
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SYNTHTOOLS: A FRAMEWORK FOR SCALING
SYNTHETIC TOOLS FOR AGENT DEVELOPMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

AI agents increasingly rely on external tools to solve complex, long-horizon tasks.
Effective development of such agents requires large-scale training in environments
where they can safely practice using diverse tools, adapt strategies, and iteratively
improve. However, real-world APIs are limited in availability, domain coverage,
and stability, often requiring access keys and imposing rate limits, rendering them
impractical for scalable training. To address these challenges, we introduce Syn-
thTools, a flexible and scalable framework for generating synthetic tool ecosys-
tems. Our framework consists of three core components: Tool Generation for
automatic and scalable creation of diverse tools across domains, Tool Simulation
to emulate realistic tool behaviors, and Tool Audit to ensure consistency and reli-
ability. Using SynthTools, we generate large corpora of synthetic tools and tasks,
enabling controllable, stable, and domain-agnostic training environments for LLM
agents. By decoupling training from real-world API constraints, SynthTools pro-
vides stable interfaces, supports multi-domain experimentation, and thereby ac-
celerates the development of robust, general-purpose LLM agents.

1 INTRODUCTION

LLM agents have garnered significant attention for their potential to tackle complex, real-world
tasks. These modern agents are increasingly envisioned to leverage multiple tools in combination to
solve complex, long-horizon problems (Xu et al., 2023; Qin et al., 2023; Yao et al., 2024). The profi-
ciency in using tools has become a central capability for a performant agent. As evident throughout
major advances in machine learning (Deng et al., 2009; Hoffmann et al., 2022), the scale and diver-
sity of training are among the most critical factors influencing the quality of a model. To realize the
vision of autonomous agents that can navigate sophisticated tool ecosystems and deploy resources
effectively, it is essential to have access to comprehensive and diverse toolsets for training and ex-
perimentation.

However, agent development currently faces a significant bottleneck: in practice, tools are primarily
accessed via APIs, yet real-world APIs remain scarce in both number and domain coverage. Much
of the existing research focuses on curating these APIs or building high-fidelity replicas, but these
collections still suffer from limited scope and diversity (Xu et al., 2023; Tang et al., 2023). For
instance, ACEbench (Chen et al., 2025b) covers only eight broad domains, whereas τ -bench (Yao
et al., 2024) considers only two application domains.

Moreover, while real-world APIs offer authenticity, they come with practical constraints such as
the need for API keys, usage limits, or rate throttling. Furthermore, actively maintained APIs are
subject to frequent interface changes or deprecations, which can disrupt experimental configurations,
destabilize training pipelines, and compromise reproducibility (Guo et al., 2025). These limitations
render real APIs ill-suited for large-scale experimentation. This leads us to a fundamental question:
how can we build a scalable and diverse tool ecosystems that support comprehensive agent training
and evaluation?

Synthetic tools offer a flexible and controllable solution. Just as humans can learn from stylis-
tic examples and generalize the acquired skills to real-world contexts, we conjecture that modern
agents can similarly acquire sophisticated tool-use abilities by training on a diverse pool of synthetic
tools and transferring learned capability to real-world interfaces. Recent studies provide supporting

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Scalability and reliability of our framework. Left: Our framework achieves noticeably
higher scalability than existing benchmarks, both in the number of fields and the maximum tools
supported per field. Right Both our tools generated with our framework, as well as the LLM judge
built for tool audit, are highly reliable.

evidence: agents trained on synthetically generated tools or their outputs have demonstrated gen-
uine learning of transferable tool-use skills, achieving reasonable performance on held-out tool-use
dataset (Li et al., 2023; Kimi, 2025; Sullivan et al., 2025). Despite these promising developments,
the community still lacks a clear and scalable way to create non-trivial synthetic tools for agent
development. To lay the foundation for agents to fully realize the potential of this paradigm, our
work aims to address this bottleneck by proposing a framework for reliable generation of complex
synthetic tools at scale.

We propose SynthTools: a synthetic tool generation framework consisting of the following three
components:

• Tool Generation: Automatically creating a wide variety of tools with diverse interfaces and
functionalities (See Figure 2).

• Tool Simulation: Accurately emulating tool behaviors to closely mirror real-world interactions.

• Tool Audit: Careful and scalable assessment of the reliability and consistency of generated tools
to ensure quality (See Figure 4).

Using this framework, we generate a large corpus of reliable synthetic tools spanning a wide range
of domains. Building on these tools, we demonstrate how to construct realistic tasks for agent
training and evaluation. Rather than offering a fixed set of tasks, our framework serves as a flexible
foundation for others to create their own tools and tasks tailored to specific agentic capabilities they
are interested in. Overall, SynthTools is scalable, flexible, and stable. By making scalable tool
generation reliable and efficient, SynthTools help accelerate the development of robust, general-
purpose LLM agents

1.1 RELATED WORK

Agent Tool Use Evaluation. Recent benchmarks such as APIBench, API-Bank, ToolBench, Tool-
Alpaca, and ToolQA evaluate LLM agents on their tool-use capabilities. These benchmarks involve
both real-world APIs (Li et al., 2023; Xu et al., 2023) and carefully curated synthetic API simulators
tailored to specific domains (Patil et al., 2024; Tang et al., 2023; Zhuang et al., 2023; Wang et al.,
2023; Yao et al., 2024; Chen et al., 2025b; Guo et al., 2025). With the emergence of MCP servers,
some recent studies have shifted focus toward evaluating agents using tools hosted on MCP servers
(Mo et al., 2025; Yin et al., 2025). While these efforts provide valuable benchmarks for agent
performance, they often face scalability challenges due to the limited number and diversity of tools.
Moreover, both real APIs and MCP servers present practical obstacles such as access restrictions,
rate limitations, and unstable interfaces.

Fine-Tuning Agents for Tool Use. Fine-tuning LLMs on curated tool-use datasets has shown
promising results. For instance, ToolLLAMA constructs a large-scale dataset from real tools avail-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

able on RapidAPI Hub and fine-tunes models to perform tool-augmented tasks (Qin et al., 2023).
Similarly, Fang et al. (2025) focus on scaling the number of tasks by aggregating real-world APIs
from sources such as (Qin et al., 2023; Prabhakar et al., 2025), thereby enhancing the breadth of
fine-tuning. Other studies (Kimi, 2025; Sullivan et al., 2025) explore synthetic tool environments
for fine-tuning, demonstrating the potential of such tools. However, the dataset introduced by Kimi
(2025) is proprietary, and the focus of Sullivan et al. (2025) is on deeply compositional toolchains
rather than diversity, thus limiting its generalizability. Building on these insights, we introduce an
open-source framework for generating synthetic tools that are both diverse and deeply composable,
enabling scalable training and evaluation of LLM agents in tool-use settings.

Generated /
Curated

Field
Scalability

Tool
Scalability

Complex
Tools Interactive

SynthTools (Ours) Generated
τ -Bench Curated

StableToolBench Curated
AceBench Generated
ToolAlpaca Generated

RandomWorld Generated

Table 1: Our framework is designed with inherent scalability and interactivity. By iteratively refining
our pipeline, we enable our framework to generate highly complex tools.

2 TOOL GENERATION

Agentic systems rely heavily on the breadth and scale of the tools they can access. However, gener-
ating diverse tools at scale remains a major challenge. Manually engineering a diverse and extensible
toolset to support large-scale training of agentic LLMs is impractical. A promising alternative is to
harness the generative capabilities of LLMs themselves to synthesize tools. Yet, naively generating
tools via LLMs often results in redundant or aimless toolsets—tools that fail to target meaningful
tasks and lack structural interconnections. This leads to weakly compositional tool chains that are
only capable of solving trivial problems.

To address this limitation, we propose a scalable framework for synthesizing large, diverse, and
non-redundant toolsets grounded in meaningful tasks and workflows. Our approach employs a hi-
erarchical domain evolution procedure (Figure 2) that systematically refines a broad domain into a
concrete and coherent toolset. This process is anchored in practitioner workflows as simulated by
LLMs. Starting from a general domain, we progressively decompose it into subdomains, then into
task families, and finally into specific tools whose interfaces reflect domain-relevant constraints and
interactions. Concretely, the framework proceeds as follows:

Field→ Sub-domain. Given a seed set of fields (e.g., healthcare, finance, materials science), we
prompt a large language model (LLM) to propose coherent subdomains that: (a) partition typical
workflows; (b) surface stakeholders and entities operating in the field; and (c) admit meaningful,
tool-addressable operations.

Sub-domain → Task. For each subdomain, the model proposes task families. Each task can be
thought of as a , yielding natural task statements suitable for documentation and test-case generation.

Task → Tool. Tasks are then realized as concrete tools. Tools are encouraged to be composable:
each tool advertises upstream dependencies (what it consumes) and downstream affordances (what
it produces), enabling multi-tool plans. The interface includes name, description, parameters, failure
model, and output details.

We use targeted prompting at each stage to control diversity, complexity, and input/output (I/O)
characteristics of the tools. Our tool abstraction is characterized by: (i) a name and natural-
language description; (ii) a parameter schema; and (iii) an I/O contract (preconditions, postcondi-
tions, and error modes). Formally, a tool is a tuple (name, description, parameters, usage,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: An example of tool generation through hierarchical domain evolution procedure.

failure modes, output schema). Figure 3 illustrates a tool generated by our pipeline in the
e-commerce and retail domain. Additional examples are provided in Section B.

As shown in Figure 1, our framework demonstrates strong scalability by generating a toolset that
spans 100 distinct fields, with each field potentially comprising up to 1,000 tools.

Deduplication. Since our tools are generated through a hierarchical process, there is a possibility of
creating duplicate entries due to overlapping workflows and functionalities across sub-domains and
tasks. To address this, we apply a deduplication procedure designed to identify and remove near-
duplicate tools. This procedure leverages semantic similarity, computed using LLM embeddings of
the tool descriptions. Deduplication is a crucial step to ensure the resulting dataset is of high quality
and suitable for both training and evaluation purposes. Full details of the deduplication process are
provided in Appendix D.

3 TOOL SIMULATION

Once the tools have been generated, the next step is to systematically emulate API call behavior
for each tool configuration (Figure 3). A reliable tool simulator must return appropriate error mes-
sages for incorrect or incomplete calls and generate valid responses for correct ones. Achieving this
behavior consistently in practice is challenging.

To address this, we decompose the simulation procedure into two distinct stages: parameter vali-
dation and response generation. In both stages, we prompt a large language model (LLM)—with
access to the tool configuration—to emulate tool behavior. The two stages are as follows:

1. Parameter validation. In this stage, the simulator emulates an API gateway by ensuring that
all schema and structural constraints are satisfied. It begins by verifying the tool name, then
checks for the presence of all required parameters, correct data types, mutual consistency, and
any cross-field constraints. If any condition fails, the simulator returns a specific error message
identifying the first issue encountered, along with the corresponding HTTP status code mirroring
conventional API gateway behavior.

2. Response generation for valid calls. If parameter validation is successful, the simulator ad-
vances to the response generation stage. Depending on the nature of the tool call, this stage
proceeds via either data generation or information deduction. For tool calls that require gener-
ating new data based on the input parameters, the simulator produces realistic outputs that adhere

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Field to Tool Evolution

Field: Ecommerce and Retail → Sub Domain: Product Catalog Management → Task: Product
Information Creation and Updates → Tool: Product Data Validator

The Generated Tool

Tool Name: Product Data Validator
Description: Validates product information against predefined schemas and business rules to ensure
data quality and completeness before catalog updates.

Parameters:
• product name (string, required) – The name of the product to validate

• product attributes (array of strings, required) – List of product attributes in key:value format

• validation level (string, optional, default = standard) – Validation strictness: basic,
standard, or strict

Error Messages:
• Missing required fields: Ensure product name and product attributes are provided.

• Invalid validation level: Use one of [basic, standard, strict].

• Malformed attributes: Attributes must be in key:value string format.

• Empty product data: Product name cannot be empty or null.

Usage: Provide product name and product attributes array, optionally set
validation level. Returns validation status and any detected issues.

Output Details:
• validation status (string) – Overall validation result: passed, failed, or warning

• issues found (array of strings) – List of validation issues or errors detected

• completeness score (number) – Data completeness percentage (0–100)

Figure 3: An example of tool generated through our pipeline for the e-commerce and retail field.

to predefined schemas and domain-specific patterns. In contrast, when the tool call demands rea-
soning over metadata and the initial configuration, the simulator systematically cross-references
these inputs to infer the current system state, relevant entities, and functional behavior. It then
synthesizes this information to logically derive the precise response the API would produce under
the given conditions.

Refining tool simulator prompts To ensure reliable simulator behavior, we refined its prompts
through extensive manual testing. This was an inherently iterative process: we repeatedly updated
the prompt, tested it manually, analyzed failure cases, and adjusted the prompt accordingly (See
Section C.2 for the final version). We then evaluated the finalized prompts on a set of SynthTools
generated using our framework. This evaluation was conducted manually. The final refined prompt
achieved an accuracy of 93.6%, as verified across 200 tool responses.

To further assess the simulator’s performance, we evaluated it against ACEBench (Chen et al.,
2025a)—a suite of sandbox tools with deterministic, programmatically defined behaviors. We
aligned our simulator’s configuration to ACEBench specifications, ensuring consistent initial states.
We then compared the simulator’s responses to ACEBench’s ground truth outputs. In total, we gen-
erated approximately eight test calls per tool across 20 ACEBench tools (161 calls overall), encom-
passing both successful executions and various failure scenarios. The simulator matched the ground
truth in 151 out of 161 cases, yielding a 94% accuracy. 14 (out of 20) tools showed perfect agreement
across all test cases. The 10 mismatches were mostly due to differences in implementation-specific
prioritization (e.g., whether authentication is checked before or after parameter validation) rather
than fundamental flaws in simulation logic. See Figure 5 for illustrative examples.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

We further assess the simulator at scale using an LLM-based evaluator, as described in the following
section

Tool Config Source Performance Evaluation Method
SynthTools 93.6% Manual verification

ACEbench 94% Ground-truth comparison

Table 2: Performance of tool simulator

.

4 TOOL AUDIT

To ensure high-quality tools, we subject each generated tool to a rigorous quality control pipeline
consisting of systematic test case construction and LLM-based validation. We detail this process
below.

Test Case Generation. We test each generated tool with a comprehensive suite of test calls spanning
four distinct modes. Tools that fail more than 1 tests are discarded. Specifically, we evaluate each
tool under the following scenarios:

1. Schema failures (basic parameter validation). The tool call cannot be parsed or validated at the
programmatic level due to missing required parameters, incorrect parameter types, or malformed
inputs that prevent basic function invocation.

2. Constraint failures (tool-specific validation errors). The parameter schema is satisfied, but
tool-specific constraints are violated, such as mismatched array lengths, invalid value ranges, or
logical inconsistencies between parameters that the tool specification explicitly prohibits.

3. Execution failures (metadata constraint violations). The tool call passes all parameter vali-
dation but contradicts the current system state or metadata during execution, such as referencing
non-existent user records, attempting operations on unavailable resources.

4. Successful executions. The tool call is valid at all levels and the simulator should return re-
sponses that are consistent with the tool specification and provided metadata, correctly perform-
ing operations or returning requested data.

Failure mode 2: Parameter inconsistency

Tool call message:
Insurance Information Updater (patient id =
’PAT001’, insurance fields = [’provider’,
’policy number’], insurance values = [’Blue
Cross’])

Response:
Status: FAIL, Status Code: 400, Error Mes-
sage: Mismatched fields and values: Ensure
insurance fields and insurance values arrays
have the same length.

Success mode: Correct response

Tool call message:
Insurance Information Updater (patient id
= ’PAT001’, insurance fields = [’provider’],
insurance values = [’Blue Cross’])

Response:
Status: PASS, Status Code: 200, Re-
turn Data: update status: Success, up-
dated insurance: [’provider’]

In the boxes above, we present representative examples demonstrating how the simulator handles a
variety of testing scenarios. These include both successful executions and a failure case along with
its corresponding error response (see Appendix C.1 for additional examples). For each tool, we
prompt a large language model (LLM) to generate 2–3 test calls per failure mode. These calls are
then executed through our tool simulator, and the resulting responses are recorded.

LLM-Based Verification. To assess response correctness, we employ a carefully engineered LLM
judge. This judge receives the tool specification, test call, and simulator response as input, then

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

returns a structured judgment comprising correct/incorrect status, confidence score, and detailed
rationale for correctness and compliance assessment.

We iteratively refined the judge through testing with hand-crafted edge cases (e.g., subtle type vi-
olations, cross-field incompatibilities) until it reliably identified each error type with appropriate
rationale. We conducted stress testing of the judge across six distinctive failure and success modes
to ensure judge reliability. We explain the procedure and results in detail in Section 5.

Among the 3,300 tool responses, we found that 3,054 were correct, corresponding to an accuracy of
93% (as evaluated by the LLM judge). These responses came from 352 tools, of which 89% made
no more than one error across 8–10 stress test calls (see Table 3). Regarding the errors, 56% were
due to Failure Mode 2, 34% to Failure Mode 3, and 10% to Failure Mode 1.

Number of Incorrect Responses 0 1 2 3
Percentage of Tools 57% 32% 7% 3%

Table 3: Distribution of incorrect responses among 8-10 stress test calls across 352 tools

Deduplication

τ = 0.85

Test Call 1
Test Call 2

Test Call 9

Tool Audit

Tool Simulator Agent

Tool Call

Response

Tool Simulation

t-SNE 1

LLM Judge

t-S
N
E

1

Figure 4: Our Tool Audit component ensures the quality of the tools after deduplication.

5 HOW RELIABLE IS THE LLM JUDGE?

The integrity of our framework critically depends on the reliability of the LLM judge. In this sec-
tion, we evaluate how effective the judge is in distinguishing correct and incorrect tool simulator
responses. To this end, we construct six stress-test scenarios, organized around three categories of
tool call failures—schema, constraint, and execution. For each category, we include both valid and
invalid simulator outputs. Through this stress-testing process, we aim to confirm that the judge can
consistently identify when the simulator is functioning as intended versus when it produces erro-
neous outputs.

We manually verified 300 stress test cases. Among these, the judge made only 3 errors, yielding
an accuracy rate of 99%. This demonstrates that our quality control process can reliably distinguish
between well-functioning and problematic tool simulations, making it suitable for large-scale filter-
ing. Importantly, since our framework generates tools at scale, minimizing false positives is critical;
passing problematic tool responses through quality control would undermine reliability. Notably,
we observed a false positive rate of 0%—the judge successfully identified all incorrect simulator
behaviors. Together, these results establish the robustness of our judge in diagnosing tool simulator
performance and reinforce confidence in its role within our tool audit pipeline.

Metric Accuracy False Positive Rate
Performance 99% 0%

Table 4: Performance of LLM judge under stress tests

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

ACEBench test example

Tool call message:
modify flight(user id = ’user1’, reservation id
= ’res 1’, new cabin = ’Business Class’)

Response:
Status: PASS, Status Code: 200, Re-
turn Data: Cabin upgraded to Business
Class. Price difference of 1800 yuan has
been charged. Modification completed suc-
cessfully.

Sandbox execution message: Cabin change
successful. Price difference paid: 1800.

Judge success example

Tool call message:
Performance Metrics Calculator(start date =
’2024-01-31T23:59:59Z’, end date = ’2024-
01-01T00:00:00Z’, ...)

Response:
Status: PASS, Return Data: ...

Judge Reasoning:
The tool call has incorrectly specified
start date=’2024-01-31T23:59:59Z’ be-
ing later than the end date=’2024-01-
01T00:00:00Z’. The simulator should have
returned FAIL with this error message.

Figure 5: Left: An example ACEBench tool call with simulator return data precisely matching the
execution output. Right: An example where the judge correctly identifies an erroneous response.

6 TOOL SET AND TASKS

Using our pipeline, we generate a large corpus of synthetic tools spanning multiple domains, includ-
ing e-commerce and retail, healthcare, financial trading, and more. We demonstrate the scalability
of our pipeline along two key dimensions:

• Scaling through diversification of fields: To demonstrate the flexibility of our pipeline in gen-
erating tools for diverse domains, we create 50 tools each across 100 different fields. Figure 6
illustrates the breadth and diversity of the resulting toolset for 37 fields. See Appendix E for the
full 100-field figure. While the selected domains are not exhaustive, this experiment shows that
our pipeline can effectively scale the generation of tools across a wide variety of application areas.

• Scaling the number of tools within a field: We also investigate the ability of our pipeline to
scale tool generation within a specific field. A key question in this setting is whether increasing
the number of tools results in genuinely novel tools or merely duplicates. To explore this, we
focus on the e-commerce and retail domain and scale the tool count up to 1,000. As shown in
Figure 7, the distribution indicates a high degree of tool uniqueness. We further validate this trend
by generating 200 tools in several other domains, observing consistent results. This supports the
conclusion that our pipeline can effectively scale the number of tools within a single field without
significant redundancy.

During the deduplication stage, we filtered out approximately 9% of near-duplicate tools. In a
subsequent tool auditing phase (Section 4), we discarded an additional ≈ 11% of tools from a
sampled subset, based on failures in consistency checks or violations of interface contracts. These
steps result in a carefully curated collection of high-quality tools, suitable for downstream training
and evaluation tasks.

6.1 TASKS

We demonstrate how to construct multi-step and multi-turn tasks that require the use of multiple
tools and structured decision-making by an agent using our pipeline. Our hierarchical domain-
evolution procedure naturally produces tasks with intermediate subgoals requiring deep composable
tools (Section A); we leverage these to derive specific tasks that can be used for training/evaluation
environments. A critical component is the generation of meta-data consumed by the tool simulator
to produce grounded responses on valid calls. This meta-data is generated in parallel with task
creation to ensure consistency between task requirements and tool outputs.

We provide illustrative examples of (i) the associated meta-data, (ii) task specifications, and (iii)
the minimal tool set required to solve each task (Section A). For experimental settings, one can
train/evaluate agents under two regimes: (a) an exact tool set containing only the tools needed for

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 6: Distribution of tool embeddings across diverse field.

Figure 7: Scaling the number of tools within a field (e-commerce and retail): As we scale the
number of tools within a field, they get more diverse rather than just producing duplicates. (left: 1
sub-domain, 110 tools, center: 3 sub-domains, 315 tools, right: 1 sub-domain, 933 tools)

the task, and (b) an extended tool set that includes distractor tools. The latter probes the agent’s
ability to discover and select the appropriate tools under realistic ambiguity.

As a complementary approach, one can also explore tasks generated directly by LLMs conditioned
on a given tool set. While this approach can increase variety, we find it less reliable than the hier-
archical construction: LLM-generated tasks may under-specify dependencies or omit long-horizon
structure, whereas the hierarchical procedure yields more coherent, multi-tool plans.

7 CONCLUSION

We introduce SynthTools, a scalable pipeline for generating synthetic tool ecosystems to support the
development of tool-using LLM agents. Our approach integrates hierarchical tool generation, sim-
ulation of realistic behaviors, and rigorous quality control to produce diverse, reliable, and reusable
toolsets. Experiments demonstrate that the pipeline scales across domains, maintains high simula-
tion fidelity, and enables the construction of complex, multi-step tasks for training and evaluation.
By decoupling agent training from the limitations of real-world APIs, SynthTools provides a stable
and flexible foundation for advancing research in general-purpose agentic systems. We hope this
framework will catalyze broader exploration of synthetic environments and foster progress toward
robust, adaptive LLM agents.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

We provide our code in this anonymized repository: https://anonymous.4open.
science/r/SynthTools-44C6/README.md

REFERENCES

Amro Abbas, Kushal Tirumala, Dániel Simig, Surya Ganguli, and Ari S. Morcos. Semdedup: Data-
efficient learning at web-scale through semantic deduplication, 2023. URL https://arxiv.
org/abs/2303.09540.

Chen Chen, Xinlong Hao, Weiwen Liu, Xu Huang, Xingshan Zeng, Shuai Yu, Dexun Li, Shuai
Wang, Weinan Gan, Yuefeng Huang, Wulong Liu, Xinzhi Wang, Defu Lian, Baoqun Yin, Yasheng
Wang, and Wu Liu. Acebench: Who wins the match point in tool usage?, 2025a. URL https:
//arxiv.org/abs/2501.12851.

Chen Chen, Xinlong Hao, Weiwen Liu, Xu Huang, Xingshan Zeng, Shuai Yu, Dexun Li, Shuai
Wang, Weinan Gan, Yuefeng Huang, et al. Acebench: Who wins the match point in tool learning?
arXiv e-prints, pp. arXiv–2501, 2025b.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Runnan Fang, Shihao Cai, Baixuan Li, Jialong Wu, Guangyu Li, Wenbiao Yin, Xinyu Wang, Xi-
aobin Wang, Liangcai Su, Zhen Zhang, et al. Towards general agentic intelligence via environ-
ment scaling. arXiv preprint arXiv:2509.13311, 2025.

Zhicheng Guo, Sijie Cheng, Yuchen Niu, Hao Wang, Sicheng Zhou, Wenbing Huang, and Yang
Liu. StableToolBench-MirrorAPI: Modeling tool environments as mirrors of 7,000+ real-world
APIs. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Findings of the Association for Computational Linguistics: ACL 2025, pp. 5247–5270,
Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-256-
5. doi: 10.18653/v1/2025.findings-acl.273. URL https://aclanthology.org/2025.
findings-acl.273/.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022. URL https://arxiv.org/abs/
2203.15556.

Kimi. Kimi K2: Open Agentic Intelligence, 2025. URL https://arxiv.org/abs/2507.
20534.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei
Huang, and Yongbin Li. API-bank: A comprehensive benchmark for tool-augmented LLMs.
In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 3102–3116, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.187. URL
https://aclanthology.org/2023.emnlp-main.187/.

Guozhao Mo, Wenliang Zhong, Jiawei Chen, Xuanang Chen, Yaojie Lu, Hongyu Lin, Ben He,
Xianpei Han, and Le Sun. Livemcpbench: Can agents navigate an ocean of mcp tools? arXiv
preprint arXiv:2508.01780, 2025.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model
connected with massive apis. Advances in Neural Information Processing Systems, 37:126544–
126565, 2024.

10

https://anonymous.4open.science/r/SynthTools-44C6/README.md
https://anonymous.4open.science/r/SynthTools-44C6/README.md
https://arxiv.org/abs/2303.09540
https://arxiv.org/abs/2303.09540
https://arxiv.org/abs/2501.12851
https://arxiv.org/abs/2501.12851
https://aclanthology.org/2025.findings-acl.273/
https://aclanthology.org/2025.findings-acl.273/
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2507.20534
https://aclanthology.org/2023.emnlp-main.187/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Akshara Prabhakar, Zuxin Liu, Ming Zhu, Jianguo Zhang, Tulika Awalgaonkar, Shiyu Wang, Zhiwei
Liu, Haolin Chen, Thai Hoang, Juan Carlos Niebles, et al. Apigen-mt: Agentic pipeline for multi-
turn data generation via simulated agent-human interplay. arXiv preprint arXiv:2504.03601,
2025.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Michael Sullivan, Mareike Hartmann, and Alexander Koller. Procedural environment generation for
tool-use agents, 2025. URL https://arxiv.org/abs/2506.11045.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, Boxi Cao, and Le Sun. Toolal-
paca: Generalized tool learning for language models with 3000 simulated cases. arXiv preprint
arXiv:2306.05301, 2023.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji.
Mint: Evaluating llms in multi-turn interaction with tools and language feedback. arXiv preprint
arXiv:2309.10691, 2023.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, Zhengyu Chen, and Jian Zhang. On the tool
manipulation capability of open-source large language models. arXiv preprint arXiv:2305.16504,
2023.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for
tool-agent-user interaction in real-world domains. arXiv preprint arXiv:2406.12045, 2024.

Ming Yin, Dinghan Shen, Silei Xu, Jianbing Han, Sixun Dong, Mian Zhang, Yebowen Hu, Shujian
Liu, Simin Ma, Song Wang, et al. Livemcp-101: Stress testing and diagnosing mcp-enabled
agents on challenging queries. arXiv preprint arXiv:2508.15760, 2025.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. Toolqa: A dataset for llm
question answering with external tools. Advances in Neural Information Processing Systems, 36:
50117–50143, 2023.

11

https://arxiv.org/abs/2506.11045

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A EXAMPLE TASKS

A.1 EXAMPLE 1 (FIELD: ECOMMERCE AND RETAIL)

Multi Tool Workflows

Field: Ecommerce and Retail → Subfield: Product Catalog Management → Task: Product Informa-
tion Creation and Updates

List All Tool Names and Dependencies Gnereated under this task

1. Product Data Validator – raw product data → validated product records

2. Product Content Generator – specs → descriptions, titles, keywords

3. Image Processor – raw images → optimized product images

4. Pricing Calculator – cost data, rules → calculated prices

5. Inventory Sync Checker – product IDs → stock status validation

6. Category Classifier – product attributes → category assignments

7. SKU Generator – product details → unique SKU codes

8. Bulk Import Processor – CSV/Excel files → processed product batches

9. Product Comparison Tool – multiple product records → difference reports

10. Catalog Publisher – finalized products → multi-channel updates

11. Product Search Optimizer – product data → SEO metadata

12. Quality Assurance Scanner – product records → quality issue reports

Simple Multi-Tool Workflows:
1. Single product creation: SKU Generator → Product Data Validator → Product Content Generator
→ Catalog Publisher
2. Image optimization: Image Processor → Product Data Validator → Catalog Publisher

Medium Multi-Tool Workflows:
1. New product launch: SKU Generator → Product Data Validator → Category Classifier → Product
Content Generator → Image Processor → Pricing Calculator → Product Search Optimizer → Catalog
Publisher
2. Inventory synchronization: Inventory Sync Checker → Product Data Validator → Product Compar-
ison Tool → Catalog Publisher

Complex Multi-Tool Workflows:
1. Bulk catalog update: Bulk Import Processor → Product Data Validator → Category Classifier →
Product Content Generator → Image Processor → Pricing Calculator → Inventory Sync Checker →
Product Search Optimizer → Quality Assurance Scanner → Product Comparison Tool → Catalog
Publisher
2. Complete catalog audit: Quality Assurance Scanner → Product Comparison Tool → Product Data
Validator → Category Classifier → Pricing Calculator → Inventory Sync Checker → Product Search
Optimizer → Catalog Publisher

Meta Data

Products:

1. Product-id: P1001, product-name: Wireless Noise-Cancelling Headphones, brand: AudioMax,
category: Electronics, attributes: [color: Black, battery-life: 30h, wireless: true], specifications:
[Bluetooth 5.0, ANC, USB-C charging], base-cost: 75, markup-percentage: 40, currency: USD,
competitor-prices: [129.99, 139.99, 119.99], stock: [warehouse-A: 120, warehouse-B: 30]

2. Product-id: P1002, product-name: Ergonomic Office Chair, brand: ComfortPro, category: Fur-
niture, attributes: [color: Grey, adjustable: true, material: Mesh], specifications: [Adjustable height,
Lumbar support, 360 swivel], base-cost: 95, markup-percentage: 50, currency: USD, competitor-
prices: [199.99, 189.99, 210.00], stock: [warehouse-A: 15, warehouse-B: 5]

3. Product-id: P1003, product-name: Smart LED Light Bulb, brand: BrightLite, category: Home
Appliances, attributes: [color: RGB, connectivity: WiFi, power: 9W], specifications: [App control,

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Voice assistant compatible, Dimmable], base-cost: 8, markup-percentage: 100, currency: USD,
competitor-prices: [14.99, 12.99, 16.99], stock: [warehouse-A: 500, warehouse-B: 200]

4. Product-id: P1004, product-name: Sports Running Shoes, brand: FlexiRun, category: Footwear,
attributes: [color: Blue, size: 10, material: Mesh], specifications: [Lightweight sole, Breathable,
Shock absorption], base-cost: 40, markup-percentage: 60, currency: USD, competitor-prices:
[79.99, 74.99, 69.99], stock: [warehouse-A: 200,warehouse-B: 150]

5. Product-id: P1005, product-name: 4K Ultra HD Smart TV, brand: VisionX, category: Elec-
tronics, attributes: [size: 55inch, resolution: 4K, smart: true], specifications: [HDR10+, HDMI
2.1, Dolby Atmos], base-cost: 300, markup-percentage: 35, currency: USD, competitor-prices:
[449.99, 499.99, 479.99], stock: [warehouse-A: 25, warehouse-B: 10]

Existing categories: Electronics, Furniture, Home Appliances, Footwear, Sports Equipment, Toys,
Accessories

Warehouses: warehouse-A, warehouse-B, warehouse-C

Channels: website, amazon, ebay, mobile-app

Import files:
1. File-path: /data/batch1-products.csv, file-format: csv, column-mapping: [name: product-name,
brand: brand, category: category, price: base-cost, stock: inventory]

2. File-path: /data/batch2-products.json, file-format: json, column-mapping: [title: product-name,
company: brand, type: category, cost: base-cost, inventory: stock]

Tasks

Task 1: Create a new SKU and publish the Wireless Noise-Cancelling Headphones to website and
Amazon with validated product data and generated content.
Info: Task-difficulty: simple, Task-validity: valid, Number-tools-required: 4
Tools-required: [SKU Generator, Product Data Validator, Product Content Generator, Catalog Pub-
lisher]

Task 2: Optimize and publish the Ergonomic Office Chair images to the website after validation.
Info: Task-difficulty: simple, Task-validity: valid, Number-tools-required: 3
Tools-required: [Image Processor, Product Data Validator, Catalog Publisher]

Task 3: Launch Smart LED Light Bulb with SKU creation, validation, category assignment, content,
image optimization, pricing, SEO, and publish to all channels.
Info: Task-difficulty: medium, Task-validity: valid, Number-tools-required: 8
Tools-required: [SKU Generator, Product Data Validator, Category Classifier, Product Content Gen-
erator, Image Processor, Pricing Calculator, Product Search Optimizer, Catalog Publisher]

Task 4: Process the bulk import file batch1-products.csv, validate and classify products, generate
content and optimized images, calculate pricing, check inventory, optimize for search, scan for quality
issues, compare against existing catalog, and publish.
Info: Task-difficulty: complex, Task-validity: valid, Number-tools-required: 11
Tools-required: [Bulk Import Processor, Product Data Validator, Category Classifier, Product Content
Generator, Image Processor, Pricing Calculator, Inventory Sync Checker, Product Search Optimizer,
Quality Assurance Scanner, Product Comparison Tool, Catalog Publisher]

Task 5: Generate customer product reviews for the Sports Running Shoes and publish them on Ama-
zon.
Info: Task-difficulty: simple, Task-validity: invalid, Number-tools-required: 2
Tools-required: [Review Generator, Catalog Publisher]

Task 6: Perform a complete catalog audit including legal compliance verification using a Legal Com-
pliance Checker before publishing.
Info: Task-difficulty: complex, Task-validity: invalid, Number-tools-required: 9
Tools-required: [Quality Assurance Scanner, Product Comparison Tool, Product Data Validator, Cat-
egory Classifier, Pricing Calculator, Inventory Sync Checker, Product Search Optimizer, Legal Com-
pliance Checker, Catalog Publisher]

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Task 7: Process an external XML product feed and update the catalog.
Info: Task-difficulty: complex, Task-validity: invalid, Number-tools-required: 2
Tools-required: [XML Feed Processor, Catalog Publisher]

A.2 EXAMPLE 2 (FIELD: FINANCIAL TRADING)

Multi Tool Workflows

Field: Financial Trading → Subfield: Trade Execution and Order Management → Task: Real-time
Order Status Monitoring and Execution Tracking

List All Tool Names and Dependencies Generated under this task

1. Order Status Fetcher – order IDs, broker credentials → current order status data

2. Execution Event Logger – execution data, timestamps → logged execution records

3. Fill Notification Parser – raw broker messages → structured fill data

4. Order Latency Analyzer – order timestamps, execution data → latency metrics

5. Position Reconciler – order fills, current positions → reconciled position data

6. Alert Rule Engine – order status, thresholds → alert notifications

7. Multi-Broker Status Aggregator – multiple broker feeds → unified status view

8. Order Performance Calculator – execution data, benchmarks → performance metrics

9. Risk Exposure Monitor – open orders, positions → risk exposure data

10. Execution Quality Analyzer – fills, market data → execution quality scores

11. Order History Tracker – order events → complete order lifecycle data

12. Real-time Dashboard Generator – aggregated data → dashboard summaries

Simple Multi-Tool Workflows:
1. Basic order tracking: Order Status Fetcher → Execution Event Logger → Order History Tracker
2. Fill monitoring: Fill Notification Parser → Position Reconciler → Alert Rule Engine

Medium Multi-Tool Workflows:
1. Performance monitoring: Order Status Fetcher → Order Performance Calculator → Execution
Quality Analyzer → Real-time Dashboard Generator
2. Risk monitoring: Multi-Broker Status Aggregator → Risk Exposure Monitor → Alert Rule Engine
→ Real-time Dashboard Generator

Complex Multi-Tool Workflows:
1. Complete execution analysis: Order Status Fetcher → Fill Notification Parser → Order Latency
Analyzer → Order Performance Calculator → Execution Quality Analyzer → Position Reconciler →
Real-time Dashboard Generator
2. Multi-broker risk management: Multi-Broker Status Aggregator → Order Status Fetcher → Risk
Exposure Monitor → Position Reconciler → Alert Rule Engine → Execution Event Logger → Order
History Tracker

Meta Data

Tool Sequences:

Easy: [Order Status Fetcher → Execution Event Logger → Order History Tracker, Fill Notification
Parser → Position Reconciler → Alert Rule Engine]

Medium: [Order Status Fetcher → Order Performance Calculator → Execution Quality Analyzer →
Real-time Dashboard Generator, Multi-Broker Status Aggregator → Risk Exposure Monitor → Alert
Rule Engine → Real-time Dashboard Generator]

Complex: [Order Status Fetcher → Fill Notification Parser → Order Latency Analyzer → Order Per-
formance Calculator → Execution Quality Analyzer → Position Reconciler → Real-time Dashboard
Generator, Multi-Broker Status Aggregator → Order Status Fetcher → Risk Exposure Monitor →
Position Reconciler → Alert Rule Engine → Execution Event Logger → Order History Tracker]

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Trading Accounts:

ACC 001 INST – Interactive Brokers, Institutional, Portfolio: 50,000,000, Risk: [max pos:
5,000,000, sector: 15%, daily loss: 500,000]
ACC 002 HEDGE – Alpaca, Hedge Fund, Portfolio: 25,000,000, Risk: [max pos: 2,500,000, sector:
20%, daily loss: 300,000]
ACC 003 PROP – Binance, Proprietary, Portfolio: 10,000,000, Risk: [max pos: 1,000,000, sector:
25%, daily loss: 150,000]

Orders:

ORD 001 – AAPL Buy 10,000 @ 175.50 (limit), Status: partially filled (6,500 filled, 3,500 remain-
ing), Avg Fill: 175.48, Venue: NASDAQ, Fees: 45.50
ORD 002 – TSLA Sell 5,000 (market), Status: filled, Avg Fill: 248.75, Venue: NYSE, Fees: 62.19
ORD 003 – MSFT Buy 8,000 (stop-limit 420/421), Status: pending, Venue: NASDAQ
ORD 004 – GOOGL Buy 2,500 @ 142.50 (limit), Status: rejected (reason: insufficient buying power),
Venue: NASDAQ
ORD 005 – NVDA Sell 3,000 @ 875.00 (limit), Status: cancelled (1,200 filled @ 874.95), Venue:
NASDAQ, Fees: 31.50

Market Data (15:30 UTC):
AAPL – 175.52 (Bid 175.50, Ask 175.53, VWAP 175.45, TWAP 175.48, Vol 45M)
TSLA – 248.80 (Bid 248.75, Ask 248.85, VWAP 248.70, TWAP 248.72, Vol 32M)
MSFT – 419.75 (Bid 419.70, Ask 419.80, VWAP 419.80, TWAP 419.85, Vol 28M)

Positions:

ACC 001 INST – AAPL: 156,500 @ 172.30, Unrealized PnL: 503,680
ACC 002 HEDGE – TSLA: -8,200 @ 252.10, Unrealized PnL: 27,470

Alert Rules:

High Latency – ack latency ms ¿ 500 (priority: high)
Large Slippage – slippage bps ¿ 50 (priority: critical)
Risk Limit Breach – exposure percentage ¿ 80 (priority: critical)

Execution Venues:

NASDAQ – Exchange, Latency 12ms, Fill Rate 0.95, Impact 1.2
NYSE – Exchange, Latency 15ms, Fill Rate 0.92, Impact 1.1
Dark Pool 1 – Dark Pool, Latency 25ms, Fill Rate 0.78, Impact 0.8

Broker Configurations:

Interactive Brokers – api.ib.com, Orders/sec: 50, Types: [market, limit, stop, stop limit], Status: active
Alpaca – paper-api.alpaca.markets, Orders/sec: 200, Types: [market, limit, stop], Status: active
Binance – api.binance.us, Orders/sec: 100, Types: [market, limit, stop limit], Status: maintenance

Tasks

Task 1: Track status of ORD 001 (IBKR), log execution events, update order history.
Info: Difficulty: easy, Validity: valid, Tools: 3
Tools-required: [Order Status Fetcher, Execution Event Logger, Order History Tracker]

Task 2: Parse TSLA ORD 002 fill, reconcile position, generate alerts.
Info: Difficulty: easy, Validity: valid, Tools: 3
Tools-required: [Fill Notification Parser, Position Reconciler, Alert Rule Engine]

Task 3: Retrieve ORD 001 status + auto hedge trade (invalid).
Info: Difficulty: easy, Validity: invalid, Tools: 4
Tools-required: [Order Status Fetcher, Execution Event Logger, Order History Tracker, Auto Trade
Executor]

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Task 4: Parse fills + SMS alerts (invalid).
Info: Difficulty: easy, Validity: invalid, Tools: 3
Tools-required: [Fill Notification Parser, Position Reconciler, SMS Alert Sender]

Task 5: Execution performance analysis for ORD 002 vs VWAP.
Info: Difficulty: medium, Validity: valid, Tools: 4
Tools-required: [Order Status Fetcher, Order Performance Calculator, Execution Quality Analyzer,
Real-time Dashboard Generator]

Task 6: Aggregate status from brokers, monitor ACC 001 INST risk, alert + dashboard.
Info: Difficulty: medium, Validity: valid, Tools: 4
Tools-required: [Multi-Broker Status Aggregator, Risk Exposure Monitor, Alert Rule Engine, Real-
time Dashboard Generator]

Task 7: Aggregate broker status + auto portfolio rebalance (invalid).
Info: Difficulty: medium, Validity: invalid, Tools: 4
Tools-required: [Multi-Broker Status Aggregator, Risk Exposure Monitor, Alert Rule Engine, Port-
folio Rebalancer]

Task 8: Fetch performance + compliance reporting (invalid).
Info: Difficulty: medium, Validity: invalid, Tools: 4
Tools-required: [Order Status Fetcher, Order Performance Calculator, Execution Quality Analyzer,
Regulatory Report Generator]

Task 9: Full execution analysis for ORD 001: status, fills, latency, VWAP benchmark, quality, posi-
tion reconcile, dashboard.
Info: Difficulty: complex, Validity: valid, Tools: 7
Tools-required: [Order Status Fetcher, Fill Notification Parser, Order Latency Analyzer, Order Perfor-
mance Calculator, Execution Quality Analyzer, Position Reconciler, Real-time Dashboard Generator]

Task 10: Multi-broker risk workflow: aggregate, fetch statuses, monitor exposure, reconcile, alert, log
events, update history.
Info: Difficulty: complex, Validity: valid, Tools: 7
Tools-required: [Multi-Broker Status Aggregator, Order Status Fetcher, Risk Exposure Monitor, Po-
sition Reconciler, Alert Rule Engine, Execution Event Logger, Order History Tracker]

Task 11: Execution analysis + auto order optimization (invalid).
Info: Difficulty: complex, Validity: invalid, Tools: 8
Tools-required: [Order Status Fetcher, Fill Notification Parser, Order Latency Analyzer, Order Perfor-
mance Calculator, Execution Quality Analyzer, Position Reconciler, Real-time Dashboard Generator,
Order Optimizer]

Task 12: Risk management + auto hedging (invalid).
Info: Difficulty: complex, Validity: invalid, Tools: 8
Tools-required: [Multi-Broker Status Aggregator, Order Status Fetcher, Risk Exposure Monitor, Posi-
tion Reconciler, Alert Rule Engine, Execution Event Logger, Order History Tracker, Position Hedger]

A.3 EXAMPLE 3 (FIELD: HEALTHCARE AND MEDICAL)

Multi Tool Workflows

Field: Healthcare and Medical → Subfield: Electronic Health Records Management → Task: Patient
Registration and Demographic Data Management

List All Tool Names and Dependencies Generated under this task
1. Patient Identity Validator – personal identifiers → validated identity data

2. Insurance Verification Tool – insurance details → coverage verification

3. Duplicate Patient Checker – demographic data → potential duplicate matches

4. Address Standardizer – raw address → standardized address

5. Emergency Contact Validator – contact info → validated emergency contacts

6. Patient Record Creator – validated data → new patient record

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

7. Demographic Data Updater – patient ID + new data → updated record

8. Medical History Importer – external records → structured medical history

9. Consent Manager – consent preferences → consent documentation

10. Patient Search Engine – search criteria → matching patient records

11. Data Quality Auditor – patient records → quality assessment

12. Registration Status Tracker – registration steps → completion status

Simple Multi-Tool Workflows:
1. Basic registration: Patient Identity Validator → Address Standardizer → Patient Record Creator
2. Quick search: Patient Search Engine → Demographic Data Updater

Medium Multi-Tool Workflows:
1. Complete new registration: Patient Identity Validator → Address Standardizer → Insurance Veri-
fication Tool → Duplicate Patient Checker → Emergency Contact Validator → Consent Manager →
Patient Record Creator → Registration Status Tracker
2. Record update: Patient Search Engine → Data Quality Auditor → Demographic Data Updater →
Registration Status Tracker

Complex Multi-Tool Workflows:
1. Full registration with history: Patient Identity Validator → Address Standardizer → Insurance
Verification Tool → Duplicate Patient Checker → Emergency Contact Validator → Medical History
Importer → Consent Manager → Patient Record Creator → Data Quality Auditor → Registration
Status Tracker
2. Comprehensive data migration: Patient Search Engine → Duplicate Patient Checker → Medical
History Importer → Demographic Data Updater → Data Quality Auditor → Consent Manager

Meta Data

Tool Sequences:

Simple: [[Patient Identity Validator, Address Standardizer, Patient Record Creator], [Patient Search
Engine, Demographic Data Updater]]

Medium: [[Patient Identity Validator, Address Standardizer, Insurance Verification Tool, Duplicate Pa-
tient Checker, Emergency Contact Validator, Consent Manager, Patient Record Creator, Registration
Status Tracker], [Patient Search Engine, Data Quality Auditor, Demographic Data Updater, Registra-
tion Status Tracker]]

Complex: [[Patient Identity Validator, Address Standardizer, Insurance Verification Tool, Duplicate
Patient Checker, Emergency Contact Validator, Medical History Importer, Consent Manager, Patient
Record Creator, Data Quality Auditor, Registration Status Tracker], [Patient Search Engine, Dupli-
cate Patient Checker, Medical History Importer, Demographic Data Updater, Data Quality Auditor,
Consent Manager]]

Patients:

PAT001 – John Smith, DOB: 1985-03-15, Male, Address: 123 Main St, Springfield, IL 62701, Phone:
555-123-4567, Email: john.smith@email.com, SSN: 123-45-6789, Married, Lang: English, Status:
Complete
PAT002 – Maria Garcia, DOB: 1992-07-22, Female, Address: 456 Oak Ave, Chicago, IL 60601,
Phone: 555-234-5678, Email: maria.garcia@email.com, SSN: 234-56-7890, Single, Lang: Spanish,
Status: Incomplete
PAT003 – David Johnson, DOB: 1978-11-08, Male, Address: 789 Pine Rd, Milwaukee, WI 53202,
Phone: 555-345-6789, Email: d.johnson@email.com, SSN: 345-67-8901, Divorced, Lang: English,
Status: Pending
PAT004 – Sarah Williams, DOB: 1990-12-03, Female, Address: 321 Elm St, Detroit, MI 48201,
Phone: 555-456-7890, Email: sarah.w@email.com, SSN: 456-78-9012, Married, Lang: English, Sta-
tus: Complete
PAT005 – Robert Brown, DOB: 1965-05-17, Male, Address: 654 Cedar Ln, Columbus, OH 43215,
Phone: 555-567-8901, Email: rob.brown@email.com, SSN: 567-89-0123, Widowed, Lang: English,
Status: Complete

Insurance Providers:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Blue Cross Blue Shield – Policies: [BC123456789, BC987654321, BC456789012], Coverage: [Indi-
vidual, Family, Group], Copays: [25, 35, 15], Deductibles: [1000, 1500, 500]
Aetna – Policies: [AET123456, AET789012, AET345678], Coverage: [PPO, HMO, EPO], Copays:
[30, 20, 25], Deductibles: [1200, 800, 1000]
United Healthcare – Policies: [UH987654, UH123789, UH456123], Coverage: [Select, Choice, Nav-
igate], Copays: [35, 25, 30], Deductibles: [1500, 1000, 1200]

Emergency Contacts:

PAT001 – Jane Smith (Spouse), Phones: [555-123-9876, 555-123-5432], Email:
jane.smith@email.com
PAT002 – Carlos Garcia (Brother), Phone: 555-234-9876, Email: carlos.garcia@email.com
PAT003 – Emily Johnson (Sister), Phones: [555-345-9876, 555-345-5432], Email:
emily.johnson@email.com

Addresses:

123 Main Street → 123 Main St, Springfield, IL 62701, Lat: 39.7817, Long: -89.6501, Status: valid
456 Oak Avenue → 456 Oak Ave, Chicago, IL 60601, Lat: 41.8781, Long: -87.6298, Status: valid
789 Pine Road → 789 Pine Rd, Milwaukee, WI 53202, Lat: 43.0389, Long: -87.9065, Status: valid

Medical History:

PAT001 – Source: previous provider, Conditions: [Hypertension, Type 2 Diabetes], Medications:
[Metformin, Lisinopril], Allergies: [Penicillin], Last Updated: 2024-01-15
PAT003 – Source: patient reported, Conditions: [Asthma, Seasonal Allergies], Medications: [Al-
buterol Inhaler], Allergies: [Peanuts, Shellfish], Last Updated: 2024-02-10

Consent Records:

PAT001 – Type: data sharing, Status: true, Scope: [treatment, payment, operations], Exp: 2025-03-15
PAT002 – Type: research participation, Status: false

Tasks

Task 1: Register Michael Thompson (DOB 1988-04-12, Address 999 Sunset Blvd, LA 90210) and
create record.
Info: Difficulty: simple, Validity: valid, Tools: 3
Tools-required: [Patient Identity Validator, Address Standardizer, Patient Record Creator]

Task 2: Find patient Garcia, update phone to 555-999-8888.
Info: Difficulty: simple, Validity: valid, Tools: 2
Tools-required: [Patient Search Engine, Demographic Data Updater]

Task 3: Register new patient + schedule appointment (invalid).
Info: Difficulty: simple, Validity: invalid, Tools: 4
Tools-required: [Patient Identity Validator, Address Standardizer, Patient Record Creator, Appoint-
ment Scheduler]

Task 4: Create record + insurance pre-auth (invalid).
Info: Difficulty: simple, Validity: invalid, Tools: 3
Tools-required: [Patient Record Creator, Insurance Verification Tool, Pre-authorization Request Tool]

Task 5: Full registration for Jennifer Lopez (DOB 1975-09-25, insurance BC123456789, spouse Car-
los Lopez).
Info: Difficulty: medium, Validity: valid, Tools: 8
Tools-required: [Patient Identity Validator, Address Standardizer, Insurance Verification Tool, Dupli-
cate Patient Checker, Emergency Contact Validator, Consent Manager, Patient Record Creator, Regis-
tration Status Tracker]

Task 6: Search Robert Brown, audit data, update marital status to remarried, track.
Info: Difficulty: medium, Validity: valid, Tools: 4
Tools-required: [Patient Search Engine, Data Quality Auditor, Demographic Data Updater, Registra-
tion Status Tracker]

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Task 7: Register + insurance + duplicates + appointment + email + billing (invalid).
Info: Difficulty: medium, Validity: invalid, Tools: 7
Tools-required: [Patient Identity Validator, Insurance Verification Tool, Duplicate Patient Checker,
Appointment Scheduler, Email Service, Billing Generator, Patient Record Creator]

Task 8: Registration with pharmacy + lab integration (invalid).
Info: Difficulty: medium, Validity: invalid, Tools: 6
Tools-required: [Patient Record Creator, Insurance Verification Tool, Pharmacy Integration Tool, Lab
Integration Tool, Consent Manager, Registration Status Tracker]

Task 9: Comprehensive registration for Thomas Anderson (DOB 1980-06-15, Aetna AET123456,
brother Neo Anderson).
Info: Difficulty: complex, Validity: valid, Tools: 10
Tools-required: [Patient Identity Validator, Address Standardizer, Insurance Verification Tool, Du-
plicate Patient Checker, Emergency Contact Validator, Medical History Importer, Consent Manager,
Patient Record Creator, Data Quality Auditor, Registration Status Tracker]

Task 10: Data migration for Sarah Williams (import history, update insurance, audit, update consent).
Info: Difficulty: complex, Validity: valid, Tools: 6
Tools-required: [Patient Search Engine, Duplicate Patient Checker, Medical History Importer, Demo-
graphic Data Updater, Data Quality Auditor, Consent Manager]

Task 11: Registration + state HIE + CDC + insurance pre-auth + scheduling + portal (invalid).
Info: Difficulty: complex, Validity: invalid, Tools: 8
Tools-required: [Patient Identity Validator, State HIE Integration, CDC Database Connector, Insur-
ance Pre-auth Tool, Multi-specialty Scheduler, Patient Portal Creator, Patient Record Creator, Regis-
tration Status Tracker]

Task 12: Registration + CDS + drug interactions + alerts (invalid).
Info: Difficulty: complex, Validity: invalid, Tools: 7
Tools-required: [Patient Record Creator, Clinical Decision Support, Drug Interaction Checker, Clini-
cal Alerts Manager, Medical History Importer, Data Quality Auditor, Registration Status Tracker]

A.4 EXAMPLE 4 (FIELD: ECOMMERCE AND RETAIL)

Multi Tool Workflows

Field: Ecommerce and Retail → Subfield: Order Processing and Fulfillment → Task: Returns and
Refunds Processing

List All Tool Names and Dependencies Generated under this task

1. Return Request Validator – return request data, order history → validation status, eligibility
rules

2. Return Label Generator – validated return request, shipping preferences → shipping labels,
tracking info

3. Return Item Inspector – returned items data, inspection criteria → item condition assessment

4. Refund Calculator – return details, pricing data, fees → refund amounts, breakdowns

5. Payment Processor – refund amounts, payment methods → payment status, transaction IDs

6. Inventory Updater – returned items, condition assessments → inventory adjustments

7. Return Status Tracker – return IDs, status updates → current status, history

8. Customer Notifier – return status, customer info → notification confirmations

9. Return Analytics Reporter – return data, time periods → analytics reports, trends

10. Restocking Assessor – item conditions, restocking criteria → restocking decisions

11. Exception Handler – problematic returns, escalation rules → resolution recommendations

12. Return Policy Checker – product info, purchase dates → policy compliance, restrictions

Simple Multi-Tool Workflows:
1. Basic return validation: Return Policy Checker → Return Request Validator → Customer Notifier

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

2. Simple refund processing: Refund Calculator → Payment Processor → Customer Notifier

Medium Multi-Tool Workflows:
1. Standard return flow: Return Request Validator → Return Label Generator → Return Item Inspector
→ Refund Calculator → Payment Processor → Inventory Updater → Customer Notifier
2. Return analytics workflow: Return Status Tracker → Return Analytics Reporter → Exception
Handler

Complex Multi-Tool Workflows:
1. Complete return processing: Return Policy Checker → Return Request Validator → Return Label
Generator → Return Status Tracker → Return Item Inspector → Restocking Assessor → Refund
Calculator → Payment Processor → Inventory Updater → Customer Notifier → Return Analytics
Reporter
2. Exception handling workflow: Return Request Validator → Return Item Inspector → Exception
Handler → Restocking Assessor → Refund Calculator → Payment Processor → Customer Notifier
→ Return Status Tracker

Meta Data

Customers:

1. CUST001 – John Smith, john.smith@email.com, +1-555-0101, 123 Main St, New York, NY 10001,
Segment: premium, Prefs: [email, sms]
2. CUST002 – Sarah Johnson, sarah.j@email.com, +1-555-0102, 456 Oak Ave, Los Angeles, CA
90210, Segment: regular, Prefs: [email]
3. CUST003 – Mike Davis, mike.davis@email.com, +1-555-0103, 789 Pine Rd, Chicago, IL 60601,
Segment: new, Prefs: [push notification]

Orders:

ORD001 – CUST001, 2023-11-01, $299.99, tax: 8%, ship: 9.99, credit card (TXN001), Items: [Wire-
less Headphones x1, Phone Case x2]
ORD002 – CUST002, 2023-10-15, $89.99, tax: 7%, ship: 5.99, paypal (TXN002), Items: [Bluetooth
Speaker x1]
ORD003 – CUST003, 2023-12-01, $199.99, tax: 9%, ship: 0.00, debit card (TXN003), Items: [Smart
Watch x1]

Return Policies:

Electronics – 30 days, 15% fee, [original packaging, all accessories]
Accessories – 60 days, 0% fee, [sellable condition]
Wearables – 14 days, 10% fee, [original packaging, no damage]

Warehouses:

WH001 – New York Distribution Center, 500 Industrial Blvd, Queens, NY 11101
WH002 – California Fulfillment Center, 1000 Logistics Way, Long Beach, CA 90802

Shipping Carriers:

UPS – [standard: 7.99, expedited: 15.99, overnight: 29.99]
FedEx – [standard: 8.99, expedited: 16.99, overnight: 34.99]
USPS – [standard: 5.99]

Return Requests:

RET001 – ORD001, CUST001, 2023-11-15, defective, [ITEM001], status: initiated
RET002 – ORD002, CUST002, 2023-11-10, changed mind, [ITEM003], status: approved

Inspectors:

INS001 – Quality Inspector A, WH001, auth: [basic, detailed, quality assurance]
INS002 – Quality Inspector B, WH002, auth: [basic, detailed]

Inventory:

ITEM001 – stock: 50, WH001, new, cost: 75.00

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

ITEM002 – stock: 100, WH001, new, cost: 15.00
ITEM003 – stock: 25, WH002, new, cost: 40.00

Tasks

Task 1: Validate a return request for CUST001 (ORD001 headphones defective), notify customer.
Info: Difficulty: easy, Validity: valid, Tools: 3
Tools-required: [Return Policy Checker, Return Request Validator, Customer Notifier]

Task 2: Calculate refund for ORD002 Bluetooth Speaker, process payment, notify CUST002.
Info: Difficulty: easy, Validity: valid, Tools: 3
Tools-required: [Refund Calculator, Payment Processor, Customer Notifier]

Task 3: Generate return analytics and reorder inventory (invalid).
Info: Difficulty: easy, Validity: invalid, Tools: 5
Tools-required: [Return Analytics Reporter, Inventory Reorder Tool, Trend Analyzer, Auto Purchase
Tool, Supplier Notifier]

Task 4: Handle international return + customs docs (invalid).
Info: Difficulty: easy, Validity: invalid, Tools: 4
Tools-required: [International Return Handler, Customs Documentation Tool, Currency Converter,
International Payment Processor]

Task 5: Full return lifecycle for ORD001 headphones.
Info: Difficulty: medium, Validity: valid, Tools: 7
Tools-required: [Return Request Validator, Return Label Generator, Return Item Inspector, Refund
Calculator, Payment Processor, Inventory Updater, Customer Notifier]

Task 6: Track RET002 status, generate analytics, handle exceptions.
Info: Difficulty: medium, Validity: valid, Tools: 3
Tools-required: [Return Status Tracker, Return Analytics Reporter, Exception Handler]

Task 7: Bulk returns for 50 customers with auto-approve (invalid).
Info: Difficulty: medium, Validity: invalid, Tools: 8
Tools-required: [Bulk Return Processor, Auto Approval Engine, Bulk Refund Calculator, Store Credit
Issuer, Mass Inventory Updater, Bulk Customer Notifier, Policy Override Tool, Automatic Validator]

Task 8: Integrate return data with CRM and dashboards (invalid).
Info: Difficulty: medium, Validity: invalid, Tools: 6
Tools-required: [CRM Integration Tool, Multi-Platform Sync, Customer Profile Merger, Executive
Dashboard Generator, Data Warehouse Connector, Business Intelligence Tool]

Task 9: Full return lifecycle for ORD003 Smart Watch (FedEx expedited).
Info: Difficulty: complex, Validity: valid, Tools: 11
Tools-required: [Return Policy Checker, Return Request Validator, Return Label Generator, Return
Status Tracker, Return Item Inspector, Restocking Assessor, Refund Calculator, Payment Processor,
Inventory Updater, Customer Notifier, Return Analytics Reporter]

Task 10: Handle problematic return for RET001 headphones.
Info: Difficulty: complex, Validity: valid, Tools: 8
Tools-required: [Return Request Validator, Return Item Inspector, Exception Handler, Restocking
Assessor, Refund Calculator, Payment Processor, Customer Notifier, Return Status Tracker]

Task 11: Predict return likelihood + dynamic pricing (invalid).
Info: Difficulty: complex, Validity: invalid, Tools: 15
Tools-required: [ML Prediction Engine, Dynamic Pricing Tool, Manufacturing Integration, Qual-
ity Improvement Analyzer, Predictive Analytics Platform, Executive Dashboard Creator, Data Min-
ing Tool, Pattern Recognition System, Automated Decision Engine, Cross-Platform Integrator, Real-
time Analytics Processor, Business Intelligence Suite, Advanced Reporting Engine, Strategic Planning
Tool, Performance Optimization System]

Task 12: Blockchain + crypto refunds + AR/VR inspections (invalid).
Info: Difficulty: complex, Validity: invalid, Tools: 12

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Tools-required: [Blockchain Verification System, Cryptocurrency Payment Processor, Social Media
Integrator, Sentiment Analysis Engine, AR Return Inspector, VR Inspection Platform, Digital Asset
Manager, Distributed Ledger Tool, Social Listening Platform, Virtual Reality Processor, Augmented
Reality Engine, Digital Currency Exchange]

B TOOL EXAMPLES

B.1 EXAMPLE 1 (FIELD: CUSTOMER SUPPORT)

Field to Tool Evolution

Field: Customer Support → Sub Domain: Ticket Management → Task: Track and update ticket
status throughout resolution lifecycle → Tool: Ticket Status Updater

The Generated Tool

Tool Name: Ticket Status Updater
Description: Updates the status of a support ticket and validates the status transition according to
business rules.

Parameters:
• ticket id (string, required) – Unique identifier for the support ticket

• new status (string, required) – Target status: open, in progress,
pending customer, pending internal, resolved, closed, cancelled

• agent id (string, required) – ID of the agent making the status change

• update reason (string, optional, default = null) – Optional reason for the status change

Error Messages:
• Invalid ticket ID: The provided ticket id does not exist in the system. Verify the ticket

number and try again.

• Invalid status transition: The requested status change is not allowed from the current status.
Check valid transitions in the workflow rules.

• Agent authorization failed: The specified agent id does not have permission to update
this ticket. Ensure the agent has proper access rights.

• Ticket is locked: The ticket is currently being modified by another user. Wait a moment and
retry the operation.

Usage: Provide ticket id, new status, and agent id to update ticket status. Optionally in-
clude update reason for audit purposes. The tool validates the transition before applying changes.

Output Details:
• success (boolean) – Indicates if the status update was successful

• previous status (string) – The status before the update

• current status (string) – The new status after the update

• timestamp (string) – When the status change occurred

• updated by (string) – Agent ID who made the change

B.2 EXAMPLE 2 (FIELD: ECOMMERCE AND RETAIL)

Field to Tool Evolution

Field: Ecommerce and Retail → Sub Domain: Product Catalog Management → Task: Product
Quality Assurance and Content Validation → Tool: Image Quality Analyzer

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

The Generated Tool

Tool Name: Image Quality Analyzer
Description: Analyzes product images for quality metrics including resolution, composition, lighting,
background, and technical specifications to ensure catalog standards.

Parameters:
• image urls (array of strings, required, 1–20 items) – URLs or file paths of images to analyze

• min resolution (integer, optional, default = 800) – Minimum required resolution in pixels

• check background (boolean, optional, default = true) – Whether to analyze background
cleanliness

Error Messages:
• Image not accessible: One or more image URLs could not be accessed or loaded.

• Unsupported image format: Images must be in JPEG, PNG, or WebP format.

• Image resolution too low: Image resolution is below the specified minimum requirement.

• Image processing failed: Technical error occurred while analyzing image quality.

Usage: Provide an array of image urls to analyze. Optionally set min resolution and back-
ground checking preferences. Returns comprehensive quality analysis for each image.

Output Details:
• overall score (number) – Overall image quality score from 0 to 100

• image analyses (array of strings) – Individual analysis results for each image

• quality issues (array of strings) – Identified quality problems across all images

• recommendations (array of strings) – Suggestions for improving image quality

B.3 EXAMPLE 3 (FIELD: FINANCIAL TRADING)

Field to Tool Evolution

Field: Financial Trading → Sub Domain: Risk Management and Assessment → Task: Portfolio risk
analysis and stress testing → Tool: Correlation Matrix Calculator

The Generated Tool

Tool Name: Correlation Matrix Calculator
Description: Calculates correlation matrices between assets using historical return data with various
correlation methods and time windows.

Parameters:
• calculation method (string, required) – Correlation calculation method: pearson,
spearman, kendall

• time window (integer, optional, default = 252) – Rolling window size in days for correlation
calculation (30–1000)

• min periods (integer, optional, default = 20) – Minimum number of observations required
for correlation calculation

Error Messages:
• Invalid calculation method: Use pearson, spearman, or kendall correlation methods

only.

• Insufficient data: Not enough price data to calculate correlations. Ensure at least
min periods observations per asset.

• Invalid time window: time window must be between 30 and 1000 days.

• Singular matrix: Correlation matrix is singular, indicating perfect correlation between some
assets.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Usage: Specify correlation calculation method and optionally adjust time window and
min periods. Requires price data from Historical Price Fetcher.

Output Details:
• correlation matrix (array of numbers) – Flattened correlation matrix values

• asset pairs (array of strings) – Asset pair labels corresponding to correlation values

• highest correlation (number) – Highest correlation coefficient found

• lowest correlation (number) – Lowest correlation coefficient found

• matrix rank (integer) – Rank of the correlation matrix

B.4 EXAMPLE 4 (FIELD: HEALTHCARE AND MEDICAL)

Field to Tool Evolution

Field: Healthcare and Medical → Sub Domain: Patient Registration and Scheduling → Task: Ap-
pointment scheduling and calendar management across multiple providers → Tool: Wait List Manager

The Generated Tool

Tool Name: Wait List Manager
Description: Manages patient wait lists for unavailable appointment slots, automatically matching
patients with newly available appointments based on preferences and priorities.

Parameters:
• action (string, required) – Action to perform: add, remove, check matches,
get list

• patient name (string, optional, default = None) – Patient name (required for add action)

• patient phone (string, optional, default = None) – Patient phone number (required for add
action)

• preferred providers (array of strings, optional, default = None) – List of preferred provider
IDs

• preferred dates (array of strings, optional, default = None) – List of preferred dates in ISO
8601 format

• wait list id (string, optional, default = None) – Wait list entry ID (required for remove
action)

Error Messages:
• Invalid action: Action must be one of [add, remove, check matches, get list]

• Missing patient info: patient name and patient phone are required for add action

• Wait list entry not found: No wait list entry exists with the specified wait list id

• Invalid provider IDs: One or more preferred providers do not exist

• Invalid date format: preferred dates must be in ISO 8601 format

• Duplicate entry: Patient is already on wait list for this provider/time combination

Usage: Specify action and provide required parameters. Use add to put patients on wait list,
check matches to find available appointments, and remove to take patients off wait list.

Output Details:
• wait list id (string) – Unique identifier for wait list entry

• status (string) – Operation status

• matches found (integer) – Number of matching appointments found

• matched slots (array of strings) – List of available appointment slots that match criteria

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

B.5 EXAMPLE 5 (FIELD: TRANSPORTATION AND LOGISTICS)

Field to Tool Evolution 5

Field: Transportation and Logistics → Sub Domain: Freight and Cargo Management → Task: Route
planning and optimization for freight shipments → Tool: Traffic Condition Analyzer

The Generated Tool

Tool Name: Traffic Condition Analyzer
Description: Analyzes current and predicted traffic conditions along route segments to estimate delays
and optimal departure times.

Parameters:
• route segments (array of strings, required, 1–50 items) – Array of route segment identifiers

or coordinate pairs

• departure time (string, required, ISO 8601) – Planned departure time in ISO 8601 format

• analysis duration hours (integer, optional, default = 24) – How many hours ahead to ana-
lyze traffic patterns (1–72)

• day of week (string, required) – Day of week for traffic pattern analysis: monday,
tuesday, wednesday, thursday, friday, saturday, sunday

Error Messages:
• Invalid departure time: Provide valid ISO 8601 formatted date-time string.

• Invalid day of week: Use full day name in lowercase (monday through sunday).

• Too many route segments: Maximum 50 segments allowed for analysis.

• Invalid analysis duration: Duration must be between 1 and 72 hours.

• Traffic data unavailable: Unable to retrieve traffic information for specified route segments.

Usage: Provide route segments, departure time, and day of week. Optionally specify
analysis duration hours. Returns traffic predictions and delay estimates for route optimiza-
tion.

Output Details:
• total delay minutes (number) – Total expected traffic delay in minutes

• congestion segments (array of strings) – Route segments expected to have heavy congestion

• optimal departure (string) – Recommended departure time to minimize delays

• traffic severity (string) – Overall traffic severity level: low, moderate, high, severe

C PIPELINE DETAILS

C.1 FAILURE AND SUCCESS MODELS OF TOOL CALLS

Failure mode 1: Schema mismatch

Tool call message:
Insurance Information Updater (patient id
= ’PAT001’, insurance fields = [], insur-
ance values = [’Blue Cross’])

Response:
Status: FAIL, Status Code: 400, Error Mes-
sage: Invalid parameter: insurance fields ar-
ray must contain at least 1 item.”

Failure mode 2: Parameter inconsistency

Tool call message:
Insurance Information Updater (patient id =
’PAT001’, insurance fields = [’provider’,
’policy number’], insurance values = [’Blue
Cross’])

Response:
Status: FAIL, Status Code: 400, Error Mes-
sage: Mismatched fields and values: Ensure
insurance fields and insurance values arrays
have the same length.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Failure mode 3: Response inconsistency

Tool call message:
Regulation Detail Fetcher (regulation id =
’INVALID-REG-999’)

Response:
Status: PASS, Status Code: 200, Return
Data: Error: Invalid regulation ID: Ensure
the regulation ID is correct and exists in the
database.

Success mode: Correct response

Tool call message:
Insurance Information Updater (patient id
= ’PAT001’, insurance fields = [’provider’],
insurance values = [’Blue Cross’])

Response:
Status: PASS, Status Code: 200, Re-
turn Data: update status: Success, up-
dated insurance: [’provider’]

C.2 PROMPTS

We post our prompts under this anonymized repository: https://anonymous.4open.
science/r/SynthTools-44C6/README.md

D DEDUPLICATION DETAILS

To eliminate near-duplicate tools generated through hierarchical evolution, we employ a multi-stage
de-duplication pipeline. The process begins with exact de-duplication applied independently within
each domain/field. We first normalize and compare the tool name attributes, followed by the
tool body, which encompasses the description, parameters, usage, and output schema. This step
reduces redundancy and prevents unnecessary computation in subsequent stages.

We then implement a semantic de-duplication pipeline, adapted from SemDepDup—a state-of-the-
art method proposed by Abbas et al. (2023)—tailored to the structural characteristics of our dataset.
The semantic phase proceeds as follows:

We construct an embedding-based similarity graph over the normalized tool name and
tool body fields. Specifically, let e(t) ∈ Rd denote the embedding of tool t, and define the
coine similarity between tool ti and tj as Sij = cos

(
e(ti), e(tj)

)
. An adjancency matrix is then

defined as Aij = 1{Sij ≥ τ}, τ ∈ (0, 1), and the corresponding undirected similarity graph is
G =

{
(i, j) : Aij = 1

}
. Connected components in G represent candidate duplicate sets: singleton

nodes are considered unique tools, whereas multi-node components are treated as clusters of near-
duplicates. We then apply a selection algorithm (Algorithm 1) to retain representative tools from
each component.

Empirically, cross-field duplication is rare, as workflows and vocabularies tend to differ signifi-
cantly across domains (Figure 8). Most residual redundancy occurs between adjacent tasks and
subdomains, where tool functionalities partially overlap. The degree of de-duplication depends on
the threshold τ ; Figure 9 illustrates the elimination rate as a function of τ . Based on a validation
sweep that balances compactness and coverage, we set τ = 0.85 in practice.

26

https://anonymous.4open.science/r/SynthTools-44C6/README.md
https://anonymous.4open.science/r/SynthTools-44C6/README.md

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 8: Distribution of semantic similarity scores between tools at varying levels of domain gran-
ularity: across fields (blue), within a field (green), within a subfield (yellow), and within a task (red).

Algorithm 1 Selection rule for connected components
1: for each connected component C ⊆ {1, . . . , |T |} do
2: if |C| = 1 then
3: retain the tool unchanged.
4: else if |C| = 2 then
5: choose one uniformly at random (with a fixed PRNG seed for reproducibility), discard

the other.
6: else ▷ |C| ≥ 3
7: Initialize L← C.
8: while ∃ i ̸= j ∈ L with u⊤

i uj ≥ τ do
9: for each i ∈ L do

10: Compute degree

degτ (i) =
∑

j∈L\{i}

Aij

11: Compute incident-sum

wτ (i) =
∑

j∈L\{i}

Aij (u
⊤
i uj)

12: end for
13: Select node to drop by lexicographic maximization:

v⋆ ∈ argmax
i∈L

(
degτ (i), wτ (i)

)
14: Let

k⋆ = arg max
j∈L\{v⋆}

u⊤
v⋆uj

15: Check condition u⊤
v⋆uk⋆ ≥ τ .

16: Drop v⋆: update L← L \ {v⋆}.
17: end while
18: Return survivors L for component C.
19: end if
20: end for

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 9: Percentage of tools dropped v/s similarity score threshold

E DATASET DETAILS

Figure 10: Distribution of tool embeddings across 100 fields

F LLM USE

LLMs were used in both polishing the writing and in search for related works. LLMs were also
used in refining the prompts for the LLM studied in this work. We use Claude-Sonnet-4 for our
experiments and to refine our writing

28

	Introduction
	Related Work

	Tool Generation
	Tool Simulation
	Tool Audit
	How reliable is the LLM judge?
	Tool set and Tasks
	Tasks

	Conclusion
	Reproducibility statement
	Example Tasks
	Example 1 (Field: Ecommerce and Retail)
	Example 2 (Field: Financial Trading)
	Example 3 (Field: Healthcare and Medical)
	Example 4 (Field: Ecommerce and Retail)

	Tool Examples
	Example 1 (Field: Customer Support)
	Example 2 (Field: Ecommerce and Retail)
	Example 3 (Field: Financial Trading)
	Example 4 (Field: Healthcare and Medical)
	Example 5 (Field: Transportation and Logistics)

	Pipeline Details
	Failure and success models of tool calls
	prompts

	Deduplication details
	Dataset Details
	LLM Use

