Diffusion-Driven Progressive Target Manipulation for Source-Free Domain Adaptation

Yuyang Huang¹*, Yabo Chen¹*, Junyu Zhou¹, Wenrui Dai¹†, Xiaopeng Zhang²†, Junni Zou¹†, Hongkai Xiong¹, Qi Tian²

¹Shanghai Jiao Tong University, Shanghai, China ²Huawei Inc., Shenzhen, China {huangyuyang, chenyabo, blabla, daiwenrui, zoujunni, xionghongkai}@sjtu.edu.cn zxphistory@gmail.com, tian.qi1@huawei.com

*These authors contributed equally to this work. Corresponding authors: Wenrui Dai; Xiaopeng Zhang; Junni Zou.

Abstract

Source-free domain adaptation (SFDA) is a challenging task that tackles domain shifts using only a pre-trained source model and unlabeled target data. Existing SFDA methods are restricted by the fundamental limitation of source-target domain discrepancy. Non-generation SFDA methods suffer from unreliable pseudo-labels in challenging scenarios with large domain discrepancies, while generation-based SFDA methods are evidently degraded due to enlarged domain discrepancies in creating pseudo-source data. To address this limitation, we propose a novel generation-based framework named Diffusion-Driven Progressive Target Manipulation (DPTM) that leverages unlabeled target data as references to reliably generate and progressively refine a pseudo-target domain for SFDA. Specifically, we divide the target samples into a trust set and a non-trust set based on the reliability of pseudo-labels to sufficiently and reliably exploit their information. For samples from the non-trust set, we develop a manipulation strategy to semantically transform them into the newly assigned categories, while simultaneously maintaining them in the target distribution via a latent diffusion model. Furthermore, we design a progressive refinement mechanism that progressively reduces the domain discrepancy between the pseudo-target domain and the real target domain via iterative refinement. Experimental results demonstrate that DPTM outperforms existing methods by a large margin and achieves state-of-the-art performance on four prevailing SFDA benchmark datasets with different scales. Remarkably, DPTM can significantly enhance the performance by up to 18.6% in scenarios with large source-target gaps.

1 Introduction

Deep learning has achieved remarkable success under the independent and identically distributed (i.i.d.) assumption. However, it suffers from significantly degraded performance on out-of-distribution (OOD) data due to domain shifts. Unsupervised domain adaptation (UDA) mitigates this issue by aligning feature distributions between labeled source and unlabeled target domains, but has to access both datasets during adaptation [42, 44]. Source-free domain adaptation (SFDA) considers a more practical but challenging scenario where only the pre-trained source model and unlabeled target data are available [19, 11], and precludes access to source samples during adaptation.

Existing SFDA methods can be primarily classified into non-generation and generation-based methods, with both exhibiting inherent limitations on practical effectiveness. Non-generation methods [23, 57, 61, 35, 38, 37] predominantly rely on pseudo-labels generated by the source model, and categorize them into a small subset of reliable pseudo-labels and a predominant subset of unreliable pseudo-labels

based on certainty metrics [21, 43, 8, 48, 51, 5, 58]. The unreliable pseudo-labels contain substantial label noise, and cannot be easily exploited to extract useful information or infer correct labels through refinement processes. Unfortunately, the amount of label noise is inherently determined by the degree of domain shift between source and target domains [53, 24]. This fundamental limitation severely compromises the effectiveness of non-generation methods in challenging scenarios with large domain gaps, and results in significantly unstable performance across different adaptation tasks. For instance, empirical results [37] show that, when deploying the same source model across different target domains, significant performance discrepancies emerge (e.g., accuracy over 90% for Ar \rightarrow Cl vs. about 60% for Ar \rightarrow Pr in the Office-Home dataset). These results underscore the critical sensitivity of non-generation methods to domain shift.

Generation-based SFDA methods primarily operate at the data level [31, 6, 26, 9]. Although these methods could theoretically circumvent the limitation of non-generation methods by avoiding directly using unreliable pseudo-labels, most of them still fail to escape from this domain shift limitation due to the problematic paradigm that generates a pseudo-source domain to convert the SFDA task into a conventional UDA task. The restriction caused by the domain shift between the pseudo-source and target domains is not addressed. Moreover, the generation process often incorporates irrelevant domain features that could further enlarge the discrepancy between the source and target domains for the pseudo-source domain. Consequently, these methods suffer from unsatisfactory performance due to domain shifts.

In this paper, we reveal that existing SFDA methods are fundamentally limited by source-target domain shifts. To break this bottleneck, we resort to a novel generation-based paradigm that directly generates the pseudo-target domain. We propose a Diffusion-Driven Progressive Target Manipulation (DPTM) framework that reliably generates and progressively refines the pseudo target domain to reduce the domain discrepancy from the real target domain and address the fundamental limitation on domain shift for existing methods. The proposed method is shown to achieve remarkable performance gains in challenging DA scenarios with large source-target domain shifts.

To sufficiently and reliably exploit the pseudo-label information, we partition the target data into a trust set and a non-trust set based on the prediction uncertainty of the target model initialized using the source model. For the trust set with low uncertainty, we directly adopt pseudo-labels as supervisory signals for training the target model, following prior works that have established their reliability [21, 43, 8, 48, 51, 5, 58]. Moreover, we also exploit the rich information about the target distribution contained in the potentially unreliable samples from the non-trust set. We uniformly assign a new category label to each of them to prevent potential class imbalance and employ a manipulation strategy to semantically transform each sample toward its newly assigned label while preserving its target-domain features with a latent diffusion model [32]. The manipulated samples simultaneously turn their assigned labels into useful supervisory signals and keep aligned with the target distribution to enhance the adaptation of target models. Furthermore, we propose a Progressive Refinement Mechanism that iteratively refines the pseudo-target domain as well as the target model to progressively reduce the residual label noise due to imperfect pseudo-labeling and the accumulated domain discrepancy caused by the manipulated non-trust set. This significantly diminishes the quantity of non-trust samples and thereby mitigates overall domain shift.

To be concrete, the proposed manipulation strategy of non-trust samples consists of three components. Firstly, as the sampling starting point of diffusion models has been proven to significantly influence the generated image [45, 30, 17, 47, 10], we propose a Target-guided Initialization Mechanism to construct the starting point for sampling by simultaneously considering the target domain features of the non-trust sample and isolating its semantic leakage that might disturb the semantic transformation. Secondly, we propose a Semantic Feature Injection Mechanism that iteratively injects semantics related to the assigned label into the latent throughout the sampling trajectory via DDIM inversion [34, 22] to ensure the semantic transformation without introducing unrelated domain features. Finally, for consistency of manipulated samples with the target distribution, we present a Domain-specific Feature Preservation Mechanism to actively inject target domain features with an adaptively perturbed latent drawn from the original non-trust sample.

Experimental results demonstrate that the proposed method achieves superior performance compared to state-of-the-art (SOTA) methods across four standard SFDA benchmarks of different scales. Remarkably, our method successfully overcomes the limitations of existing methods in challenging domain adaptation scenarios involving large domain shifts. For instance, we achieve a gain of **9.3%**

on D \rightarrow A and **8.2**% on W \rightarrow A tasks over the existing SOTA method on the small-scale Office-31 dataset, and a remarkable gain of **18.6**% over SOTA for the Rw \rightarrow Cl task on the medium-scale Office-Home dataset. On the large-scale DomainNet-126 dataset, we achieve a gain of **24.4**% over the existing generation-based method and **6.3**% over SOTA for the C \rightarrow P task.

The contributions of this paper are summarized as follows.

- We propose DPTM, a novel framework for Source-free Domain Adaptation (SFDA) that progressively constructs and refines a pseudo-target domain by leveraging unlabeled target data as references with a latent diffusion model.
- We develop a manipulation strategy that leverages Target-guided Initialization, Semantic Feature Injection, and Domain-specific Feature Preservation to semantically transform the unreliable sample toward the newly assigned label while preserving target-domain features.
- We design a Progressive Refinement Mechanism that progressively reduces the domain discrepancy between the pseudo target domain and the real target domain via iterative refinement.

2 Related Work

Source-Free Domain Adaptation. Source-free domain adaptation (SFDA) methods can be broadly categorized into non-generation and generation-based methods. Non-generation methods [20, 50, 36, 13, 49, 2, 18, 39, 53, 23, 57, 61, 35, 38, 37] mainly employ self-training techniques using pseudo-labels predicted by the source model. However, the inherent unreliability of pseudo-labels caused by source-target domain shifts substantially limits their performance, especially in challenging DA scenarios with significant domain discrepancies. Generation-based methods [23, 57, 61, 35, 38, 37] usually generate pseudo-source domains to convert SFDA into a conventional UDA problem, but their performance remains constrained by the domain shift between the generated pseudo-source and target domains. Different from existing methods, we develop a novel method that directly generates pseudo-target domains and progressively reduces the domain shift between pseudo-target and real-target samples through iterative refinement to overcome the performance limitations.

Diffusion Models. Diffusion models [12, 7, 32] have become state-of-the-art in many generative tasks [46, 60, 55, 56, 16, 14, 3]. Their exceptional generation capabilities and pre-trained visual knowledge have been successfully transferred to other vision tasks such as image segmentation [54, 59] and domain generalization [15, 40]. In this work, we leverage diffusion models to facilitate SFDA tasks by semantically transforming unreliable target samples toward their assigned category labels while rigorously preserving their target domain characteristics.

Diffusion models are latent variable generative models defined by a forward and reverse Markov process $\{12, 7\}$. The forward process $\{q_t\}_{t\in[0,T]}$ progressively adds Gaussian noise to the data $x_0 \sim q_0(x_0)$ by $q(x_t|x_0) = \mathcal{N}(x_t; \alpha_t x_0, \sigma_t^2 \mathbf{I})$, where the scheduling hyper-parameters $\alpha_t^2 + \sigma_t^2 = 1$. The reverse process $\{p_t\}_{t\in[0,T]}$ gradually removes noise using a learned denoiser ϵ_θ . Starting from $p(x_T) = \mathcal{N}(\mathbf{0}, \mathbf{I})$, it reconstructs x_0 through transitions $p_\theta(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; x_t - \epsilon_\theta(x_t, t), \sigma_t^2 \mathbf{I})$. Conditional generation is achieved by incorporating condition y into the denoising process as an input to $\epsilon_\theta(x_t, y, t)$. Classifier-free guidance enables conditional generation by combining conditional and unconditional denoising predictions with a guidance scale γ_1 :

$$\bar{\epsilon}_{\theta}(x_t, y, t) = (1 + \gamma_1)\epsilon_{\theta}(x_t, y, t) - \gamma_1\epsilon_{\theta}(x_t, \emptyset, t). \tag{1}$$

3 Method

3.1 Overall Framework

Let \mathcal{D}_{src} a labeled source domain with input space $\mathcal{X}_{src} = \{\mathbf{x}_i^{src}\}_{i=1}^{N_{src}}$ and label space $\mathcal{Y}_{src} = \{y_i^{src}\}_{i=1}^{N_{src}}$, and \mathcal{D}_{trg} an unlabeled target domain with input space $\mathcal{X}_{trg} = \{\mathbf{x}_j^{trg}\}_{j=1}^{N_{trg}}$, where N_{src} and N_{trg} denote the number of samples in the source and target domains, respectively. In SFDA, we first train a source model $\phi_{src}: \mathcal{X}_{src} \to \mathcal{Y}_{src}$ on \mathcal{D}_{src} via supervised learning, and then utilize ϕ_{src} and the unlabeled \mathcal{X}_{trg} to learn a target model $\phi_{trg}: \mathcal{X}_{trg} \to \mathcal{Y}_{trg}$ that generalizes well on \mathcal{D}_{trg} .

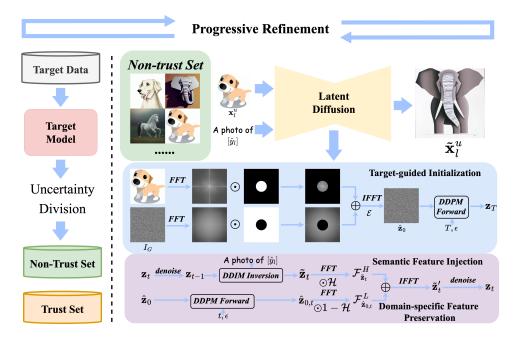


Figure 1: In DPTM, we employ progressive refinement R times: First, we use the target model to make predictions on the target data. Based on each sample's prediction uncertainty, we divide the target data into a trust set and a non-trust set. For the low-uncertainty trust set, we train the target model using pseudo-labels in a supervised manner. For the high-uncertainty non-trust set, we assign a label \hat{y}_l for each sample \mathbf{x}_l^u , employ a manipulation strategy that semantically transforms \mathbf{x}_l^u toward class \hat{y}_l , while preserving the target-domain features of \mathbf{x}_l^u . Our manipulation consists of three components: Target-guided Initialization to obtain an effective sampling starting point, Semantic Feature Injection to convert the semantics of the generated sample to \hat{y}_l , and Domain-specific Feature Preservation to maintain the generated sample within the target distribution.

Figure 1 depicts the proposed framework that comprises three key components, including the partition of trust and non-trust sets for unlabeled target data in Section 3.2, manipulation strategy of the non-trust set in Section 3.3, and a progressive refinement mechanism that continuously minimizes the discrepancy between the evolving pseudo-target domain and the real target domain in Section 3.4. We initialize the target model ϕ_{trg} with the pre-trained source model ϕ_{src} . The target domain data is first partitioned into a trust set $\mathcal V$ and a non-trust set $\mathcal U$ based on prediction uncertainty. For any trust sample $\mathbf x_k^v \in \mathcal V$, we use the corresponding pseudo-label y_k^p as the supervision signal to train ϕ_{trg} . The non-trust set undergoes diffusion-based manipulation to produce $\mathcal U^m$, which is combined with $\mathcal V$ to form the pseudo-target domain $\mathcal D_p = \mathcal V \cup \mathcal U^m$. Finally, we optimize the source model ϕ_{src} on this pseudo-target domain in a supervised manner, obtaining a target model θ_v .

3.2 Trust and Non-trust Partition for Target Domain

Given any j-th unlabeled target data \mathbf{x}_j^{trg} in \mathcal{X}_{trg} , we first employ the target model ϕ_{trg} to generate the pseudo-label $y_j^p = \arg\max_c p_{\phi_{trg}}(y_c|\mathbf{x}_j^{trg})$, where $p_{\phi_{trg}}(y_c|\mathbf{x}_j^{trg}) = [p(y|\mathbf{x}_j^{trg};\phi_{trg})]_c$ denotes the probability corresponding to the c-th class in the output logits $[p(y|\mathbf{x}_j^{trg};\phi_{trg})]$ of ϕ_{trg} . Existing research demonstrates that a small subset of pseudo-labels is trustworthy, while the rest are intrinsically unreliable [21, 43, 8, 48, 51, 5, 58]. The uncertainty can be measured by entropy to distinguish reliable and unreliable pseudo-labels [21, 43, 52, 25]. Therefore, we compute the entropy H_j^{trg} of the target model's prediction $[p(y|\mathbf{x}^{trg};\phi_{trg})]$ and divide \mathcal{X}_{trg} into trust set \mathcal{V} and non-trust set \mathcal{U} using a threshold E. For sample \mathbf{x}_k^{trg} with $H_k^{trg} \leq E$, we consider its pseudo label y_k^p reliable and include $(\mathbf{x}_k^{trg},y_k^p)$ in \mathcal{V} . Otherwise, we solely include the sample in \mathcal{U} . Ultimately we obtain the trust set $\mathcal{V} = \{(\mathbf{x}_k^v,y_k^p)\}_{k=1}^{N_v}$ of N_v samples and non-trust set $\mathcal{U} = \{(\mathbf{x}_l^u)\}_{l=1}^{N_u}$ of N_u samples.

3.3 Manipulation of Non-trust Set

In this section, we develop a diffusion-based manipulation strategy to further exploit the target-domain information inherently encapsulated in the unreliable pseudo-labels for non-trust samples $\mathbf{x}_l^u \in \mathcal{U}$. For each $\mathbf{x}_l^u \in \mathcal{U}$, we first uniformly assign a category label \hat{y}_l to mitigate potential class imbalance.

$$\hat{y}_l = (l \mod |\mathcal{U}|/C|), \quad l \in \{1, 2, ..., |\mathcal{U}|/C| \times C\},$$
 (2)

where C is the total number of classes. Note that we discard the residual samples with $\lfloor |\mathcal{U}|/C \rfloor \times C < l \leq |\mathcal{U}|$ for class balance. Subsequently, we achieve two objectives via a pre-trained diffusion model at the same time, *i.e.*, i) semantic transformation of \mathbf{x}_l^u toward the specified class \hat{y}_l to convert \hat{y}_l into an effective supervisory signal, and ii) preservation of the target-domain features. The manipulated sample $\tilde{\mathbf{x}}_l^u$ maintains fidelity to the target distribution while exhibiting substantially improved class certainty to allow for converting problematic non-trust samples into useful training instances.

To this end, our diffusion-based manipulation strategy consists of three key components, *i.e.*, i) **Target-guided Initialization** that extracts target domain guidance from \mathbf{x}_l^u to form an effective starting point for the diffusion denoising process, ii) **Semantic Feature Injection** that ensures the designated class \hat{y}_l for generated samples during denoising, and **Domain-specific Feature Preservation** that maintains the generated samples within the target distribution, as elaborated below.

Target-guided Initialization. The sampling starting point x_T of diffusion models, particularly its low-frequency components, has been proven to significantly influence the generated image [45, 30, 17, 47, 10]. During inference, the low-frequency components of the generated image and starting point for sampling x_T remain strongly correlated and diffusion models exploit signal leakage from these low-frequency components for image generation [10]. To generate a novel sample from \mathbf{x}_l^u that preserves target domain characteristics while conforming to the newly-assigned category \hat{y}_l of \mathbf{x}_l^u , we propose to incorporate the inherent domain-specific features of \mathbf{x}_l^u into the starting point for sampling in diffusion models.

In domain adaptation and generalization, domain-specific features are typically associated with the low-frequency components of \mathbf{x}_l^u . Furthermore, to prevent the potential semantic leakage from the high-frequency component of \mathbf{x}_l^u , we extract the high-frequency component $\mathcal{F}_{I_G}^H$ from semantically neutral random Gaussian noise I_G and the low-frequency component $\mathcal{F}_{\mathbf{x}_l^u}^L$ from the input image \mathbf{x}_l^u via Fast Fourier Transform $(\mathcal{F}\mathcal{F}\mathcal{T})$.

$$\mathcal{F}_{\mathbf{x}_{l}^{u}}^{L} = \mathcal{F}\mathcal{F}\mathcal{T}\left(\mathbf{x}_{l}^{u}\right) \odot \mathcal{H}, \quad \mathcal{F}_{I_{G}}^{H} = \mathcal{F}\mathcal{F}\mathcal{T}(I_{G}) \odot (1 - \mathcal{H}), \tag{3}$$

where \mathcal{H} is a low-pass filter. $\mathcal{F}^L_{\mathbf{x}^u_l}$ and $\mathcal{F}^H_{I_G}$ are combined and inversely transformed via inverse FFT (\mathcal{IFFT}) to produce a semantically neutral target-domain pseudo-image $\tilde{\mathbf{x}}^u_l$.

$$\tilde{\mathbf{x}}_{l}^{u} = \mathcal{IFFT}\left(\mathcal{F}_{\mathbf{x}_{l}^{u}}^{L} + \mathcal{F}_{I_{G}}^{H}\right),\tag{4}$$

 $\tilde{\mathbf{x}}_{l}^{u}$ is first encoded into the latent space via an encoder \mathcal{E} , and then subjected to a T-step DDPM forward process to add Gaussian noise. The noisy latent \mathbf{z}_{T} is used as the starting point for sampling.

$$\hat{\mathbf{z}}_0 = \mathcal{E}(\tilde{\mathbf{x}}_I^u), \quad \mathbf{z}_T = \sqrt{\alpha_T}\hat{\mathbf{z}}_0 + \sqrt{1 - \alpha_T}\epsilon, \quad \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}).$$
 (5)

Semantic Feature Injection. For our task, the sampling starting point \mathbf{z}_T derived from (5) may inherently lack sufficient semantic relevance to \hat{y}_l due to the following reasons. First, we construct the high-frequency components of \mathbf{z}_T using a semantically neutral Gaussian noise image, which carries no \hat{y}_l -related information. Secondly, although we isolate the high-frequency components of \mathbf{x}_l^u , weak semantic leakage from \mathbf{x}_l^u may persist, potentially conflicting with \hat{y}_l . Consequently, we may fail to semantically transform \mathbf{x}_l^u to \hat{y}_l even with a large guidance scale γ_1 according to [22]. To address this, we present semantic feature injection as below.

During denoising, at each timestep t, we adopt a zigzag self-reflection operation following [22]. We first denoise the latent \mathbf{z}_t via the latent diffusion model to obtain \mathbf{z}_{t-1} , and then yield the refined latent $\tilde{\mathbf{z}}_t$ by injecting \hat{y}_t -related semantic information into \mathbf{z}_{t-1} with DDIM inversion [34].

$$\tilde{\mathbf{z}}_{t} = \sqrt{\frac{\alpha_{t}}{\alpha_{t-1}}} \mathbf{z}_{t-1} + \sqrt{\alpha_{t}} \left(\sqrt{\frac{1}{\alpha_{t}} - 1} - \sqrt{\frac{1}{\alpha_{t-1}} - 1} \right) \tilde{\epsilon}_{\theta} \left(\mathbf{z}_{t-1}, \hat{y}_{l}, t - 1 \right)
\tilde{\epsilon}_{\theta} \left(\mathbf{z}_{t-1}, \hat{y}_{l}, t - 1 \right) = (1 + \gamma_{2}) \epsilon_{\theta} \left(\mathbf{z}_{t-1}, \hat{y}_{l}, t - 1 \right) - \gamma_{2} \epsilon_{\theta} \left(\mathbf{z}_{t-1}, \emptyset, t - 1 \right),$$
(6)

where γ_2 is the inversion guidance scale. According to (6), semantic alignment with \hat{y}_l is considered for the latents throughout the sampling trajectory. However, since DDIM inversion could introduce unrelated domain features, the latents could deviate from the target distribution when accumulating \hat{y}_l -aligned semantic information. To address this, we selectively extract the high-frequency components carrying the accumulated semantic information and discard the low-frequency components harboring domain artifacts from $\tilde{\mathbf{z}}_t$ rather than directly leveraging $\tilde{\mathbf{z}}_t$.

$$\mathcal{F}_{\tilde{\mathbf{z}}_{t}}^{H} = \mathcal{F}\mathcal{F}\mathcal{T}(\tilde{\mathbf{z}}_{t}) \odot (1 - \mathcal{H}). \tag{7}$$

 $\mathcal{F}_{\mathbf{\tilde{z}}_{t}}^{H}$ is used as high-frequency semantics to aggregate with target domain specific features.

Domain-specific Feature Preservation. To better align with the target distribution, we combine the high-frequency semantic features $\mathcal{F}^H_{\tilde{\mathbf{z}}_t}$ in the latents by DDIM inversion in (7) with the target domain specific features at each denoising timestep t. The domain-specific features are primarily encoded in the low-frequency components of samples from the target domain. To adapt to the time-varying noise level in \mathbf{z}_t , we perturb the clean latent $\hat{\mathbf{z}}_0$ in (5) via the DDPM forward process with t-step Gaussian noise to generate $\hat{\mathbf{z}}_{0,t} = \sqrt{\alpha_t}\hat{\mathbf{z}}_0 + \sqrt{1-\alpha_t}\epsilon$ for timestep t. The low-frequency domain-specific features $\mathcal{F}^L_{\tilde{\mathbf{z}}_{0,t}}$ are extracted from $\hat{\mathbf{z}}_{0,t}$ and combined with $\mathcal{F}^H_{\tilde{\mathbf{z}}_t}$ to obtain enhanced latent $\hat{\mathbf{z}}'_t$ that simultaneously preserves \hat{y}_l -aligned high-frequency semantics and embeds target-domain low-frequency features to produce \mathbf{z}_{t-1} .

$$\tilde{\mathbf{z}}_{t}' = \mathcal{IFFT}\left(\mathcal{F}_{\mathbf{z}_{0,t}}^{L} + \mathcal{F}_{\tilde{\mathbf{z}}_{t}}^{H}\right), \quad \mathcal{F}_{\hat{\mathbf{z}}_{0,t}}^{L} = \mathcal{FFT}\left(\hat{\mathbf{z}}_{0,t}\right) \odot \mathcal{H}. \tag{8}$$

3.4 Progressive Refinement Mechanism

We design a progressive refinement mechanism to iteratively refine the pseudo-target domain for R iterations to further optimize the target model. When optimized solely on a fixed pseudo-target domain, the target model could be affected by the trust set \mathcal{V} inevitably contains residual label noise due to imperfect pseudo-labeling, and the manipulated non-trust set \mathcal{U}^m gradually accumulates domain discrepancy in sample generation. Therefore, for any r-th $(r=1,\cdots,R)$ refinement iteration, we update the trust set \mathcal{V}^r to correct inaccurate pseudo-labels and reduce the size of the non-trust set \mathcal{U}^r for decreasing domain discrepancy. The target model ϕ^r_{trg} re-partitions the target data into updated trust set $\mathcal{V}^{(r+1)}$ and non-trust set $\mathcal{U}^{(r+1)}$. $\mathcal{U}^{(r+1)}$ is then further manipulated according to Section 3.3 to generate $\mathcal{U}^{m,(r+1)}$ for constructing the refined pseudo-target domain $\mathcal{D}^{(r+1)}_p = \mathcal{V}^{(r+1)} \cup \mathcal{U}^{m,(r+1)}$. The updated target model ϕ^r_{trg} is obtained by fine-tuning θ^r_v on $\mathcal{D}^{(r+1)}_p$. We empirically find in Figure 3 that, during progressive refinement, $\mathcal{V}^{(r+1)}$ provides more accurate pseudo-labels than $\mathcal{V}^{(r)}$ with $|\mathcal{V}^{(r+1)}| > |\mathcal{V}^{(r)}|$ such that $|\mathcal{U}^{m,(r+1)}| < |\mathcal{U}^{m,(r)}|$ to reduce the size of manipulated non-trust set and decrease the domain discrepancy in the pseudo-target domain. Compared with ϕ^r_{trg} , ϕ^r_{trg} can better approximate the real target distribution and finally achieve enhanced performance.

4 Experiments

4.1 Experimental Settings

Datasets. We adopt four standard domain adaptation benchmarks of different scales for evaluations, including the small-scale Office-31 dataset [33], the medium-scale Office-Home dataset [41], and two large-scale datasets (*i.e.*, VisDA [28] and DomainNet-126 [27]). Refer to the supplementary material for complete dataset statistics and domain configurations.

Comparative Methods. We compare with 21 existing methods from three distinct groups: i) the baseline results from the source model, ii) **generation-based SFDA methods** CPGA [31], ASOGE [6], ISFDA [26], PS [9], DATUM [1], and DM-SFDA [4], and iii) **non-generation SFDA methods** including current state-of-the-art SFDA methods SHOT [20], NRC [50], GKD [36], HCL [13], AaD [49], AdaCon [2], CoWA [18], SCLM [39], ELR [53], PLUE [23], CRS [57], CPD [61], TPDS [35], DIFO [38], and ProDe [37].

Implementation Details. We employ stable-diffusion v1-5 [32] as the diffusion model to generate 512×512 images with 20 denoising steps. $\gamma_1 = 5.5$ in (1) and $\gamma_2 = 0$ in (6). We set the threshold E to 0.01, and the total refinement iteration count R to 10. Note that setting E and R to other values

Table 1: **Office-31** results (%) with ResNet-50. Methods with top three performance in each column are highlighted in red, orange, and yellow.

Method	Venue	$A{\to}D$	$A {\rightarrow} W$	$D{\rightarrow} A$	$D{\rightarrow}W$	$W{\to}A$	$W{\to}D$	Avg.				
Baseline method												
Source	-	79.7	77.6	65.5	97.9	63.8	99.8	80.7				
Generation-based method												
CPGA [31]	IJCAI21	94.4	94.1	76.0	98.4	76.6	99.8	89.9				
ASOGE [6]	TCSVT23	95.6	94.1	74.3	98.1	74.2	99.7	89.3				
ISFDA [26]	CVPR24	95.3	94.2	76.4	98.3	77.5	99.9	90.3				
DM-SFDA [4]	-	97.7	99.0	82.7	99.3	83.5	100.0	93.7				
None-generation method												
SHOT [20]	ICML20	93.7	91.1	74.2	98.2	74.6	100.	88.6				
NRC [50]	NIPS21	96.0	90.8	75.3	99.0	75.0	100.	89.4				
GKD [36]	IROS21	94.6	91.6	75.1	98.7	75.1	100.	89.2				
HCL [13]	NIPS21	94.7	92.5	75.9	98.2	77.7	100.	89.8				
AaD [49]	NIPS22	96.4	92.1	75.0	99.1	76.5	100.	89.9				
AdaCon [2]	CVPR22	87.7	83.1	73.7	91.3	77.6	72.8	81.0				
CoWA [18]	ICML22	94.4	95.2	76.2	98.5	77.6	99.8	90.3				
ELR [53]	ICLR23	93.8	93.3	76.2	98.0	76.9	100.	89.6				
PLUE [23]	CVPR23	89.2	88.4	72.8	97.1	69.6	97.9	85.8				
CPD [61]	PR24	96.6	94.2	77.3	98.2	78.3	100.	90.8				
TPDS [35]	IJCV24	97.1	94.5	75.7	98.7	75.5	99.8	90.2				
DIFO [49]	CVPR24	93.6	92.1	78.5	95.7	78.8	97.0	89.3				
ProDe [37]	ICLR25	94.4	92.1	79.8	95.6	79.0	98.6	89.9				
DPTM(ours)	-	97.2	95.3	92.0	98.7	91.7	100.	95.8				

may obtain superior performance. For the adaptation model, we employ ResNet-50 for Office-31 [33], Office-Home [41] and DomainNet-126 [27], and ResNet-101 for VisDA [28]. We train for 20K iterations with the batch size of 128 and learning rate of 3*e*-3 for large-scale DomainNet-126 [27] and VisDA [28], and 15K iterations with the batch size of 32 and learning rate of 1*e*-3 for Office-31 and Office-Home. Weight decay is set to 5*e*-4 for all the datasets.

4.2 Main Results

Evaluations on Office-31. Table 1 shows that our method is superior to generation-based SFDA methods on Office-31 and outperforms the best generation-based SFDA method DM-SFDA [4] on average across all the DA tasks. Compared with non-generation methods, our method outperforms the best non-generation methods in all tasks except $D \rightarrow W$, delivering an average accuracy gain of 5%. Notably, our method achieves significant improvements on challenging adaptation tasks: 9.3% on $D \rightarrow A$ and 8.2% on $W \rightarrow A$. These results validate the effectiveness of our method.

Evaluations on Office-Home and Visda. Table 2 shows that our method significantly outperforms existing SFDA methods on Office-Home and VisDA. On Office-Home, we achieve an average accuracy gain of 11.7% over the best generation-based SFDA method DM-SFDA [4] and 10.1% over the current SOTA method ProDe [37] across all domain adaptation tasks. Remarkably, our method outperforms ProDe by 22.7%, 21.0%, and 21.6% on challenging $Ar \rightarrow Cl$, $Pr \rightarrow Cl$, and $Rw \rightarrow Cl$ tasks where existing methods usually perform poorly. On VisDA, our method achieves an average accuracy gain of 8.5% over ISFDA [26] and 8.2% ProDe [37] (see the supplementary material for details). These results strongly validate the effectiveness of our method in difficult domain adaptation scenarios.

Evaluations on DomainNet-126. Our method achieves a 17.6% higher average accuracy than the generation-based CPGA [31] and surpasses current SOTA ProDe [37] by 3.7% on DomainNet-126. It significantly outperforms CPGA [31] across all domain adaptation tasks and exceeds ProDe [37] in most tasks, with only minor performance gaps in three DA scenarios.

4.3 Ablation Studies

We conduct ablation studies mainly on the Office-Home dataset. More ablation studies can be found in the supplementary materials.

Table 2: Results (%) on **Office-Home** and **VisDA**. **Office-Home** is evaluated with ResNet-50, and **VisDA** is evaluated with ResNet-101. The top three performances in each column are highlighted in red, orange, and yellow, respectively.

Method	Venue	Ar→Cl	Ar→Pr	Ar→Rw	Cl→Ar	Cl→Pr		fice-Hor Pr→Ar		Pr→Rw	Rw→Ar	Rw→Cl	Rw→P		VisDA Sy→Re
Baseline method															
Source	-	50.1	67.9	74.4	55.2	65.2	67.2	53.4	44.5	74.1	64.2	51.5	78.7	62.2	63.5
Generation-based method															
CPGA [31]	IJCAI21	59.3	78.1	79.8	65.4	75.5	76.4	65.7	58.0	81.0	72.0	64.4	83.3	71.6	86.0
ASOGE [6]	TCSVT23	59.1	78.4	81.0	67.7	78.4	77.5	65.8	57.2	80.2	72.7	60.7	83.3	71.8	83.2
ISFDA [26]	CVPR24	60.7	78.9	82.0	69.9	79.5	79.7	67.1	58.8	82.3	74.2	61.3	86.4	73.4	88.4
PS [9]	ML24	57.8	77.3	81.2	68.4	76.9	78.1	67.8	57.3	82.1	75.2	59.1	83.4	72.1	84.1
DATUM [1]	CVPR23	55.3	76.8	79.3	65.1	77.7	78.6	62.4	52.1	79.7	66.6	55.9	80.5	69.2	_
DM-SFDA [4	·] –	68.5	89.6	83.3	70.0	85.8	87.4	71.3	69.6	88.2	77.8	68.5	88.7	79.5	86.3
None-generation method															
SHOT [20]	ICML20	56.7	77.9	80.6	68.0	78.0	79.4	67.9	54.5	82.3	74.2	58.6	84.5	71.9	82.7
NRC [50]	NIPS21	57.7	80.3	82.0	68.1	79.8	78.6	65.3	56.4	83.0	71.0	58.6	85.6	72.2	85.9
GKD [36]	IROS21	56.5	78.2	81.8	68.7	78.9	79.1	67.6	54.8	82.6	74.4	58.5	84.8	72.2	83.0
AaD [49]	NIPS22	59.3	79.3	82.1	68.9	79.8	79.5	67.2	57.4	83.1	72.1	58.5	85.4	72.7	88.0
AdaCon [2]	CVPR22	47.2	75.1	75.5	60.7	73.3	73.2	60.2	45.2	76.6	65.6	48.3	79.1	65.0	86.8
CoWA [18]	ICML22	56.9	78.4	81.0	69.1	80.0	79.9	67.7	57.2	82.4	72.8	60.5	84.5	72.5	86.9
SCLM [39]	NN22	58.2	80.3	81.5	69.3	79.0	80.7	69.0	56.8	82.7	74.7	60.6	85.0	73.0	85.3
ELR [53]	ICLR23	58.4	78.7	81.5	69.2	79.5	79.3	66.3	58.0	82.6	73.4	59.8	85.1	72.6	85.8
PLUE [23]	CVPR23	49.1	73.5	78.2	62.9	73.5	74.5	62.2	48.3	78.6	68.6	51.8	81.5	66.9	88.3
CPD [61]	PR24	59.1	79.0	82.4	68.5	79.7	79.5	67.9	57.9	82.8	73.8	61.2	84.6	73.0	85.8
TPDS [35]	IJCV24	59.3	80.3	82.1	70.6	79.4	80.9	69.8	56.8	82.1	74.5	61.2	85.3	73.5	87.6
DIFO [38]	CVPR24	62.6	87.5	87.1	79.5	87.9	87.4	78.3	63.4	88.1	80.0	63.3	87.7	79.4	88.6
ProDe [37]	ICLR25	64.0	90.0	88.3	81.1	90.1	88.6	79.8	65.4	89.0	80.9	65.5	90.2	81.1	88.7
DPTM(ours)	- [86.7	94.2	92.8	91.5	94.0	92.6	90.6	86.4	92.8	90.5	87.1	94.7	91.2	97.6

Table 3: Results (%) on **DomainNet-126** evaluated with ResNet-50. The top three performances in each column are highlighted in red, orange, and yellow, respectively.

Method	Venue		$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
		$C \rightarrow P$	C→R	C→S	$P \rightarrow C$	P→R	$P \rightarrow S$	R→C	$R \rightarrow P$	$R \rightarrow S$	S→C	$S \rightarrow P$	$S \rightarrow R$	Avg
					В	aseline r	nethod							
Source	_	47.5	59.8	48.6	51.0	75.3	47.8	57.5	61.1	48.6	63.5	56.2	59.5	56.4
					Gener	ation-ba	sed meth	od						
CPGA [31]	IJCAI21	61.2	76.7	59.6	64.5	81.3	61.0	68.6	69.5	65.9	66.9	60.2	75.1	67.6
					None	-generati	on meth	od						
SHOT [20]	ICML20	63.5	78.2	59.5	67.9	81.3	61.7	67.7	67.6	57.8	70.2	64.0	78.0	68.1
NRC [50]	NIPS21	62.6	77.1	58.3	62.9	81.3	60.7	64.7	69.4	58.7	69.4	65.8	78.7	67.5
GKD [36]	IROS21	61.4	77.4	60.3	69.6	81.4	63.2	68.3	68.4	59.5	71.5	65.2	77.6	68.7
AdaCon [2]	CVPR22	60.8	74.8	55.9	62.2	78.3	58.2	63.1	68.1	55.6	67.1	66.0	75.4	65.4
CoWA [18]	ICML22	64.6	80.6	60.6	66.2	79.8	60.8	69.0	67.2	60.0	69.0	65.8	79.9	68.6
PLUE [23]	CVPR23	59.8	74.0	56.0	61.6	78.5	57.9	61.6	65.9	53.8	67.5	64.3	76.0	64.7
TPDS [35]	IJCV24	62.9	77.1	59.8	65.6	79.0	61.5	66.4	67.0	58.2	68.6	64.3	75.3	67.1
DIFO [38]	CVPR24	73.8	89.0	69.4	74.0	88.7	70.1	74.8	74.6	69.6	74.7	74.3	88.0	76.7
ProDe [37]	ICLR25	79.3	91.0	75.3	80.0	90.9	75.6	80.4	78.9	75.4	80.4	79.2	91.0	81.5
DPTM(ours)	_	85.6	90.9	80.0	85.1	90.7	79.0	85.2	85.4	78.1	86.1	85.4	90.9	85.2

Table 4: Ablation study results (%) on Different LDMs evaluated with $R=3,\,E=0.001.$

$LDM \hspace{0.1cm} Ar \rightarrow Cl\hspace{0.1cm} Ar \rightarrow Pr\hspace{0.1cm} Ar \rightarrow Rw\hspace{0.1cm} Cl \rightarrow Ar\hspace{0.1cm} Cl \rightarrow Pr\hspace{0.1cm} Cl \rightarrow Rw\hspace{0.1cm} Pr \rightarrow Ar\hspace{0.1cm} Pr \rightarrow Cl\hspace{0.1cm} Pr \rightarrow Rw\hspace{0.1cm} Rw \rightarrow Ar\hspace{0.1cm} Rw \rightarrow Cl\hspace{0.1cm} Rw \rightarrow Pr\hspace{0.1cm} Av\hspace{0.1cm} g.$													
SDXL	69.4	82.2	82.8	69.4	82.6	82.2	65.8	67.0	82.4	71.1	67.5	84.2	75.6
SD15	67.0	83.6	83.9	70.6	84.3	82.9	65.6	63.6	84.6	69.6	66.4	85.0	75.6

Different Versions of Latent Diffusion Models. We conduct ablation studies using both Stable Diffusion v1.5 (SD15) and Stable Diffusion XL (SDXL) [29], with identical parameters (E=0.001 and R=3) except for output resolution - SDXL natively generates 1024×1024 images while SD15 pro-

Table 5: Ablation study results (%) on Threshold E evaluated with R = 10.

\overline{E}	Ar→Cl	Ar→Pr	Ar→Rw	Cl→Ar	Cl→Pr	Cl→Rw	Pr→Ar	Pr→Cl	Pr→Rw	Rw→Ar	Rw→Cl	Rw→P	r Avg.
0.001	74.7	85.9	87.5	75.0	88.5	85.6	72.1	73.3	87.2	75.2	74.6	88.8	80.7
0.005	81.7	92.6	90.8	85.5	92.1	88.2	85.5	81.2	88.3	82.1	79.9	92.1	86.7
0.01	86.7	94.2	92.8	91.5	94.0	92.6	90.6	86.4	92.8	90.5	87.1	94.7	91.2

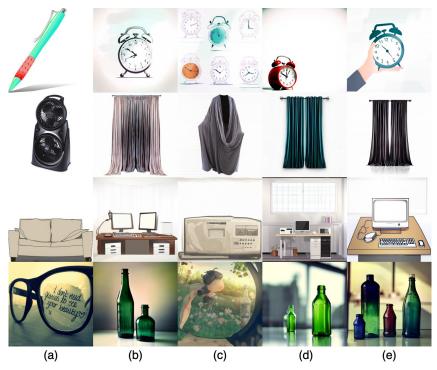


Figure 2: Ablation on Manipulation Mechanism of \mathbf{x}_l^u . Row: \hat{y}_l = 'Alarm Clock', 'Curtains', 'Computer', 'Bottle', respectively. Column: (a) \mathbf{x}_l^u (b) $\tilde{\mathbf{x}}_l^u$ w/o Target-guided Initialization (c) $\tilde{\mathbf{x}}_l^u$ w/o Semantic Feature Injection (d) $\tilde{\mathbf{x}}_l^u$ w/o Domain-specific Feature Preservation (e) $\tilde{\mathbf{x}}_l^u$ of our method.

duces 512×512 images due to their architectural differences. Table 4 shows comparable performance, but SDXL's higher computational cost makes SD15 our preferred choice for implementation.

Values of Threshold E**.** We also conduct ablation on the Threshold $E = \{0.001, 0.005, 0.01\}$. Table 5 shows that appropriately increasing E may yield better results.

Manipulation Mechanism of Non-trust Set. As shown in Figure 2, our method's manipulated samples $\tilde{\mathbf{x}}_l^u$ exhibit the best semantic alignment with their assigned labels \hat{y}_l = and the best preservation of target distribution characteristics, detailed in the supplementary material.

4.4 Additional Analysis

We provide additional analyses to further validate the effectiveness of our method. More analysis can be found in the supplementary materials.

Analysis on Progressive Refinement Mechanism. For the performance of our method on the Office-Home dataset shown in Table 2, we provide a detailed performance trajectory as r increases from 1 to 10, in order to demonstrate the effectiveness of the proposed Progressive Refinement Mechanism. Firstly, we present experimental results for $r = \{0, 2, 4, 6, 8, 10\}$ in Table 6 and provide complete experimental results in the supplementary materials, where r = 0 is equivalent to using only the source model. Table 6 shows that the performance of the target model improves as r increases. Specifically, as r increases, the performance of the target model first improves rapidly and then growth becomes slow. Secondly, we select the first 4 DA tasks $Ar \rightarrow Cl$, $Ar \rightarrow Pr$, $Ar \rightarrow Rw$, and $Cl \rightarrow Ar$, and

Table 6: Full results of the performance trajectory as r grows from	m 1 to 10 on Office-Home evaluated
with $E = 0.01$.	

r	Ar→Cl	Ar→Pr	Ar→Rw	Cl→Ar	Cl→Pr	Cl→Rw	Pr→Ar	Pr→Cl	Pr→Rw	Rw→Ar	Rw→Cl	Rw→P	r Avg.
0	50.1	67.9	74.4	55.2	65.2	67.2	53.4	44.5	74.1	64.2	51.5	78.7	62.2
1	60.2	80.9	82.8	67.8	79.3	80.4	64.5	57.1	81.6	69.1	60.5	83.4	72.3
2	72.6	87.2	85.7	73.5	85.4	84.4	72.3	69.7	85.2	76.7	70.8	87.7	79.3
3	75.3	89.7	87.6	77.7	88.9	86.4	79.2	76.1	86.7	80.1	75.5	90.2	82.8
4	79.0	91.8	89.1	81.0	91.2	88.3	82.1	79.1	88.1	82.7	79.1	91.7	85.3
5	81.5	92.5	89.8	83.9	92.0	89.4	85.3	81.5	89.3	84.5	81.8	92.8	87.0
6	83.7	92.9	90.7	86.1	92.8	90.2	87.1	83.1	90.0	87.4	83.3	93.3	88.4
7	85.0	93.7	91.5	87.5	93.0	91.2	87.8	84.4	91.0	88.6	84.9	93.9	89.4
8	85.9	94.2	91.7	88.7	93.8	91.9	89.0	85.1	91.7	89.7	85.6	94.2	90.1
9	85.9	94.1	92.0	89.8	93.9	92.3	89.8	85.6	92.2	90.2	86.6	94.4	90.6
10	86.7	94.2	92.8	91.5	94.0	92.6	90.6	86.4	92.8	90.5	87.1	94.7	91.2

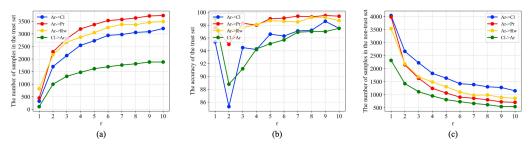


Figure 3: The relationship between r versus: (a) The number of samples in the trust set. (b) The trust set accuracy. (c) The number of samples in the non-trust set.

plot: the relationship between the number of samples in the trust set versus r, the trust set accuracy versus r, and the number of samples in the non-trust set versus r. As shown in Figure 3, two main conclusions can be drawn: (1) The number of samples in the trust set increases significantly with r, while correspondingly, the non-trust set size decreases substantially. This indicates that the model progressively learns to make predictions with low uncertainty. (2) Overall, the trust set accuracy remains at a high level. Although relatively low across all four DA tasks at r=2, the accuracy shows significant recovery with increasing r, demonstrating our method's capability to progressively correct previous errors.

Analysis on Trust and Non-trust Partition for Target Domain. We provide more analysis on the proposed Trust and Non-trust Partition for the target Domain, detailed in the supplementary materials.

Analysis on Manipulation of Non-trust Set. We provide more analysis on the proposed Manipulation of Non-trust Set, detailed in the supplementary materials.

5 Conclusion

We propose DPTM, a novel generation-based framework that utilizes unlabeled target data as references to construct and progressively refine a pseudo-target domain via the latent diffusion model for Source-free Domain Adaptation (SFDA). We first divide the target into a trust set and a non-trust set based on prediction uncertainty. For the trust set, we directly train the target model with pseudo labels in a supervised manner. For the non-trust set, we assign a label for each sample and propose a manipulation strategy consisting of Target-guided Initialization, Semantic Feature Injection, and Domain-specific Feature Preservation, which semantically transforms the high-uncertainty sample toward the assigned category, while maintaining the generated sample in the target distribution. We progressively refined this process which simultaneously corrects pseudo-label inaccuracies in the previous trust set and decreases domain discrepancy in the previous pseudo-target domain, iteratively improving the target model. Experimental results demonstrate that our method achieves state-of-the-art performance on SFDA classification.

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 62431017, Grant 62320106003, Grant U24A20251, Grant 62125109, Grant 62120106007, Grant 62371288, Grant 62301299, Grant 62401366, Grant 62401357, Grant 62401367, and in part by the Program of Shanghai Science and Technology Innovation Project under Grant 24BC3200800.

References

- [1] Yasser Benigmim, Subhankar Roy, Slim Essid, Vicky Kalogeiton, and Stéphane Lathuilière. One-shot unsupervised domain adaptation with personalized diffusion models. In *Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 698–708, 2023.
- [2] Dian Chen, Dequan Wang, Trevor Darrell, and Sayna Ebrahimi. Contrastive test-time adaptation. In *Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 295–305, 2022.
- [3] Yabo Chen, Jiemin Fang, Yuyang Huang, Taoran Yi, Xiaopeng Zhang, Lingxi Xie, Xinggang Wang, Wenrui Dai, Hongkai Xiong, and Qi Tian. Cascade-Zero123: One image to highly consistent 3D with self-prompted nearby views. In *Proceedings of the 18th European Conference on Computer Vision*, pages 311–330, 2024.
- [4] Shivang Chopra, Suraj Kothawade, Houda Aynaou, and Aman Chadha. Source-free domain adaptation with diffusion-guided source data generation. *arXiv* preprint arXiv:2402.04929, 2024.
- [5] Qiaosong Chu, Shuyan Li, Guangyi Chen, Kai Li, and Xiu Li. Adversarial alignment for source free object detection. In *Proceedings of the 37th AAAI Conference on Artificial Intelligence*, pages 452–460, 2023.
- [6] Chaoran Cui, Fan'an Meng, Chunyun Zhang, Ziyi Liu, Lei Zhu, Shuai Gong, and Xue Lin. Adversarial source generation for source-free domain adaptation. *IEEE Transactions on Circuits and Systems for Video Technology*, 34(6):4887–4898, 2023.
- [7] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In Advances in Neural Information Processing Systems 34, pages 8780–8794, 2021.
- [8] Yuhe Ding, Lijun Sheng, Jian Liang, Aihua Zheng, and Ran He. Proxymix: Proxy-based mixup training with label refinery for source-free domain adaptation. *Neural Networks*, 167:92–103, 2023.
- [9] Yuntao Du, Haiyang Yang, Mingcai Chen, Hongtao Luo, Juan Jiang, Yi Xin, and Chongjun Wang. Generation, augmentation, and alignment: A pseudo-source domain based method for source-free domain adaptation. *Machine Learning*, 113(6):3611–3631, 2024.
- [10] Martin Nicolas Everaert, Athanasios Fitsios, Marco Bocchio, Sami Arpa, Sabine Süsstrunk, and Radhakrishna Achanta. Exploiting the signal-leak bias in diffusion models. In *Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, pages 4025–4034, 2024.
- [11] Yuqi Fang, Pew-Thian Yap, Weili Lin, Hongtu Zhu, and Mingxia Liu. Source-free unsupervised domain adaptation: A survey. *Neural Networks*, page 106230, 2024.
- [12] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Advances in Neural Information Processing Systems 33*, pages 6840–6851, 2020.
- [13] Jiaxing Huang, Dayan Guan, Aoran Xiao, and Shijian Lu. Model adaptation: Historical contrastive learning for unsupervised domain adaptation without source data. In *Advances in Neural Information Processing Systems* 34, pages 3635–3649, 2021.
- [14] Yuyang Huang, Yabo Chen, Li Ding, Xiaopeng Zhang, Wenrui Dai, Junni Zou, Hongkai Xiong, and Qi Tian. Im-zero: Instance-level motion controllable video generation in a zero-shot manner. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pages 7265–7275, 2025.
- [15] Yuyang Huang, Yabo Chen, Yuchen Liu, Xiaopeng Zhang, Wenrui Dai, Hongkai Xiong, and Qi Tian. DomainFusion: Generalizing to unseen domains with latent diffusion models. In *Proceedings of the 18th European Conference on Computer Vision*, pages 480–498, 2024.
- [16] Levon Khachatryan, Andranik Movsisyan, Vahram Tadevosyan, Roberto Henschel, Zhangyang Wang, Shant Navasardyan, and Humphrey Shi. Text2Video-Zero: Text-to-image diffusion models are zero-shot video generators. In *Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision* (ICCV), pages 15954–15964, 2023.

- [17] Gwanhyeong Koo, Sunjae Yoon, Ji Woo Hong, and Chang D Yoo. Flexiedit: Frequency-aware latent refinement for enhanced non-rigid editing. In *Proceedings of the 18th European Conference on Computer Vision*, pages 363–379, 2024.
- [18] Jonghyun Lee, Dahuin Jung, Junho Yim, and Sungroh Yoon. Confidence score for source-free unsupervised domain adaptation. In *Proceedings of the 39th International Conference on Machine Learning*, pages 12365–12377, 2022.
- [19] Jingjing Li, Zhiqi Yu, Zhekai Du, Lei Zhu, and Heng Tao Shen. A comprehensive survey on source-free domain adaptation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46(8):5743–5762, 2024.
- [20] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation. In *Proceedings of the 37th International Conference on Machine Learning*, pages 6028–6039, 2020.
- [21] Jian Liang, Dapeng Hu, Yunbo Wang, Ran He, and Jiashi Feng. Source data-absent unsupervised domain adaptation through hypothesis transfer and labeling transfer. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(11):8602–8617, 2021.
- [22] Bai LiChen, Shitong Shao, zikai zhou, Zipeng Qi, zhiqiang xu, Haoyi Xiong, and Zeke Xie. Zigzag diffusion sampling: Diffusion models can self-improve via self-reflection. In *The Thirteenth International Conference on Learning Representations*, 2025.
- [23] Mattia Litrico, Alessio Del Bue, and Pietro Morerio. Guiding pseudo-labels with uncertainty estimation for source-free unsupervised domain adaptation. In *Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 7640–7650, 2023.
- [24] Mattia Litrico, Alessio Del Bue, and Pietro Morerio. Guiding pseudo-labels with uncertainty estimation for source-free unsupervised domain adaptation. In *Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 7640–7650, 2023.
- [25] Yuang Liu, Wei Zhang, and Jun Wang. Source-free domain adaptation for semantic segmentation. In *Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 1215–1224, 2021.
- [26] Yu Mitsuzumi, Akisato Kimura, and Hisashi Kashima. Understanding and improving source-free domain adaptation from a theoretical perspective. In *Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 28515–28524, 2024.
- [27] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching for multi-source domain adaptation. In *Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV)*, pages 1406–1415, 2019.
- [28] Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman, Dequan Wang, and Kate Saenko. Visda: The visual domain adaptation challenge. *arXiv preprint arXiv:1710.06924*, 2017.
- [29] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image synthesis. In The Twelfth International Conference on Learning Representations, 2024.
- [30] Haonan Qiu, Menghan Xia, Yong Zhang, Yingqing He, Xintao Wang, Ying Shan, and Ziwei Liu. Freenoise: Tuning-free longer video diffusion via noise rescheduling. In *The Twelfth International Conference on Learning Representations*, 2024.
- [31] Zhen Qiu, Yifan Zhang, Hongbin Lin, Shuaicheng Niu, Yanxia Liu, Qing Du, and Mingkui Tan. Source-free domain adaptation via avatar prototype generation and adaptation. In *Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI-21)*, pages 2921–2927, 2021.
- [32] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 10684–10695, 2022.
- [33] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to new domains. In *Proceedings of the 11th European Conference on Computer Vision*, pages 213–226, 2010.
- [34] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *The Ninth International Conference on Learning Representations*, 2021.

- [35] Song Tang, An Chang, Fabian Zhang, Xiatian Zhu, Mao Ye, and Changshui Zhang. Source-free domain adaptation via target prediction distribution searching. *International Journal of Computer Vision*, 132(3):654–672, 2024.
- [36] Song Tang, Yuji Shi, Zhiyuan Ma, Jian Li, Jianzhi Lyu, Qingdu Li, and Jianwei Zhang. Model adaptation through hypothesis transfer with gradual knowledge distillation. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 5679–5685, 2021.
- [37] Song Tang, Wenxin Su, Yan Gan, Mao Ye, Jianwei Dr. Zhang, and Xiatian Zhu. Proxy denoising for source-free domain adaptation. In *The Thirteenth International Conference on Learning Representations*, 2025.
- [38] Song Tang, Wenxin Su, Mao Ye, and Xiatian Zhu. Source-free domain adaptation with frozen multimodal foundation model. In *Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 23711–23720, 2024.
- [39] Song Tang, Yan Zou, Zihao Song, Jianzhi Lyu, Lijuan Chen, Mao Ye, Shouming Zhong, and Jianwei Zhang. Semantic consistency learning on manifold for source data-free unsupervised domain adaptation. Neural Networks, 152:467–478, 2022.
- [40] Xavier Thomas and Deepti Ghadiyaram. What's in a latent? leveraging diffusion latent space for domain generalization. *arXiv* preprint arXiv:2503.06698, 2025.
- [41] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep hashing network for unsupervised domain adaptation. In *Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition*, pages 5018–5027, 2017.
- [42] Mei Wang and Weihong Deng. Deep visual domain adaptation: A survey. *Neurocomputing*, 312:135–153, 2018.
- [43] Yuxi Wang, Jian Liang, and Zhaoxiang Zhang. Source data-free cross-domain semantic segmentation: Align, teach and propagate. *arXiv e-prints*, pages arXiv–2106, 2021.
- [44] Garrett Wilson and Diane J Cook. A survey of unsupervised deep domain adaptation. ACM Transactions on Intelligent Systems and Technology (TIST), 11(5):1–46, 2020.
- [45] Tianxing Wu, Chenyang Si, Yuming Jiang, Ziqi Huang, and Ziwei Liu. FreeInit: Bridging initialization gap in video diffusion models. In *Proceedings of the 18th European Conference on Computer Vision*, pages 378–394, 2024.
- [46] Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang, Muyang Li, Ligeng Zhu, Yao Lu, and Song Han. SANA: Efficient high-resolution image synthesis with linear diffusion transformers. In *The Thirteenth International Conference on Learning Representations*, 2025.
- [47] Ruojun Xu, Weijie Xi, XiaoDi Wang, Yongbo Mao, and Zach Cheng. Stylessp: Sampling startpoint enhancement for training-free diffusion-based method for style transfer. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pages 18260–18269, 2025.
- [48] Jianfei Yang, Xiangyu Peng, Kai Wang, Zheng Zhu, Jiashi Feng, Lihua Xie, and Yang You. Divide to adapt: Mitigating confirmation bias for domain adaptation of black-box predictors. In *The Eleventh International Conference on Learning Representations*, 2023.
- [49] Shiqi Yang, Shangling Jui, Joost Van De Weijer, et al. Attracting and dispersing: A simple approach for source-free domain adaptation. In *Advances in Neural Information Processing Systems 35*, pages 5802–5815, 2022.
- [50] Shiqi Yang, Joost Van de Weijer, Luis Herranz, Shangling Jui, et al. Exploiting the intrinsic neighborhood structure for source-free domain adaptation. In *Advances in Neural Information Processing Systems 34*, pages 29393–29405, 2021.
- [51] Shiqi Yang, Yaxing Wang, Luis Herranz, Shangling Jui, and Joost van de Weijer. Casting a bait for offline and online source-free domain adaptation. Computer Vision and Image Understanding, 234:103747, 2023.
- [52] Mucong Ye, Jing Zhang, Jinpeng Ouyang, and Ding Yuan. Source data-free unsupervised domain adaptation for semantic segmentation. In *Proceedings of the 29th ACM International Conference on Multimedia*, pages 2233–2242, 2021.
- [53] Li Yi, Gezheng Xu, Pengcheng Xu, Jiaqi Li, Ruizhi Pu, Charles Ling, Ian McLeod, and Boyu Wang. When source-free domain adaptation meets learning with noisy labels. In *The Eleventh International Conference* on Learning Representations, 2023.

- [54] Junyi Zhang, Charles Herrmann, Junhwa Hur, Luisa Polania Cabrera, Varun Jampani, Deqing Sun, and Ming-Hsuan Yang. A tale of two features: Stable diffusion complements DINO for zero-shot semantic correspondence. In Advances in Neural Information Processing Systems 36, pages 45533–45547, 2023.
- [55] Yabo Zhang, Yuxiang Wei, Dongsheng Jiang, Xiaopeng Zhang, Wangmeng Zuo, and Qi Tian. ControlVideo: Training-free controllable text-to-video generation. In *The Twelfth International Conference on Learning Representations*, 2024.
- [56] Yabo Zhang, Yuxiang Wei, Xianhui Lin, Zheng Hui, Peiran Ren, Xuansong Xie, and Wangmeng Zuo. Videoelevator: Elevating video generation quality with versatile text-to-image diffusion models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pages 10266–10274, 2025.
- [57] Yixin Zhang, Zilei Wang, and Weinan He. Class relationship embedded learning for source-free unsupervised domain adaptation. In *Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 7619–7629, 2023.
- [58] Ziyi Zhang, Weikai Chen, Hui Cheng, Zhen Li, Siyuan Li, Liang Lin, and Guanbin Li. Divide and contrast: Source-free domain adaptation via adaptive contrastive learning. In *Advances in Neural Information Processing Systems* 35, pages 5137–5149, 2022.
- [59] Wenliang Zhao, Yongming Rao, Zuyan Liu, Benlin Liu, Jie Zhou, and Jiwen Lu. Unleashing text-to-image diffusion models for visual perception. In *Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV)*, pages 5706–5716, 2023.
- [60] Wendi Zheng, Jiayan Teng, Zhuoyi Yang, Weihan Wang, Jidong Chen, Xiaotao Gu, Yuxiao Dong, Ming Ding, and Jie Tang. CogView3: Finer and faster text-to-image generation via relay diffusion. In *Proceedings* of the 18th European Conference on Computer Vision, pages 1–22, 2024.
- [61] Lihua Zhou, Nianxin Li, Mao Ye, Xiatian Zhu, and Song Tang. Source-free domain adaptation with class prototype discovery. *Pattern Recognition*, 145:109974, 2024.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: **The papers not including the checklist will be desk rejected.** The checklist should follow the references and follow the (optional) supplemental material. The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For each question in the checklist:

- You should answer [Yes], [No], or [NA].
- [NA] means either that the question is Not Applicable for that particular paper or the relevant information is Not Available.
- Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions) with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While "[Yes]" is generally preferable to "[No]", it is perfectly acceptable to answer "[No]" provided a proper justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or "we were unable to find the license for the dataset we used"). In general, answering "[No]" or "[NA]" is not grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

- Delete this instruction block, but keep the section heading "NeurIPS Paper Checklist",
- · Keep the checklist subsection headings, questions/answers and guidelines below.
- Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract clearly states the following claims about the paper's contributions and scope.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have provided a separate "Limitations" section in the Appendix. Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not include theoretical results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The detailed experimental settings and information are provided in the Appendix, and this information is sufficient to reproduce the main experimental results.

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: All the code will be made public after acceptance.

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: All the experimental settings are clarified in the Appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail
 that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [No]

Justification: Following previous studies we do not report error bars.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The computing requirements are provided in the Appendix.

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.

- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We ensure our research adheres to the guidelines.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: The tasks we tackling does not have apparent societal impacts.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All the assets used are properly credited and are the license and terms of use explicitly mentioned and properly respected.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This research does not employ LLMs as part of the core methods.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.