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Abstract—Sudden cardiac arrest (SCA) poses a significant
health challenge, necessitating accurate predictions of neuro-
logical outcomes in comatose patients, where good outcomes
are defined as the recovery of most cognitive functions. Elec-
troencephalogram (EEG) serves as a valuable biomarker for
monitoring neurological states due to its rich, time-dependent
information. This study aims to predict neurological outcomes
using early EEG data by employing the Transformer model,
which leverages multi-headed attention to identify patterns in
lengthy sequences such as hour-long EEG recordings. Unlike
traditional methods that use subsampled EEG epochs, we utilize
the entire EEG sequences, subdivided into time steps, allowing
our model to capture detailed temporal patterns via the attention
mechanism. Moreover, we trained our proposed model using
each EEG recording as an individual data sample but evaluated
our model through aggregated patient-wise predictions. This
approach allows us to boost the data sample size. Our results
demonstrate promising predictive performance, achieving an
AUROC of 0.82 and AUPRC of 0.90 on the holdout test set
and an AUROC of 0.73 and AUPRC of 0.93 on an external
test set with patient-wise predictions. This study highlights the
potential of utilizing attention mechanisms to capture important
time series progressions across EEG sequences for improving
SCA prognosis.

Index Terms—cardiac arrest, EEG classification, multi-head
attention, outcome prediction, time series data, Transformer

I. INTRODUCTION

IN recent years, the prevalence of cardiac arrest has risen
due to various factors such as unhealthy lifestyles and

diets [1]. People who experience sudden cardiac arrest (SCA)
often arrive in the intensive care units (ICU) of hospitals
several minutes or hours after their initial time of cardiac
arrest. Depending on this length of duration, such patients
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would often suffer from hypoxic-ischemic brain injury due
to prolonged lack of oxygen [2], [3]. This, in turn, may
result in patients remaining in a comatose state with uncertain
future outcomes. Physicians are often asked to estimate patient
prognosis during the first few days after the return of sponta-
neous circulation (ROSC). However, current clinical protocols
suggest that physicians only deliver patient prognosis 72 hours
after ROSC. Consequently, there has been significant interest
in developing reliable predictive models to assist physicians
in making crucial clinical decisions at this critical 72nd-hour
juncture.

Electroencephalogram (EEG) is low-cost, non-invasive, and
serves as an effective biomarker that aids clinicians in under-
standing brain conditions through visual inspection of brain
waves. Recently, there has been a growing trend in releasing
open-source EEG datasets for online challenges, such as the
2018 PhysioNet Challenge [4] and the 2003 BCI Competition
[5], indicating an increasing interest in developing computa-
tional methods for analyzing EEG data.

In 2023, PhysioNet released its largest dataset to date
through its annual George B. Moody PhysioNet Challenge [6],
[7], with data consisting of EEG, electrocardiogram (ECG),
and various clinical data from comatose SCA patients gathered
from various hospitals across the US and Europe. The goal of
the challenge was to build a model that can accurately predict
the neurological outcomes of patients 3 to 6 months later, given
early EEG and other data recorded hourly after the patients’
ROSC. In this study, we aim to use the open dataset released
from this challenge to train a time-dependent deep learning
model that can effectively learn EEG recordings’ progressions
over time to predict patients’ neurological outcomes.

Clinically interpretable features were extracted from each
time step in the EEG sequence to help the model under-
stand the EEG’s progression and associate it with patient
outcomes. Each EEG sequence serves as individual training
data, enabling the model to learn recording-specific patterns
and generalize to unseen data, regardless of the recording time
after ROSC. We aggregate these recording-specific predictions
to evaluate the model on a patient-wise basis. Finally, we use
an external private dataset from National Taiwan University
Hospital (NTUH) to test the model’s generalizability further.

In recent years, the Transformer [8] has demonstrated ex-
ceptional performance with time series data due to its multi-
head attention mechanism, which enables efficient learning
from multiple time steps in a sequence and processing them
in parallel with the multiple heads. The attention mechanism



in the Transformer allows the model to relate different parts
of the sequence to each position, allowing it to learn long-
distance relationships among each position. Incorporating po-
sitional encodings further enables the model to learn time-
dependent patterns across various positions in a sequence.
Given the highly time-dependent nature and length of con-
tinuous EEG sequences in our study, we hypothesize that
the attention mechanism in the Transformer can work well
with the continuous EEG and may deliver promising results.
We propose a method for training the Transformer model on
hourly EEG sequences segmented to form a time series dataset
to fully utilize the attention mechanism of the model.

It is a common preprocessing strategy when dealing with
EEG to subsample an epoch from a sequence of EEG. How-
ever, it is intuitive that we are wasting rich, valuable data
when we only subsample from a long sequence of continuous
EEG. To the best of our knowledge, this is the first study
to use the full hours of EEG recordings from comatose
cardiac arrest patients, subdivided into multiple time steps,
to train a Transformer-based model to predict neurological
outcomes. In this study, we test our hypothesis that carefully
trained attention on full-length hourly EEG sequences is more
effective than subsampling from each sequence for predicting
neurological outcomes and aiding clinicians’ patient prognosis.

II. RELATED WORKS

Previous studies have used coma patients’ EEG to predict
patient neurological outcomes [9], [10]. Wennervirta et al. [9]
gathered 30 coma SCA patients’ EEG data from the ICU
of Helsinki University Hospital and used statistical methods
such as the chi-square test to make predictions using clinically
interpretable features such as burst-suppression ratio, response
entropy, state entropy, and wavelet subband entropy. Cloost-
ermans et al. [10] gathered 56 coma SCA patients’ EEG data
from the ICU of Medisch Spectrum Twente, Enschede, The
Netherlands. Similarly, using statistical methods, they built
their predictive model using absent short-latency (N20) SSEP
as the input feature. Both studies automatically selected 5-
minute epochs from every hour of recording. They showed
that the first 24 hours of EEG after ROSC already had good
discriminative abilities to differentiate between good and bad
outcomes.

With the advent of machine learning-based computing meth-
ods and their promise of better results, researchers often
choose to transition from conventional statistical methods to
machine learning and even deep learning methods [11]–[15].
A study [16] analyzed EEG data from 69 comatose SCA
children, selecting the first artifact-free 5-minute epoch per
hour from all available recordings. They extracted 8 quan-
titative features, including spectral density, normalized band
power across five frequency bands (delta 0.5–3 Hz, theta 4–
7 Hz, alpha 6–12 Hz, beta 13–30 Hz, gamma 25–50 Hz),
line length, and regularity function scores. These features
were used to train random forest, logistic regression, and
support vector machine models for two setups: early EEG (0–
17 hours post-ROSC) and late EEG (18 hours onward). The

results indicated that early EEG had better predictive capability
regarding accuracy, sensitivity, and specificity.

Another study [11] utilized the dataset from the 2023
PhysioNet Challenge to develop a bidirectional long short-term
memory (bi-LSTM) model that learns long and short-term time
dependencies. They used nine clinically interpretable features
as input: burst suppression ratio, Shannon entropy, δ (0.5-–4
Hz), θ (4—7 Hz), α (8—15 Hz), β (16—31 Hz) band power,
α/δ ratio, regularity, and spike frequency. Bipolar referencing
was employed to reduce channel-wise artifacts. Additionally,
they scored the signal quality of each 5-minute epoch per hour
of recording to be used as weights, aiding their model during
training. Their model achieved an AUROC score of 0.78 at
12 hours and 0.88 at 66 hours, showing that performance
improves over time with these features.

The Transformer model [8] has recently been applied to var-
ious time series data. Its efficiency in handling long-distance
dependencies and learning patterns through parallel processing
with multiple heads and positional encoding makes it well-
suited for these applications. For instance, Wu et al. [17]
have applied the Transformer to wind speed data and achieved
promising wind speed forecasting results. Another study [18]
used the Transformer for multimodal data, fusing doctors’
clinical notes with structured EHR data, further indicating its
adaptability to diverse datasets.

Among time-series models, there are several notable studies
[19]–[21] that have compared the Transformer with traditional
ones like LSTM and BLSTM. The aforementioned studies
consistently showed the Transformer outperforming the tra-
ditional models on various relevant time series datasets such
as ECoG and EEG.

When it comes to EEG, there has also been numerous
research that leveraged the Transformer for classification tasks.
For instance, Du et al. [12] utilized EEG data with the
Transformer to develop a model for person identification.
Yan et al. [13] used scalp EEG data with the Transformer
for seizure prediction tasks. Guo et al. [14] used EEG with
the Transformer for emotion recognition and visualization
tasks, while Zeynali et al. [15] used it for motor imagery
classification.

Randomly sampling an epoch from an EEG sequence, as
commonly done in previous studies [16], [18], is effective.
However, using full EEG sequences as raw data for training
Transformer-based models, as demonstrated in several studies
[12], [20], [22], avoids the potential waste of valuable biolog-
ical data inherent in sampling only small portions.

In the 2023 George B. Moody PhysioNet Challenge, some
studies [23], [24] used the Transformer to predict neurological
outcomes with randomly selected 5-minute epochs but were
not evaluated in the final challenge. Our previous study [25]
achieved competitive results by using Transformers with fea-
tures from the last hour of EEG recordings, incorporating both
clinical and EEG data as model inputs.



III. MATERIALS AND METHODS

A. PhysioNet Dataset

For the 2023 George B. Moody PhysioNet Challenge [6],
[7], the International Cardiac Arrest Research Consortium (I-
CARE) [26] gathered comatose cardiac arrest patients’ data
from seven hospitals across the US and Europe. Overall, the
dataset contains EEG data collected from 1020 patients, where
60% of the dataset was used as the training set, 10% as the
hidden validation set, and 30% as the hidden test set. This
study primarily utilized the entire publicly available training
set to train and evaluate the model, dividing it into an 80%
training set and a 20% test set.

The dataset’s labels were based on outcomes and Cerebral
Performance Category (CPC) scores obtained 3 to 6 months
post-ROSC. CPC is a widely used 5-point scale assessing
cognitive recovery: 5 for death, 4 for the persistent vegetative
state, 3 for severe disability, 2 for moderate disability, and 1
for good recovery [27]. Labels were assigned as ”good” (0)
for CPC values of 1 and 2 and ”bad” (1) for CPC values of
3, 4, and 5.

B. NTUH Dataset

The NTUH dataset, a private dataset that was collected from
National Taiwan University Hospital, was used as the external
test set to evaluate the generalizability of our model. This
dataset consists of 75 coma patients who had been resuscitated
following cardiac arrest and had been comatose between 2013
and 2017 in the ICU of NTUH. 12 patients were defined as
good outcomes, and 63 were defined as bad outcomes. The
same EEG channels used in the PhysioNet dataset were used
here to maintain consistency with the training dataset.

C. Study Design

We used all recordings from the first 80% of the patients,
485 patients, from the publicly available training set released
by PhysioNet to train our model and the recordings from the
last 20% patients, 122 patients, to evaluate the model as the
holdout test set. The resulting class distribution for the training
set from this split is 39.38% for class 0 and 60.62% for class
1, which possesses a similar class distribution from the entire
dataset with a ratio of 37.07% to 62.93%.

For this study, we aimed to focus on EEG. Thus, the other
channel groups and the clinical data were not used. Given
the superior predictive capabilities of early EEG [9], [10],
[28]–[30] and the study’s goal of aiding clinicians with patient
prognosis at the 72-hour mark after ROSC [31], we used only
EEG recordings taken within this timeframe.

The Transformer is a computationally expensive time series
model; thus, to make use of the entire EEG sequences on this
large dataset that consists of hourly recordings, we first ex-
tract clinically interpretable EEG features, particularly power
spectral densities (PSD) among frequency band—delta (0.1 to
4.0 Hz), theta (4.0 to 8.0 Hz), alpha (8.0 to 12.0 Hz), and
beta (12.0 to 30.0 Hz), to serve as the quantitative features
for each time step in each EEG sequence. We opted to only
use PSD features to maintain simplicity and consistency in our

Fig. 1: Our proposed recording-wise training vs. traditional
patient-wise training method

analysis, avoiding the noise and complexity that could result
from combining different types of features as what previous
studies did [9], [11], [16].

Our study slightly differs from previous studies on this
dataset, particularly studies from the challenge, which primar-
ily focused on patient-wise training using EEG with clinical
data [25], and using ECG in addition to EEG [32]. Here, we
focused only on utilizing EEG data to train our model. We
trained our model using individual hours of EEG recordings
as inputs rather than training the model on a patient-by-
patient basis. For evaluation, we averaged the recording-
wise predictions of each patient to obtain patient-wise pre-
dictions. This approach allows us to increase our sample
size, enhancing model performance. The Transformer benefits
significantly from larger datasets, as they can learn better
attention weights with more data. Additionally, it helps the
model learn recording-wise patterns, allowing it to generalize
unseen data better, regardless of recording time. Figure 1
shows our proposed method of training our model recording-
wise rather than the traditional way of patient-wise training.

Additionally, we utilized complete EEG sequences instead
of using only randomly sampled 5-minute epochs as previous
studies from the challenge did [23], [24]. We hypothesize that
this approach would allow our model to learn more effective
attention weights and make better predictions by capturing
temporal patterns across entire continuous EEG recordings
rather than local patterns within a subsampled epoch. Figure
2 shows a side-by-side comparison of our proposed method
of using entire sequences with the traditional method of
processing EEG using a subsampled epoch from the sequence.

D. Data Preparation

A total of 20129 EEG recordings from 485 patients were
used as training data. Each EEG sequence was first segmented
into 5-minute epochs to serve as the time steps for the Trans-
former model. Bad epochs were automatically dropped from
each EEG sequence by MNE [33], and the remaining good
epochs were used and processed further. All 19 EEG channels
from the good epochs were used, and bandpass filtering of
[0.1, 30] Hz was used to filter out unwanted frequencies from
the EEG data. The EEG sequences were all resampled from the



Fig. 2: Maximizing attention-wise learning by using entire
sequences (lower left), compared to traditional random epoch
selection (lower right).

original sampling rate of 500 Hz to 128 Hz, then normalized
to values from −1 to +1.

After the signal processing steps, the mean PSD features
were computed from each EEG sequence by first calculating
the PSD for the delta (0.1 to 4.0 Hz), theta (4.0 to 8.0 Hz),
alpha (8.0 to 12.0 Hz), and beta (12.0 to 30.0 Hz) frequencies
from each channel. This was done by transforming the time
samples to the frequency domain using fast Fourier trans-
form with Welch’s method [34], then obtaining the average
power for each channel. The resulting mean PSD features for
each channel were concatenated into a single feature vector,
totaling 76 quantitative EEG features (19 EEG Channels ×
4 Frequency Bands × 1 mean PSD = 76 features) from each
5-minute epoch in each EEG sequence. These features were
subsequently used as the input for our model.

Each hour of EEG recording varied in length due to different
start and end times. For shorter recordings, zero padding was
added to ensure uniform length. If a recording started late, such
as 20 minutes into the hour, the first four 5-minute epochs were
padded with zeros. Similarly, if a recording ended early, zeros
were added at the end to complete the hour. For recordings
interrupted mid-hour and continued later, the segments were
concatenated into one hour. Masks were created for each EEG
sequence to help the model focus on actual data and ignore
zero-padded segments. All EEG features were scaled from 0 to
1 to enhance convergence speed and numerical stability during
model training. Both the PhysioNet test set and the NTUH
dataset were preprocessed the same way as the training set.

E. Model Training

Our model architecture consists of the Transformer encoder
[8] as part of the main block of the architecture, with the
batch of EEG features used as the input. In the original
implementation of the Transformer, given a sequence as input,
the sequence is first divided into several tokens, each with a
dmodel sized embedding. Here in this study, we treated each 5-
minute epoch of an EEG sequence as tokens, and the extracted
EEG features are used as the original embedding. Note that
in each 5-minute token, the mean PSD features were used.

In this case, both temporal and frequency-domain features
were included. These time series tokens enable the model to
maximize its capability to learn temporal patterns across the
EEG sequences through self-attention.

The Transformer encoder block consists of the multi-head
attention (MHA) and feed-forward (FF) blocks. The input EEG
features are initially encoded via a linear embedding layer
into embeddings. Then, positional encoding, computed using
sinusoidal functions (sine and cosine functions of different
frequencies) as described in the original implementation [8], is
added to each token in the EEG sequence to enable the model
to learn the temporal dynamics among each token.

The MHA block in the Transformer includes a residual
connection that adds the original input back to the output after
MHA computation, followed by layer normalization. MHA is
computed by first calculating three vectors: query (Q), key
(K), and value (V ). These vectors are derived from the input
(X) through learned weight matrices. Specifically, the com-
putations are: Q = XWQ,K = XWK , V = XWV , where
WQ,WK ,WV are learned weight matrices. The scaled dot
product attention is then computed as: Attention(Q,K, V ) =
Softmax(QKT /

√
dk)V , where dk is the dimension of the

key vectors and serves to normalize the dot product of
Q and K. Multihead attention extends this by projecting
the queries, keys, and values into multiple subspaces (or
heads) and performing the attention operation in parallel:
headi = Attention(QWQ

i ,KWK
i , V WV

i ). Finally, the out-
puts of these parallel attention heads are concatenated and
linearly transformed to produce the final output of the MHA
block: MHA(Q,K, V ) = Concat(head1, . . . , headh)WO,
where WO is another learned weight matrix. The computed
masks from the data preparation step were used in the MHA
block to help the model avoid learning from the zero-padded
segments by assigning lower attention weights to the padded
tokens. After the residual layer is added, layer normalization
is applied, and the resulting embedding of the same dimension
is then passed to the FF block.

In our model, the FF block consists of an expansion layer
followed by ReLU activation and dropout and then a con-
traction back to the original dimension. A residual connection
adds the embedding from before the FF block to help retain
important information from the original data.

Global average pooling is then used to obtain the mean
output from all time steps (tokens) in each sequence in the
batch. Here, the masks are used again to remove the zero-
padded tokens from being included in the global average
pooling computation. The fully connected (FC) block consists
of 3 contraction layers to eventually leave a single output for
each EEG sequence. Finally, the sigmoid activation function
transforms the outputs into probabilities.

During model training, prediction probabilities are gener-
ated for each recording from all patients. These probabilities
are then averaged across the recordings of each patient to
produce the final patient-wise predictions. The threshold for
classifying these probabilities is optimized during training to
achieve the best F1 score and accuracy. Instead of using the



TABLE I: Results from 80% PhysioNet training set

Metric PhysioNet Test Set NTUH dataset
AUROC 0.82 0.65
AUPRC 0.90 0.90

Accuracy 0.73 0.74
F1 score 0.79 0.84

default threshold of 0.5, the threshold is adjusted to improve
performance on imbalanced datasets. This optimized thresh-
old, which maximizes accuracy and F1 score, is then used
consistently during subsequent model validation and testing.

F. Experimental Setup

We trained the model using cross-validation (CV) with
k=5 across the entire training dataset and used the following
metrics on the patient-wise predictions and prediction proba-
bilities: AUROC, AUPRC, accuracy, and F1 score. Our criteria
for choosing the model is through early stopping, defined as
when the patient-wise results’ AUPRC from validation has not
improved beyond the current best for 10 consecutive epochs.

Our optimized model had the following hyperparameters,
with the number of layers for the encoder as 3, the dropout
rate at 0.4, 64 embedding size, 8 heads, batch size of 16, and
a learning rate of 0.0001. To avoid overfitting, we introduced
a decay rate of 0.99 after every 50 epochs and trained further
until 200 epochs or early stopping criteria were reached.

IV. RESULTS AND DISCUSSIONS

Using the chosen model during CV, we evaluated its per-
formance on the PhysioNet test set (the last 20% of patient
recordings from the public dataset) and the NTUH dataset.
The optimized prediction threshold, determined during model
training, was set at 0.55 and applied to both test sets, as
shown in Table I. High metric scores were observed with
the PhysioNet test set, with 0.82 AUROC, 0.90 AUPRC,
0.73 accuracy, and 0.79 F1 score, while the model achieved
promising results on the NTUH dataset, with an AUROC of
0.65, an AUPRC of 0.90, an accuracy of 0.74, and an F1
score of 0.84. The poorer performance of the NTUH dataset
is expected, as it serves as an external test set to evaluate
the model’s generalizability. External test sets often reveal the
model’s limitations in adapting to new, unseen data.

We evaluated our model’s performance at specific time
intervals after ROSC by evaluating it at 12, 24, 48, and 72
hours post-ROSC using the PhysioNet test set. We filtered the
test set to include only EEG recordings within each specified
time threshold. As shown in Figure 3, the model achieved its
highest AUROC of 0.82 at 72 hours post-ROSC, while the
lowest AUROC of 0.77 was observed at 24 hours.

These results are consistent with expectations, as our model
was trained using EEG sequences for up to 72 hours. The
superior performance at 72 hours highlights the model’s po-
tential as a clinical tool, aligning with the practice of making
patient prognoses after 72 hours following ROSC. The model’s
best performance at this mark reinforces its reliability and
suitability for clinical use in this critical time frame.

Fig. 3: AUROC from model evaluation at each hour threshold
for the PhysioNet test set

Interestingly, the model performed better at 12 hours (AU-
ROC of 0.80) than 24 hours (AUROC of 0.77). However,
this slight decrease in performance is not very significant,
highlighting the model’s overall robustness even with earlier
EEG recordings. This experiment confirms that the model
has a comparable predictive capacity at earlier and later time
points, with all AUROCs remaining above 0.77.

From these results, we can observe that the model demon-
strates high performance from an early stage. This suggests
that EEG data as early as 12 hours already provide clear and
consistent signals for the model, which may help facilitate
effective early risk stratification.

We further investigated how well our model performs on the
different hospitals across the PhysioNet test set by showing the
AUROC from each hospital in Figure 4. Here, Hospital E had
the best AUROC at 0.85, while Hospital B had the worst at
0.33, which is way below the baseline of 0.5. Future studies
may investigate removing some hospitals, such as Hospital
B, or performing analyses on the different hospitals to better
understand the reasons for the good and poor performances.
It is also worth noting here that the second best AUROC was
Hospital A at 0.84, which supports the data statistics since
most of the hospitals from the training set came from Hospital
A and may have led the model to learn more from the data
of that hospital. The ratio of hospitals across the training
set is as follows: Hospital A with 42.27%, Hospital B with
20.62%, Hospital D with 14.02%, Hospital E with 11.96%,
and Hospital F with 11.13%. Each hospital was represented
as alphabet letters in the dataset to protect patient privacies.

In this study, we utilized all EEG recordings individually to
train the model, enabling it to learn recording-specific patterns
and improved embeddings through a larger set of data samples.
We conducted an experiment to compare the results of training
our model with patient-wise (PW) data versus recording-wise
(RW) data as input. For the PW setup, we used the last EEG
recording per patient within 72 hours after ROSC, following
the approach of a previous study from the challenge [25].
Table II presents a side-by-side comparison of results from
both setups when evaluated with the PhysioNet test set and
the NTUH dataset.

The results indicate a significant drop in AUROC and



Fig. 4: AUROC from the model evaluation on each hospital
for the PhysioNet test set

TABLE II: Comparison of RW and PW setups when evaluated
with PhysioNet Test Set and NTUH Dataset

Metric PhysioNet
RW

PhysioNet
PW

NTUH RW NTUH PW

AUROC 0.82 0.58 0.65 0.61
AUPRC 0.90 0.76 0.90 0.89

Accuracy 0.73 0.71 0.74 0.78
F1 score 0.79 0.81 0.84 0.88

AUPRC when evaluated with the PhysioNet test set using PW
data, highlighting the advantage of training with recording-
wise data. Similarly, when evaluated with the NTUH dataset,
the RW setup yielded better AUROC and AUPRC. These
findings demonstrate the robustness of our proposed RW setup,
as it performed exceptionally well on the holdout PhysioNet
test set and generalized more effectively when evaluated with
the NTUH dataset.

Since numerous studies on computing methods for EEG
employed subsampling strategies by selecting a random 5-
minute epoch to represent an EEG sequence, we use this
strategy in an experiment to compare with our main setup.
The main setup, labeled ”Full Hours,” utilizes full hourly
EEG recordings, while the comparison setup, labeled ”5-
minute,” uses only 5-minute segments to represent each hour
of EEG. To maintain consistency in using the same model
architecture as the main setup, we subdivided these 5-minute
epochs into 10-second epochs as time steps for our model.
No masking was necessary as only complete 5-minute epochs
were selected, ensuring no missing data within the epochs.

Table III shows the results from both setups when evaluated
with the PhysioNet test set and the NTUH dataset. We repro-
cessed the NTUH dataset for the comparison with the 5-minute
setup to only use 1 randomly selected good 5-minute epoch
for fair evaluations. Our findings show that the Full Hour
setup heavily outperforms the 5-minute setup when evaluated
with the PhysioNet test set. This supports our hypothesis
that utilizing full hours of EEG instead of subsampling a
portion of the EEG sequence shows better performance. The
Transformer effectively leverages the rich and long time steps
from EEG well through its attention mechanism to achieve
good predictions.

TABLE III: Comparison of Full Hour and 5-minute setups
when evaluated with PhysioNet Test Set and NTUH Dataset

Metric PhysioNet
Full Hour

PhysioNet
5-minute

NTUH Full
Hour

NTUH
5-minute

AUROC 0.82 0.71 0.65 0.63
AUPRC 0.90 0.83 0.90 0.91

Accuracy 0.73 0.73 0.74 0.62
F1 score 0.79 0.80 0.84 0.75

TABLE IV: NTUH dataset results when trained with 80%
training set compared to the entire PhysioNet dataset

Metric 80% Training Set Entire Dataset
AUROC 0.65 0.73
AUPRC 0.90 0.93

Accuracy 0.74 0.70
F1 score 0.84 0.80

When evaluated with the NTUH dataset, the Full Hour setup
outperforms the 5-minute setup on almost all metrics except
for the AUPRC, where the 5-minute setup obtained a score
of 0.91 over 0.90 for Full Hour. This result may be because
the NTUH dataset only contains short recordings that do not
reach an hour, and almost all the recordings had to be zero-
padded for the Full Hour setup. Nevertheless, our main model,
Full Hour setup, could still generalize well to this external
dataset despite the difference in the number of time samples
available for each recording. One limitation of this method of
utilizing full sequences of EEG is that oftentimes, hospitals
are incapable of collecting numerous long sequences of hour-
long recordings due to facility limitations and other clinical
factors. However, our results in this comparison experiment
show that our proposed model can still perform well despite
being evaluated with shorter recordings.

Furthermore, to fully maximize the publicly available
dataset from PhysioNet, we performed an experiment to train
our model using the same setup but with the entire dataset and
compared its performance when tested on the NTUH dataset
with the model trained from the 80% training set. Table IV
shows the results for both setups. We can observe a large
improvement in the AUROC from 0.65 to 0.73 and a slight
improvement in AUPRC from 0.90 to 0.93 when the model
was trained with the entire dataset. Notably, the model trained
with the entire dataset uses a different prediction threshold at
0.62 compared to the 0.55 threshold for the 80% split model.

We sought to understand how well the model trained with
the entire dataset performed when evaluated with the NTUH
dataset, so we further investigated the number of true positives,
true negatives, false positives, and false negatives among
the predictions. Our findings show that among the positive
samples (bad outcome patients), it correctly predicted 45
(true positives) and incorrectly predicted 18 (false positives),
while among the negative samples (good outcome patients), it
correctly predicted 8 (true negatives) and incorrectly predicted
4 (false negatives). These results show that the model obtained
an accuracy of 0.71 from the positives and 0.67 from the



Fig. 5: NTUH dataset: prediction probabilities vs. true labels
for the model trained on the full PhysioNet dataset

negatives, indicating the model’s capability to distinguish well
between the two classes despite the evident class imbalance.

Figure 5 shows the distribution between the true labels and
the prediction probabilities generated by the model. The green
bars represent the true label 1s (bad outcomes), and the blue
bars represent the true label 0s (good outcomes). We can
observe that a large portion of the green bars are beyond the
optimized prediction threshold of 0.62, while the blue bars are
mostly below the threshold, further demonstrating the model’s
excellent class separability. Overall, our model achieved very
promising results on the external dataset when trained with
the entire public dataset from PhysioNet, showcasing possible
future applications in the clinical setting.

Finally, we evaluated our proposed model across the entire
training set through CV and compared the resulting AUROC
with previous studies, including those from the challenge, to
be used as benchmark comparisons. We obtained the results
from Zabihi et al.’s model [32] and our previous study’s
model [25] from the official results posted in the PhysioNet
Challenge. Among the participants in the challenge who used
attention-based models, only the model from our previous
study was evaluated. Thus, the others were not included in this
comparative analysis. We compared our model with Zabihi et
al.’s despite their model not being time-dependent since they
were the challenge winners, and it is vital to show where our
proposed model stands compared to theirs. It is important
to note that we cannot directly compare our findings with
Zheng et al.’s results [11] since their reported results are from
using CV across the entire dataset, including the two hidden
validation and test sets. However, we included their results
here to show how our model compares despite the difference
in the data split. It must also be noted that only Zheng et al.
used EEG as the sole input, while Zabihi et al. used ECG with
EEG, and our previous study used clinical data with EEG to
train the models.

We can observe from Figure 6 that our proposed model
outperforms both Dionisio et al. (our previous study) and
Zheng et al.’s models when evaluated at different hours. Inter-

Fig. 6: AUROC benchmark comparison across the entire
PhysioNet public training set via cross-validation

estingly, our model had a very high AUROC when evaluated
at 12H compared to the other benchmarks, which all have
the worst performance at 12H. Overall, our proposed model
outperformed the other benchmarks at all earlier time points
and performed on par with the challenge winner’s model when
evaluated at 72H, despite being trained with only EEG data.

We note here that this benchmark comparison is only
meant to show how our proposed model’s results stand with
the previous studies. Readers must take precautions when
making direct comparisons since each benchmark’s setups
differ. However, all studies cited in this benchmark comparison
have the same focus on predicting neurological outcomes from
coma patients and make use of the same dataset.

This study has a few additional limitations beyond those
previously mentioned. First, it focused exclusively on EEG
data due to the study design. Future research could explore
multimodal approaches to improve the methodology. Second,
the emphasis was on deep learning techniques, and future
studies may benefit from incorporating more advanced signal
processing and channel selection methods. Lastly, exploring
different types of EEG features in future studies could lead to
further improvements.

V. CONCLUSION

Our study’s findings support our hypothesis that training
the Transformer with full-hour lengths of EEG sequences is
beneficial instead of subsampling and that the more data we
use to train the model, the better the performance. We showed
promising results with our proposed attention-based model
through various analyses with an external dataset and various
comparison metrics with previous benchmarks. We believe
these findings show promising insights in trying to understand
whether attention is all you need for EEG sequences to
accurately predict neurological outcomes in comatose cardiac
arrest patients. We hope to aid physicians in making important
clinical decisions since our model can achieve highly compet-
itive results using an attention-based model over continuous
long EEG sequences.
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