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Abstract

Source-free domain adaptation (SFDA) is a challenging task that tackles domain
shifts using only a pre-trained source model and unlabeled target data. Existing
SFDA methods are restricted by the fundamental limitation of source-target domain
discrepancy. Non-generation SFDA methods suffer from unreliable pseudo-labels
in challenging scenarios with large domain discrepancies, while generation-based
SFDA methods are evidently degraded due to enlarged domain discrepancies
in creating pseudo-source data. To address this limitation, we propose a novel
generation-based framework named Diffusion-Driven Progressive Target Manipula-
tion (DPTM) that leverages unlabeled target data as references to reliably generate
and progressively refine a pseudo-target domain for SFDA. Specifically, we divide
the target samples into a trust set and a non-trust set based on the reliability of
pseudo-labels to sufficiently and reliably exploit their information. For samples
from the non-trust set, we develop a manipulation strategy to semantically trans-
form them into the newly assigned categories, while simultaneously maintaining
them in the target distribution via a latent diffusion model. Furthermore, we design
a progressive refinement mechanism that progressively reduces the domain dis-
crepancy between the pseudo-target domain and the real target domain via iterative
refinement. Experimental results demonstrate that DPTM outperforms existing
methods by a large margin and achieves state-of-the-art performance on four pre-
vailing SFDA benchmark datasets with different scales. Remarkably, DPTM can
significantly enhance the performance by up to 18.6% in scenarios with large
source-target gaps.

1 Introduction

Deep learning has achieved remarkable success under the independent and identically distributed
(i.i.d.) assumption. However, it suffers from significantly degraded performance on out-of-distribution
(OOD) data due to domain shifts. Unsupervised domain adaptation (UDA) mitigates this issue by
aligning feature distributions between labeled source and unlabeled target domains, but has to access
both datasets during adaptation [42, 44]. Source-free domain adaptation (SFDA) considers a more
practical but challenging scenario where only the pre-trained source model and unlabeled target data
are available [19, 11], and precludes access to source samples during adaptation.

Existing SFDA methods can be primarily classified into non-generation and generation-based methods,
with both exhibiting inherent limitations on practical effectiveness. Non-generation methods [23, 57,
61, 35, 38, 37] predominantly rely on pseudo-labels generated by the source model, and categorize
them into a small subset of reliable pseudo-labels and a predominant subset of unreliable pseudo-labels

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



based on certainty metrics [21, 43, 8, 48, 51, 5, 58]. The unreliable pseudo-labels contain substantial
label noise, and cannot be easily exploited to extract useful information or infer correct labels through
refinement processes. Unfortunately, the amount of label noise is inherently determined by the
degree of domain shift between source and target domains [53, 24]. This fundamental limitation
severely compromises the effectiveness of non-generation methods in challenging scenarios with
large domain gaps, and results in significantly unstable performance across different adaptation tasks.
For instance, empirical results [37] show that, when deploying the same source model across different
target domains, significant performance discrepancies emerge (e.g., accuracy over 90% for Ar→Cl vs.
about 60% for Ar→Pr in the Office-Home dataset). These results underscore the critical sensitivity
of non-generation methods to domain shift.

Generation-based SFDA methods primarily operate at the data level [31, 6, 26, 9]. Although these
methods could theoretically circumvent the limitation of non-generation methods by avoiding directly
using unreliable pseudo-labels, most of them still fail to escape from this domain shift limitation due
to the problematic paradigm that generates a pseudo-source domain to convert the SFDA task into
a conventional UDA task. The restriction caused by the domain shift between the pseudo-source
and target domains is not addressed. Moreover, the generation process often incorporates irrelevant
domain features that could further enlarge the discrepancy between the source and target domains for
the pseudo-source domain. Consequently, these methods suffer from unsatisfactory performance due
to domain shifts.

In this paper, we reveal that existing SFDA methods are fundamentally limited by source-target
domain shifts. To break this bottleneck, we resort to a novel generation-based paradigm that directly
generates the pseudo-target domain. We propose a Diffusion-Driven Progressive Target Manipulation
(DPTM) framework that reliably generates and progressively refines the pseudo target domain to
reduce the domain discrepancy from the real target domain and address the fundamental limitation on
domain shift for existing methods. The proposed method is shown to achieve remarkable performance
gains in challenging DA scenarios with large source-target domain shifts.

To sufficiently and reliably exploit the pseudo-label information, we partition the target data into
a trust set and a non-trust set based on the prediction uncertainty of the target model initialized
using the source model. For the trust set with low uncertainty, we directly adopt pseudo-labels
as supervisory signals for training the target model, following prior works that have established
their reliability [21, 43, 8, 48, 51, 5, 58]. Moreover, we also exploit the rich information about
the target distribution contained in the potentially unreliable samples from the non-trust set. We
uniformly assign a new category label to each of them to prevent potential class imbalance and
employ a manipulation strategy to semantically transform each sample toward its newly assigned
label while preserving its target-domain features with a latent diffusion model [32]. The manipulated
samples simultaneously turn their assigned labels into useful supervisory signals and keep aligned
with the target distribution to enhance the adaptation of target models. Furthermore, we propose a
Progressive Refinement Mechanism that iteratively refines the pseudo-target domain as well as the
target model to progressively reduce the residual label noise due to imperfect pseudo-labeling and
the accumulated domain discrepancy caused by the manipulated non-trust set. This significantly
diminishes the quantity of non-trust samples and thereby mitigates overall domain shift.

To be concrete, the proposed manipulation strategy of non-trust samples consists of three components.
Firstly, as the sampling starting point of diffusion models has been proven to significantly influence
the generated image [45, 30, 17, 47, 10], we propose a Target-guided Initialization Mechanism to
construct the starting point for sampling by simultaneously considering the target domain features of
the non-trust sample and isolating its semantic leakage that might disturb the semantic transformation.
Secondly, we propose a Semantic Feature Injection Mechanism that iteratively injects semantics
related to the assigned label into the latent throughout the sampling trajectory via DDIM inversion [34,
22] to ensure the semantic transformation without introducing unrelated domain features. Finally, for
consistency of manipulated samples with the target distribution, we present a Domain-specific Feature
Preservation Mechanism to actively inject target domain features with an adaptively perturbed latent
drawn from the original non-trust sample.

Experimental results demonstrate that the proposed method achieves superior performance compared
to state-of-the-art (SOTA) methods across four standard SFDA benchmarks of different scales.
Remarkably, our method successfully overcomes the limitations of existing methods in challenging
domain adaptation scenarios involving large domain shifts. For instance, we achieve a gain of 9.3%
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on D→A and 8.2% on W→A tasks over the existing SOTA method on the small-scale Office-31
dataset, and a remarkable gain of 18.6% over SOTA for the Rw→Cl task on the medium-scale
Office-Home dataset. On the large-scale DomainNet-126 dataset, we achieve a gain of 24.4% over
the existing generation-based method and 6.3% over SOTA for the C→P task.

The contributions of this paper are summarized as follows.

• We propose DPTM, a novel framework for Source-free Domain Adaptation (SFDA) that
progressively constructs and refines a pseudo-target domain by leveraging unlabeled target
data as references with a latent diffusion model.

• We develop a manipulation strategy that leverages Target-guided Initialization, Semantic
Feature Injection, and Domain-specific Feature Preservation to semantically transform the
unreliable sample toward the newly assigned label while preserving target-domain features.

• We design a Progressive Refinement Mechanism that progressively reduces the domain
discrepancy between the pseudo target domain and the real target domain via iterative
refinement.

2 Related Work

Source-Free Domain Adaptation. Source-free domain adaptation (SFDA) methods can be broadly
categorized into non-generation and generation-based methods. Non-generation methods [20, 50, 36,
13, 49, 2, 18, 39, 53, 23, 57, 61, 35, 38, 37] mainly employ self-training techniques using pseudo-
labels predicted by the source model. However, the inherent unreliability of pseudo-labels caused
by source-target domain shifts substantially limits their performance, especially in challenging DA
scenarios with significant domain discrepancies. Generation-based methods [23, 57, 61, 35, 38, 37]
usually generate pseudo-source domains to convert SFDA into a conventional UDA problem, but
their performance remains constrained by the domain shift between the generated pseudo-source
and target domains. Different from existing methods, we develop a novel method that directly
generates pseudo-target domains and progressively reduces the domain shift between pseudo-target
and real-target samples through iterative refinement to overcome the performance limitations.

Diffusion Models. Diffusion models [12, 7, 32] have become state-of-the-art in many generative
tasks [46, 60, 55, 56, 16, 14, 3]. Their exceptional generation capabilities and pre-trained visual
knowledge have been successfully transferred to other vision tasks such as image segmentation [54,
59] and domain generalization [15, 40]. In this work, we leverage diffusion models to facilitate SFDA
tasks by semantically transforming unreliable target samples toward their assigned category labels
while rigorously preserving their target domain characteristics.

Diffusion models are latent variable generative models defined by a forward and reverse Markov
process [12, 7]. The forward process {qt}t∈[0,T ] progressively adds Gaussian noise to the data
x0 ∼ q0(x0) by q(xt|x0) = N (xt;αtx0, σ

2
t I), where the scheduling hyper-parameters α2

t + σ2
t = 1.

The reverse process {pt}t∈[0,T ] gradually removes noise using a learned denoiser ϵθ. Starting from
p(xT ) = N (0, I), it reconstructs x0 through transitions pθ(xt−1|xt) = N (xt−1;xt− ϵθ(xt, t), σ

2
t I).

Conditional generation is achieved by incorporating condition y into the denoising process as an input
to ϵθ (xt, y, t). Classifier-free guidance enables conditional generation by combining conditional and
unconditional denoising predictions with a guidance scale γ1 :

ϵ̄θ (xt, y, t) = (1 + γ1)ϵθ (xt, y, t)− γ1ϵθ (xt,∅, t) . (1)

3 Method

3.1 Overall Framework

Let Dsrc a labeled source domain with input space Xsrc = {xsrc
i }Nsrc

i=1 and label space Ysrc =

{ysrci }Nsrc
i=1 , and Dtrg an unlabeled target domain with input space Xtrg = {xtrg

j }Ntrg

j=1 , where Nsrc

and Ntrg denote the number of samples in the source and target domains, respectively. In SFDA, we
first train a source model ϕsrc : Xsrc → Ysrc on Dsrc via supervised learning, and then utilize ϕsrc

and the unlabeled Xtrg to learn a target model ϕtrg : Xtrg → Ytrg that generalizes well on Dtrg.

3



Figure 1: In DPTM, we employ progressive refinement R times: First, we use the target model
to make predictions on the target data. Based on each sample’s prediction uncertainty, we divide
the target data into a trust set and a non-trust set. For the low-uncertainty trust set, we train the
target model using pseudo-labels in a supervised manner. For the high-uncertainty non-trust set, we
assign a label ŷl for each sample xu

l , employ a manipulation strategy that semantically transforms xu
l

toward class ŷl, while preserving the target-domain features of xu
l . Our manipulation consists of three

components: Target-guided Initialization to obtain an effective sampling starting point, Semantic
Feature Injection to convert the semantics of the generated sample to ŷl, and Domain-specific Feature
Preservation to maintain the generated sample within the target distribution.

Figure 1 depicts the proposed framework that comprises three key components, including the partition
of trust and non-trust sets for unlabeled target data in Section 3.2, manipulation strategy of the
non-trust set in Section 3.3, and a progressive refinement mechanism that continuously minimizes the
discrepancy between the evolving pseudo-target domain and the real target domain in Section 3.4.
We initialize the target model ϕtrg with the pre-trained source model ϕsrc. The target domain data is
first partitioned into a trust set V and a non-trust set U based on prediction uncertainty. For any trust
sample xv

k ∈ V , we use the corresponding pseudo-label ypk as the supervision signal to train ϕtrg.
The non-trust set undergoes diffusion-based manipulation to produce Um, which is combined with V
to form the pseudo-target domain Dp = V ∪ Um. Finally, we optimize the source model ϕsrc on this
pseudo-target domain in a supervised manner, obtaining a target model θv .

3.2 Trust and Non-trust Partition for Target Domain

Given any j-th unlabeled target data xtrg
j in Xtrg, we first employ the target model ϕtrg to generate

the pseudo-label ypj = argmaxc pϕtrg
(yc|xtrg

j ), where pϕtrg
(yc|xtrg

j ) = [p(y|xtrg
j ;ϕtrg)]c denotes

the probability corresponding to the c-th class in the output logits [p(y|xtrg
j ;ϕtrg)] of ϕtrg . Existing

research demonstrates that a small subset of pseudo-labels is trustworthy, while the rest are intrinsi-
cally unreliable [21, 43, 8, 48, 51, 5, 58]. The uncertainty can be measured by entropy to distinguish
reliable and unreliable pseudo-labels [21, 43, 52, 25]. Therefore, we compute the entropy Htrg

j of
the target model’s prediction [p(y|xtrg;ϕtrg)] and divide Xtrg into trust set V and non-trust set U
using a threshold E. For sample xtrg

k with Htrg
k ≤ E, we consider its pseudo label ypk reliable and

include (xtrg
k , ypk) in V . Otherwise, we solely include the sample in U . Ultimately we obtain the trust

set V = {(xv
k, y

p
k)}

Nv

k=1 of Nv samples and non-trust set U = {(xu
l )}

Nu

l=1 of Nu samples.
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3.3 Manipulation of Non-trust Set

In this section, we develop a diffusion-based manipulation strategy to further exploit the target-domain
information inherently encapsulated in the unreliable pseudo-labels for non-trust samples xu

l ∈ U .
For each xu

l ∈ U , we first uniformly assign a category label ŷl to mitigate potential class imbalance.

ŷl = (l mod ⌊|U|/C⌋) , l ∈ {1, 2, ..., ⌊|U|/C⌋ × C}, (2)

where C is the total number of classes. Note that we discard the residual samples with ⌊|U|/C⌋×C <
l ≤ |U| for class balance. Subsequently, we achieve two objectives via a pre-trained diffusion model
at the same time, i.e., i) semantic transformation of xu

l toward the specified class ŷl to convert ŷl into
an effective supervisory signal, and ii) preservation of the target-domain features. The manipulated
sample x̃u

l maintains fidelity to the target distribution while exhibiting substantially improved class
certainty to allow for converting problematic non-trust samples into useful training instances.

To this end, our diffusion-based manipulation strategy consists of three key components, i.e., i) Target-
guided Initialization that extracts target domain guidance from xu

l to form an effective starting
point for the diffusion denoising process, ii) Semantic Feature Injection that ensures the designated
class ŷl for generated samples during denoising, and Domain-specific Feature Preservation that
maintains the generated samples within the target distribution, as elaborated below.

Target-guided Initialization. The sampling starting point xT of diffusion models, particularly its
low-frequency components, has been proven to significantly influence the generated image [45, 30,
17, 47, 10]. During inference, the low-frequency components of the generated image and starting
point for sampling xT remain strongly correlated and diffusion models exploit signal leakage from
these low-frequency components for image generation [10]. To generate a novel sample from xu

l
that preserves target domain characteristics while conforming to the newly-assigned category ŷl of
xu
l , we propose to incorporate the inherent domain-specific features of xu

l into the starting point for
sampling in diffusion models.

In domain adaptation and generalization, domain-specific features are typically associated with the
low-frequency components of xu

l . Furthermore, to prevent the potential semantic leakage from the
high-frequency component of xu

l , we extract the high-frequency component FH
IG

from semantically
neutral random Gaussian noise IG and the low-frequency component FL

xu
l

from the input image xu
l

via Fast Fourier Transform (FFT ).

FL
xu
l
= FFT (xu

l )⊙H, FH
IG = FFT (IG)⊙ (1−H), (3)

where H is a low-pass filter. FL
xu
l

and FH
IG

are combined and inversely transformed via inverse FFT
(IFFT ) to produce a semantically neutral target-domain pseudo-image x̃u

l .

x̃u
l = IFFT

(
FL

xu
l
+ FH

IG

)
, (4)

x̃u
l is first encoded into the latent space via an encoder E , and then subjected to a T -step DDPM

forward process to add Gaussian noise. The noisy latent zT is used as the starting point for sampling.

ẑ0 = E(x̃u
l ), zT =

√
αT ẑ0 +

√
1− αT ϵ, ϵ ∼ N (0, I). (5)

Semantic Feature Injection. For our task, the sampling starting point zT derived from (5) may
inherently lack sufficient semantic relevance to ŷl due to the following reasons. First, we construct
the high-frequency components of zT using a semantically neutral Gaussian noise image, which
carries no ŷl-related information. Secondly, although we isolate the high-frequency components of
xu
l , weak semantic leakage from xu

l may persist, potentially conflicting with ŷl. Consequently, we
may fail to semantically transform xu

l to ŷl even with a large guidance scale γ1 according to [22]. To
address this, we present semantic feature injection as below.

During denoising, at each timestep t, we adopt a zigzag self-reflection operation following [22]. We
first denoise the latent zt via the latent diffusion model to obtain zt−1, and then yield the refined
latent z̃t by injecting ŷl-related semantic information into zt−1 with DDIM inversion [34].

z̃t =

√
αt

αt−1
zt−1+

√
αt

(√
1

αt
− 1−

√
1

αt−1
− 1

)
ϵ̃θ (zt−1, ŷl, t− 1)

ϵ̃θ (zt−1, ŷl, t− 1) = (1 + γ2) ϵθ (zt−1, ŷl, t− 1)− γ2ϵθ (zt−1,∅, t− 1) ,

(6)
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where γ2 is the inversion guidance scale. According to (6), semantic alignment with ŷl is considered
for the latents throughout the sampling trajectory. However, since DDIM inversion could introduce
unrelated domain features, the latents could deviate from the target distribution when accumulating ŷl-
aligned semantic information. To address this, we selectively extract the high-frequency components
carrying the accumulated semantic information and discard the low-frequency components harboring
domain artifacts from z̃t rather than directly leveraging z̃t.

FH
z̃t

= FFT (z̃t)⊙ (1−H). (7)

FH
z̃t

is used as high-frequency semantics to aggregate with target domain specific features.

Domain-specific Feature Preservation. To better align with the target distribution, we combine the
high-frequency semantic features FH

z̃t
in the latents by DDIM inversion in (7) with the target domain

specific features at each denoising timestep t. The domain-specific features are primarily encoded
in the low-frequency components of samples from the target domain. To adapt to the time-varying
noise level in zt, we perturb the clean latent ẑ0 in (5) via the DDPM forward process with t-step
Gaussian noise to generate ẑ0,t =

√
αtẑ0 +

√
1− αtϵ for timestep t. The low-frequency domain-

specific features FL
ẑ0,t

are extracted from ẑ0,t and combined with FH
z̃t

to obtain enhanced latent
z̃′t that simultaneously preserves ŷl-aligned high-frequency semantics and embeds target-domain
low-frequency features to produce zt−1.

z̃′t = IFFT
(
FL

ˆz0,t
+ FH

z̃t

)
, FL

ẑ0,t
= FFT (ẑ0,t)⊙H. (8)

3.4 Progressive Refinement Mechanism

We design a progressive refinement mechanism to iteratively refine the pseudo-target domain for
R iterations to further optimize the target model. When optimized solely on a fixed pseudo-target
domain, the target model could be affected by the trust set V inevitably contains residual label
noise due to imperfect pseudo-labeling, and the manipulated non-trust set Um gradually accumulates
domain discrepancy in sample generation. Therefore, for any r-th (r = 1, · · · , R) refinement iteration,
we update the trust set Vr to correct inaccurate pseudo-labels and reduce the size of the non-trust set
Ur for decreasing domain discrepancy. The target model ϕr

trg re-partitions the target data into updated
trust set V(r+1) and non-trust set U (r+1). U (r+1) is then further manipulated according to Section 3.3
to generate Um,(r+1) for constructing the refined pseudo-target domain D(r+1)

p = V(r+1)∪Um,(r+1).
The updated target model ϕ(r+1)

trg is obtained by fine-tuning θ
(r)
v on D(r+1)

p . We empirically find in
Figure 3 that, during progressive refinement, V(r+1) provides more accurate pseudo-labels than V(r)

with |V(r+1)| > |V(r)| such that |Um,(r+1)| < |Um,(r)| to reduce the size of manipulated non-trust
set and decrease the domain discrepancy in the pseudo-target domain. Compared with ϕ

(r)
trg, ϕ(r+1)

trg
can better approximate the real target distribution and finally achieve enhanced performance.

4 Experiments

4.1 Experimental Settings

Datasets. We adopt four standard domain adaptation benchmarks of different scales for evaluations,
including the small-scale Office-31 dataset [33], the medium-scale Office-Home dataset [41], and
two large-scale datasets (i.e., VisDA [28] and DomainNet-126 [27]). Refer to the supplementary
material for complete dataset statistics and domain configurations.

Comparative Methods. We compare with 21 existing methods from three distinct groups: i) the base-
line results from the source model, ii) generation-based SFDA methods CPGA [31], ASOGE [6],
ISFDA [26], PS [9], DATUM [1], and DM-SFDA [4], and iii) non-generation SFDA methods includ-
ing current state-of-the-art SFDA methods SHOT [20], NRC [50], GKD [36], HCL [13], AaD [49],
AdaCon [2], CoWA [18], SCLM [39], ELR [53], PLUE [23], CRS [57], CPD [61], TPDS [35],
DIFO [38], and ProDe [37].

Implementation Details. We employ stable-diffusion v1-5 [32] as the diffusion model to generate
512×512 images with 20 denoising steps. γ1 = 5.5 in (1) and γ2 = 0 in (6). We set the threshold E
to 0.01, and the total refinement iteration count R to 10. Note that setting E and R to other values
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Table 1: Office-31 results (%) with ResNet-50. Methods with top three performance in each column
are highlighted in red, orange, and yellow.

Method Venue A→D A→W D→A D→W W→A W→D Avg.

Baseline method

Source – 79.7 77.6 65.5 97.9 63.8 99.8 80.7

Generation-based method

CPGA [31] IJCAI21 94.4 94.1 76.0 98.4 76.6 99.8 89.9
ASOGE [6] TCSVT23 95.6 94.1 74.3 98.1 74.2 99.7 89.3
ISFDA [26] CVPR24 95.3 94.2 76.4 98.3 77.5 99.9 90.3
DM-SFDA [4] - 97.7 99.0 82.7 99.3 83.5 100.0 93.7

None-generation method

SHOT [20] ICML20 93.7 91.1 74.2 98.2 74.6 100. 88.6
NRC [50] NIPS21 96.0 90.8 75.3 99.0 75.0 100. 89.4
GKD [36] IROS21 94.6 91.6 75.1 98.7 75.1 100. 89.2
HCL [13] NIPS21 94.7 92.5 75.9 98.2 77.7 100. 89.8
AaD [49] NIPS22 96.4 92.1 75.0 99.1 76.5 100. 89.9
AdaCon [2] CVPR22 87.7 83.1 73.7 91.3 77.6 72.8 81.0
CoWA [18] ICML22 94.4 95.2 76.2 98.5 77.6 99.8 90.3
ELR [53] ICLR23 93.8 93.3 76.2 98.0 76.9 100. 89.6
PLUE [23] CVPR23 89.2 88.4 72.8 97.1 69.6 97.9 85.8
CPD [61] PR24 96.6 94.2 77.3 98.2 78.3 100. 90.8
TPDS [35] IJCV24 97.1 94.5 75.7 98.7 75.5 99.8 90.2
DIFO [49] CVPR24 93.6 92.1 78.5 95.7 78.8 97.0 89.3
ProDe [37] ICLR25 94.4 92.1 79.8 95.6 79.0 98.6 89.9

DPTM(ours) – 97.2 95.3 92.0 98.7 91.7 100. 95.8

may obtain superior performance. For the adaptation model, we employ ResNet-50 for Office-31 [33],
Office-Home [41] and DomainNet-126 [27], and ResNet-101 for VisDA [28]. We train for 20K
iterations with the batch size of 128 and learning rate of 3e-3 for large-scale DomainNet-126 [27]
and VisDA [28], and 15K iterations with the batch size of 32 and learning rate of 1e-3 for Office-31
and Office-Home. Weight decay is set to 5e-4 for all the datasets.

4.2 Main Results

Evaluations on Office-31. Table 1 shows that our method is superior to generation-based SFDA
methods on Office-31 and outperforms the best generation-based SFDA method DM-SFDA [4] on
average across all the DA tasks. Compared with non-generation methods, our method outperforms
the best non-generation methods in all tasks except D→W, delivering an average accuracy gain of
5%. Notably, our method achieves significant improvements on challenging adaptation tasks: 9.3%
on D→A and 8.2% on W→A. These results validate the effectiveness of our method.

Evaluations on Office-Home and Visda. Table 2 shows that our method significantly outperforms
existing SFDA methods on Office-Home and VisDA. On Office-Home, we achieve an average
accuracy gain of 11.7% over the best generation-based SFDA method DM-SFDA [4] and 10.1% over
the current SOTA method ProDe [37] across all domain adaptation tasks. Remarkably, our method
outperforms ProDe by 22.7%, 21.0%, and 21.6% on challenging Ar→Cl, Pr→Cl, and Rw→Cl
tasks where existing methods usually perform poorly. On VisDA, our method achieves an average
accuracy gain of 8.5% over ISFDA [26] and 8.2% ProDe [37] (see the supplementary material for
details). These results strongly validate the effectiveness of our method in difficult domain adaptation
scenarios.

Evaluations on DomainNet-126. Our method achieves a 17.6% higher average accuracy than the
generation-based CPGA [31] and surpasses current SOTA ProDe [37] by 3.7% on DomainNet-126.
It significantly outperforms CPGA [31] across all domain adaptation tasks and exceeds ProDe [37] in
most tasks, with only minor performance gaps in three DA scenarios.

4.3 Ablation Studies

We conduct ablation studies mainly on the Office-Home dataset. More ablation studies can be found
in the supplementary materials.
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Table 2: Results (%) on Office-Home and VisDA. Office-Home is evaluated with ResNet-50, and
VisDA is evaluated with ResNet-101. The top three performances in each column are highlighted in
red, orange, and yellow, respectively.

Method Venue Office-Home VisDA
Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg. Sy→Re

Baseline method

Source – 50.1 67.9 74.4 55.2 65.2 67.2 53.4 44.5 74.1 64.2 51.5 78.7 62.2 63.5

Generation-based method

CPGA [31] IJCAI21 59.3 78.1 79.8 65.4 75.5 76.4 65.7 58.0 81.0 72.0 64.4 83.3 71.6 86.0
ASOGE [6] TCSVT23 59.1 78.4 81.0 67.7 78.4 77.5 65.8 57.2 80.2 72.7 60.7 83.3 71.8 83.2
ISFDA [26] CVPR24 60.7 78.9 82.0 69.9 79.5 79.7 67.1 58.8 82.3 74.2 61.3 86.4 73.4 88.4
PS [9] ML24 57.8 77.3 81.2 68.4 76.9 78.1 67.8 57.3 82.1 75.2 59.1 83.4 72.1 84.1
DATUM [1] CVPR23 55.3 76.8 79.3 65.1 77.7 78.6 62.4 52.1 79.7 66.6 55.9 80.5 69.2 –
DM-SFDA [4] – 68.5 89.6 83.3 70.0 85.8 87.4 71.3 69.6 88.2 77.8 68.5 88.7 79.5 86.3

None-generation method

SHOT [20] ICML20 56.7 77.9 80.6 68.0 78.0 79.4 67.9 54.5 82.3 74.2 58.6 84.5 71.9 82.7
NRC [50] NIPS21 57.7 80.3 82.0 68.1 79.8 78.6 65.3 56.4 83.0 71.0 58.6 85.6 72.2 85.9
GKD [36] IROS21 56.5 78.2 81.8 68.7 78.9 79.1 67.6 54.8 82.6 74.4 58.5 84.8 72.2 83.0
AaD [49] NIPS22 59.3 79.3 82.1 68.9 79.8 79.5 67.2 57.4 83.1 72.1 58.5 85.4 72.7 88.0
AdaCon [2] CVPR22 47.2 75.1 75.5 60.7 73.3 73.2 60.2 45.2 76.6 65.6 48.3 79.1 65.0 86.8
CoWA [18] ICML22 56.9 78.4 81.0 69.1 80.0 79.9 67.7 57.2 82.4 72.8 60.5 84.5 72.5 86.9
SCLM [39] NN22 58.2 80.3 81.5 69.3 79.0 80.7 69.0 56.8 82.7 74.7 60.6 85.0 73.0 85.3
ELR [53] ICLR23 58.4 78.7 81.5 69.2 79.5 79.3 66.3 58.0 82.6 73.4 59.8 85.1 72.6 85.8
PLUE [23] CVPR23 49.1 73.5 78.2 62.9 73.5 74.5 62.2 48.3 78.6 68.6 51.8 81.5 66.9 88.3
CPD [61] PR24 59.1 79.0 82.4 68.5 79.7 79.5 67.9 57.9 82.8 73.8 61.2 84.6 73.0 85.8
TPDS [35] IJCV24 59.3 80.3 82.1 70.6 79.4 80.9 69.8 56.8 82.1 74.5 61.2 85.3 73.5 87.6
DIFO [38] CVPR24 62.6 87.5 87.1 79.5 87.9 87.4 78.3 63.4 88.1 80.0 63.3 87.7 79.4 88.6
ProDe [37] ICLR25 64.0 90.0 88.3 81.1 90.1 88.6 79.8 65.4 89.0 80.9 65.5 90.2 81.1 88.7

DPTM(ours) – 86.7 94.2 92.8 91.5 94.0 92.6 90.6 86.4 92.8 90.5 87.1 94.7 91.2 97.6

Table 3: Results (%) on DomainNet-126 evaluated with ResNet-50. The top three performances in
each column are highlighted in red, orange, and yellow, respectively.

Method Venue DomainNet-126
C→P C→R C→S P→C P→R P→S R→C R→P R→S S→C S→P S→R Avg.

Baseline method

Source – 47.5 59.8 48.6 51.0 75.3 47.8 57.5 61.1 48.6 63.5 56.2 59.5 56.4

Generation-based method

CPGA [31] IJCAI21 61.2 76.7 59.6 64.5 81.3 61.0 68.6 69.5 65.9 66.9 60.2 75.1 67.6

None-generation method

SHOT [20] ICML20 63.5 78.2 59.5 67.9 81.3 61.7 67.7 67.6 57.8 70.2 64.0 78.0 68.1
NRC [50] NIPS21 62.6 77.1 58.3 62.9 81.3 60.7 64.7 69.4 58.7 69.4 65.8 78.7 67.5
GKD [36] IROS21 61.4 77.4 60.3 69.6 81.4 63.2 68.3 68.4 59.5 71.5 65.2 77.6 68.7
AdaCon [2] CVPR22 60.8 74.8 55.9 62.2 78.3 58.2 63.1 68.1 55.6 67.1 66.0 75.4 65.4
CoWA [18] ICML22 64.6 80.6 60.6 66.2 79.8 60.8 69.0 67.2 60.0 69.0 65.8 79.9 68.6
PLUE [23] CVPR23 59.8 74.0 56.0 61.6 78.5 57.9 61.6 65.9 53.8 67.5 64.3 76.0 64.7
TPDS [35] IJCV24 62.9 77.1 59.8 65.6 79.0 61.5 66.4 67.0 58.2 68.6 64.3 75.3 67.1
DIFO [38] CVPR24 73.8 89.0 69.4 74.0 88.7 70.1 74.8 74.6 69.6 74.7 74.3 88.0 76.7
ProDe [37] ICLR25 79.3 91.0 75.3 80.0 90.9 75.6 80.4 78.9 75.4 80.4 79.2 91.0 81.5

DPTM(ours) – 85.6 90.9 80.0 85.1 90.7 79.0 85.2 85.4 78.1 86.1 85.4 90.9 85.2

Table 4: Ablation study results (%) on Different LDMs evaluated with R = 3, E = 0.001.
LDM Ar→ClAr→PrAr→RwCl→ArCl→PrCl→RwPr→ArPr→ClPr→RwRw→ArRw→ClRw→PrAvg.

SDXL 69.4 82.2 82.8 69.4 82.6 82.2 65.8 67.0 82.4 71.1 67.5 84.2 75.6
SD15 67.0 83.6 83.9 70.6 84.3 82.9 65.6 63.6 84.6 69.6 66.4 85.0 75.6

Different Versions of Latent Diffusion Models. We conduct ablation studies using both Stable Dif-
fusion v1.5 (SD15) and Stable Diffusion XL (SDXL) [29], with identical parameters (E = 0.001 and
R = 3) except for output resolution - SDXL natively generates 1024×1024 images while SD15 pro-

8



Table 5: Ablation study results (%) on Threshold E evaluated with R = 10.
E Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

0.001 74.7 85.9 87.5 75.0 88.5 85.6 72.1 73.3 87.2 75.2 74.6 88.8 80.7
0.005 81.7 92.6 90.8 85.5 92.1 88.2 85.5 81.2 88.3 82.1 79.9 92.1 86.7
0.01 86.7 94.2 92.8 91.5 94.0 92.6 90.6 86.4 92.8 90.5 87.1 94.7 91.2

Figure 2: Ablation on Manipulation Mechanism of xu
l . Row: ŷl = ’Alarm Clock’, ’Curtains’,

’Computer’, ’Bottle’, respectively. Column: (a) xu
l (b) x̃u

l w/o Target-guided Initialization (c) x̃u
l w/o

Semantic Feature Injection (d) x̃u
l w/o Domain-specific Feature Preservation (e) x̃u

l of our method.

duces 512×512 images due to their architectural differences. Table 4 shows comparable performance,
but SDXL’s higher computational cost makes SD15 our preferred choice for implementation.

Values of Threshold E. We also conduct ablation on the Threshold E = {0.001, 0.005, 0.01}.
Table 5 shows that appropriately increasing E may yield better results.

Manipulation Mechanism of Non-trust Set. As shown in Figure 2, our method’s manipulated sam-
ples x̃u

l exhibit the best semantic alignment with their assigned labels ŷl = and the best preservation
of target distribution characteristics, detailed in the supplementary material.

4.4 Additional Analysis

We provide additional analyses to further validate the effectiveness of our method. More analysis can
be found in the supplementary materials.

Analysis on Progressive Refinement Mechanism. For the performance of our method on the
Office-Home dataset shown in Table 2, we provide a detailed performance trajectory as r increases
from 1 to 10, in order to demonstrate the effectiveness of the proposed Progressive Refinement
Mechanism. Firstly, we present experimental results for r = {0, 2, 4, 6, 8, 10} in Table 6 and provide
complete experimental results in the supplementary materials, where r = 0 is equivalent to using only
the source model. Table 6 shows that the performance of the target model improves as r increases.
Specifically, as r increases, the performance of the target model first improves rapidly and then growth
becomes slow. Secondly, we select the first 4 DA tasks Ar→Cl, Ar→Pr, Ar→Rw, and Cl→Ar, and
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Table 6: Full results of the performance trajectory as r grows from 1 to 10 on Office-Home evaluated
with E = 0.01.
r Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

0 50.1 67.9 74.4 55.2 65.2 67.2 53.4 44.5 74.1 64.2 51.5 78.7 62.2
1 60.2 80.9 82.8 67.8 79.3 80.4 64.5 57.1 81.6 69.1 60.5 83.4 72.3
2 72.6 87.2 85.7 73.5 85.4 84.4 72.3 69.7 85.2 76.7 70.8 87.7 79.3
3 75.3 89.7 87.6 77.7 88.9 86.4 79.2 76.1 86.7 80.1 75.5 90.2 82.8
4 79.0 91.8 89.1 81.0 91.2 88.3 82.1 79.1 88.1 82.7 79.1 91.7 85.3
5 81.5 92.5 89.8 83.9 92.0 89.4 85.3 81.5 89.3 84.5 81.8 92.8 87.0
6 83.7 92.9 90.7 86.1 92.8 90.2 87.1 83.1 90.0 87.4 83.3 93.3 88.4
7 85.0 93.7 91.5 87.5 93.0 91.2 87.8 84.4 91.0 88.6 84.9 93.9 89.4
8 85.9 94.2 91.7 88.7 93.8 91.9 89.0 85.1 91.7 89.7 85.6 94.2 90.1
9 85.9 94.1 92.0 89.8 93.9 92.3 89.8 85.6 92.2 90.2 86.6 94.4 90.6
10 86.7 94.2 92.8 91.5 94.0 92.6 90.6 86.4 92.8 90.5 87.1 94.7 91.2

Figure 3: The relationship between r versus: (a) The number of samples in the trust set. (b) The trust
set accuracy. (c) The number of samples in the non-trust set.

plot: the relationship between the number of samples in the trust set versus r, the trust set accuracy
versus r, and the number of samples in the non-trust set versus r. As shown in Figure 3, two main
conclusions can be drawn: (1) The number of samples in the trust set increases significantly with r,
while correspondingly, the non-trust set size decreases substantially. This indicates that the model
progressively learns to make predictions with low uncertainty. (2) Overall, the trust set accuracy
remains at a high level. Although relatively low across all four DA tasks at r = 2, the accuracy shows
significant recovery with increasing r, demonstrating our method’s capability to progressively correct
previous errors.

Analysis on Trust and Non-trust Partition for Target Domain. We provide more analysis on the
proposed Trust and Non-trust Partition for the target Domain, detailed in the supplementary materials.

Analysis on Manipulation of Non-trust Set. We provide more analysis on the proposed Manipula-
tion of Non-trust Set, detailed in the supplementary materials.

5 Conclusion

We propose DPTM, a novel generation-based framework that utilizes unlabeled target data as
references to construct and progressively refine a pseudo-target domain via the latent diffusion model
for Source-free Domain Adaptation (SFDA). We first divide the target into a trust set and a non-trust
set based on prediction uncertainty. For the trust set, we directly train the target model with pseudo
labels in a supervised manner. For the non-trust set, we assign a label for each sample and propose
a manipulation strategy consisting of Target-guided Initialization, Semantic Feature Injection, and
Domain-specific Feature Preservation, which semantically transforms the high-uncertainty sample
toward the assigned category, while maintaining the generated sample in the target distribution.
We progressively refined this process which simultaneously corrects pseudo-label inaccuracies in
the previous trust set and decreases domain discrepancy in the previous pseudo-target domain,
iteratively improving the target model. Experimental results demonstrate that our method achieves
state-of-the-art performance on SFDA classification.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract clearly states the following claims about the paper’s contributions
and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We have provided a separate "Limitations" section in the Appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The detailed experimental settings and information are provided in the Ap-
pendix, and this information is sufficient to reproduce the main experimental results.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All the code will be made public after acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the experimental settings are clarified in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Following previous studies we do not report error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computing requirements are provided in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We ensure our research adheres to the guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The tasks we tackling does not have apparent societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer:[Yes]
Justification: All the assets used are properly credited and are the license and terms of use
explicitly mentioned and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research does not employ LLMs as part of the core methods.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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