the following aspects:

- Relevance to the stated role and required skills

- Clarity of wording and specificity

- Technical appropriateness and depth

- Whether they test real, practical skills vs memorized trivia
- Progression and follow-up quality

Scoring Scale (1-5):

5 (Excellent): Precisely targeted questions that are perfectly clear
and probe real skills at appropriate depth. Questions are highly
relevant to the role. Hard to suggest improvements.

4 (Good): Well-targeted questions with clear wording and good balance
of theory and practice. Questions assess meaningful skills. Minor
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improvements possible.

3 (Okay): On-topic and clear but somewhat generic. Tests basic skills.
Functional but unremarkable. You could definitely improve several
things.

2 (Poor): Tangentially related to role, unclear wording, focuses on
trivia, technically shallow or slightly off. Many obvious
improvements needed.

1 (Very Poor): Off-topic or confusing questions that fail to assess
relevant skills. May include technical errors.

Example of Score 2: Asking a senior backend engineer "What does HTML
stand for?" or "Name three programming languages" - these are trivial,
don’t test real skills, and are too basic for the role level.

Example of Score 4: Asking "Can you walk me through how you’d design a
REST API for a social media feed, considering scalability and caching
strategies?" - well-targeted, clear, tests real skills, though could
probe deeper into specific trade-offs.

Provide your evaluation as a single integer from 1 to 5.

F.2 Human-Like Interaction (HLI) Evaluation Prompt

You are evaluating how naturally and professionally an AI interviewer
behaves and interacts in an interview setting.

Consider the following aspects:

- Natural speech patterns and conversation flow

- Responsiveness to candidate answers

- Professional and encouraging tone

- Appropriate follow-up questions

- Overall comfort level created for the candidate

Scoring Scale (1-5):

5 (Excellent): Completely natural conversation with thoughtful
follow-ups. Warm and professional tone. Nearly impossible to tell
it’s AI. Hard to suggest improvements.

4 (Good): Mostly natural flow with good responses to candidate.
Professionally appropriate. Occasionally sounds AI-like. Minor
improvements possible.

3 (Okay): Acceptable interaction with some awkward moments. Noticeably
AT but not distracting. You could definitely improve several things.

2 (Poor): Stilted responses that ignore candidate context. Overly
formal or cold. Obviously robotic. Many obvious improvements needed.

1 (Very Poor): Completely robotic interaction that feels inappropriate
or uncomfortable. Fails to maintain professional interview
environment.

Example of Score 2: Responding "Thank you for your answer. Next
question:" after every response, never acknowledging what the candidate
said or adjusting based on their answers, using overly formal language
like "Please proceed to elaborate upon your methodology."
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Example of Score 4: "That’s an interesting approach using microservices
there. I’m curious though - how did you handle the data consistency
challenges that came up?" - natural follow-up that shows listening,
though the transition could be slightly smoother.

Provide your evaluation as a single integer from 1 to 5.

F.3 Relevance Assessment Prompt

Assess whether this conversation segment is relevant for evaluating
[CRITERION_NAME] .

For Technical Question Quality: Is this segment part of technical
assessment, or is it administrative/social content?

For Human-like Interaction: Does this segment involve meaningful
interaction between interviewer and candidate?

Return 1 if relevant, O if not relevant.

G Implementation Guidelines for Different Values of L

This section provides practical guidance for selecting the number of hierarchical levels based on
application characteristics.

G.1 L = 2 (Minimal Hierarchy)
Structure:

e Level 1: Individual turns

* Level 2: Complete conversation
Suitable for:

e Brief interactions (< 10 turns)
* Single-topic conversations
* Quick customer service exchanges

» Simple Q&A sessions

Advantages: Minimal computational overhead, simple implementation, suitable for strong models
with large context windows.

G.2 L = 3 (Balanced Hierarchy)
Structure:

* Level I: Individual turns
* Level 2: Topical sections or conversation phases

* Level 3: Complete conversation
Suitable for:

* Medium-length conversations (10-50 turns)
* Multi-topic discussions

* Technical interviews (as in our experiments)
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662 * Educational tutoring sessions

663 Advantages: Good balance between granularity and efficiency, captures both local and global
664 patterns, works well with mid-sized models.

665 G.3 L = 4 (Extended Hierarchy)

666 Structure:

667 * Level I: Individual turns

668 * Level 2: Sub-topics (e.g., specific algorithms)

669 * Level 3: Major topics (e.g., data structures, system design)
670 * Level 4: Complete conversation

671 Suitable for:

672 * Long conversations (50-200 turns)

673 * Complex multi-phase interactions

674 » Comprehensive technical assessments

675 * Medical consultations with multiple symptoms/systems

676 Advantages: Fine-grained evaluation, better for weaker models that struggle with long contexts,
677 enables detailed diagnostic information.

678 G.4 L > 5 (Highly Structured)

679 When to consider:

680 * Very long conversations (200+ turns)

681 * Hierarchical content structure (e.g., multi-day conversations)
682 * When using small models with limited context windows

683 * When detailed segment-level feedback is required

684 Implementation considerations:

685 * Consider automated segmentation using topic modeling

686 * Balance computational cost against granularity gains

687 * May require criterion-specific level definitions

688  Ensure sufficient samples at each level for meaningful aggregation

689 G.5 Adaptive Selection Guidelines

690 To choose optimal L for your application:

691 1. Start with conversation length:

692 e T'<10: Use L =2

693 e 10<T <50:Use L =3

694 * 50 < T <200: Use L =4

695 e T > 200: Consider L > 5

696 2. Adjust based on model capability:

697  Strong models (GPT-4 class): Reduce L by 1
698 * Weak models (GPT-3.5 class): Increase L by 1
699 3. Consider topic diversity:

700 * Single topic: Reduce L by 1

701 * Multiple distinct topics: Use recommended L
702 » Highly structured content: Increase L by 1
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H Additional Audit Comparison Results

This section presents the complete set of audit impact visualizations. While Figure[T)in the main text
focuses on TAE performance for TQQ, the following figures provide comprehensive coverage across
all metric-criterion combinations.

Impact of Audit Mechanism on TQQ Evaluation Performance (Mean Absolute Error (MAE))

B

,_.
I
\N

= 2
5] g .
g 1.2 g é mmE NA (Pre)
‘: " . % % wam NA (Post)
810 f % Z = WA (Pre)
3 %7 . Z 77 WA (Post)
ﬁ 0.8 é 7 g Z 2 W WA+B (Pre)
5 7 % z ’ w7 WA+B (Post)
306 '4 L 7 % == B (Pre)
2 g [ 2% s B (Post)
< 0.4 % Wow é 5 ,4 é == WA+B (Pre)
g g g g g g g g % WA+B (Post)
3 ! 2% %
= EX %% 27

ool K % A A7

’ GPT-40-mini GPT-40 Claude 3.5 Claude 3.7 Claude 4

Figure 2: Pre-audit vs post-audit MAE performance for Technical Question Quality. Consistent with
TAE results, audit degrades performance across all models, with most severe impact on unaligned
configurations. The degradation pattern is particularly pronounced for Claude 4, which shows a 44%
increase in error with audit under no alignment.
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Figure 3: Pre-audit vs post-audit TAE performance for Human-like Interaction. While audit impact is
generally less severe for HLI than TQQ, degradation remains consistent across models. The reduced
impact on HLI suggests that audit bias varies by evaluation criterion, with conversational assessment
being more robust to unnecessary edits.
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Figure 4: Pre-audit vs post-audit MAE performance for Human-like Interaction. The pattern confirms
that audit-induced degradation affects both criteria and metrics. Notably, alignment (particularly
WA +B) substantially reduces the audit degradation, suggesting that proper calibration can partially
compensate for audit bias.

These comprehensive results confirm our main finding: audit mechanisms consistently degrade perfor-
mance across all evaluation dimensions, with the effect being most severe for technical assessments
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709 without proper alignment. The universal nature of this degradation across models, metrics, and
710 criteria strongly suggests an inherent bias in LLM judges toward making unnecessary edits when
711 prompted to review their evaluations.
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