Under review as a conference paper at ICLR 2026

SYNTHTOOLS: A FRAMEWORK FOR SCALING
SYNTHETIC TOOLS FOR AGENT DEVELOPMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Al agents increasingly rely on external tools to solve complex, long-horizon tasks.
Effective development of such agents requires large-scale training in environments
where they can safely practice using diverse tools, adapt strategies, and iteratively
improve. However, real-world APIs are limited in availability, domain coverage,
and stability, often requiring access keys and imposing rate limits, rendering them
impractical for scalable training. To address these challenges, we introduce Syn-
thTools, a flexible and scalable framework for generating synthetic tool ecosys-
tems. Our framework consists of three core components: Tool Generation for
automatic and scalable creation of diverse tools across domains, Tool Simulation
to emulate realistic tool behaviors, and Tool Audit to ensure consistency and reli-
ability. Using SynthTools, we generate large corpora of synthetic tools and tasks,
enabling controllable, stable, and domain-agnostic training environments for LLM
agents. By decoupling training from real-world API constraints, SynthTools pro-
vides stable interfaces, supports multi-domain experimentation, and thereby ac-
celerates the development of robust, general-purpose LLM agents.

1 INTRODUCTION

LLM agents have garnered significant attention for their potential to tackle complex, real-world
tasks. These modern agents are increasingly envisioned to leverage multiple tools in combination to
solve complex, long-horizon problems (Xu et al., 2023; Qin et al., 2023; Yao et al., 2024). The profi-
ciency in using tools has become a central capability for a performant agent. As evident throughout
major advances in machine learning (Deng et al., 2009; Hoffmann et al., 2022), the scale and diver-
sity of training are among the most critical factors influencing the quality of a model. To realize the
vision of autonomous agents that can navigate sophisticated tool ecosystems and deploy resources
effectively, it is essential to have access to comprehensive and diverse toolsets for training and ex-
perimentation.

However, agent development currently faces a significant bottleneck: in practice, tools are primarily
accessed via APIs, yet real-world APIs remain scarce in both number and domain coverage. Much
of the existing research focuses on curating these APIs or building high-fidelity replicas, but these
collections still suffer from limited scope and diversity (Xu et al., 2023; Tang et al., 2023). For
instance, ACEbench (Chen et al., 2025b) covers only eight broad domains, whereas 7-bench (Yao
et al., 2024) considers only two application domains.

Moreover, while real-world APIs offer authenticity, they come with practical constraints such as
the need for API keys, usage limits, or rate throttling. Furthermore, actively maintained APIs are
subject to frequent interface changes or deprecations, which can disrupt experimental configurations,
destabilize training pipelines, and compromise reproducibility (Guo et al., 2025). These limitations
render real APIs ill-suited for large-scale experimentation. This leads us to a fundamental question:
how can we build a scalable and diverse tool ecosystems that support comprehensive agent training
and evaluation?

Synthetic tools offer a flexible and controllable solution. Just as humans can learn from stylis-
tic examples and generalize the acquired skills to real-world contexts, we conjecture that modern
agents can similarly acquire sophisticated tool-use abilities by training on a diverse pool of synthetic
tools and transferring learned capability to real-world interfaces. Recent studies provide supporting

Under review as a conference paper at ICLR 2026

Framework Scalability Framework
Reliability
Number of Fields Maximum Number of Tools Per Field
100+ 1000+
100 1000 3
» 93% accuracy of
80 8001 tool simulation
60 50 a9 6001 563
40 4001
326 » 99% accuracy of
20 s . 200 a8 LLM judge in catching
2 0 4 8 tool simulation errors
Ours Tool Tool Ace Live Tau Ours Ace Tool Live Tau Tool
Alpaca Bench Bench MCP Bench Bench Bench MCP Bench Alpaca
Bench Bench

Figure 1: Scalability and reliability of our framework. Left: Our framework achieves noticeably
higher scalability than existing benchmarks, both in the number of fields and the maximum tools
supported per field. Right Both our tools generated with our framework, as well as the LLM judge
built for tool audit, are highly reliable.

evidence: agents trained on synthetically generated tools or their outputs have demonstrated gen-
uine learning of transferable tool-use skills, achieving reasonable performance on held-out tool-use
dataset (Li et al., 2023; Kimi, 2025; Sullivan et al., 2025). Despite these promising developments,
the community still lacks a clear and scalable way to create non-trivial synthetic tools for agent
development. To lay the foundation for agents to fully realize the potential of this paradigm, our
work aims to address this bottleneck by proposing a framework for reliable generation of complex
synthetic tools at scale.

We propose SynthTools: a synthetic tool generation framework consisting of the following three
components:

e Tool Generation: Automatically creating a wide variety of tools with diverse interfaces and
functionalities (See Figure 2).

 Tool Simulation: Accurately emulating tool behaviors to closely mirror real-world interactions.

¢ Tool Audit: Careful and scalable assessment of the reliability and consistency of generated tools
to ensure quality (See Figure 4).

Using this framework, we generate a large corpus of reliable synthetic tools spanning a wide range
of domains. Building on these tools, we demonstrate how to construct realistic tasks for agent
training and evaluation. Rather than offering a fixed set of tasks, our framework serves as a flexible
foundation for others to create their own tools and tasks tailored to specific agentic capabilities they
are interested in. Overall, SynthTools is scalable, flexible, and stable. By making scalable tool
generation reliable and efficient, SynthTools help accelerate the development of robust, general-
purpose LLM agents

1.1 RELATED WORK

Agent Tool Use Evaluation. Recent benchmarks such as APIBench, API-Bank, ToolBench, Tool-
Alpaca, and ToolQA evaluate LLM agents on their tool-use capabilities. These benchmarks involve
both real-world APIs (Li et al., 2023; Xu et al., 2023) and carefully curated synthetic API simulators
tailored to specific domains (Patil et al., 2024; Tang et al., 2023; Zhuang et al., 2023; Wang et al.,
2023; Yao et al., 2024; Chen et al., 2025b; Guo et al., 2025). With the emergence of MCP servers,
some recent studies have shifted focus toward evaluating agents using tools hosted on MCP servers
(Mo et al., 2025; Yin et al., 2025). While these efforts provide valuable benchmarks for agent
performance, they often face scalability challenges due to the limited number and diversity of tools.
Moreover, both real APIs and MCP servers present practical obstacles such as access restrictions,
rate limitations, and unstable interfaces.

Fine-Tuning Agents for Tool Use. Fine-tuning LLMs on curated tool-use datasets has shown
promising results. For instance, ToolLLAMA constructs a large-scale dataset from real tools avail-

Under review as a conference paper at ICLR 2026

able on RapidAPI Hub and fine-tunes models to perform tool-augmented tasks (Qin et al., 2023).
Similarly, Fang et al. (2025) focus on scaling the number of tasks by aggregating real-world APIs
from sources such as (Qin et al., 2023; Prabhakar et al., 2025), thereby enhancing the breadth of
fine-tuning. Other studies (Kimi, 2025; Sullivan et al., 2025) explore synthetic tool environments
for fine-tuning, demonstrating the potential of such tools. However, the dataset introduced by Kimi
(2025) is proprietary, and the focus of Sullivan et al. (2025) is on deeply compositional toolchains
rather than diversity, thus limiting its generalizability. Building on these insights, we introduce an
open-source framework for generating synthetic tools that are both diverse and deeply composable,
enabling scalable training and evaluation of LLM agents in tool-use settings.

Generated / Fielfl] Too}) Complex Interactive
Curated Scalability Scalability Tools

SynthTools (Ours) Generated v v v v
7-Bench Curated X X X v
StableToolBench Curated X X v

AceBench Generated X X X
ToolAlpaca Generated v v X v
RandomWorld Generated X v X v

Table 1: Our framework is designed with inherent scalability and interactivity. By iteratively refining
our pipeline, we enable our framework to generate highly complex tools.

2 TooL GENERATION

Agentic systems rely heavily on the breadth and scale of the tools they can access. However, gener-
ating diverse tools at scale remains a major challenge. Manually engineering a diverse and extensible
toolset to support large-scale training of agentic LLMs is impractical. A promising alternative is to
harness the generative capabilities of LLMs themselves to synthesize tools. Yet, naively generating
tools via LLMs often results in redundant or aimless toolsets—tools that fail to target meaningful
tasks and lack structural interconnections. This leads to weakly compositional tool chains that are
only capable of solving trivial problems.

To address this limitation, we propose a scalable framework for synthesizing large, diverse, and
non-redundant toolsets grounded in meaningful tasks and workflows. Our approach employs a hi-
erarchical domain evolution procedure (Figure 2) that systematically refines a broad domain into a
concrete and coherent toolset. This process is anchored in practitioner workflows as simulated by
LLMs. Starting from a general domain, we progressively decompose it into subdomains, then into
task families, and finally into specific tools whose interfaces reflect domain-relevant constraints and
interactions. Concretely, the framework proceeds as follows:

Field — Sub-domain. Given a seed set of fields (e.g., healthcare, finance, materials science), we
prompt a large language model (LLM) to propose coherent subdomains that: (a) partition typical
workflows; (b) surface stakeholders and entities operating in the field; and (c) admit meaningful,
tool-addressable operations.

Sub-domain — Task. For each subdomain, the model proposes task families. Each task can be
thought of as a, yielding natural task statements suitable for documentation and test-case generation.

Task — Tool. Tasks are then realized as concrete tools. Tools are encouraged to be composable:
each tool advertises upstream dependencies (what it consumes) and downstream affordances (what
it produces), enabling multi-tool plans. The interface includes name, description, parameters, failure
model, and output details.

We use targeted prompting at each stage to control diversity, complexity, and input/output (I/O)
characteristics of the tools. Our fool abstraction is characterized by: (i) a name and natural-
language description; (ii) a parameter schema; and (iii) an I/O contract (preconditions, postcondi-
tions, and error modes). Formally, a tool is a tuple (name, description, parameters, usage,

Under review as a conference paper at ICLR 2026

—{ Portfolio Risk Analysis] [—
—'{ Futures Contract Trading] ,
{ Volatility Surface
—'{ Margin Calculation Management] T SEns T
1 Implement ratio spread Option Contract
_’[Order Management System] { _{ configurations J _{ Fetcher
. . . e ! - Implement collar strategies for Volatility Model
Financial risk management Fitter
Trading c e
— Opti Trading Strategi]— . te
[ptions Trading >trategies { Calculate implied volatility for]_
Field —-{ Trading Position Monitoring] specific option contracts Implied Volatility
{ Monitor option chain liquidity Range Estimator
—-{ Order Book Analysis] 1 and spreads
1 P N Black Scholes
: i i : Calculator
—'{ Liquidity Analysis and Forecasting] i —.t Cicdte pa\r:htradt\.ng SLIERIES J
4 with options Volatility Arbitrage
—>[Equity Market Order Execution] 1 Scanner
; Tasks
Sub Domains : Tools

Figure 2: An example of tool generation through hierarchical domain evolution procedure.

failure_modes, output_schema). Figure 3 illustrates a tool generated by our pipeline in the
e-commerce and retail domain. Additional examples are provided in Section B.

As shown in Figure 1, our framework demonstrates strong scalability by generating a toolset that
spans 100 distinct fields, with each field potentially comprising up to 1,000 tools.

Deduplication. Since our tools are generated through a hierarchical process, there is a possibility of
creating duplicate entries due to overlapping workflows and functionalities across sub-domains and
tasks. To address this, we apply a deduplication procedure designed to identify and remove near-
duplicate tools. This procedure leverages semantic similarity, computed using LLM embeddings of
the tool descriptions. Deduplication is a crucial step to ensure the resulting dataset is of high quality
and suitable for both training and evaluation purposes. Full details of the deduplication process are
provided in Appendix D.

3 ToOL SIMULATION

Once the tools have been generated, the next step is to systematically emulate API call behavior
for each tool configuration (Figure 3). A reliable tool simulator must return appropriate error mes-
sages for incorrect or incomplete calls and generate valid responses for correct ones. Achieving this
behavior consistently in practice is challenging.

To address this, we decompose the simulation procedure into two distinct stages: parameter vali-
dation and response generation. In both stages, we prompt a large language model (LLM)—with
access to the tool configuration—to emulate tool behavior. The two stages are as follows:

1. Parameter validation. In this stage, the simulator emulates an API gateway by ensuring that
all schema and structural constraints are satisfied. It begins by verifying the tool name, then
checks for the presence of all required parameters, correct data types, mutual consistency, and
any cross-field constraints. If any condition fails, the simulator returns a specific error message
identifying the first issue encountered, along with the corresponding HTTP status code mirroring
conventional API gateway behavior.

2. Response generation for valid calls. If parameter validation is successful, the simulator ad-
vances to the response generation stage. Depending on the nature of the tool call, this stage
proceeds via either data generation or information deduction. For tool calls that require gener-
ating new data based on the input parameters, the simulator produces realistic outputs that adhere

Under review as a conference paper at ICLR 2026

Field: Ecommerce and Retail — Sub Domain: Product Catalog Management — Task: Product
Information Creation and Updates — Tool: Product Data Validator

Tool Name: Product Data Validator
Description: Validates product information against predefined schemas and business rules to ensure
data quality and completeness before catalog updates.

Parameters:
* product_name (string, required) — The name of the product to validate
* product_attributes (array of strings, required) — List of product attributes in key : value format

« validation_level (string, optional, default = standard) — Validation strictness: basic,
standard,or strict

Error Messages:

* Missing required fields: Ensure product_name and product_attributes are provided.
¢ Invalid validation level: Use one of [basic, standard, strict].

* Malformed attributes: Attributes must be in key : value string format.

* Empty product data: Product name cannot be empty or null.

Usage: Provide product_name and product_attributes array, optionally set
validation_level. Returns validation status and any detected issues.

Output Details:
« validation_status (string) — Overall validation result: passed, failed, or warning
* issues_found (array of strings) — List of validation issues or errors detected

* completeness_score (number) — Data completeness percentage (0—100)

Figure 3: An example of tool generated through our pipeline for the e-commerce and retail field.

to predefined schemas and domain-specific patterns. In contrast, when the tool call demands rea-
soning over metadata and the initial configuration, the simulator systematically cross-references
these inputs to infer the current system state, relevant entities, and functional behavior. It then
synthesizes this information to logically derive the precise response the API would produce under
the given conditions.

Refining tool simulator prompts To ensure reliable simulator behavior, we refined its prompts
through extensive manual testing. This was an inherently iterative process: we repeatedly updated
the prompt, tested it manually, analyzed failure cases, and adjusted the prompt accordingly (See
Section C.2 for the final version). We then evaluated the finalized prompts on a set of SynthTools
generated using our framework. This evaluation was conducted manually. The final refined prompt
achieved an accuracy of 93.6%, as verified across 200 tool responses.

To further assess the simulator’s performance, we evaluated it against ACEBench (Chen et al.,
2025a)—a suite of sandbox tools with deterministic, programmatically defined behaviors. We
aligned our simulator’s configuration to ACEBench specifications, ensuring consistent initial states.
We then compared the simulator’s responses to ACEBench’s ground truth outputs. In total, we gen-
erated approximately eight test calls per tool across 20 ACEBench tools (161 calls overall), encom-
passing both successful executions and various failure scenarios. The simulator matched the ground
truthin 151 out of 161 cases, yielding a 94% accuracy. 14 (out of 20) tools showed perfect agreement
across all test cases. The 10 mismatches were mostly due to differences in implementation-specific
prioritization (e.g., whether authentication is checked before or after parameter validation) rather
than fundamental flaws in simulation logic. See Figure 5 for illustrative examples.

Under review as a conference paper at ICLR 2026

We further assess the simulator at scale using an LLM-based evaluator, as described in the following
section

Tool Config Source Performance Evaluation Method
SynthTools 93.6% Manual verification
ACEbench 94% Ground-truth comparison

Table 2: Performance of tool simulator

4 TooL AUDIT

To ensure high-quality tools, we subject each generated tool to a rigorous quality control pipeline
consisting of systematic test case construction and LLM-based validation. We detail this process
below.

Test Case Generation. We test each generated tool with a comprehensive suite of test calls spanning
four distinct modes. Tools that fail more than 1 tests are discarded. Specifically, we evaluate each
tool under the following scenarios:

1. Schema failures (basic parameter validation). The tool call cannot be parsed or validated at the
programmatic level due to missing required parameters, incorrect parameter types, or malformed
inputs that prevent basic function invocation.

2. Constraint failures (tool-specific validation errors). The parameter schema is satisfied, but
tool-specific constraints are violated, such as mismatched array lengths, invalid value ranges, or
logical inconsistencies between parameters that the tool specification explicitly prohibits.

3. Execution failures (metadata constraint violations). The tool call passes all parameter vali-
dation but contradicts the current system state or metadata during execution, such as referencing
non-existent user records, attempting operations on unavailable resources.

4. Successful executions. The tool call is valid at all levels and the simulator should return re-
sponses that are consistent with the tool specification and provided metadata, correctly perform-
ing operations or returning requested data.

Tool call message: Tool call message:
Insurance_Information_Updater (patient_id = Insurance_Information_Updater (patient_id
"PAT001°, insurance_fields = [’provider’, = "PAT001’, insurance_fields = ['provider’],
’policy_number’], insurance_values = ['Blue insurance_values = [’Blue Cross’])
Cross’])

Response:
Response: Status: PASS, Status Code: 200, Re-
Status: FAIL, Status Code: 400, Error Mes- turn Data: update_status: Success, up-
sage: Mismatched fields and values: Ensure dated_insurance: [’provider’]

insurance_fields and insurance_values arrays
have the same length.

In the boxes above, we present representative examples demonstrating how the simulator handles a
variety of testing scenarios. These include both successful executions and a failure case along with
its corresponding error response (see Appendix C.1 for additional examples). For each tool, we
prompt a large language model (LLM) to generate 2-3 test calls per failure mode. These calls are
then executed through our tool simulator, and the resulting responses are recorded.

LLM-Based Verification. To assess response correctness, we employ a carefully engineered LLM
judge. This judge receives the tool specification, test call, and simulator response as input, then

Under review as a conference paper at ICLR 2026

returns a structured judgment comprising correct/incorrect status, confidence score, and detailed
rationale for correctness and compliance assessment.

We iteratively refined the judge through testing with hand-crafted edge cases (e.g., subtle type vi-
olations, cross-field incompatibilities) until it reliably identified each error type with appropriate
rationale. We conducted stress testing of the judge across six distinctive failure and success modes
to ensure judge reliability. We explain the procedure and results in detail in Section 5.

Among the 3,300 tool responses, we found that 3,054 were correct, corresponding to an accuracy of
93% (as evaluated by the LLM judge). These responses came from 352 tools, of which 89% made
no more than one error across 8—10 stress test calls (see Table 3). Regarding the errors, 56% were
due to Failure Mode 2, 34% to Failure Mode 3, and 10% to Failure Mode 1.

Number of Incorrect Responses 0 1 2 3
Percentage of Tools 57T% 32% T% 3%

Table 3: Distribution of incorrect responses among 8-10 stress test calls across 352 tools

r Deduplication Tool Audit Tool Simulation \
Test Call 1 \/Y

Test Call 2 v Tool Call
—— ool Ca

— |- '
Test Call 9| » . (]) Response

Tool Simulator

k 7=0.85 %LLM Judge

Figure 4: Our Tool Audit component ensures the quality of the tools after deduplication.

5 HOW RELIABLE IS THE LLM JUDGE?

The integrity of our framework critically depends on the reliability of the LLM judge. In this sec-
tion, we evaluate how effective the judge is in distinguishing correct and incorrect tool simulator
responses. To this end, we construct six stress-test scenarios, organized around three categories of
tool call failures—schema, constraint, and execution. For each category, we include both valid and
invalid simulator outputs. Through this stress-testing process, we aim to confirm that the judge can
consistently identify when the simulator is functioning as intended versus when it produces erro-
neous outputs.

We manually verified 300 stress test cases. Among these, the judge made only 3 errors, yielding
an accuracy rate of 99%. This demonstrates that our quality control process can reliably distinguish
between well-functioning and problematic tool simulations, making it suitable for large-scale filter-
ing. Importantly, since our framework generates tools at scale, minimizing false positives is critical;
passing problematic tool responses through quality control would undermine reliability. Notably,
we observed a false positive rate of 0%—the judge successfully identified all incorrect simulator
behaviors. Together, these results establish the robustness of our judge in diagnosing tool simulator
performance and reinforce confidence in its role within our tool audit pipeline.

Metric Accuracy False Positive Rate
Performance 99% 0%

Table 4: Performance of LLM judge under stress tests

Under review as a conference paper at ICLR 2026

Tool call message:
modify_flight(user_id = "user1’, reservation_id
="’res_1", new_cabin = ’Business Class’)

Response:
Status: PASS, Status Code: 200, Re-
turn Data: Cabin upgraded to Business
Class. Price difference of 1800 yuan has
been charged. Modification completed suc-
cessfully.

Sandbox execution message: Cabin change

Tool call message:
Performance_Metrics_Calculator(start_date =
’2024-01-31T23:59:59Z°, end_date = *2024-
01-01T00:00:00Z’, ...)

Response:
Status: PASS, Return Data: ...

Judge Reasoning:

The tool call has incorrectly specified
start_date="2024-01-31T23:59:59Z2’ be-
ing later than the end-date="2024-01-

01T00:00:00Z’. The simulator should have
returned FAIL with this error message.

successful. Price difference paid: 1800.

Figure 5: Left: An example ACEBench tool call with simulator return data precisely matching the
execution output. Right: An example where the judge correctly identifies an erroneous response.

6 TooOL SET AND TASKS

Using our pipeline, we generate a large corpus of synthetic tools spanning multiple domains, includ-
ing e-commerce and retail, healthcare, financial trading, and more. We demonstrate the scalability
of our pipeline along two key dimensions:

* Scaling through diversification of fields: To demonstrate the flexibility of our pipeline in gen-
erating tools for diverse domains, we create 50 tools each across 100 different fields. Figure 6
illustrates the breadth and diversity of the resulting toolset for 37 fields. See Appendix E for the
full 100-field figure. While the selected domains are not exhaustive, this experiment shows that
our pipeline can effectively scale the generation of tools across a wide variety of application areas.

* Scaling the number of tools within a field: We also investigate the ability of our pipeline to
scale tool generation within a specific field. A key question in this setting is whether increasing
the number of tools results in genuinely novel tools or merely duplicates. To explore this, we
focus on the e-commerce and retail domain and scale the tool count up to 1,000. As shown in
Figure 7, the distribution indicates a high degree of tool uniqueness. We further validate this trend
by generating 200 tools in several other domains, observing consistent results. This supports the
conclusion that our pipeline can effectively scale the number of tools within a single field without
significant redundancy.

During the deduplication stage, we filtered out approximately 9% of near-duplicate tools. In a
subsequent tool auditing phase (Section 4), we discarded an additional ~ 11% of tools from a
sampled subset, based on failures in consistency checks or violations of interface contracts. These
steps result in a carefully curated collection of high-quality tools, suitable for downstream training
and evaluation tasks.

6.1 TASKS

We demonstrate how to construct multi-step and multi-turn tasks that require the use of multiple
tools and structured decision-making by an agent using our pipeline. Our hierarchical domain-
evolution procedure naturally produces tasks with intermediate subgoals requiring deep composable
tools (Section A); we leverage these to derive specific tasks that can be used for training/evaluation
environments. A critical component is the generation of meta-data consumed by the tool simulator
to produce grounded responses on valid calls. This meta-data is generated in parallel with task
creation to ensure consistency between task requirements and tool outputs.

We provide illustrative examples of (i) the associated meta-data, (ii) task specifications, and (iii)
the minimal tool set required to solve each task (Section A). For experimental settings, one can
train/evaluate agents under two regimes: (a) an exact tool set containing only the tools needed for

Under review as a conference paper at ICLR 2026

60 Agriculture Environmental Iphone Android
App Automation Legal Services
Art and Culture Location Services
40 e AIGC Industrial Tot
« Browser Automation Marketing
« Calendar Management Online Shopping
20 Cloud Platforms Personal Finance
N Cryptocurrency Blockchain Rag Systems
] Customer Support Real Estate Property
% 0 Databases Security and Access Management
iy « Developer Tools Smart Home
+ Ecommerce and Retail Social Media
—20 4 Education Elearning Software Apps
Entertainment and Media Transportation Logistics
File Systems Travel and Transportation
—40 4 « Financial Trading Weather Services
Games and Gamification Web Scraping
Health and Wellness Website Control
Healthcare Medical
Figure 6: Distribution of tool embeddings across diverse field.
1 Sub-domain 3 Sub-domains 9 Sub-domains
a0 i
] L e
30 - Pt
- " -
20 ’ T ,
3.]
~ 10 . o~ 1 - ~
Z - 2~ i B
e 0 : 4 N I
iy . -
-10 . L.
. - N
. e e
-20 N - = . -
-
-30
=40 =20 0 20 40 =40 =20 0 20 40
t-SNE 1 t-SNE 1

Figure 7: Scaling the number of tools within a field (e-commerce and retail): As we scale the
number of tools within a field, they get more diverse rather than just producing duplicates. (left: 1
sub-domain, 110 tools, center: 3 sub-domains, 315 tools, right: 1 sub-domain, 933 tools)

the task, and (b) an extended tool set that includes distractor tools. The latter probes the agent’s
ability to discover and select the appropriate tools under realistic ambiguity.

As a complementary approach, one can also explore tasks generated directly by LLMs conditioned
on a given tool set. While this approach can increase variety, we find it less reliable than the hier-
archical construction: LLM-generated tasks may under-specify dependencies or omit long-horizon
structure, whereas the hierarchical procedure yields more coherent, multi-tool plans.

7 CONCLUSION

We introduce SynthTools, a scalable pipeline for generating synthetic tool ecosystems to support the
development of tool-using LLM agents. Our approach integrates hierarchical tool generation, sim-
ulation of realistic behaviors, and rigorous quality control to produce diverse, reliable, and reusable
toolsets. Experiments demonstrate that the pipeline scales across domains, maintains high simula-
tion fidelity, and enables the construction of complex, multi-step tasks for training and evaluation.
By decoupling agent training from the limitations of real-world APIs, SynthTools provides a stable
and flexible foundation for advancing research in general-purpose agentic systems. We hope this
framework will catalyze broader exploration of synthetic environments and foster progress toward
robust, adaptive LLM agents.

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

We provide our code in this anonymized repository: https://anonymous.4open.
science/r/SynthTools-44C6/README . md

REFERENCES

Amro Abbas, Kushal Tirumala, Déniel Simig, Surya Ganguli, and Ari S. Morcos. Semdedup: Data-
efficient learning at web-scale through semantic deduplication, 2023. URL https://arxiv.
org/abs/2303.09540.

Chen Chen, Xinlong Hao, Weiwen Liu, Xu Huang, Xingshan Zeng, Shuai Yu, Dexun Li, Shuai
Wang, Weinan Gan, Yuefeng Huang, Wulong Liu, Xinzhi Wang, Defu Lian, Baoqun Yin, Yasheng
Wang, and Wu Liu. Acebench: Who wins the match point in tool usage?, 2025a. URL https:
//arxiv.org/abs/2501.12851.

Chen Chen, Xinlong Hao, Weiwen Liu, Xu Huang, Xingshan Zeng, Shuai Yu, Dexun Li, Shuai
Wang, Weinan Gan, Yuefeng Huang, et al. Acebench: Who wins the match point in tool learning?
arXiv e-prints, pp. arXiv—2501, 2025b.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp- 248-255, 2009. doi: 10.1109/CVPR.2009.5206848.

Runnan Fang, Shihao Cai, Baixuan Li, Jialong Wu, Guangyu Li, Wenbiao Yin, Xinyu Wang, Xi-
aobin Wang, Liangcai Su, Zhen Zhang, et al. Towards general agentic intelligence via environ-
ment scaling. arXiv preprint arXiv:2509.13311, 2025.

Zhicheng Guo, Sijie Cheng, Yuchen Niu, Hao Wang, Sicheng Zhou, Wenbing Huang, and Yang
Liu. StableToolBench-MirrorAPI: Modeling tool environments as mirrors of 7,000+ real-world
APIs. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Findings of the Association for Computational Linguistics: ACL 2025, pp. 5247-5270,
Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-256-
5. doi: 10.18653/v1/2025.findings-acl.273. URL https://aclanthology.org/2025.
findings-acl.273/.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022. URL https://arxiv.org/abs/
2203.15556.

Kimi. Kimi K2: Open Agentic Intelligence, 2025. URL https://arxiv.org/abs/2507.
20534.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei
Huang, and Yongbin Li. API-bank: A comprehensive benchmark for tool-augmented LLMs.
In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 3102-3116, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.187. URL
https://aclanthology.org/2023.emnlp-main.187/.

Guozhao Mo, Wenliang Zhong, Jiawei Chen, Xuanang Chen, Yaojie Lu, Hongyu Lin, Ben He,
Xianpei Han, and Le Sun. Livemcpbench: Can agents navigate an ocean of mcp tools? arXiv
preprint arXiv:2508.01780, 2025.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model

connected with massive apis. Advances in Neural Information Processing Systems, 37:126544—
126565, 2024.

10

https://anonymous.4open.science/r/SynthTools-44C6/README.md
https://anonymous.4open.science/r/SynthTools-44C6/README.md
https://arxiv.org/abs/2303.09540
https://arxiv.org/abs/2303.09540
https://arxiv.org/abs/2501.12851
https://arxiv.org/abs/2501.12851
https://aclanthology.org/2025.findings-acl.273/
https://aclanthology.org/2025.findings-acl.273/
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2507.20534
https://aclanthology.org/2023.emnlp-main.187/

Under review as a conference paper at ICLR 2026

Akshara Prabhakar, Zuxin Liu, Ming Zhu, Jianguo Zhang, Tulika Awalgaonkar, Shiyu Wang, Zhiwei
Liu, Haolin Chen, Thai Hoang, Juan Carlos Niebles, et al. Apigen-mt: Agentic pipeline for multi-
turn data generation via simulated agent-human interplay. arXiv preprint arXiv:2504.03601,
2025.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Michael Sullivan, Mareike Hartmann, and Alexander Koller. Procedural environment generation for
tool-use agents, 2025. URL https://arxiv.org/abs/2506.11045.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, Boxi Cao, and Le Sun. Toolal-
paca: Generalized tool learning for language models with 3000 simulated cases. arXiv preprint
arXiv:2306.05301, 2023.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji.
Mint: Evaluating llms in multi-turn interaction with tools and language feedback. arXiv preprint
arXiv:2309.10691, 2023.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, Zhengyu Chen, and Jian Zhang. On the tool
manipulation capability of open-source large language models. arXiv preprint arXiv:2305.16504,
2023.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. 7 -bench: A benchmark for
tool-agent-user interaction in real-world domains. arXiv preprint arXiv:2406.12045, 2024.

Ming Yin, Dinghan Shen, Silei Xu, Jianbing Han, Sixun Dong, Mian Zhang, Yebowen Hu, Shujian
Liu, Simin Ma, Song Wang, et al. Livemcp-101: Stress testing and diagnosing mcp-enabled
agents on challenging queries. arXiv preprint arXiv:2508.15760, 2025.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. Toolga: A dataset for llm
question answering with external tools. Advances in Neural Information Processing Systems, 36:
50117-50143, 2023.

11

https://arxiv.org/abs/2506.11045

Under review as a conference paper at ICLR 2026

A

A.l

EXAMPLE TASKS

EXAMPLE 1 (FIELD: ECOMMERCE AND RETAIL)

Field: Ecommerce and Retail — Subfield: Product Catalog Management — Task: Product Informa-
tion Creation and Updates

List All Tool Names and Dependencies Gnereated under this task

1. Product Data Validator — raw product data — validated product records
Product Content Generator — specs — descriptions, titles, keywords
Image Processor — raw images — optimized product images
Pricing Calculator — cost data, rules — calculated prices
Inventory Sync Checker — product IDs — stock status validation
Category Classifier — product attributes — category assignments
SKU Generator — product details — unique SKU codes
Bulk Import Processor — CSV/Excel files — processed product batches

2RSS,

Product Comparison Tool — multiple product records — difference reports

_
e

Catalog Publisher — finalized products — multi-channel updates

—_
—_

Product Search Optimizer — product data — SEO metadata

12. Quality Assurance Scanner — product records — quality issue reports

Simple Multi-Tool Workflows:

1. Single product creation: SKU Generator — Product Data Validator — Product Content Generator
— Catalog Publisher

2. Image optimization: Image Processor — Product Data Validator — Catalog Publisher

Medium Multi-Tool Workflows:

1. New product launch: SKU Generator — Product Data Validator — Category Classifier — Product
Content Generator — Image Processor — Pricing Calculator — Product Search Optimizer — Catalog
Publisher

2. Inventory synchronization: Inventory Sync Checker — Product Data Validator — Product Compar-
ison Tool — Catalog Publisher

Complex Multi-Tool Workflows:

1. Bulk catalog update: Bulk Import Processor — Product Data Validator — Category Classifier —
Product Content Generator — Image Processor — Pricing Calculator — Inventory Sync Checker —
Product Search Optimizer — Quality Assurance Scanner — Product Comparison Tool — Catalog
Publisher

2. Complete catalog audit: Quality Assurance Scanner — Product Comparison Tool — Product Data
Validator — Category Classifier — Pricing Calculator — Inventory Sync Checker — Product Search
Optimizer — Catalog Publisher

Products:

1. Product-id: P1001, product-name: Wireless Noise-Cancelling Headphones, brand: AudioMax,
category: Electronics, attributes: [color: Black, battery-life: 30h, wireless: true], specifications:
[Bluetooth 5.0, ANC, USB-C charging], base-cost: 75, markup-percentage: 40, currency: USD,
competitor-prices: [129.99, 139.99, 119.99], stock: [warehouse-A: 120, warehouse-B: 30]

2. Product-id: P1002, product-name: Ergonomic Office Chair, brand: ComfortPro, category: Fur-
niture, attributes: [color: Grey, adjustable: true, material: Mesh], specifications: [Adjustable height,
Lumbar support, 360 swivel], base-cost: 95, markup-percentage: 50, currency: USD, competitor-
prices: [199.99, 189.99, 210.00], stock: [warehouse-A: 15, warechouse-B: 5]

3. Product-id: P1003, product-name: Smart LED Light Bulb, brand: BrightLite, category: Home
Appliances, attributes: [color: RGB, connectivity: WiFi, power: 9W], specifications: [App control,

12

Under review as a conference paper at ICLR 2026

Voice assistant compatible, Dimmable], base-cost: 8, markup-percentage: 100, currency: USD,
competitor-prices: [14.99, 12.99, 16.99], stock: [warehouse-A: 500, warehouse-B: 200]

4. Product-id: P1004, product-name: Sports Running Shoes, brand: FlexiRun, category: Footwear,
attributes: [color: Blue, size: 10, material: Mesh], specifications: [Lightweight sole, Breathable,
Shock absorption], base-cost: 40, markup-percentage: 60, currency: USD, competitor-prices:
[79.99, 74.99, 69.99], stock: [warehouse-A: 200,warehouse-B: 150]

5. Product-id: P1005, product-name: 4K Ultra HD Smart TV, brand: VisionX, category: Elec-
tronics, attributes: [size: S55inch, resolution: 4K, smart: true], specifications: [HDR10+, HDMI
2.1, Dolby Atmos], base-cost: 300, markup-percentage: 35, currency: USD, competitor-prices:
[449.99, 499.99, 479.99], stock: [warehouse-A: 25, warehouse-B: 10]

Existing categories: Electronics, Furniture, Home Appliances, Footwear, Sports Equipment, Toys,
Accessories

Warehouses: warehouse-A, warehouse-B, warehouse-C
Channels: website, amazon, ebay, mobile-app

Import files:
1. File-path: /data/batchl-products.csv, file-format: csv, column-mapping: [name: product-name,
brand: brand, category: category, price: base-cost, stock: inventory]

2. File-path: /data/batch2-products.json, file-format: json, column-mapping: [title: product-name,
company: brand, type: category, cost: base-cost, inventory: stock]

Task 1: Create a new SKU and publish the Wireless Noise-Cancelling Headphones to website and
Amazon with validated product data and generated content.

Info: Task-difficulty: simple, Task-validity: valid, Number-tools-required: 4

Tools-required: [SKU Generator, Product Data Validator, Product Content Generator, Catalog Pub-
lisher]

Task 2: Optimize and publish the Ergonomic Office Chair images to the website after validation.
Info: Task-difficulty: simple, Task-validity: valid, Number-tools-required: 3
Tools-required: [Image Processor, Product Data Validator, Catalog Publisher]

Task 3: Launch Smart LED Light Bulb with SKU creation, validation, category assignment, content,
image optimization, pricing, SEO, and publish to all channels.

Info: Task-difficulty: medium, Task-validity: valid, Number-tools-required: 8

Tools-required: [SKU Generator, Product Data Validator, Category Classifier, Product Content Gen-
erator, Image Processor, Pricing Calculator, Product Search Optimizer, Catalog Publisher]

Task 4: Process the bulk import file batchl-products.csv, validate and classify products, generate
content and optimized images, calculate pricing, check inventory, optimize for search, scan for quality
issues, compare against existing catalog, and publish.

Info: Task-difficulty: complex, Task-validity: valid, Number-tools-required: 11

Tools-required: [Bulk Import Processor, Product Data Validator, Category Classifier, Product Content
Generator, Image Processor, Pricing Calculator, Inventory Sync Checker, Product Search Optimizer,
Quality Assurance Scanner, Product Comparison Tool, Catalog Publisher]

Task 5: Generate customer product reviews for the Sports Running Shoes and publish them on Ama-
zon.

Info: Task-difficulty: simple, Task-validity: invalid, Number-tools-required: 2

Tools-required: [Review Generator, Catalog Publisher]

Task 6: Perform a complete catalog audit including legal compliance verification using a Legal Com-
pliance Checker before publishing.

Info: Task-difficulty: complex, Task-validity: invalid, Number-tools-required: 9

Tools-required: [Quality Assurance Scanner, Product Comparison Tool, Product Data Validator, Cat-
egory Classifier, Pricing Calculator, Inventory Sync Checker, Product Search Optimizer, Legal Com-
pliance Checker, Catalog Publisher]

13

Under review as a conference paper at ICLR 2026

Task 7: Process an external XML product feed and update the catalog.
Info: Task-difficulty: complex, Task-validity: invalid, Number-tools-required: 2
Tools-required: [XML Feed Processor, Catalog Publisher]

A.2 EXAMPLE 2 (FIELD: FINANCIAL TRADING)

Field: Financial Trading — Subfield: Trade Execution and Order Management — Task: Real-time
Order Status Monitoring and Execution Tracking

List All Tool Names and Dependencies Generated under this task

1. Order Status Fetcher — order IDs, broker credentials — current order status data
Execution Event Logger — execution data, timestamps — logged execution records
Fill Notification Parser — raw broker messages — structured fill data
Order Latency Analyzer — order timestamps, execution data — latency metrics
Position Reconciler — order fills, current positions — reconciled position data
Alert Rule Engine — order status, thresholds — alert notifications
Multi-Broker Status Aggregator — multiple broker feeds — unified status view

Order Performance Calculator — execution data, benchmarks — performance metrics

2 PPN PR

Risk Exposure Monitor — open orders, positions — risk exposure data

S

Execution Quality Analyzer — fills, market data — execution quality scores

—
—

. Order History Tracker — order events — complete order lifecycle data

12. Real-time Dashboard Generator — aggregated data — dashboard summaries

Simple Multi-Tool Workflows:
1. Basic order tracking: Order Status Fetcher — Execution Event Logger — Order History Tracker
2. Fill monitoring: Fill Notification Parser — Position Reconciler — Alert Rule Engine

Medium Multi-Tool Workflows:

1. Performance monitoring: Order Status Fetcher — Order Performance Calculator — Execution
Quality Analyzer — Real-time Dashboard Generator

2. Risk monitoring: Multi-Broker Status Aggregator — Risk Exposure Monitor — Alert Rule Engine
— Real-time Dashboard Generator

Complex Multi-Tool Workflows:

1. Complete execution analysis: Order Status Fetcher — Fill Notification Parser — Order Latency
Analyzer — Order Performance Calculator — Execution Quality Analyzer — Position Reconciler —
Real-time Dashboard Generator

2. Multi-broker risk management: Multi-Broker Status Aggregator — Order Status Fetcher — Risk
Exposure Monitor — Position Reconciler — Alert Rule Engine — Execution Event Logger — Order
History Tracker

Tool Sequences:

Easy: [Order Status Fetcher — Execution Event Logger — Order History Tracker, Fill Notification
Parser — Position Reconciler — Alert Rule Engine]

Medium: [Order Status Fetcher — Order Performance Calculator — Execution Quality Analyzer —
Real-time Dashboard Generator, Multi-Broker Status Aggregator — Risk Exposure Monitor — Alert
Rule Engine — Real-time Dashboard Generator]

Complex: [Order Status Fetcher — Fill Notification Parser — Order Latency Analyzer — Order Per-
formance Calculator — Execution Quality Analyzer — Position Reconciler — Real-time Dashboard
Generator, Multi-Broker Status Aggregator — Order Status Fetcher — Risk Exposure Monitor —
Position Reconciler — Alert Rule Engine — Execution Event Logger — Order History Tracker]

14

Under review as a conference paper at ICLR 2026

Trading Accounts:
ACC_001_INST - Interactive Brokers, Institutional, Portfolio: 50,000,000, Risk: [max_pos:
5,000,000, sector: 15%, daily_loss: 500,000]

ACC_002_HEDGE - Alpaca, Hedge Fund, Portfolio: 25,000,000, Risk: [max_pos: 2,500,000, sector:
20%, daily loss: 300,000]

ACC_003_PROP - Binance, Proprietary, Portfolio: 10,000,000, Risk: [max_pos: 1,000,000, sector:
25%, daily_loss: 150,000]

Orders:

ORD_001 — AAPL Buy 10,000 @ 175.50 (limit), Status: partially_filled (6,500 filled, 3,500 remain-
ing), Avg Fill: 175.48, Venue: NASDAQ, Fees: 45.50

ORD_002 — TSLA Sell 5,000 (market), Status: filled, Avg Fill: 248.75, Venue: NYSE, Fees: 62.19
ORD_003 — MSFT Buy 8,000 (stop-limit 420/421), Status: pending, Venue: NASDAQ

ORD_004 — GOOGL Buy 2,500 @ 142.50 (limit), Status: rejected (reason: insufficient buying power),
Venue: NASDAQ

ORD_005 — NVDA Sell 3,000 @ 875.00 (limit), Status: cancelled (1,200 filled @ 874.95), Venue:
NASDAQ, Fees: 31.50

Market Data (15:30 UTC):

AAPL - 175.52 (Bid 175.50, Ask 175.53, VWAP 175.45, TWAP 175.48, Vol 45M)
TSLA —248.80 (Bid 248.75, Ask 248.85, VWAP 248.70, TWAP 248.72, Vol 32M)
MSFT - 419.75 (Bid 419.70, Ask 419.80, VWAP 419.80, TWAP 419.85, Vol 28M)

Positions:

ACC_001_INST - AAPL: 156,500 @ 172.30, Unrealized PnL: 503,680
ACC_002_HEDGE - TSLA: -8,200 @ 252.10, Unrealized PnL: 27,470

Alert Rules:

High Latency — ack_latency_ms ¢, 500 (priority: high)

Large Slippage — slippage_bps ¢, 50 (priority: critical)

Risk Limit Breach — exposure_percentage ; 80 (priority: critical)

Execution Venues:

NASDAQ - Exchange, Latency 12ms, Fill Rate 0.95, Impact 1.2
NYSE - Exchange, Latency 15ms, Fill Rate 0.92, Impact 1.1
Dark Pool 1 — Dark Pool, Latency 25ms, Fill Rate 0.78, Impact 0.8

Broker Configurations:

Interactive Brokers — api.ib.com, Orders/sec: 50, Types: [market, limit, stop, stop_limit], Status: active
Alpaca — paper-api.alpaca.markets, Orders/sec: 200, Types: [market, limit, stop], Status: active
Binance — api.binance.us, Orders/sec: 100, Types: [market, limit, stop_limit], Status: maintenance

Task 1: Track status of ORD_001 (IBKR), log execution events, update order history.
Info: Difficulty: easy, Validity: valid, Tools: 3
Tools-required: [Order Status Fetcher, Execution Event Logger, Order History Tracker]

Task 2: Parse TSLA ORD_002 fill, reconcile position, generate alerts.
Info: Difficulty: easy, Validity: valid, Tools: 3
Tools-required: [Fill Notification Parser, Position Reconciler, Alert Rule Engine]

Task 3: Retrieve ORD_001 status + auto hedge trade (invalid).

Info: Difficulty: easy, Validity: invalid, Tools: 4

Tools-required: [Order Status Fetcher, Execution Event Logger, Order History Tracker, Auto Trade
Executor]

15

Under review as a conference paper at ICLR 2026

Task 4: Parse fills + SMS alerts (invalid).
Info: Difficulty: easy, Validity: invalid, Tools: 3
Tools-required: [Fill Notification Parser, Position Reconciler, SMS Alert Sender]

Task 5: Execution performance analysis for ORD_002 vs VWAP.

Info: Difficulty: medium, Validity: valid, Tools: 4

Tools-required: [Order Status Fetcher, Order Performance Calculator, Execution Quality Analyzer,
Real-time Dashboard Generator]

Task 6: Aggregate status from brokers, monitor ACC_001_INST risk, alert + dashboard.

Info: Difficulty: medium, Validity: valid, Tools: 4

Tools-required: [Multi-Broker Status Aggregator, Risk Exposure Monitor, Alert Rule Engine, Real-
time Dashboard Generator]

Task 7: Aggregate broker status + auto portfolio rebalance (invalid).

Info: Difficulty: medium, Validity: invalid, Tools: 4

Tools-required: [Multi-Broker Status Aggregator, Risk Exposure Monitor, Alert Rule Engine, Port-
folio Rebalancer]

Task 8: Fetch performance + compliance reporting (invalid).

Info: Difficulty: medium, Validity: invalid, Tools: 4

Tools-required: [Order Status Fetcher, Order Performance Calculator, Execution Quality Analyzer,
Regulatory Report Generator]

Task 9: Full execution analysis for ORD_001: status, fills, latency, VWAP benchmark, quality, posi-
tion reconcile, dashboard.

Info: Difficulty: complex, Validity: valid, Tools: 7

Tools-required: [Order Status Fetcher, Fill Notification Parser, Order Latency Analyzer, Order Perfor-
mance Calculator, Execution Quality Analyzer, Position Reconciler, Real-time Dashboard Generator]

Task 10: Multi-broker risk workflow: aggregate, fetch statuses, monitor exposure, reconcile, alert, log
events, update history.

Info: Difficulty: complex, Validity: valid, Tools: 7

Tools-required: [Multi-Broker Status Aggregator, Order Status Fetcher, Risk Exposure Monitor, Po-
sition Reconciler, Alert Rule Engine, Execution Event Logger, Order History Tracker]

Task 11: Execution analysis + auto order optimization (invalid).

Info: Difficulty: complex, Validity: invalid, Tools: 8

Tools-required: [Order Status Fetcher, Fill Notification Parser, Order Latency Analyzer, Order Perfor-
mance Calculator, Execution Quality Analyzer, Position Reconciler, Real-time Dashboard Generator,
Order Optimizer]

Task 12: Risk management + auto hedging (invalid).
Info: Difficulty: complex, Validity: invalid, Tools: 8
Tools-required: [Multi-Broker Status Aggregator, Order Status Fetcher, Risk Exposure Monitor, Posi-
tion Reconciler, Alert Rule Engine, Execution Event Logger, Order History Tracker, Position Hedger]

A.3 EXAMPLE 3 (FIELD: HEALTHCARE AND MEDICAL)

Field: Healthcare and Medical — Subfield: Electronic Health Records Management — Task: Patient
Registration and Demographic Data Management

List All Tool Names and Dependencies Generated under this task

1. Patient Identity Validator — personal identifiers — validated identity data
Insurance Verification Tool — insurance details — coverage verification
Duplicate Patient Checker — demographic data — potential duplicate matches
Address Standardizer — raw address — standardized address

Emergency Contact Validator — contact info — validated emergency contacts

o 1= PR

Patient Record Creator — validated data — new patient record

16

Under review as a conference paper at ICLR 2026

7. Demographic Data Updater — patient ID + new data — updated record
8. Medical History Importer — external records — structured medical history
9. Consent Manager — consent preferences — consent documentation

10. Patient Search Engine — search criteria — matching patient records

11. Data Quality Auditor — patient records — quality assessment

12. Registration Status Tracker — registration steps — completion status

Simple Multi-Tool Workflows:
1. Basic registration: Patient Identity Validator — Address Standardizer — Patient Record Creator
2. Quick search: Patient Search Engine — Demographic Data Updater

Medium Multi-Tool Workflows:

1. Complete new registration: Patient Identity Validator — Address Standardizer — Insurance Veri-
fication Tool — Duplicate Patient Checker — Emergency Contact Validator — Consent Manager —
Patient Record Creator — Registration Status Tracker

2. Record update: Patient Search Engine — Data Quality Auditor — Demographic Data Updater —
Registration Status Tracker

Complex Multi-Tool Workflows:

1. Full registration with history: Patient Identity Validator — Address Standardizer — Insurance
Verification Tool — Duplicate Patient Checker — Emergency Contact Validator — Medical History
Importer — Consent Manager — Patient Record Creator — Data Quality Auditor — Registration
Status Tracker

2. Comprehensive data migration: Patient Search Engine — Duplicate Patient Checker — Medical
History Importer — Demographic Data Updater — Data Quality Auditor — Consent Manager

Tool Sequences:

Simple: [[Patient Identity Validator, Address Standardizer, Patient Record Creator], [Patient Search
Engine, Demographic Data Updater]]

Medium: [[Patient Identity Validator, Address Standardizer, Insurance Verification Tool, Duplicate Pa-
tient Checker, Emergency Contact Validator, Consent Manager, Patient Record Creator, Registration
Status Tracker], [Patient Search Engine, Data Quality Auditor, Demographic Data Updater, Registra-
tion Status Tracker]]

Complex: [[Patient Identity Validator, Address Standardizer, Insurance Verification Tool, Duplicate
Patient Checker, Emergency Contact Validator, Medical History Importer, Consent Manager, Patient
Record Creator, Data Quality Auditor, Registration Status Tracker], [Patient Search Engine, Dupli-
cate Patient Checker, Medical History Importer, Demographic Data Updater, Data Quality Auditor,
Consent Manager]]

Patients:

PATO001 — John Smith, DOB: 1985-03-15, Male, Address: 123 Main St, Springfield, IL 62701, Phone:
555-123-4567, Email: john.smith@email.com, SSN: 123-45-6789, Married, Lang: English, Status:
Complete

PAT002 — Maria Garcia, DOB: 1992-07-22, Female, Address: 456 Oak Ave, Chicago, IL 60601,
Phone: 555-234-5678, Email: maria.garcia@email.com, SSN: 234-56-7890, Single, Lang: Spanish,
Status: Incomplete

PATO003 — David Johnson, DOB: 1978-11-08, Male, Address: 789 Pine Rd, Milwaukee, WI 53202,
Phone: 555-345-6789, Email: d.johnson@email.com, SSN: 345-67-8901, Divorced, Lang: English,
Status: Pending

PAT004 — Sarah Williams, DOB: 1990-12-03, Female, Address: 321 Elm St, Detroit, MI 48201,
Phone: 555-456-7890, Email: sarah.w @email.com, SSN: 456-78-9012, Married, Lang: English, Sta-
tus: Complete

PATO005 — Robert Brown, DOB: 1965-05-17, Male, Address: 654 Cedar Ln, Columbus, OH 43215,
Phone: 555-567-8901, Email: rob.brown@email.com, SSN: 567-89-0123, Widowed, Lang: English,
Status: Complete

Insurance Providers:

17

Under review as a conference paper at ICLR 2026

Blue Cross Blue Shield — Policies: [BC123456789, BC987654321, BC456789012], Coverage: [Indi-
vidual, Family, Group], Copays: [25, 35, 15], Deductibles: [1000, 1500, 500]

Aetna — Policies: [AET123456, AET789012, AET345678], Coverage: [PPO, HMO, EPO], Copays:
[30, 20, 25], Deductibles: [1200, 800, 1000]

United Healthcare — Policies: [UH987654, UH123789, UH456123], Coverage: [Select, Choice, Nav-
igate], Copays: [35, 25, 30], Deductibles: [1500, 1000, 1200]

Emergency Contacts:

PAT0O01 - Jane Smith (Spouse), Phones: [555-123-9876, 555-123-5432], Email:
jane.smith@email.com

PAT002 — Carlos Garcia (Brother), Phone: 555-234-9876, Email: carlos.garcia@email.com

PAT003 - Emily Johnson (Sister), Phones: [555-345-9876, 555-345-5432], Email:
emily.johnson @email.com

Addresses:

123 Main Street — 123 Main St, Springfield, IL 62701, Lat: 39.7817, Long: -89.6501, Status: valid
456 Oak Avenue — 456 Oak Ave, Chicago, IL 60601, Lat: 41.8781, Long: -87.6298, Status: valid
789 Pine Road — 789 Pine Rd, Milwaukee, WI 53202, Lat: 43.0389, Long: -87.9065, Status: valid

Medical History:

PATO001 — Source: previous_provider, Conditions: [Hypertension, Type 2 Diabetes], Medications:
[Metformin, Lisinopril], Allergies: [Penicillin], Last Updated: 2024-01-15
PATO003 — Source: patient reported, Conditions: [Asthma, Seasonal Allergies], Medications: [Al-
buterol Inhaler], Allergies: [Peanuts, Shellfish], Last Updated: 2024-02-10

Consent Records:

PATO001 — Type: data_sharing, Status: true, Scope: [treatment, payment, operations], Exp: 2025-03-15
PAT002 — Type: research_participation, Status: false

Task 1: Register Michael Thompson (DOB 1988-04-12, Address 999 Sunset Blvd, LA 90210) and
create record.

Info: Difficulty: simple, Validity: valid, Tools: 3

Tools-required: [Patient Identity Validator, Address Standardizer, Patient Record Creator]

Task 2: Find patient Garcia, update phone to 555-999-8888.
Info: Difficulty: simple, Validity: valid, Tools: 2
Tools-required: [Patient Search Engine, Demographic Data Updater]

Task 3: Register new patient + schedule appointment (invalid).

Info: Difficulty: simple, Validity: invalid, Tools: 4

Tools-required: [Patient Identity Validator, Address Standardizer, Patient Record Creator, Appoint-
ment Scheduler]

Task 4: Create record + insurance pre-auth (invalid).
Info: Difficulty: simple, Validity: invalid, Tools: 3
Tools-required: [Patient Record Creator, Insurance Verification Tool, Pre-authorization Request Tool]

Task 5: Full registration for Jennifer Lopez (DOB 1975-09-25, insurance BC123456789, spouse Car-
los Lopez).

Info: Difficulty: medium, Validity: valid, Tools: 8

Tools-required: [Patient Identity Validator, Address Standardizer, Insurance Verification Tool, Dupli-
cate Patient Checker, Emergency Contact Validator, Consent Manager, Patient Record Creator, Regis-
tration Status Tracker]

Task 6: Search Robert Brown, audit data, update marital status to remarried, track.

Info: Difficulty: medium, Validity: valid, Tools: 4

Tools-required: [Patient Search Engine, Data Quality Auditor, Demographic Data Updater, Registra-
tion Status Tracker]

18

Under review as a conference paper at ICLR 2026

Task 7: Register + insurance + duplicates + appointment + email + billing (invalid).

Info: Difficulty: medium, Validity: invalid, Tools: 7

Tools-required: [Patient Identity Validator, Insurance Verification Tool, Duplicate Patient Checker,
Appointment Scheduler, Email Service, Billing Generator, Patient Record Creator]

Task 8: Registration with pharmacy + lab integration (invalid).

Info: Difficulty: medium, Validity: invalid, Tools: 6

Tools-required: [Patient Record Creator, Insurance Verification Tool, Pharmacy Integration Tool, Lab
Integration Tool, Consent Manager, Registration Status Tracker]

Task 9: Comprehensive registration for Thomas Anderson (DOB 1980-06-15, Aetna AET123456,
brother Neo Anderson).

Info: Difficulty: complex, Validity: valid, Tools: 10

Tools-required: [Patient Identity Validator, Address Standardizer, Insurance Verification Tool, Du-
plicate Patient Checker, Emergency Contact Validator, Medical History Importer, Consent Manager,
Patient Record Creator, Data Quality Auditor, Registration Status Tracker]

Task 10: Data migration for Sarah Williams (import history, update insurance, audit, update consent).
Info: Difficulty: complex, Validity: valid, Tools: 6

Tools-required: [Patient Search Engine, Duplicate Patient Checker, Medical History Importer, Demo-
graphic Data Updater, Data Quality Auditor, Consent Manager]

Task 11: Registration + state HIE + CDC + insurance pre-auth + scheduling + portal (invalid).

Info: Difficulty: complex, Validity: invalid, Tools: 8

Tools-required: [Patient Identity Validator, State HIE Integration, CDC Database Connector, Insur-
ance Pre-auth Tool, Multi-specialty Scheduler, Patient Portal Creator, Patient Record Creator, Regis-
tration Status Tracker]

Task 12: Registration + CDS + drug interactions + alerts (invalid).

Info: Difficulty: complex, Validity: invalid, Tools: 7

Tools-required: [Patient Record Creator, Clinical Decision Support, Drug Interaction Checker, Clini-
cal Alerts Manager, Medical History Importer, Data Quality Auditor, Registration Status Tracker]

A.4 EXAMPLE 4 (FIELD: ECOMMERCE AND RETAIL)

Field: Ecommerce and Retail — Subfield: Order Processing and Fulfillment — Task: Returns and
Refunds Processing

List All Tool Names and Dependencies Generated under this task

1. Return Request Validator — return request data, order history — validation status, eligibility
rules

2. Return Label Generator — validated return request, shipping preferences — shipping labels,
tracking info

Return Item Inspector — returned items data, inspection criteria — item condition assessment
Refund Calculator — return details, pricing data, fees — refund amounts, breakdowns
Payment Processor — refund amounts, payment methods — payment status, transaction IDs
Inventory Updater — returned items, condition assessments — inventory adjustments
Return Status Tracker — return IDs, status updates — current status, history

Customer Notifier — return status, customer info — notification confirmations

O C A -

Return Analytics Reporter — return data, time periods — analytics reports, trends
10. Restocking Assessor — item conditions, restocking criteria — restocking decisions
11. Exception Handler — problematic returns, escalation rules — resolution recommendations

12. Return Policy Checker — product info, purchase dates — policy compliance, restrictions

Simple Multi-Tool Workflows:
1. Basic return validation: Return Policy Checker — Return Request Validator — Customer Notifier

19

Under review as a conference paper at ICLR 2026

2. Simple refund processing: Refund Calculator — Payment Processor — Customer Notifier

Medium Multi-Tool Workflows:

1. Standard return flow: Return Request Validator — Return Label Generator — Return Item Inspector
— Refund Calculator — Payment Processor — Inventory Updater — Customer Notifier

2. Return analytics workflow: Return Status Tracker — Return Analytics Reporter — Exception
Handler

Complex Multi-Tool Workflows:

1. Complete return processing: Return Policy Checker — Return Request Validator — Return Label
Generator — Return Status Tracker — Return Item Inspector — Restocking Assessor — Refund
Calculator — Payment Processor — Inventory Updater — Customer Notifier — Return Analytics
Reporter

2. Exception handling workflow: Return Request Validator — Return Item Inspector — Exception
Handler — Restocking Assessor — Refund Calculator — Payment Processor — Customer Notifier
— Return Status Tracker

Customers:
1. CUSTO01 — John Smith, john.smith@email.com, +1-555-0101, 123 Main St, New York, NY 10001,
Segment: premium, Prefs: [email, sms]

2. CUSTO002 — Sarah Johnson, sarah.j@email.com, +1-555-0102, 456 Oak Ave, Los Angeles, CA
90210, Segment: regular, Prefs: [email]

3. CUSTO003 — Mike Davis, mike.davis@email.com, +1-555-0103, 789 Pine Rd, Chicago, IL 60601,
Segment: new, Prefs: [push_notification]

Orders:
ORDO001 - CUSTO001, 2023-11-01, $299.99, tax: 8%, ship: 9.99, credit_card (TXNOO1), Items: [Wire-
less Headphones x1, Phone Case x2]

ORDO002 — CUST002, 2023-10-15, $89.99, tax: 7%, ship: 5.99, paypal (TXNO002), Items: [Bluetooth
Speaker x1]

ORDO003 — CUST003, 2023-12-01, $199.99, tax: 9%, ship: 0.00, debit_card (TXNO0O03), Items: [Smart
Watch x1]
Return Policies:

Electronics — 30 days, 15% fee, [original_packaging, all_accessories]
Accessories — 60 days, 0% fee, [sellable_condition]
Wearables — 14 days, 10% fee, [original_packaging, no_damage]

Warehouses:

WHO0O01 — New York Distribution Center, 500 Industrial Blvd, Queens, NY 11101
WHO02 - California Fulfillment Center, 1000 Logistics Way, Long Beach, CA 90802

Shipping Carriers:

UPS — [standard: 7.99, expedited: 15.99, overnight: 29.99]
FedEx — [standard: 8.99, expedited: 16.99, overnight: 34.99]
USPS — [standard: 5.99]

Return Requests:

RETO001 — ORDO001, CUSTO001, 2023-11-15, defective, [ITEMO0O01], status: initiated
RET002 — ORD002, CUST002, 2023-11-10, changed_mind, [ITEMO003], status: approved

Inspectors:

INSO001 — Quality Inspector A, WHO0O01, auth: [basic, detailed, quality _assurance]
INS002 — Quality Inspector B, WHO002, auth: [basic, detailed]

Inventory:
ITEMOO1 - stock: 50, WHOO1, new, cost: 75.00

20

Under review as a conference paper at ICLR 2026

ITEMO002 - stock: 100, WHOO1, new, cost: 15.00
ITEMOO03 — stock: 25, WHO002, new, cost: 40.00

Task 1: Validate a return request for CUST001 (ORDO001 headphones defective), notify customer.
Info: Difficulty: easy, Validity: valid, Tools: 3
Tools-required: [Return Policy Checker, Return Request Validator, Customer Notifier]

Task 2: Calculate refund for ORD002 Bluetooth Speaker, process payment, notify CUST(002.
Info: Difficulty: easy, Validity: valid, Tools: 3
Tools-required: [Refund Calculator, Payment Processor, Customer Notifier]

Task 3: Generate return analytics and reorder inventory (invalid).
Info: Difficulty: easy, Validity: invalid, Tools: 5

Tools-required: [Return Analytics Reporter, Inventory Reorder Tool, Trend Analyzer, Auto Purchase

Tool, Supplier Notifier]

Task 4: Handle international return + customs docs (invalid).
Info: Difficulty: easy, Validity: invalid, Tools: 4

Tools-required: [International Return Handler, Customs Documentation Tool, Currency Converter,

International Payment Processor]

Task 5: Full return lifecycle for ORD001 headphones.
Info: Difficulty: medium, Validity: valid, Tools: 7

Tools-required: [Return Request Validator, Return Label Generator, Return Item Inspector, Refund

Calculator, Payment Processor, Inventory Updater, Customer Notifier]

Task 6: Track RET002 status, generate analytics, handle exceptions.
Info: Difficulty: medium, Validity: valid, Tools: 3
Tools-required: [Return Status Tracker, Return Analytics Reporter, Exception Handler]

Task 7: Bulk returns for 50 customers with auto-approve (invalid).
Info: Difficulty: medium, Validity: invalid, Tools: 8

Tools-required: [Bulk Return Processor, Auto Approval Engine, Bulk Refund Calculator, Store Credit
Issuer, Mass Inventory Updater, Bulk Customer Notifier, Policy Override Tool, Automatic Validator]

Task 8: Integrate return data with CRM and dashboards (invalid).
Info: Difficulty: medium, Validity: invalid, Tools: 6

Tools-required: [CRM Integration Tool, Multi-Platform Sync, Customer Profile Merger, Executive

Dashboard Generator, Data Warehouse Connector, Business Intelligence Tool]

Task 9: Full return lifecycle for ORD003 Smart Watch (FedEx expedited).
Info: Difficulty: complex, Validity: valid, Tools: 11

Tools-required: [Return Policy Checker, Return Request Validator, Return Label Generator, Return
Status Tracker, Return Item Inspector, Restocking Assessor, Refund Calculator, Payment Processor,

Inventory Updater, Customer Notifier, Return Analytics Reporter]

Task 10: Handle problematic return for RET001 headphones.
Info: Difficulty: complex, Validity: valid, Tools: 8

Tools-required: [Return Request Validator, Return Item Inspector, Exception Handler, Restocking

Assessor, Refund Calculator, Payment Processor, Customer Notifier, Return Status Tracker]

Task 11: Predict return likelihood + dynamic pricing (invalid).
Info: Difficulty: complex, Validity: invalid, Tools: 15

Tools-required: [ML Prediction Engine, Dynamic Pricing Tool, Manufacturing Integration, Qual-
ity Improvement Analyzer, Predictive Analytics Platform, Executive Dashboard Creator, Data Min-
ing Tool, Pattern Recognition System, Automated Decision Engine, Cross-Platform Integrator, Real-
time Analytics Processor, Business Intelligence Suite, Advanced Reporting Engine, Strategic Planning

Tool, Performance Optimization System]

Task 12: Blockchain + crypto refunds + AR/VR inspections (invalid).
Info: Difficulty: complex, Validity: invalid, Tools: 12

21

Under review as a conference paper at ICLR 2026

Tools-required: [Blockchain Verification System, Cryptocurrency Payment Processor, Social Media
Integrator, Sentiment Analysis Engine, AR Return Inspector, VR Inspection Platform, Digital Asset
Manager, Distributed Ledger Tool, Social Listening Platform, Virtual Reality Processor, Augmented
Reality Engine, Digital Currency Exchange]

B TooL EXAMPLES

B.1 EXAMPLE 1 (FIELD: CUSTOMER SUPPORT)

Field: Customer Support — Sub Domain: Ticket Management — Task: Track and update ticket
status throughout resolution lifecycle — Tool: Ticket Status Updater

Tool Name: Ticket Status Updater
Description: Updates the status of a support ticket and validates the status transition according to
business rules.

Parameters:
« ticket_id (string, required) — Unique identifier for the support ticket

e new.status (string, required) - Target status: open, in_progress,
pending_customer, pending_internal, resolved, closed, cancelled

* agent_id (string, required) — ID of the agent making the status change

* update_reason (string, optional, default = nul1) — Optional reason for the status change

Error Messages:

* Invalid ticket ID: The provided ticket_id does not exist in the system. Verify the ticket
number and try again.

* Invalid status transition: The requested status change is not allowed from the current status.
Check valid transitions in the workflow rules.

* Agent authorization failed: The specified agent_id does not have permission to update
this ticket. Ensure the agent has proper access rights.

* Ticket is locked: The ticket is currently being modified by another user. Wait a moment and
retry the operation.

Usage: Provide ticket_id, new_status, and agent_id to update ticket status. Optionally in-
clude update_reason for audit purposes. The tool validates the transition before applying changes.
Output Details:

* success (boolean) — Indicates if the status update was successful

* previous_status (string) — The status before the update

* current_status (string) — The new status after the update

 timestamp (string) — When the status change occurred

« updated_by (string) — Agent ID who made the change

B.2 EXAMPLE 2 (FIELD: ECOMMERCE AND RETAIL)

Field: Ecommerce and Retail — Sub Domain: Product Catalog Management — Task: Product
Quality Assurance and Content Validation — Tool: Image Quality Analyzer

22

Under review as a conference paper at ICLR 2026

Tool Name: Image Quality Analyzer
Description: Analyzes product images for quality metrics including resolution, composition, lighting,
background, and technical specifications to ensure catalog standards.

Parameters:
 image_urls (array of strings, required, 1-20 items) — URLSs or file paths of images to analyze
¢ min_resolution (integer, optional, default = 800) — Minimum required resolution in pixels
* check_background (boolean, optional, default = t rue) — Whether to analyze background
cleanliness
Error Messages:
* Image not accessible: One or more image URLs could not be accessed or loaded.
¢ Unsupported image format: Images must be in JPEG, PNG, or WebP format.
¢ Image resolution too low: Image resolution is below the specified minimum requirement.
» Image processing failed: Technical error occurred while analyzing image quality.

Usage: Provide an array of image_urls to analyze. Optionally set min_resolution and back-
ground checking preferences. Returns comprehensive quality analysis for each image.

Output Details:
* overall_score (number) — Overall image quality score from O to 100
* image_analyses (array of strings) — Individual analysis results for each image
¢ quality_issues (array of strings) — Identified quality problems across all images

* recommendations (array of strings) — Suggestions for improving image quality

B.3 EXAMPLE 3 (FIELD: FINANCIAL TRADING)

Field: Financial Trading — Sub Domain: Risk Management and Assessment — Task: Portfolio risk
analysis and stress testing — Tool: Correlation Matrix Calculator

Tool Name: Correlation Matrix Calculator
Description: Calculates correlation matrices between assets using historical return data with various
correlation methods and time windows.

Parameters:

* calculation_method (string, required) — Correlation calculation method: pearson,
spearman, kendall

* time_window (integer, optional, default = 252) — Rolling window size in days for correlation
calculation (30-1000)

* min_periods (integer, optional, default = 20) — Minimum number of observations required
for correlation calculation

Error Messages:

¢ Invalid calculation method: Use pearson, spearman, or kendall correlation methods
only.

 Insufficient data: Not enough price data to calculate correlations. Ensure at least
min_periods observations per asset.

¢ Invalid time window: t ime_window must be between 30 and 1000 days.

* Singular matrix: Correlation matrix is singular, indicating perfect correlation between some
assets.

23

Under review as a conference paper at ICLR 2026

Usage:

Specify correlation calculation method and optionally adjust time_window and

min_periods. Requires price data from Historical Price Fetcher.

Output Details:

correlation_matrix (array of numbers) — Flattened correlation matrix values
asset_pairs (array of strings) — Asset pair labels corresponding to correlation values
highest_correlation (number) — Highest correlation coefficient found
lowest_correlation (number) — Lowest correlation coefficient found

matrix_rank (integer) — Rank of the correlation matrix

B.4 EXAMPLE 4 (FIELD: HEALTHCARE AND MEDICAL)

Field: Healthcare and Medical — Sub Domain: Patient Registration and Scheduling — Task: Ap-
pointment scheduling and calendar management across multiple providers — Tool: Wait List Manager

Tool Name: Wait List Manager
Description: Manages patient wait lists for unavailable appointment slots, automatically matching
patients with newly available appointments based on preferences and priorities.

Parameters:

action (string, required) — Action to perform: add, remove, check.matches,
get_list

patient_name (string, optional, default = None) — Patient name (required for add action)

patient_phone (string, optional, default = None) — Patient phone number (required for add
action)

preferred_providers (array of strings, optional, default = None) — List of preferred provider
IDs

preferred_dates (array of strings, optional, default = None) — List of preferred dates in ISO
8601 format

wait_list_id (string, optional, default = None) — Wait list entry ID (required for remove
action)

Error Messages:

Invalid action: Action must be one of [add, remove, check_matches, get_list]
Missing patient info: patient_name and patient_phone are required for add action
Wait list entry not found: No wait list entry exists with the specified wait_-list_id
Invalid provider IDs: One or more preferred_providers do not exist

Invalid date format: preferred_dates must be in ISO 8601 format

Duplicate entry: Patient is already on wait list for this provider/time combination

Usage: Specify action and provide required parameters. Use add to put patients on wait list,
check_matches to find available appointments, and remove to take patients off wait list.

Output Details:

wait_list_id (string) — Unique identifier for wait list entry
status (string) — Operation status
matches_found (integer) — Number of matching appointments found

matched_slots (array of strings) — List of available appointment slots that match criteria

24

Under review as a conference paper at ICLR 2026

B.5 EXAMPLE 5 (FIELD: TRANSPORTATION AND LOGISTICS)

Field: Transportation and Logistics — Sub Domain: Freight and Cargo Management — Task: Route
planning and optimization for freight shipments — Tool: Traffic Condition Analyzer

Tool Name: Traffic Condition Analyzer
Description: Analyzes current and predicted traffic conditions along route segments to estimate delays
and optimal departure times.

Parameters:

* route_segments (array of strings, required, 1-50 items) — Array of route segment identifiers
or coordinate pairs

* departure_time (string, required, ISO 8601) — Planned departure time in ISO 8601 format

« analysis_duration_hours (integer, optional, default = 24) — How many hours ahead to ana-
lyze traffic patterns (1-72)

* day_of_week (string, required) — Day of week for traffic pattern analysis: monday,
tuesday, wednesday, thursday, friday, saturday, sunday

Error Messages:

¢ Invalid departure time: Provide valid ISO 8601 formatted date-time string.

¢ Invalid day of week: Use full day name in lowercase (monday through sunday).

* Too many route segments: Maximum 50 segments allowed for analysis.

e Invalid analysis duration: Duration must be between 1 and 72 hours.

 Traffic data unavailable: Unable to retrieve traffic information for specified route segments.
Usage: Provide route_segments, departure_time, and day_of_week. Optionally specify

analysis_duration_hours. Returns traffic predictions and delay estimates for route optimiza-
tion.

Output Details:
« total_delay_minutes (number) — Total expected traffic delay in minutes
* congestion_segments (array of strings) — Route segments expected to have heavy congestion
* optimal_departure (string) — Recommended departure time to minimize delays

* traffic_severity (string) — Overall traffic severity level: 1ow, moderate, high, severe

C PIPELINE DETAILS

C.1 FAILURE AND SUCCESS MODELS OF TOOL CALLS

Tool call message: Tool call message:
Insurance_Information_Updater (patient_id Insurance_Information_Updater (patient_id =
= 'PATO001’, insurance fields = [], insur- "PAT001°, insurance_fields = [provider’,
ance_values = ['Blue Cross’]) "policy_number’], insurance_values = [*Blue
Response: Cross’)

Status: FAIL, Status Code: 400, Error Mes- Response:

sage: Invalid parameter: insurance_fields ar- Status: FAIL, Status Code: 400, Error Mes-
ray must contain at least 1 item.” sage: Mismatched fields and values: Ensure

insurance_fields and insurance_values arrays
have the same length.

25

Under review as a conference paper at ICLR 2026

Tool call message:
Regulation_Detail_Fetcher (regulation_id =
"INVALID-REG-999°)

Tool call message:
Insurance_Information_Updater (patient_id
= "PAT001’, insurance_fields = ['provider’],

insurance_values = [’Blue Cross’])

Response:

Status: PASS, Status Code: 200, Return Response:

Data: Error: Invalid regulation ID: Ensure Status: PASS, Status Code: 200, Re-
the regulation ID is correct and exists in the turn Data: update_status: Success, up-
database. dated_insurance: [’provider’]

C.2 PROMPTS

We post our prompts under this anonymized repository: https://anonymous.4open.
science/r/SynthTools-44C6/README . md

D DEDUPLICATION DETAILS

To eliminate near-duplicate tools generated through hierarchical evolution, we employ a multi-stage
de-duplication pipeline. The process begins with exact de-duplication applied independently within
each domain/field. We first normalize and compare the tool_name attributes, followed by the
tool_body, which encompasses the description, parameters, usage, and output schema. This step
reduces redundancy and prevents unnecessary computation in subsequent stages.

We then implement a semantic de-duplication pipeline, adapted from SemDepDup—a state-of-the-
art method proposed by Abbas et al. (2023)—tailored to the structural characteristics of our dataset.
The semantic phase proceeds as follows:

We construct an embedding-based similarity graph over the normalized tool_name and
tool_body fields. Specifically, let e(t) € R? denote the embedding of tool ¢, and define the
coine similarity between tool ¢; and ¢; as S;; = cos(e(t;), e(t;)). An adjancency matrix is then
defined as A;; = 1{S;; > 7}, 7 € (0,1), and the corresponding undirected similarity graph is
G = {(z, J) Ay = 1}. Connected components in G represent candidate duplicate sets: singleton
nodes are considered unique tools, whereas multi-node components are treated as clusters of near-
duplicates. We then apply a selection algorithm (Algorithm 1) to retain representative tools from
each component.

Empirically, cross-field duplication is rare, as workflows and vocabularies tend to differ signifi-
cantly across domains (Figure 8). Most residual redundancy occurs between adjacent tasks and
subdomains, where tool functionalities partially overlap. The degree of de-duplication depends on
the threshold 7; Figure 9 illustrates the elimination rate as a function of 7. Based on a validation
sweep that balances compactness and coverage, we set 7 = (.85 in practice.

26

https://anonymous.4open.science/r/SynthTools-44C6/README.md
https://anonymous.4open.science/r/SynthTools-44C6/README.md

Under review as a conference paper at ICLR 2026

6 - A === Global
=== Within Field
Within Subfield
5 4 Within Task
4 4
>
|
g 31
A
2 -
l -
04— ".‘”L”” ' . . :
0.0 0.2 0.4 0.6 0.8 1.0
Similarity

Figure 8: Distribution of semantic similarity scores between tools at varying levels of domain gran-
ularity: across fields (blue), within a field (green), within a subfield (yellow), and within a task (red).

Algorithm 1 Selection rule for connected components

1: for each connected component C C {1,...,|T|} do
2 if |C| = 1 then
3: retain the tool unchanged.
4: else if |C| = 2 then
5:
the other.
6: else
7: Initialize L < C.
8: while 3i # j € L withu, u; > 7 do
9: for eachi € L do
10: Compute degree

deg, (i) = > Ay
JEL\{i}

11: Compute incident-sum

choose one uniformly at random (with a fixed PRNG seed for reproducibility), discard

>|C| >3

we (i) = > Ay (uuy)

JEL\{i}
12: end for
13: Select node to drop by lexicographic maximization:
* - .
v" € argmax (deg, (i), w(i))
14: Let
k* = arg max ul.u;
8 jeiqury 1
15: Check condition u,. ug+ > 7.
16: Drop v*: update L < L\ {v*}.
17: end while
18: Return survivors L for component C'.
19: end if
20: end for

27

Under review as a conference paper at ICLR 2026

90
Field mean * 1o
80 ~—— Overall dropped
704
60
50 1
40 -
30

Dropped tools percent

201
10 A

0.5 0.6 0.7 0.8 0.9

Figure 9: Percentage of tools dropped v/s similarity score threshold

E DATASET DETAILS

Field
« Academic Publishing and Citations « Human Resources and Talent
+ Accessibility and Inclusion « Humor and Comedy
Accounting and Taxation + Insurance and Risk Services
« Agriculture Environmental Iphone Android
« Anti Fraud and Risk Scoring Journaling and Note Taking
« App Automation « Legal Services
« Appraisals and Valuations Libraries and Archives
« Artand Culture Location Services
AIGC Loyalty and Rewards
Astrology and Esoterica + Industrial lot
« Biotechnology and Pharmaceuticals Marketing
« Browser Automation Media Rights and Licensing
+ Calendar Management + Membership and Subscriptions
Career Guidance and Mentorship Metrology and Calibration
Cloud Platforms « Mining and Resources
80 + Communication Skills and Coaching Negotiation and Mediation
Community Service and Volunteering « Online Shopping
60 Construction and Civil Engineering « Open Data and Statistics
Content Moderation and Safety Parenting and Childcare
Cooking and Recipes Payments and Invoicing
40 Crafts and Making « Personal Finance
Credit and Lending Services Personal Style and Grooming
~ 20 « Cryptocurrency Blockchain « Pet Care and Veterinary
m Customer Support - Photography and Imaging Services
Z 0 « Data Annotation and Labeling « Procurement and Vendor Management
@« Databases Public Sector and Government
= 20 « Defense and Military « Rag Systems.
- « Developer Tools Reading and Book Clubs
Device Repair and Troubleshooting Real Estate Property
—40 Dictionaries and Reference « Religion and Spirituality
- Digital Signature and Certificates « Sales and Crm
-60 Document Scanning and Ocr + Security and Access Management
« Ecommerce and Retail Smart Home
« Education Elearning « Social Media
-75 50 -25 0 25 50 75 « Emergency Response and Public Safety ~ Software Apps
&SNE 1 Energy and Utilities « Space and Aerospace
« Entertainment and Media « Speech and Voice Services
Event Planning and Management « Student Services and Campus Life
Facilities Management + Surveys and Feedback
« Field Service Management Survival Skills and Preparedness
« File Systems « Telecommunications Networks
+ Financial Trading - Transportation Logistics
Food and Beverage Services « Travel and Transportation
« Games and Gamification Urban Planning and Cities
« Genealogy and Family History Vehicle Care and Maintenance
« Grants and Philanthropy « Weather Services
« Health and Wellness Web Scraping
« Healthcare Medical Website Control
+ Home Improvement and Renovation Wildlife Observation and Birding

Home Organization and Cleaning Workplace Health and Safety

Figure 10: Distribution of tool embeddings across 100 fields

F LLM USE

LLMs were used in both polishing the writing and in search for related works. LLMs were also
used in refining the prompts for the LLM studied in this work. We use Claude-Sonnet-4 for our
experiments and to refine our writing

28

	Introduction
	Related Work

	Tool Generation
	Tool Simulation
	Tool Audit
	How reliable is the LLM judge?
	Tool set and Tasks
	Tasks

	Conclusion
	Reproducibility statement
	Example Tasks
	Example 1 (Field: Ecommerce and Retail)
	Example 2 (Field: Financial Trading)
	Example 3 (Field: Healthcare and Medical)
	Example 4 (Field: Ecommerce and Retail)

	Tool Examples
	Example 1 (Field: Customer Support)
	Example 2 (Field: Ecommerce and Retail)
	Example 3 (Field: Financial Trading)
	Example 4 (Field: Healthcare and Medical)
	Example 5 (Field: Transportation and Logistics)

	Pipeline Details
	Failure and success models of tool calls
	prompts

	Deduplication details
	Dataset Details
	LLM Use

