
Published as a conference paper at COLM 2024

Large Language Model Routing with Benchmark Datasets

Tal Shnitzer∗1a, Anthony Ou∗2, Mı́rian Silva3, Kate Soule3, Yuekai Sun4,
Justin Solomon2, Neil Thompson2 & Mikhail Yurochkin†3

1Broad Institute, 2MIT, 3MIT-IBM Watson AI Lab, 4University of Michigan

Abstract

The number of open-source Large Language Models (LLMs) grows daily,
as does the number of available benchmark datasets used to evaluate
LLMs. While some models dominate these benchmarks, no single model
achieves the best accuracy in all tasks and use cases. In light of this ob-
servation, we address the challenge of selecting the best LLM from a col-
lection of pre-trained models, given a new task. While related work relies
on evaluating each candidate model on a set of labeled examples, our new
formulation does not assume any labeled data from the new task is avail-
able. Instead, we repurpose a collection of benchmark datasets—which
may focus on different tasks than the one at hand—to learn a “router”
model for LLM selection from inputs only; this problem reduces to a col-
lection of binary classification tasks. Empirically, our strategy consistently
improves performance over using any single model for all tasks.

1 Introduction

Figure 1: We evaluate candidate LLMs
(T5, Falcon, Llama) on various tasks
(emojis inside boxes: QA, reasoning,
summarization, sentiment analysis, dia-
log) and domains (4 sections within each
box: finance, legal, general knowledge,
math) from benchmark datasets by train-
ing a binary classifier per LLM (decision
boundaries marked with colors in the
upper part of the figure). For a new task
(paper stack), we score each LLM with
these binary classifiers and recommend
an LLM (here Falcon) to the user.

Large Language Models (LLMs) demonstrate
groundbreaking abilities to solve tasks across
a variety of NLP domains (Devlin et al., 2018;
Brown et al., 2020). Today, researchers in
academia and industry release new LLMs daily;
as of January 30th, 2024, Hugging Face hosts
nearly 50k models for text generation. These
models perform tasks ranging from text classi-
fication to question-answering, summarization,
and dialogue.

This influx of open-source LLMs and the di-
versity of their potential use cases has inspired
numerous benchmarks, collections of datasets to
compare LLMs on different tasks and domains.
For example, HELM (Liang et al., 2022) con-
sists of 42 scenarios covering a variety of uses,
MMLU (Hendrycks et al., 2020) is a multiple-
choice question answering benchmark with 57
tasks, Open LLM Leaderboard (Beeching et al.,
2023) combines MMLU with other question-
answering datasets, and LM Evaluation Har-
ness (Gao et al., 2021) tests over 200 tasks.
While one LLM will be best on average across
benchmarks, no single model is likely to be the
best on on each individual dataset. In contrast, a
practitioner typically wants to know what is the

∗Equal contribution
aWork done while at MIT
†Correspondence to mikhail.yurochkin@ibm.com

1

Published as a conference paper at COLM 2024

best model for their specific use case rather than average performance across datasets.

To address this gap, we study the problem of identifying the best LLM for a given task. We
seek a strategy that can identify an effective LLM given example inputs for the task, with-
out relying on pre-labeled input/output pairs. We use benchmark datasets to understand
the performance of LLMs across tasks and domains: For example, to evaluate whether an
LLM will be able to answer math questions, we might find LLMs that do well on other
STEM-related tasks rather than, e.g., sociology or toxicity detection.

We cast the learning of model strengths as binary supervised learning. Our binary task
is to efficiently predict whether an LLM will perform correctly on a given input, given
an embedding of just the input; our data for this prediction problem comes from running
the LLMs on the benchmark datasets. See Figure 1 for an illustration. This information is
collected during benchmark evaluations anyway and is simply reused for training model
routers without additional expensive LLM inference. Our router is efficient at test time, as
it does not need to test every possible LLM on the new task.

Our contributions are summarized below:

• We formalize the problem of learning the strengths and weaknesses of LLMs for down-
stream routing, i.e., selecting the best model, as a collection of binary classification prob-
lems that predict whether a given LLM will be “correct” on an input.

• We propose three scores for selecting LLMs for a new task using these correctness pre-
dictors. Our third score accounts for mistakes a correctness predictor makes on out-of-
distribution data from a new task, which is likely to differ from benchmark data used
for training the correctness predictors. We connect to meta-learning to obtain theoretical
insights into the scores’ efficacy.

• We verify our routing scores’ effectiveness on 29 datasets from HELM (Liang et al., 2022)
representing scenarios like QA, text classification, knowledge, and reasoning, and Mix-
Instruct (Jiang et al., 2023), which evaluates instruction-following abilities of LLMs.

• We discuss and empirically investigate generalization of correctness predictors to new
tasks, the importance of a larger pool of benchmarks, and the potential of routing smaller
LLMs to reduce cost.

2 Related work

Benchmarking. Comparing models or algorithms across various tasks is a standard prac-
tice in ML and AI literature. Prior to Foundation Models (Bommasani et al., 2021), it was
typical to apply the same learning algorithm to train a model on each of the datasets and
compare the performance against other learning algorithms. The UCI Machine Learning
Repository (Kelly et al., 2023) is one prominent example of such a collection of datasets
often used to compare learning algorithms. With the emergence of Foundation Models,
i.e., models with billions of parameters trained on massive datasets using large compute
clusters, the paradigm changed to evaluating the same model (or a few-shot tuned version
of it) on a variety of tasks (Bojar et al., 2014; Goyal et al., 2019; Li et al., 2022). In the context
of Large Language Models, many benchmarks (Wang et al., 2018; 2019; Hendrycks et al.,
2020; Gao et al., 2021; Srivastava et al., 2022; Liang et al., 2022; Beeching et al., 2023; Jiang
et al., 2023) were proposed to help determine the most capable LLM. Benchmarks typically
average the performance of models across tasks and provide a final ranking, discarding the
rest of the information. In this work, we use the byproducts of benchmark evaluations, i.e.,
the per-sample performance of various LLMs across tasks, to learn about their individual
strengths and identify the best LLM for a new task.

Model selection. Selecting the best model, or model selection, is a classical topic in statis-
tics and ML (Bishop & Nasrabadi, 2006; Hastie et al., 2009; Raschka, 2018). However, the
typical problem setting is quite different: classical methods like cross-validation aim to
estimate the population error of a model trained on samples from the population distri-
bution. In other words, the goal is to find the best model for in-distribution test data, i.e.,
data sampled from the same distribution as the train data. The notion of “train” data is
quite elusive for LLMs, as they are usually trained on massive datasets with trillions of

2

Published as a conference paper at COLM 2024

tokens with a simple task of next token prediction (Radford et al., 2019; Brown et al., 2020).
However, the tasks we evaluate them on are often more structured, e.g., classification and
question-answering, and are specific to domains that may or may not be sufficiently repre-
sented in the train data. In addition, techniques like k-fold cross-validation require training
the model multiple times, which is infeasible for LLMs.

Out-of-distribution model selection. Recognizing the limitations of the model selection
methods for in-distribution test data (Gulrajani & Lopez-Paz, 2021; Koh et al., 2021), recent
work has proposed a variety of methods to select models when deployed on data that
may differ from the train data. These methods rely on ideas such as bootstrapping (Xu &
Tibshirani, 2022), reweighing (Chen et al., 2021b; Maity et al., 2023), agreement of models or
ensembles (Jiang et al., 2021; Chen et al., 2021a; Ng et al., 2023), or aligning model accuracy
in-distribution with a confidence threshold (Guillory et al., 2021; Garg et al., 2022; Yu et al.,
2022). Most of these methods are nontrivial to extend to generation use-cases of LLMs;
some require training multiple models, and some need well-defined in-distribution data
related to the new task.

Routing LLMs. Prior work on selecting LLMs primarily considers choosing one that pro-
duces the best generation for a given input. Liu & Liu (2021); Ravaut et al. (2022); Jiang
et al. (2023) train dedicated scoring or ranking models that can be applied to model gener-
ations. Unlike our work, these approaches require generating outputs with every candidate
LLM to make a decision, which can be computationally prohibitive with a large pool of
candidate LLMs. FrugalGPT (Chen et al., 2023) calls LLMs sequentially until a dedicated
scoring model deems the generation acceptable. Prior works in this group require train-
ing data sufficiently representative of each of the tasks and domains of interest to train the
corresponding ranking and scoring models. Automatic evaluation using other LLMs (Fu
et al., 2023; Wang et al., 2023; Liu et al., 2023) may be used instead of such scoring models,
but such an approach would require producing generations with every candidate LLM and
evaluating each of these generations with a typically larger/commercial LLM. In this pa-
per, instead, we use data from benchmarks to learn the strengths and weaknesses of LLMs
across tasks and domains. The resulting model router requires generating outputs only
with the chosen LLM at test time, making the proposed method a lot more cost-efficient.

Mixture of Experts. We highlight two interpretations of the Mixture of Experts (MoE) in
the context of our work. First is the classical MoE (Masoudnia & Ebrahimpour, 2014) where
a model (or a subset) is selected for each input from a pool of experts. Performing model
selection efficiently for each input individually might be challenging on new, potentially
out-of-distribution, tasks as demonstrated in our experiments in Section 5.1. Second is the
MoE LLM architecture (Fedus et al., 2022; Jiang et al., 2024), where “experts” are a part of
the LLM and are selected for each token at each layer. In this work, our goal is to select an
LLM for a task, where an MoE LLM could simply be among the pool of candidate LLMs.

3 Learning from Benchmarks

We start by introducing notation to describe the majority of NLP benchmarks (see Table 1
for a summary of the main notations used in the paper). Let {xd

1 , . . . , xd
nd
}D

d=1 be a collection
of inputs across D tasks. Each input text xd

i corresponds to a reference answer rd
i , i.e., an

ideal generation for the corresponding input. There is a metric Fd(x, o, r) that can be task-
dependent and measures how well a response o for an input x corresponds to the reference
r. To test an LLMm, m ∈ {1, . . . , M}, on the benchmark, for each task d = 1, . . . , D, its
responses are generated {od

im = LLMm(xd
i)}

nd
i=1 and compared to the corresponding refer-

ences to obtain performance metrics { f d
im = Fd(xd

i , od
im, rd

i)}
nd
i=1.1 Most benchmark studies

take a (weighted) average of the performance metrics and report a single score for every
LLM to rank them in performance. Instead, we reuse these evaluation results to formulate a
supervised learning problem to better understand the strengths and weaknesses of various
LLMs based on their performance on data points and tasks.

1We omit dependency on the prompt when generating with an LLM and, w.l.o.g., consider the
same LLM with a different prompting strategy as a different LLM.

3

Published as a conference paper at COLM 2024

Table 1: Summary of notations and definitions.

Notation Definition Notation Definition

xd
i Input text m LLM index (1 . . . M)

od
im Output of LLMm(xd

i) d Training task index (1 . . . D)
Fd(x, o, r) Metric evaluating response o d′ New task index
f d
im Performance metric Fd(xd

i , od
im, rd

i) rd
i Reference answer (ideal)

y(x, m) LLM correctness ∈ {0, 1}, f d
im based nd′ No. of new task samples

gm(x) Performance predictor for LLMm ḡm(x) Binary performance predic-
tor

p(d′, m) Probability that ḡm is correct on xd′
i u(d) Task descriptor (for estimat-

ing p(d′, m))

S̃(m, d′) = 1
nd′ ∑

nd′
i=1 y(xd′

i , m) “Oracle” correctness score

S1(m, d′) = 1
nd′ ∑

nd′
i=1 gm(xd′

i) Simple correctness score

S2(m, d′) = 1
nd′ ∑

nd′
i=1 ḡm(xd′

i),

ḡm(xd′
i) = I(gm(xd′

i) > t)

Binary predictor correctness
score

S3(m, d′) = S2 p(d′, m)+(1−S2)(1−p(d′, m)) OOD correctness score

Supervised learning from benchmarks. Our goal is to learn a simple routing function
gm(x) for each LLM, m = 1, . . . , M, that can predict { f d′

im}
nd′
i=1, i.e., the performance of the

corresponding LLM on a new task d′. Then it is trivial to select the best LLM for this
task. For efficiency at test time, we restrict the routers {gm}M

m=1 to only depend on the
input x. This is in contrast to the majority of prior works on LLM routing that first obtain
generations with every candidate LLM and then use them to choose the best model (Liu &
Liu, 2021; Ravaut et al., 2022; Jiang et al., 2023). With thousands of open-source LLMs, it is
simply infeasible to obtain generations with every LLM for every input at test time.

To complete the problem formulation, we denote the “correctness” of model m on an in-
put x by y(x, m) ∈ {0, 1}. Correctness is evaluated as follows: generate a response od

im
with LLM m on input xd

i , compare it to the corresponding reference rd
i , and output 1 if

the model’s response is good enough, i.e., f d
im > ηd, and 0 otherwise, where ηd is some

threshold that can be task and/or metric specific. For tasks like classification or multiple-
choice QA, y(xd

i , m) = f d
im, while for various evaluation metrics used in summarization

and instruction following tasks (Zhang et al., 2020; Sellam et al., 2020; Yuan et al., 2021), the
notion of correctness can help to account for the heterogeneity of popular metrics and task
difficulty levels. In Section 5.2, we also consider raw metrics instead of correctness.

To train a predictor of an LLM correctness, for each LLM, m = 1, . . . , M, we solve the
optimization problem:

arg min
gm

D

∑
d=1

nd

∑
i=1

ℓ(gm(xd
i), y(xd

i , m)), (1)

where we choose ℓ to be a binary cross-entropy loss and gm is any standard probabilistic
classifier, i.e., gm(x) estimates P(y(x, m) = 1|x). In other words, training gm is equivalent
to simply training a (probabilistic) binary predictor.

An important consideration when training correctness predictors is their ability to general-
ize out-of-distribution (OOD) since our goal is to estimate LLM performance on a new task
d′ that has not been seen during training. Training predictors given data from multiple do-
mains that need to generalize to unseen domains is indeed an active area of research in ML
literature. For example, Sun & Saenko (2016); Arjovsky et al. (2019) proposed methods for
improving OOD generalization when training on data from multiple domains, while Koh
et al. (2021) proposed a benchmark for OOD generalization demonstrating the challenging
nature of the problem in various applications.

4

Published as a conference paper at COLM 2024

In this work, we use a simple model for the correctness predictor: we embed all inputs
with a sentence transformer (Reimers & Gurevych, 2019) and use a k-nearest neighbors
classifier (Cover & Hart, 1967) as {gm}M

m=1. kNN is a simple non-parametric classifier that
allows us to fit a potentially complicated decision boundary of an LLM’s correctness across
multiple tasks without extensive hyperparameter tuning. We choose this approach for
learning correctness predictors to emphasize the utility of learning from benchmarks even
with a basic method and instead focus on the question specific to our problem that has
not been studied in prior works on OOD generalization: Can we improve the quality of LLM
routing with an imperfect correctness predictor?

4 LLM routing with (imperfect) correctness predictors

The goal of LLM routing is to identify an LLM that will have the highest frequency of being
correct on a new task d′, given the inputs {xd′

i }nd′
i=1 from this task:

arg maxm S̃(m, d′), where S̃(m, d′) = 1
nd′ ∑

nd′
i=1 y(xd′

i , m).

Here, S̃(m, d′) is the “oracle” score that we want to estimate. The most intuitive estimator
is simply using the correctness predictor

S1(m, d′) = 1
nd′ ∑

nd′
i=1 gm(xd′

i), (2)

but prior work has shown that accurately estimating P(y(x, m) = 1|x), i.e., training cali-
brated correctness predictors gms, is challenging on OOD data (Ovadia et al., 2019). Mean-
while, gm may still produce accurate predictions after thresholding the predicted probabil-
ity even if the class probabilities are not estimated well (Guo et al., 2017). This motivates
another score:

S2(m, d′) = 1
nd′ ∑

nd′
i=1 ḡm(xd′

i), (3)

where ḡm(xd′
i) = I(gm(xd′

i) > t), t ∈ (0, 1) is some threshold, e.g., t = 0.5, I is an indicator
function, and ḡm(x) ∈ {0, 1} can be interpreted as the prediction of gm on x. This score,
however, does not take into account the potential “imperfection” of gm, i.e., gm, as a binary
classifier, is likely to have lower accuracy on OOD data from task d′. To address this issue,
we model the out-of-distribution confidence of the predictions ḡm.

A simple OOD confidence model We model LLM correctness as follows:

y(x, m)|x, d′ =
{

ḡm(x) with probability p(d′, m)

1 − ḡm(x) with probability 1 − p(d′, m),

i.e., p(d′, m) ∈ [0, 1] is the probability that ḡm is the correct prediction on a data point from
task d′. The above model can be condensed as follows:

y(x, m)|x, d′ ∼Bern(ḡm(x)p(d′, m) + (1 − ḡm(x))(1 − p(d′, m))). (4)

In this simplistic (and approximate) model, we assume that p(d′, m) does not depend on the
input x after conditioning on the task d′. The assumption is analogous to the homoscedastic
error term assumption in linear regression models and allows us to interpret p(d′, m) as the
marginal/overall accuracy of ḡm on data from the task d′.

Prior work has studied the problem of estimating OOD accuracy given the inputs from a
new task, but existing methods are challenging to combine with our approach. For exam-
ple, Garg et al. (2022) learn a threshold on model confidence, which is hard to apply when
using kNN classifiers, and Ng et al. (2023) require data augmentations that can be chal-
lenging to identify given the diversity of tasks in benchmarks. Prior methods also do not
take into account the partition of the train data into tasks inherent in our problem setting.

We treat the estimation of p(d′, m) as a supervised learning problem, taking advantage of
the task partition. Specifically, we assign a task descriptor u(d) ∈ R+ to every task that
measures the distance of the data from task d to the other available tasks combined. Then

5

Published as a conference paper at COLM 2024

we collect the values of p(d, m), i.e., the accuracy of ḡm on d, and fit a non-parametric re-
gression model to predict p(d, m) from u(d). At test time, we compute u(d′) for a new
task d′ based on the inputs {xd′

i }nd′
i=1 and predict p(d′, m) using the fitted regression model.

In general, one can consider higher-dimensional task descriptors u(d), but here, for sim-
plicity, we keep it 1-dimensional and use a Gaussian kernel smoother (also known as the
Nadaraya-Watson estimator) as the non-parametric regressor. See details in Appendix A.

Finally, given the model of LLM correctness 4, S̃(m, d′) is a random variable (corresponding
to S̃(m, d′)) distributed as a (scaled) sum of two Bernoulli random variables. To arrive at
our final score for LLM routing, we take its expected value:

S3(m, d′) = S2(m, d′)p(d′, m) + (1 − S2(m, d′))(1 − p(d′, m)). (5)

When selecting an LLM with S3, we consider an alternative to the arg max criterion based
on our correctness model 4, which defaults to the best model on average across benchmark
datasets when we are not sufficiently confident that a candidate model will be better:{

m3 if P(S̃(m3, d′) > S̃(m∗, d′)) > η

m∗ otherwise,
(6)

where m3 = arg maxm S3(m, d′), i.e., the best LLM for the new task according to S3, and
m∗ = arg maxm ∑D

d=1 S̃(m, d), i.e., the best LLM across the benchmark datasets. In the
experiments, we set η = 0.6. We summarize LLM routing procedures in Appendix A.

Connection to meta-learning. The OOD confidence model in equation 4 can be viewed as
a form of meta-learning where ḡm and p(·, m) are meta-parameters and the adaptation step
is ḡm → ḡm(·)p(·, m). We exploit this connection to theoretically demonstrate the potential
advantages of routing LLMs using S3 over S2 in Appendix B.

5 Experiments

5.1 Model routing on HELM

Data. We select 29 datasets from the HELM benchmark (Liang et al., 2022) representing
scenarios such as question answering, text classification, language, knowledge, and rea-
soning, among others. We present additional information about the datasets in Table 5.

Models. We evaluate 18 open-source models ranging in size from 3B to 70B, including base
and chat variations of Llama 2. All models are summarized in Table 6.

Model routing. The best model on average (BMA) across the 29 considered HELM datasets
is llama-2-70b (followed by llama-2-70b-chat). Our goal is to show that learning model
routers from benchmark data can simultaneously outperform BMA and reduce inference
costs by recommending smaller LLMs for tasks where they can perform well. We compare
models selected with the three scores, S1, S2, and S3, presented in Section 4 to the perfor-
mance of llama-2-70b, i.e., the BMA. All correctness predictors gms are kNN classifiers
with k = 5. We also report the performance of the best model according to the “oracle”
score S̃, which is the upper bound on what can be achieved with model routing, and S̃3,
which corresponds to S3 with the true p(d′, m), i.e., the accuracy of (an imperfect) gm on d′.
Results for neural networks as correctness predictors are in Appendix C.1.

Baselines. We consider three baselines in addition to BMA:

• Mixture of Experts (MoE) (Masoudnia & Ebrahimpour, 2014) selects an LLM for each
input individually based on the correctness frequency of candidate LLMs on k neighbors
of this input,

• average log-likelihood (LL) (or negative perplexity) selects an LLM most confident in its
responses over the test inputs, and

• PairRanker (Jiang et al., 2023) uses a model pre-trained to compare LLM generations to
select a model per input.

6

Published as a conference paper at COLM 2024

Table 2: LLM routing on HELM: Comparison of various model scores for LLM routing
with the Oracle model selection and performance of the best model on average (BMA). Best
results are highlighted with bold and second best with an underline (excluding Oracle).

Acc. Ratio to Best Pearson Spearman % BMA # Params Rank

S1 eq. 2 0.662 0.855 0.685 0.465 0.17 40.3B 6.172
S2 eq. 3 0.676 0.868 0.636 0.468 0.10 44.3B 5.897
S3 eq. 5, 6 0.694 0.898 0.727 0.492 0.48 49.8B 5.310
S3 true p 0.735 0.944 0.799 0.596 0.22 33.8B 3.800
LL 0.684 0.869 0.714 0.459 0.10 — 6.517
MoE 0.635 0.825 — — 0.08 34.0B —
Pair Ranker 0.455 0.605 — — 0.04 — —
BMA 0.688 0.884 — — 1.00 70.0B 6.069

Oracle 0.773 1.000 — — 0.21 29.1B 1.000

The latter two baselines require producing generations with every LLM at test time to make
a selection, while all of our scores only require generating with the chosen LLM.

Results. We conduct 29 sets of experiments, each time selecting 28 of the datasets as the
benchmark data for training the LLM routers and using the remaining task as the new
task d′ for evaluating the quality of the LLM selection for this task. In Table 2 we report
averages across experiments for the performance of the selected model (Acc.), ratio of this
performance to the performance of the best model for the corresponding new task (Ratio
to Best), Pearson and Spearman rank correlations between model accuracies and model
scores, number of parameters of the selected model (# Params), and rank of the selected
model out of 18 considered (Rank). We also report the fraction of times the BMA is selected
by a method (% BMA). Best results are highlighted with bold and second best with an
underline (excluding Oracle).

First, we notice that accounting for imperfections of the correctness predictors (their aver-
age accuracy is 0.59) has clear benefits: when we have access to the true accuracy of correct-
ness predictors, the corresponding score, S3 true p, noticeably outperforms all other scores.
Our simple kernel smoothing estimator of this accuracy (MAE= 0.116) allows us to obtain
a practical model routing score S3 that outperforms BMA (llama-2-70b) while choosing
smaller models for some of the tasks (as evident by the average number of parameters
of the chosen models). S2 sacrifices some accuracy but chooses even smaller performant
models. Overall, learning from benchmarks allows us to obtain LLM routers that can im-
prove overall performance while utilizing smaller models where appropriate. We note that
log-likelihood (LL) also performs well. However, routing with it requires passing each test
input through each candidate LLM, which has 347B parameters in total.

Pair Ranker and MoE baselines attempt to select an LLM for each input individually and
underperform in this experiment. Selecting a model per input has the potential to outper-
form the oracle and achieve perfect accuracy (provided there is at least a single LLM that is
correct on each input), but it is very challenging to conduct such model routing accurately
on a new, i.e. OOD, task.

Reducing the OOD gap. The average accuracy of correctness predictors across tasks and
models for the experiments in Table 2 is 0.59. It is a fairly low accuracy for binary classi-
fication, which we attribute to the diversity of tasks in HELM leading to substantial dis-
tribution shifts when predicting the correctness of LLMs on held-out tasks. We investi-
gate the quality of model routing when we reduce this OOD gap. A simple strategy to
reduce this gap is to collect a small number of labeled in-distribution samples. This can
be accomplished by asking a practitioner to provide reference answers (rd′

i s) for a small
number of inputs from their task to evaluate the correctness of candidate LLMs on these
in-distribution inputs and use it to improve correctness predictors.

We simulate this scenario by moving min(αnd′ , 50) samples from the data from a new task
d′ to the data for training the correctness predictors. The upper limit of 50 samples is to

7

Published as a conference paper at COLM 2024

maintain practical utility while accounting for varying dataset sizes (see Table 5). We also
compare to Few-Shot, which selects an LLM for the new task based on the performance
only on these labeled samples from the new task. We conduct 29 sets of experiments,
repeating each one 10 times to obtain standard deviations (randomness is due to random
selection of data points from a new task for reducing the OOD gap). We summarize the
average accuracy of models selected with various routing scores for varying α in Figure 2
(α = 0 corresponds to Table 2). Results for Pearson correlation are in Figure 6(a).

0.00 0.05 0.10 0.15 0.20 0.25

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Av
er

ag
e

Ac
cu

ra
cy

S1 eq. (3)
S2 eq. (4)
S3 eq. (8)
S3 true p
LL
MoE
BMA
Oracle
Few-Shot

Figure 2: Using min(αnd′ , 50) training
samples from d′ to reduce OOD gap.

We see that even a small number of in-
distribution samples (α = 0.05) can reduce the
OOD gap (corresponding average accuracy of
correctness predictors is 0.65; see Figure 6(b))
and noticeably improves the model routing per-
formance of all three of our scores. When the
number of in-distribution samples further in-
creases, S1 starts to outperform S3. We attribute
this observation to kNN being well-calibrated
in-distribution, i.e., the correctness predictors
provide reliable estimates of their own confi-
dence P(y(x, m) = 1|x), which are used by S1
in equation 2. Finally, we note a fairly large
variance in the results due to random selection
of the in-distribution training samples from d′,
suggesting that active learning (Settles, 2009) can help to improve LLM routing further.

5.2 Model Routing on Mix-Instruct

0.1 0.2 0.3 0.4 0.5 0.6
65
70
75

BE
RT

Sc
or

e

Ours
Oracle
LL

0.1 0.2 0.3 0.4 0.5 0.6
4.0
3.5
3.0

BA
RT

Sc
or

e

10% 18% 27% 37% 48% 61% 73% 84% 97% 100%
Percentage of test-set used

0.1 0.2 0.3 0.4 0.5 0.6
Maximal distance to reference data

1.00
0.75
0.50
0.25
0.00

BL
EU

RT

Figure 3: Average metrics on subsets of the
MixInstruct test set, defined by limiting the
maximal average distance between test in-
stances and their closest neighbors in the ref-
erence (train) set.

We further demonstrate our approach in
a different setting and task type, on
the MixInstruct benchmark dataset (Jiang
et al., 2023). The dataset is composed
of instruction-following tasks, divided into
train/validation/test sets of 100K/5K/5K
samples, and includes evaluations of N =
11 open-source LLMs using common met-
rics, e.g. BERTScore (Zhang et al.,
2020), BARTScore (Yuan et al., 2021), and
BLEURT (Sellam et al., 2020). In Jiang
et al. (2023), this benchmark was used
to compare different LLM ranking meth-
ods in per-instance model selection. We
follow the same setting and apply our
score S1(m, d′) to the test set, per-instance,
where we use the 100K-sample train set as
the benchmark data for training our LLM
router. See Appendices A and D for details
on the score computation and the experi-
ment parameters, respectively. Due to the per-instance setting and the test set constructed
from in-distribution data, we focus on our simplest router model S1, equation 2.

We compare our approach with the scoring methods examined by Jiang et al. (2023), as well
as scoring based on the average log-likelihood (LL) of the model responses to the inputs.
Additionally, we present the metrics for the best models on average (BMA), Open-Assistant
(LAION-AI, 2023) and Vicuna (Chiang et al., 2023).

We report the results of BERTScore, BARTScore and BLEURT in Table 3, along with the
number of model calls per instance (MCPI), for N LLMs, performed during inference time.
All compared methods require model generations for every point in the test set, by each of
the examined LLMs, whereas our approach requires only one model generation and one
call to some general embedding function. In addition, all methods, except for LL, require

8

Published as a conference paper at COLM 2024

Table 3: Average metrics for per-instance LLM selection on the MixInstruct test set.

BERTScore ↑ BARTScore ↑ BLEURT ↑ MCPI

Random 66.36 -3.76 -0.77 -
LL 65.83 -4.12 -0.96 N
BMA: Open-Assisant 74.68 -3.45 -0.39 -
BMA: Vicuna 69.60 -3.44 -0.61 -
MLM-Scoring (Salazar et al., 2020) 64.77 -4.03 -0.88 N
SimCLS (Liu & Liu, 2021) 73.14 -3.22 -0.38 N
SummaReranker (Ravaut et al., 2022) 71.60 -3.25 -0.41 N
PairRanker (Jiang et al., 2023) 72.97 -3.14 -0.37 N
Ours 74.75 -3.40 -0.38 2

Oracle 77.67 -2.87 -0.15 N

training auxiliary language models, whereas our approach is a simple kNN classifier on
the embedded inputs. While our approach does not consistently outperform the compared
methods, these results demonstrate the potential of using benchmark datasets for model
routing with significantly better inference-time efficiency.

Effect of benchmark dataset sparsity. To highlight the potential of our approach in this set-
ting, we examine the effect of the reference benchmark data sparsity. We apply our method
to different subsets of the test set, Xtest, where the subsets are defined by limiting the max-
imal average distance of each test set point to the closest points from the reference (train)

set, denoted by NNtrain, i.e. X′
C =

{
x′ ∈ Xtest

∣∣∣ 1
|NNtrain(x′)| ∑x∈NNtrain(x′) dist(x′, x) < C

}
,

where C is the maximal average distance and X′
C is the resulting subset of the test set.

Figure 3 presents the metric scores for the different subsets using our method, the oracle
(best possible choices), and LL scoring. We also report the percentage of the test set that is
used in each subset. This figure depicts that our predictor approaches the oracle metrics
as the average distance to the reference points decreases. This suggests that adding more
benchmark datasets to reduce the sparsity of the reference space may lead to better LLM
selections with our approach.

6 Discussion and Conclusion

How useful are smaller LLMs? While a given LLM may work best on average, these mod-
els tend to be the biggest and therefore most expensive to run. Practitioners can achieve
gains in cost, compute, and latency if we can successfully predict whether a smaller LLM
can be adequate for a given task. Identifying good smaller models for tasks of interest will
also redefine the cost/benefit tradeoff behind automating certain tasks, potentially incen-
tivizing the automation of new tasks that were previously cost- prohibitive to automate
with larger LLMs.

0.00 0.05 0.10 0.15 0.20 0.25
0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

Av
er

ag
e

Ac
cu

ra
cy

S1 eq. (3)
S2 eq. (4)
S3 eq. (8)
S3 true p
LL
Llama 2 70B
Oracle

Figure 4: Routing with ≤ 13B models.

To evaluate the potential of smaller LLMs we
revisit our HELM experiment in Figure 2. In
Figure 4, we perform LLM routing using only
models with ≤ 13B parameters and compare it to
the performance of Llama 2 70B. Oracle’s per-
formance demonstrates that it is conceptually
possible to outperform a large model by rout-
ing smaller LLMs. Results with our scores S1
and S2 (see Figure 7 for breakdown by scores)
demonstrate that it is also practically feasible
to match the performance of the 70B model by
combining learning from benchmarks with a
small number (α = 0.04, i.e., 2-40 samples) of

9

Published as a conference paper at COLM 2024

labeled samples from a new task that a practitioner can provide to save on the inference
costs in their LLM application.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Dataset Distance u(d)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
ar

so
n

Co
rr(

S 3
 e

q.
 (7

),
Ac

cs
.)

Figure 5: Correlation(S3, Accs.) vs u(d′).

Learning from more benchmarks. We antic-
ipate learning LLM routers from benchmarks
to be the most effective when new tasks are
similar to the benchmark tasks, thus reduc-
ing the OOD gap without any labeling burden
for a practitioner. To empirically investigate
this hypothesis, in Figure 5 we visualize the
relation between the quality of model routing
with S3, measured with Pearson correlation be-
tween model scores and accuracies of candidate
LLMs, and the distance u(d′) from a new task
d′ to the available benchmark data for training
the routers. In this experiment, we aggregate
results across different α values from Figure 2.
For smaller distance values the correlation is approaching 1, while for large distances it
sometimes deteriorates. Results for other scores demonstrate a similar trend and are pre-
sented in Appendix C.3 along with additional details. This experiment and the benchmark
dataset sparsity analysis presented in Figure 3 for MixInstruct illustrate that learning with
more benchmarks can improve the efficacy and reliability of the LLM routers as new tasks
are more likely to be closer to a larger collection of datasets.

Future work. Our work demonstrates the potential of learning from benchmarks for LLM
routing and investigates 3 model scores in the context of OOD generalization when routing
LLMs for new tasks. We summarize the potential next steps to advance LLM routing.

The major challenge of LLM routing is OOD generalization of correctness predictors. Thus,
using more benchmarks and modern methods for improving OOD generalization to learn
correctness predictors is a promising next step. A practitioner can also provide labels for
a few samples from their task, possibly guided by active learning techniques, to adapt or
fine-tune correctness predictors. Even when reducing the OOD gap is too challenging, our
score accounting for the (potentially low) accuracy of correctness predictors demonstrated
strong results when this accuracy, p(d′, m), is known for a new task, thus encouraging the
development of methods for estimating it better.

We anticipate that routing “expert” LLMs fine-tuned for a specific domain can improve the
results. Regions of the sample space where such models are “correct” should mostly align
with the domains of their expertise (recall Figure 1), making it easier to learn the correctness
predictors and simplifying LLM routing when a new task is from a specific domain.

Our experiments in Figure 4 demonstrate the utility of LLM routing with smaller models,
which can reduce costs and facilitate using LLMs in a broader set of domains. Thus, we
want to explore modifications to our scores that will encourage the selection of smaller
LLMs when their anticipated performance is comparable to the larger, more reliable mod-
els. Prior work on frugal API selection (Chen et al., 2020; 2023) provides a good starting
point to explore this direction.

Acknowledgments

The MIT FutureTech research group recognizes the generous support of the MIT-IBM Wat-
son AI Lab, Boston Scientific, and Good Ventures.

The MIT Geometric Data Processing group acknowledges the generous support of Army
Research Office grants W911NF2010168 and W911NF2110293, of Air Force Office of Scien-
tific Research award FA9550-19-1-031, of National Science Foundation grant CHS-1955697,
from the CSAIL Systems that Learn program, from the MIT–IBM Watson AI Laboratory,
from the Toyota–CSAIL Joint Research Center, from a gift from Adobe Systems, and from
a Google Research Scholar award.

10

Published as a conference paper at COLM 2024

References

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk min-
imization. arXiv preprint arXiv:1907.02893, 2019.

Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert,
Nazneen Rajani, Omar Sanseviero, Lewis Tunstall, and Thomas Wolf. Open llm leader-
board. https://huggingface.co/spaces/HuggingFaceH4/open llm leaderboard, 2023.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning,
volume 4. Springer, 2006.

Ondřej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Jo-
hannes Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, et al.
Findings of the 2014 workshop on statistical machine translation. In Proceedings of the
ninth workshop on statistical machine translation, pp. 12–58, 2014.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von
Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On
the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural information processing systems, 33:
1877–1901, 2020.

Jiefeng Chen, Frederick Liu, Besim Avci, Xi Wu, Yingyu Liang, and Somesh Jha. Detecting
errors and estimating accuracy on unlabeled data with self-training ensembles. Advances
in Neural Information Processing Systems, 34:14980–14992, 2021a.

Lingjiao Chen, Matei Zaharia, and James Y Zou. Frugalml: How to use ml prediction
apis more accurately and cheaply. Advances in neural information processing systems, 33:
10685–10696, 2020.

Lingjiao Chen, Matei Zaharia, and James Zou. FrugalGPT: How to Use Large Lan-
guage Models While Reducing Cost and Improving Performance. arXiv preprint
arXiv:2305.05176, 2023.

Mayee Chen, Karan Goel, Nimit S Sohoni, Fait Poms, Kayvon Fatahalian, and Christopher
Ré. Mandoline: Model evaluation under distribution shift. In International conference on
machine learning, pp. 1617–1629. PMLR, 2021b.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin
Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P.
Xing. Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality,
March 2023. URL https://lmsys.org/blog/2023-03-30-vicuna/.

Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions
on information theory, 13(1):21–27, 1967.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. Journal of Machine Learning Research,
23(120):1–39, 2022.

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei Liu. Gptscore: Evaluate as you
desire. arXiv preprint arXiv:2302.04166, 2023.

11

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://lmsys.org/blog/2023-03-30-vicuna/

Published as a conference paper at COLM 2024

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Lau-
rence Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria
Reynolds, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, September 2021. URL https://doi.org/10.
5281/zenodo.5371628.

Saurabh Garg, Sivaraman Balakrishnan, Zachary Chase Lipton, Behnam Neyshabur, and
Hanie Sedghi. Leveraging unlabeled data to predict out-of-distribution performance. In
International Conference on Learning Representations, 2022.

Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan Misra. Scaling and benchmarking
self-supervised visual representation learning. In Proceedings of the ieee/cvf International
Conference on computer vision, pp. 6391–6400, 2019.

Devin Guillory, Vaishaal Shankar, Sayna Ebrahimi, Trevor Darrell, and Ludwig Schmidt.
Predicting with confidence on unseen distributions. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pp. 1134–1144, 2021.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In Inter-
national Conference on Learning Representations, 2021.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern
neural networks. In International conference on machine learning, pp. 1321–1330. PMLR,
2017.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements
of statistical learning: data mining, inference, and prediction, volume 2. Springer, 2009.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary,
Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian
Bressand, et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language
models with pairwise ranking and generative fusion. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 14165–
14178, Toronto, Canada, jul 2023. Association for Computational Linguistics. doi: 10.
18653/v1/2023.acl-long.792. URL https://aclanthology.org/2023.acl-long.792.

Yiding Jiang, Vaishnavh Nagarajan, Christina Baek, and J Zico Kolter. Assessing General-
ization of SGD via Disagreement. In International Conference on Learning Representations,
2021.

Markelle Kelly, Rachel Longjohn, and Kolby Nottingham. The UCI Machine Learning
Repository, 2023. URL https://archive.ics.uci.edu.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Ak-
shay Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao,
et al. Wilds: A benchmark of in-the-wild distribution shifts. In International Conference
on Machine Learning, pp. 5637–5664. PMLR, 2021.

LAION-AI. Open assistant, 2023. URL https://github.com/LAION-AI/Open-Assistant.

Chunyuan Li, Haotian Liu, Liunian Li, Pengchuan Zhang, Jyoti Aneja, Jianwei Yang, Ping
Jin, Houdong Hu, Zicheng Liu, Yong Jae Lee, et al. Elevater: A benchmark and toolkit for
evaluating language-augmented visual models. Advances in Neural Information Processing
Systems, 35:9287–9301, 2022.

12

https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://aclanthology.org/2023.acl-long.792
https://archive.ics.uci.edu
https://github.com/LAION-AI/Open-Assistant

Published as a conference paper at COLM 2024

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Ya-
sunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic
evaluation of language models. arXiv preprint arXiv:2211.09110, 2022.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu.
Gpteval: Nlg evaluation using gpt-4 with better human alignment. arXiv preprint
arXiv:2303.16634, 2023.

Yixin Liu and Pengfei Liu. Simcls: A simple framework for contrastive learning of ab-
stractive summarization. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pp. 1065–1072, 2021.

Subha Maity, Mikhail Yurochkin, Moulinath Banerjee, and Yuekai Sun. Understanding new
tasks through the lens of training data via exponential tilting. In International Conference
on Learning Representations, 2023.

Saeed Masoudnia and Reza Ebrahimpour. Mixture of experts: a literature survey. Artificial
Intelligence Review, 42:275–293, 2014.

Nathan Hoyen Ng, Neha Hulkund, Kyunghyun Cho, and Marzyeh Ghassemi. Predicting
out-of-domain generalization with neighborhood invariance. Transactions on Machine
Learning Research, 2023.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin,
Joshua Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s
uncertainty? evaluating predictive uncertainty under dataset shift. Advances in neural
information processing systems, 32, 2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Sebastian Raschka. Model evaluation, model selection, and algorithm selection in machine
learning. arXiv preprint arXiv:1811.12808, 2018.

Mathieu Ravaut, Shafiq Joty, and Nancy Chen. Summareranker: A multi-task mixture-of-
experts re-ranking framework for abstractive summarization. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
4504–4524, 2022.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese
bert-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational Linguistics, 2019.

Julian Salazar, Davis Liang, Toan Q Nguyen, and Katrin Kirchhoff. Masked language
model scoring. In Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 2699–2712, 2020.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. BLEURT: Learning robust metrics for
text generation. In Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 7881–7892, 2020.

Burr Settles. Active learning literature survey. 2009.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid,
Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al.
Beyond the imitation game: Quantifying and extrapolating the capabilities of language
models. arXiv preprint arXiv:2206.04615, 2022.

Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adap-
tation. In Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October
8-10 and 15-16, 2016, Proceedings, Part III 14, pp. 443–450. Springer, 2016.

13

Published as a conference paper at COLM 2024

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bow-
man. Glue: A multi-task benchmark and analysis platform for natural language under-
standing. arXiv preprint arXiv:1804.07461, 2018.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-
purpose language understanding systems. Advances in neural information processing sys-
tems, 32, 2019.

Jiaan Wang, Yunlong Liang, Fandong Meng, Haoxiang Shi, Zhixu Li, Jinan Xu, Jianfeng
Qu, and Jie Zhou. Is chatgpt a good nlg evaluator? a preliminary study. arXiv preprint
arXiv:2303.04048, 2023.

Hui Xu and Robert Tibshirani. Estimation of prediction error with known covariate shift.
arXiv preprint arXiv:2205.01849, 2022.

Yaodong Yu, Zitong Yang, Alexander Wei, Yi Ma, and Jacob Steinhardt. Predicting out-
of-distribution error with the projection norm. In International Conference on Machine
Learning, pp. 25721–25746. PMLR, 2022.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. Bartscore: Evaluating generated text as
text generation. Advances in Neural Information Processing Systems, 34:27263–27277, 2021.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. BERTScore:
Evaluating Text Generation with BERT. In International Conference on Learning Represen-
tations, 2020.

A Correctness predictors and confidence estimation

We provide additional details on the correctness predictors used in our experiments, along
with more details on the dataset distance and the Gaussian kernel smoother for estimating
the accuracy of the correctness predictors on new tasks, p(d′, m)s.

Correctness predictors in our experiments While any probabilistic classifier may fit our
setting, in the experiments, we mainly used a simple kNN classifier applied in an embed-
ded space. Recall that we have D benchmark datasets with inputs {xd

i }
nd
i=1 for d = 1, . . . , D.

To compute our correctness predictor based on the benchmark datasets, we first embed all
their inputs. We denote the combined set of embedded inputs from the benchmark datasets
as D = {ϕ(xd

1), . . . , ϕ(xd
nd
)}D

d=1, where ϕ is a sentence transformer (Reimers & Gurevych,
2019). We use all-mpnet-base-v2 from Hugging Face in all experiments. Given a sample
xd′

i from a new task d′, we embed it using the same ϕ and define the classifier, gm, for each
model m by:

gm

(
xd′

i

)
=

1
k ∑

e∈NN(ϕ(xd′
i),k,D)

y(e, m), (7)

where y(e, m) ∈ {0, 1} is the correctness of model m on the (embedded) input e, and
NN(ϕ(xd′

i), k,D) is the set of k closest embedded neighbors from D to the new embed-
ded sample ϕ(xd′

i), according to the cosine distance. Then, ḡm, as defined in equation 3, is a
binary kNN classifier. Finally, we compute the per-model correctness predictors, S1(m, d′)
and S2(m, d′), for the new task d′, according to equation 2 and equation 3, respectively.

Next, we describe a method for estimating the probability p(d′, m) in our confidence model
and the S3(m, d′) score, equation 5. This method comprises a task descriptor based on
dataset distance and a kernel smoother, defined as follows.

14

Published as a conference paper at COLM 2024

Task descriptor as dataset distance To compare tasks we need to assign them some nu-
merical representations, i.e., task descriptors. Here we utilize dataset distance as task de-
scriptors as follows. Our dataset distance u(d) is a one-sided variant of the Chamfer dis-
tance with extended neighborhood size. We define it formally below:

u(d) =
1

nd

nd

∑
i=1

nn(xd
i ,D−d), (8)

where D−d is the set of (embedded) inputs from the D datasets excluding inputs from d
(for a new task d′, D−d′ = D since d′ is not part of the D benchmark datasets we use for
training LLM routers), and nn(xd

i ,D−d) is the average distance from the input xd
i to its

closest κ neighbors in D−d:

nn(x,D) =
1
κ ∑

e∈NN(ϕ(x),κ,D)

cosine(ϕ(x), e), (9)

where NN(ϕ(x), κ,D) is the set of κ closest embedded neighbors of ϕ(x) in D according to
cosine distance. We set κ = 19 for the dataset distance in all experiments.

Kernel smoother For each LLM m = 1, . . . , M, to obtain the corresponding kernel
smoother estimate we iterate over the available benchmark datasets, each time holding
one out and computing pairs (u(d), p(d, m)) for held out dataset d, where p(d, m) is the
accuracy of gm on data from d after training on D−d. We repeat this process 10 times
for 15 values of in-distribution mixing parameter α (similar to the experimental setup in
Figure 2 but using benchmark datasets d = 1, . . . , D instead of d′) to obtain the training
set of distance-accuracy pairs {uz, pz(m)}Z

z=1. In the HELM experiments in Section 5.1,
Z = 28 ∗ 10 ∗ 15 = 4200 (28 is the number of datasets from HELM after holding one out as
the new task for evaluating the performance).

For a new task d′, we compute u(d′) using the inputs from this task and our benchmark
datasets and estimate p(d′, m) for each m with simple Gaussian kernel smoothing:

p(d′, m) =
∑Z

z=1 pz(m)K(u(d′), uz)

∑Z
z=1 K(u(d′), uz)

, (10)

where K(u(d′), uz) = exp
(
− (u(d′)−uz)2

2σ2

)
. We set σ = 0.09 in all experiments, which is the

value we found to perform well through some preliminary experimentation.

Finally, we note that the proposed confidence model, including the definitions of the
dataset distance and kernel smoother, can be combined with any classifier gm, and is not
restricted to the kNN classifier used for the correctness predictor in our experiments.

Additional notes regarding S3 Recall that when selecting a model with S3(m, d′) we use
an additional step described in equation 6 that facilitates the selection of the best model
on average when we are not sufficiently confident in the model with the highest S3(m, d′)
score. Probability expression, P(S̃(m3, d′) > S̃(m∗, d′)), required for this step is not avail-
able in closed form, as S̃ is distributed as a (scaled) sum of two Bernoulli random variables,
but it is straightforward to estimate via Monte Carlo sampling from the corresponding
Bernoulli distributions.

When reporting correlations for S3 (e.g., Pearson and Spearman correlations in Table 2), we
use S3(m, d′) as is, i.e., as defined in equation 5.

B Connection to meta-learning

The OOD confidence model in equation 4 is a meta-model of routing across multiple tasks,
and fitting it entails a form of meta-learning. Consider the meta-learning problem

min
gm ,p(·,m)

D

∑
d=1

nd

∑
i=1

ℓ(ḡm(xd
i)p(d, m) + (1 − ḡm(xd

i))(1 − p(d, m)), y(xd
i , m)), (11)

15

Published as a conference paper at COLM 2024

where ḡm and p(·, m) are meta-parameters and adaptation step ḡm → ḡm(·)p(·, m) adap-
tively shrinks the router output towards ambiguity. We exploit this connection to theoreti-
cally demonstrate the potential advantages of routing LLMs using S3 over S2.

In expectation/in the population, equation 11 fits a larger model class than equation 1, so
the risk of the adaptively shrunken router is at most that of the non-adaptive router:

∑D
d=1 E

[
ℓ(ḡm(Xd)p(d, m) + (1 − ḡm(Xd))(1 − p(d, m)), y(Xd, m))

]
≤ ∑D

d=1 E
[
ℓ(ḡm(Xd), y(Xd, m))

]
.

(12)

This suggests (subject to standard assumptions on the loss function) that adaptive shrink-
age routing leads to better approximations of the oracle router. Lemma B.1 confirms this
intuition.
Lemma B.1. Let ℓ(y1, y2) = ρ(y1 − y2) for some subadditive ρ : R → R (e.g. ρ(x) = 1

2 x2 for
the square loss). We have

ℓ(S2, S̃) ≤ E
[
ℓ(ḡm(Xd), y(Xd, m))

]
),

ℓ(S3, S̃) ≤ E
[
ℓ(p(d, m)ḡm(Xd) + (1 − p(d, m))(1 − ḡm(Xd)), y(Xd, m))

]
).

Proof. We start by showing the upper bound of ℓ(S2, S̃):

ℓ(S2, S̃) = ρ(E
[
ḡm(Xd)

]
− E

[
y(Xd, m)

]
) (def of ℓ)

= ρ(E
[
ḡm(Xd)− y(Xd, m)

]
)

≤ E
[
ρ(ḡm(Xd)− y(Xd, m))

]
) (convexity of ρ)

= E
[
ℓ(ḡm(Xd), y(Xd, m))

]
), (def of ℓ)

where we recalled that subadditive functions are convex in the third step. The upper bound
of ℓ(S3, S̃) follows a similar argument:

ℓ(S3, S̃) = ρ(p(d, m)E
[
ḡm(Xd)

]
+ (1 − p(d, m))(1 − E

[
ḡm(Xd)

]
)− E

[
y(Xd, m)

]
)

= ρ(E
[
p(d, m)ḡm(Xd) + (1 − p(d, m))(1 − ḡm(Xd))− y(Xd, m)

]
)

≤ E
[
ρ(p(d, m)ḡm(Xd) + (1 − p(d, m))(1 − ḡm(Xd))− y(Xd, m))

]
)

= E
[
ℓ(p(d, m)ḡm(Xd) + (1 − p(d, m))(1 − ḡm(Xd)), y(Xd, m))

]
)

≤ E
[
ℓ(ḡm(Xd), y(Xd, m))

]
).

Combining equation 12 and Lemma B.1, we expect the adaptive router based on S3 to
outperform its non-adaptive counterpart based on S2. That said, it is unclear whether
adaptive shrinkage will improve the performance of the adaptive router in finite samples:
the expected performance of the adaptive router may be offset by the inflation in variance
from fitting the larger (adaptive) model class. Fortunately, our empirical results show that
task-specific adaption, i.e., using S3 as a score for routing, generally improves performance.
The two-step method for fitting ḡm and p in Section 4 approximately minimizes equation 11
with a single Gauss-Seidel pass through the decision variables.

C Additional results for model routing on HELM

C.1 Results with MLP as the correctness predictor

MLP Classifier We present LLM routing with more sophisticated correctness predictors.
In this section, we use a small Multi-Layer Perceptron (MLP) as gm to classify the embed-
ded inputs. Each MLP comprises three fully connected layers (two hidden layers, 1500
units each) with ReLU activation and sigmoid output. These MLPs were trained with the

16

Published as a conference paper at COLM 2024

Table 4: Average metrics for the experiments using MLP. Best results are highlighted with
bold, and second best with an underline (excluding Oracle).

Acc. Ratio to Best Pearson Spearman % BMA # Params Rank

S1 eq. 2 0.693 0.893 0.750 0.559 0.19 57.6 4.345
S2 eq. 3 0.683 0.878 0.675 0.547 0.45 57.9 5.041
S3 eq. 5, 6 0.690 0.884 0.755 0.544 0.81 66.3 5.566
S3 ATC 0.646 0.827 0.651 0.365 0.56 48.7 7.283
S3 true p 0.740 0.943 0.840 0.686 0.43 50.4 3.455
LL 0.684 0.869 0.714 0.459 0.10 — 6.517
BMA 0.688 0.884 — — 1.00 70.0 6.069

Oracle 0.773 1.000 — — 0.21 29.1 1.000

0.00 0.05 0.10 0.15 0.20 0.25

0.65

0.70

0.75

0.80

0.85

Pe
ar

so
n

Co
rr(

Sc
or

e,
 A

cc
s.)

S1 eq. (3)
S2 eq. (4)
S3 eq. (7)
S3 true p
LL

(a) Pearson correlation

0.00 0.05 0.10 0.15 0.20 0.25

0.60

0.62

0.64

0.66

0.68

Av
er

ag
e

Ac
c.

 o
f g

m
s

(b) Accuracy of gms

0.00 0.05 0.10 0.15 0.20 0.25

0.106

0.108

0.110

0.112

0.114

0.116

M
AE

 o
f e

st
im

at
in

g
p

(c) Estimation of p(d′, m)s

Figure 6: Additional results for Reducing the OOD gap experiment in Figure 2.

Adam optimizer (Kingma & Ba, 2014) with learning rate 0.01 to minimize the binary cross
entropy loss described in equation 1. Training occurred over 100 epochs with early stop-
ping should the validation accuracy not increase for 10 consecutive epochs. We also explore
the combination of S3 with ATC (instead of the kernel smoother), a prior OOD accuracy
estimator proposed by Garg et al. (2022).

Results We conducted the model routing experiment analogous to the experiment in Ta-
ble 2 of the main paper. Results are reported in Table 4. We note several differences com-
pared to results with the kNN classifier in Table 2. First is the clear improvement in the S1
score; the MLP classifier performs better on OOD data. As before S3 true p outperforms the
other scores indicating the potential value of using the proposed confidence model 4. How-
ever, in this experiment, S3 with the kernel smoother no longer improves upon S1. We also
report results with ATC as the estimator of the accuracy of correctness predictors, which
performs noticeably worse than our kernel smoothing estimator. The corresponding MAE
is 0.118 for the kernel smoother and 0.177 for the ATC, demonstrating the advantage of our
estimator in this application. Finally, across all scores the selected model sizes have con-
siderably increased; this suggests that the MLP classifier underestimates the performance
of smaller models compared to kNN.

C.2 Reducing the OOD gap

We present additional results for this experiment in Figure 6. (a) shows Pearson correlation
improvement as we increase α, similar to the trends in accuracy improvement in Figure 2;
(b) demonstrates that the accuracy of correctness predictors gms improves as we increase
the number of samples from d′ used for training them, thus reducing the OOD gap; (c)
shows the mean absolute error (MAE) of our kernel smoothing estimator of the accuracy
of correctness predictors p(d′, m) – the estimator does not improve as much with increased
α, thus S3 eventually becomes worse than S1 in terms of correlation and accuracy of the
selected models.

17

Published as a conference paper at COLM 2024

0.00 0.05 0.10 0.15 0.20 0.25
0.62

0.64

0.66

0.68

0.70

0.72

Av
er

ag
e

Ac
cu

ra
cy

S1 eq. (3)
Llama 2 70B

(a) S1 equation 2

0.00 0.05 0.10 0.15 0.20 0.25
0.62

0.64

0.66

0.68

0.70

0.72

Av
er

ag
e

Ac
cu

ra
cy

S2 eq. (4)
Llama 2 70B

(b) S2 equation 3

0.00 0.05 0.10 0.15 0.20 0.25
0.62

0.64

0.66

0.68

0.70

0.72

Av
er

ag
e

Ac
cu

ra
cy

S3 eq. (8)
Llama 2 70B

(c) S3 equation 6

Figure 7: LLM routing with ≤ 13B parameter models compared to Llama 2 70B.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Dataset Distance u(d)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
ar

so
n

Co
rr(

S 1
 e

q.
 (3

),
Ac

cs
.)

(a) S1 equation 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Dataset Distance u(d)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
ar

so
n

Co
rr(

S 2
 e

q.
 (4

),
Ac

cs
.)

(b) S2 equation 3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Dataset Distance u(d)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
ar

so
n

Co
rr(

S 3
 tr

ue
 p

, A
cc

s.)

(c) S3 equation 5; true p(d′, m)

Figure 8: Correlation of scores and LLM accuracies on new tasks and corresponding data
distances.

C.3 Dataset distance and Pearson correlation

The dataset distance u(d′) is computed as in equation 8. As evident from equation 9,
dataset distance will usually decrease for larger values of α as inputs from d′ are moved
into D (assuming that inputs from d′ are on average closer to each other than they are to
inputs from other tasks). In this experiment, this serves as a mechanism to study the per-
formance of LLM routing on closer datasets, providing insights into the benefits of learning
LLM routers on more benchmarks where it is more likely that dataset distance for a new task
is small.

In Figure 8 we present relations between dataset distance u(d′) and Pearson correlation
between various model scores and accuracies of candidate LLMs. For results with S3 see
Figure 5.

D Additional details for model routing on MixInstruct

Correctness predictor and metrics. In the experiments on the MixInstruct dataset (Jiang
et al., 2023), we construct S1(m, d′) following the scoring approach described in Appendix
A, where the MixInstruct train set was defined as the benchmark dataset. Then, instead
of computing a per-dataset score for the entire test set, we compute the score for each test
point, i.e., S1(m, xd′

i) = gm(xd′
i), and select a model m per-point based on this score. The

reported metrics in Table 3 and Figure 3 are averaged over the output evaluations of these
per-point model selections. In our experiments, to compute gm(xd′

i) we use the BERTScore
metric on the closest train set points (as y(x, m) in 7). This was motivated by the conceptual
relation between the implementation of our approach and the BERTScore, which relies on
embedding space distances, and was validated empirically.

kNN parameter. We set k = 10 for the kNN classifier, slightly higher than in the HELM
experiments. This choice was motivated by the in-distribution properties of the test set in
MixInstruct, which is constructed from different parts of the same datasets that comprise
the train set. We note that the metrics did not significantly vary for different choices of
k ∈ [5, 100].

18

Published as a conference paper at COLM 2024

Table 5: HELM dataset details.

Dataset Size (instances) Type
RAFT-ADE Corpus V2 40 Binary Classification

RAFT-Banking 77 40 77 Class Classification
RAFT-NeurIPS Impact Statement Risks 40 Binary Classification

RAFT-One Stop English 40 3 Class Classification
RAFT-Overruling 40 Binary Classification

RAFT-Semiconductor Org Types 40 3 Class Classification
RAFT-Systematic Review Inclusion 40 Binary Classification

RAFT-TAI Safety Research 40 Binary Classification
RAFT-Terms of Service 40 Binary Classification
RAFT-Tweet Eval Hate 40 Binary Classification

RAFT-Twitter Complaints 40 Binary Classification
IMDB 1000 Binary Classification

Civil Comments-demographic=all 1000 Binary Classification
bAbI-QA-task=all 1000 Q&A: one word answers

BoolQ 1000 Binary Classification
Entity Matching-Dataset=Beer 182 Binary Classification

Entity Matching-Dataset=Dirty iTunes Amazon 218 Binary Classification
Entity Matching-Dataset=Abt Buy 1000 Binary Classification

Entity Data Imputation-Dataset=Restaurant 242 Q&A: one word answers
Entity Data Imputation-Dataset=Buy 182 Q&A: one word answers

BBQ-subject=all 1000 Multiple Choice Questions
Legal Support 1000 Multiple Choice Questions

LSAT QA-task=all 461 Multiple Choice Questions
MMLU-Subject=Abstract Algebra 111 Multiple Choice Questions

MMLU-Subject=College Chemistry 108 Multiple Choice Questions
MMLU-Subject=Computer Security 111 Multiple Choice Questions

MMLU-Subject=Econometrics 126 Multiple Choice Questions
MMLU-Subject=US foreign policy 111 Multiple Choice Questions

Truthful QA-task=mc single 654 Multiple Choice Questions
Total: 29 datasets 9946

19

Published as a conference paper at COLM 2024

Table 6: Candidate LLMs.

Name Model Size, B Average Accuracy on the 29 HELM tasks
codegen-16b-mono 16 0.451

dial-flant5-xl 3 0.454
falcon-40b 40 0.641
flan-t5-xl 3 0.650

flan-t5-xxl 11 0.658
flan-ul2 20 0.668

gpt-jt-6b-v1 6 0.576
gpt-neox-20b 20 0.492

mpt-7b-instruct 7 0.514
mt0-xxl 13 0.543

llama-2-13b 13 0.624
llama-2-13b-chat 13 0.623

llama-2-13b-chat-beam 13 0.603
llama-2-70b 70 0.688

llama-2-70b-chat 70 0.687
llama-2-7b 7 0.610

llama-2-7b-chat 7 0.605
starcoder 15 0.587

Total: 18 LLMs 347

20

	Introduction
	Related work
	Learning from Benchmarks
	LLM routing with (imperfect) correctness predictors
	Experiments
	Model routing on HELM
	Model Routing on Mix-Instruct

	Discussion and Conclusion
	Correctness predictors and confidence estimation
	Connection to meta-learning
	Additional results for model routing on HELM
	Results with MLP as the correctness predictor
	Reducing the OOD gap
	Dataset distance and Pearson correlation

	Additional details for model routing on MixInstruct

