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ABSTRACT

Real-world image super-resolution (Real-ISR) aims at restoring high-quality (HQ)
images from low-quality (LQ) inputs corrupted by unknown and complex degra-
dations. In particular, pretrained text-to-image (T2I) diffusion models provide
strong generative priors to reconstruct credible and intricate details. However,
T2I generation focuses on semantic consistency while Real-ISR emphasizes pixel-
level reconstruction, which hinders existing methods from fully exploiting diffu-
sion priors. To address this challenge, we introduce ConsisSR to handle both se-
mantic and pixel-level consistency. Specifically, compared to coarse-grained text
prompts, we exploit the more powerful CLIP image embedding and effectively
leverage both modalities through our Hybrid Prompt Adapter (HPA) for semantic
guidance. Secondly, we introduce Time-aware Latent Augmentation (TALA) to
mitigate the inherent gap between T2I generation and Real-ISR consistency re-
quirements. By randomly mixing LQ and HQ latent inputs, our model not only
handle timestep-specific diffusion noise but also refine the accumulated latent rep-
resentations. Last but not least, our GAN-Embedding strategy employs the pre-
trained Real-ESRGAN model to refine the diffusion start point. This accelerates
the inference process to 10 steps while preserving sampling quality, in a training-
free manner. Our method demonstrates state-of-the-art performance among both
full-scale and accelerated models. The code will be made publicly available.

1 INTRODUCTION

With the increasing prevalence of image capturing devices in our daily lives, there emerges a grow-
ing need to capture clean, high-resolution images. Nevertheless, real-world images invariably con-
tend with various degradation. To address this issue, real-world image super-resolution (Real-ISR)
techniques adeptly reconstruct the high-quality (HQ) image from the low-quality (LQ) input.

Various methods (Dong et al., 2014; 2015; Kim et al., 2016; Lim et al., 2017; Zhang et al., 2018b; Dai
et al., 2019; Niu et al., 2020) harness convolutional neural networks (CNN) to achieve remarkable
performance, followed by transformer models (Liang et al., 2021; Zhang et al., 2022). Some others
employ GANs’ adversarial training to generate more photo-realistic images (Ledig et al., 2017;
Wang et al., 2018). However, most of the above methods assume LQ inputs with basic bicubic
down-sampling, limiting their efficacy in handling complex and unknown degradations encountered
in Real-ISR. To tackle this problem, some methods manage to model the real-world degradations
with complex degradation models, including degradation shuffle from BSRGAN (Zhang et al., 2021)
and high-order degradation from Real-ESRGAN (Wang et al., 2021). Other GAN-based (Liang
et al., 2022a;b; Chen et al., 2022) or GAN-prior (Menon et al., 2020; Pan et al., 2021; Chan et al.,
2021) models also achieve impressive performance. While these methods enhance the perceptual
quality of the reconstructed images, their generative capacity is limited and the training process in
GANs is unstable, which may occasionally lead to unrealistic artifacts.

Recently, emerging diffusion models (DM) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2020; Dhariwal & Nichol, 2021), particularly pretrained large-scale text-to-image (T2I) models in-
cluding StableDiffusion (SD) (Rombach et al., 2022), have exhibited superior performance in image
generation against GANs. Later with ControlNet (Zhang et al., 2023), various SD-based super-
resolution (SDSR) methods can leverage pre-trained diffusion priors. Some of them (Wang et al.,
2024a; Lin et al., 2023; Sun et al., 2023) neglect semantic embedding, resulting in sub-optimal per-
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Figure 1: Comparisons between existing semantic guidance for SDSR.

formance. As shown in Figure 1, some others (Sun et al., 2024; Yang et al., 2024) involve image
captioning, which focuses on coarse-grained classification information while neglecting the color
or texture details. SeeSR (Wu et al., 2024) integrates soft image prompts, but the misalignment be-
tween CLIP (Radford et al., 2021) and their DAPE results in additional attention layers. However,
exploiting precise semantic guidance is inherently a complex task that requires extensive training.
Given CLIP’s joint text and image embedding, we introduce Hybrid Prompt Adapter (HPA) to adapt
pretrained T2I cross-attention for joint image and text prompts to ensure semantic consistency.

Furthermore, T2I generation focuses on semantic consistency while Real-ISR emphasizes pixel-
level reconstruction. We review the training process of DDPM (Ho et al., 2020) for these SDSR
methods, which assumes all inputs consist of HQ latent data corrupted by Gaussian noise. We
truncate the predicted x̂t→0 at each step and decode them into images as shown in Figure 2.
It is evident that in the early sampling timesteps (t
→ 1000), x̂t→0 still appears overly smooth and noisy,
which shows a clear discrepancy from the HQ distri-
bution. As DDPM training assumes x̂t→0 to be ac-
curate HQ latents, the discrepancy between the pre-
dicted latent and the HR image would be accumulated
and ultimately compromise the pixel-level consistency
of the generated results during the sampling process.
Therefore, we propose Time-aware Latent Augmenta-
tion (TALA) to ensure pixel-level consistency with the
HQ target. By randomly selecting LQ or HQ latent and
adding noise to it during training, our model not only
learns to eliminate timestep-specific diffusion noise but
also refines the early latent representations.

LQ

x̂900→ 0

x̂600→ 0

x̂300→ 0x̂0

Figure 2: Visualization of the truncated
outputs at different diffusion steps.

Furthermore, based on this observation, we also introduce the GAN-Embedding (GANEmb) strategy
for inference acceleration. We dynamically embed the refined latent from Real-ESRGAN (Wang
et al., 2021) into the start point of the diffusion sampling process and skip early diffusion steps. This
allows our ConsisSR to reduce the diffusion process to at least 10 steps while preserving sampling
quality, all in a training-free manner.

In this paper, we introduce ConsisSR to handle both semantic and pixel-level consistency for T2I
diffusion prior. Specifically, we firstly propose HPA to incorporate the more powerful CLIP image
embedding with text embedding to jointly enhance the semantic consistency. Then we review the
questionable assumption in diffusion training, and put forward TALA to improve pixel-level consis-
tency. TALA enables our model to not only remove timestep-specific diffusion noise but also refine
the early latent representations. Lastly, our GANEmb strategy leverages pretrained Real-ESRGAN
to skip early diffusion steps, accelerating the inference process while preserving the sampling qual-
ity. Our ConsisSR not only achieves SOTA results within the full-scale SDSR methods but also
accelerated diffusion models. Our main contributions are as follows:

• Compared to coarse-grained text descriptions, we integrate the more powerful CLIP image
embedding, which encapsulates additional color and texture details. Our Hybrid Prompt
Adapter (HPA) simultaneously handles text and image prompts, adeptly leveraging T2I
priors to enhance semantic consistency.

• We review the conventional SDSR training that assumes HQ latent data inputs. With Time-
aware Latent Augmentation (TALA) between LQ and HQ latent, our ConsisSR is not only
able to handle timestep-specific diffusion noise but also refine the latent representations
predicted in early timesteps.

• Leveraging pre-trained Real-ESRGAN, our ConsisSR dynamically embeds refined latent
and reduces the diffusion process to a minimum of 10 steps while preserving sampling
quality, all in a training-free manner.
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2 RELATED WORK

2.1 REAL-WORLD IMAGE SUPER-RESOLUTION

While deep learning-based image super-resolution has made notable advancements (Dong et al.,
2015; Lim et al., 2017; Zhang et al., 2018b; Dai et al., 2019; Niu et al., 2020; Liang et al., 2021;
Zhang et al., 2022), most of them rely on simple bicubic degradation, which restricts their effective-
ness in handling complex and unknown degradations encountered in real-world scenarios. They
also encounter challenges such as overly smoothed details when minimizing fidelity objectives.
Real-world image super-resolution seeks to reconstruct photo-realistic image details by optimizing
not just fidelity objectives but also perception objectives. Some works explore complex degrada-
tion models to approximate the real-world degradations, including degradation shuffle from BSR-
GAN (Zhang et al., 2021) and high-order degradation from Real-ESRGAN (Wang et al., 2021).
Further in (Menon et al., 2020; Pan et al., 2021; Chan et al., 2021), they leverage pretrained Style-
GAN (Karras et al., 2019) as generative priors for Real-ISR. Even though they excel at robustly
removing degradation in Real-ISR tasks, their limited generative capacity often hinders them from
generating realistic details.

Emerging diffusion models Dhariwal & Nichol (2021); Rombach et al. (2022) exhibit a remarkable
capability to generate high-quality images. When it comes to ISR tasks, several approach train
their DMs from scratch on pixel space (Choi et al., 2021; Saharia et al., 2022). While the former
necessitates tens to hundreds of diffusion steps, others (Xia et al., 2023; Chen et al., 2024) apply
DM on compact latent space, but their generative ability is greatly restricted by the transformer
backbone. Resshift (Yue et al., 2024) constructs a Markov chain to shift the residual between LQ
and HQ images with only 15 steps. Additionally, SinSR (Wang et al., 2024b) advances this strategy
to single-step with consistency preserving distillation. However, without strong diffusion priors,
these methods still struggle to generate realistic and intricate textures.

2.2 SD-BASED SUPER-RESOLUTION

For pretrained DMs, ControlNet (Zhang et al., 2023) introduces an effective conditioning method,
enabling broader applications. Based on this, various SD-based super-resolution (SDSR) methods
have achieved unprecedented success. Some of them (Wang et al., 2024a; Lin et al., 2023; Sun
et al., 2023) do not apply semantic embedding to guide the diffusion process, leading to sub-optimal
performance. PASD (Yang et al., 2024) employ pretrained models including BLIP2 (Li et al., 2023)
together with CLIP (Radford et al., 2021) text encoder to provide semantic guidance. Similarly,
CoSeR (Sun et al., 2024) train a cognitive encoder to approximate the cascaded outputs of BLIP2
and CLIP. But they both involve the image captioning process, which focus on coarse-grained clas-
sification information while neglecting the color or texture details, as shown in Figure 4. SeeSR (Wu
et al., 2024) fine-tunes RAM (Zhang et al., 2024) model and separately integrates text prompt and
image prompts with additional cross-attention layers. However, given CLIP’s proficiency in map-
ping text and image to a joint embedding space, the T2I priors from the SD model can also be
applied to image prompts. Our decouple cross-attention harnesses our robust CLIP image encoder
and exploits the domain alignment in CLIP embeddings, adapting our cross-attention for both text
and image prompts.

Furthermore, all the aforementioned SDSR methods follow the training protocol from DDPM (Ho
et al., 2020). We review the drawback in this training process, which assumes all inputs as HQ
latent data with Gaussian noise. Through the proposed Time-aware Latent Augmentation (TALA),
includes residuals between LQ and HQ latents we enable our ConsisSR to effectively eliminates
diffusion noise while refining LQ latent to HQ latent.

3 METHOD

3.1 PRELIMINARY: DIFFUSION MODELS

Diffusion models are probabilistic models designed to generate data samples by gradually denoising
a normally distributed variable xT ∼ N (0, 1) in T iteration steps. In each forward iteration, a
Gaussian noise with variance 1 − αt is added to xt−1, and the overall forward process can be
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Figure 3: Overall training pipeline of our ConsisSR.

described as:
xt =

√
ᾱtx0 +

√
1− ᾱtϵ, (1)

where ᾱt =
∏t

i=0 αi and ϵ ∼ N (0, 1). For the reverse process, diffusion models first sample a
Gaussian noise xT as the start point. Subsequently, conditioning on c, they iteratively estimate the
added noise for each step t through the denoising network ϵϕ until reaching the clean output x̂0. The
optimization objective is defined as follows:

LDM = Ex,ϵ∼N (0,1),t

[
∥ϵ− ϵϕ(xt, t, c)∥22

]
. (2)

3.2 OVERALL PIPELINE

As shown in Figure 3, we demonstrate our training augmentation on the left and the network archi-
tecture on the right. Firstly, we equip the diffusion UNet with ControlNet (Zhang et al., 2023) to
manipulate the output using LQ images. Then we introduce the Hybrid Prompt Adapter (HPA),
which leverages both CLIP’s text and image embeddings as semantic guidance in a decoupled
manner, thereby generating more realistic and credible texture. Furthermore, we put forward a
Time-aware Latent Augmentation (TALA) for training during early timesteps, which enhances the
pixel-level sampling consistency. We randomly select low-quality (LQ) and high-quality (HQ) la-
tent inputs, enabling our model to not only remove timestep-specific diffusion noise but also predict
the residual between LQ and HQ. Last but not least, by embedding refined latent from pretrained
Real-ESRGAN (Wang et al., 2021), we are able to accelerate the diffusion process to 10 steps while
maintaining sampling quality.

3.3 HYBRID PROMPT ADAPTER

SD originates from the T2I generation task, hence original cross-attention is only tailored to text
prompts. However, given that CLIP can inherently map images and text to a joint latent space,
our intuition suggests that we can leverage the LQ image as conditioning. To better align the T2I
generation task with Real-ISR, we propose the hybrid prompt adapter (HPA) to incorporate the input
image prompt with the text prompt to enhance semantic consistency.

Although other SDSR methods also attempt to incorporate semantic guidance, including
CoSeR (Sun et al., 2024), PASD (Yang et al., 2024), they both involve the image captioning pro-
cess, which focus on coarse-grained classification information while neglecting the color or texture
details. As shown in Figure 4, we present various text descriptions in a Venn diagram pattern. Fol-
lowing Radford et al. (2021), we calculate the cosine distances between the CLIP image embedding
and different text embeddings to gauge the similarity between the input image and each text descrip-
tion. It can be observed that while BLIP2 offers a reasonable caption, it falls short in capturing the
detailed information like color and accessory (white dog with red collar). The most precise and elab-
orate description exhibits the highest similarity, indicating the intricate details inherent in the image
embedding itself. Therefore, we incorporate the more powerful CLIP image embedding with text
prompt in our Hybrid Prompt Adapter, providing fine-grained semantic guidance for our denoising
network, as depicted in Figure 5.
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Firstly, for the CLIP image encoder, we conduct a straightforward fine-tuning process to enhance its
robustness to LQ images while preserving its alignment with the CLIP embedding domain.

LCLIP = ExHQ,xLQ

[
∥detach(CLIPimg(xHQ)− RCLIPimg(xLQ)∥22

]
, (3)

where CLIPimg represents fixed original CLIP image encoder and RCLIPimg represents our fine-
tuned robust CLIP image encoder.

Then, the text prompt and low-quality (LQ) image are separately fed into the original CLIP text
encoder and our robust CLIP image encoder, resulting in text and image prompt embeddings. Both
prompt embeddings are subsequently transformed into Key and Value vectors using the original
linear layers, which are then used to compute attention maps with Query vectors derived from the
image latent. Akin to Ye et al. (2023), we employ a decoupled cross-attention, which involves
independently processing the interactions between two pairs of Key and Value vectors with the
Query vector. Differently, to preserve the SD prior as much as possible, we keep all projection
layers fixed in our HPA for both denoising UNet and ControlNet. Correspondingly, the output of the
additional image prompt branch is added to the original text prompt branch after passing through a
trainable zero-initialized linear layer.

Apart from HPA, we also made adjustments to the self-attention layers. For the original self-
attention, we incorporate learned absolute positional embeddings to better align with the image
domain. Additionally, we introduce transposed self-attention inspired by the work in Zamir et al.
(2022), which helps to further model global context. For the self-attention layers, we only train the
added parameters in the denoising UNet.

3.4 TIME-AWARE LATENT AUGMENTATION

While diffusion models excel at approximating complex data distribution, ensuring the consistency
of the generated results in this process is challenging. However, the SDSR task strongly emphasizes
the pixel-level consistency of the generated images with targets, necessitating better handling of LQ
latent representations, especially for the early steps which focus on structure refinement (Wang et al.,
2024a). To achieve this goal, we propose Time-aware Latent Augmentation (TALA) to improve
sampling consistency with the HQ target.

For T2I generation tasks, there are no specific requirements for detailed composition, including
proportions and relative positions of different elements, but rather a focus on semantic similarity.
However, for Real-ISR tasks, it is essential to prioritize structural consistency over blindly pursuing
visual aesthetics. Although ControlNet (Zhang et al., 2023) introduces an effective conditioning
method to provide pixel-level guidance, most SDSR methods still overlook certain drawbacks in the
training of diffusion models.

To take a deeper insight, we take our ConsisSR as an example and truncate the predicted x̂t→0

at each step and decode them into images. We further quantified their reconstruction quality over
timesteps in Figure 6. We can clearly observe that sampling consistency, represented by PSNR and
SSIM, remarkably improves and remains stable until 40% (timestep 600). Subsequently, at the cost
of consistency, the diffusion model steadily enhances texture details, leading to an improvement in
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Figure 6: IQA metrics of the truncated outputs at different diffusion steps.
the generation quality indicated by NIQE and MANIQA. Moreover, in terms of generation quality,
we can observe that the truncated results do not exhibit an advantage over the LQ input until timestep
600. This implies that in the early timesteps, the inputs to the denoising network lean more towards
LQ latent data corrupted by Gaussian noise. This contrasts with the training process, which assumes
that all inputs consist of HQ latent data.

Therefore, to enhance consistency while ensuring visual quality, we propose Time-aware Latent
Augmentation which randomly selects LQ and HQ latent inputs, as shown in Algorithm 1. We
devise a time-dependent probability function p(t) where, for each timestep t, we probabilistically
replace the input from HQ latent corrupted by Gaussian noise with the LQ one according to p(t).
Based on the afore-mentioned IQA over timesteps, we can divide the inference process into two
phases: the former 40% focusing on consistency preservation and the latter 60% oriented towards
visual aesthetics. Hence, our Time-aware Latent Augmentation (TALA) primarily operates during
the first 40% timesteps. We set the starting point p(1000) to be fixed at 1 and control p(600) to be
below 1%. Empirically, we adopt a power function p(t) = (t/T )γ and obtain γ = 10.

Following this augmentation, our supervision is no longer solely timestep-specific diffusion noise
but also includes residuals between LQ and HQ latents. This indicates that our ConsisSR trained
with TALA simultaneously removes diffusion noise and refines the latent representations predicted
in the early steps, thereby enhancing sampling consistency.

Algorithm 1 Training Augmentation

Require: Paired training set (XLQ, XHQ)
1: while not converged do
2: sample xLQ, xHQ from (XLQ, XHQ)
3: sample t ∼ U({1, ..., T})
4: sample ϵ ∼ N (0, 1)
5: sample r ∼ U(0, 1)

6: xt =

{√
ᾱtxLQ +

√
1− ᾱtϵ, r < p(t)√

ᾱtxHQ +
√
1− ᾱtϵ, r ≥ p(t)

7: ϵ̂ = ϵϕ(xt, t, c)

8: Update model with
∥∥∥ϵ̂− √

ᾱtxHQ−xt√
1−ᾱt

∥∥∥2
2

9: end while

Algorithm 2 Inference Acceleration

Require: testing set (XLQ), timestep tmax

1: while not converged do
2: sample xLQ from (XLQ)
3: sample ϵ ∼ N (0, 1)
4: x̂0 = GAN Embedding(xLQ)
5: xtmax =

√
ᾱtmax x̂0 +

√
1− ᾱtmaxϵ

6: for t = tmax, ..., 1 do
7: sample z ∼ N (0, 1) if t > 1 else z = 0
8: xt−1 = 1√

αt
(xt − 1−αt√

1−ᾱt
ϵϕ) + σtz

9: end for
10: return x0

11: end while

3.5 GAN-EMBEDDING STRATEGY FOR INFERENCE ACCELERATION

Existing SDSR methods often require a large number of timesteps for inference. But unlike T2I
generation tasks, SDSR involves LQ inputs and does not require starting from pure Gaussian noise.
To address this issue, we propose GAN-Embedding (GANEmb) strategy for inference acceleration.
We harness the pre-trained Real-ESRGAN (Wang et al., 2021) to pre-refine the LQ latent. Initiating
the reverse process from this enhanced latent allows our model to skip early refinement steps and
focus on detail generation. This compresses the inference process to a minimum of 10 steps while
preserving sampling quality, all in a training-free manner.

Some methods attempt to reduce the inference steps by adjusting the noise schedule or sampling
strategy Yue et al. (2024); Wang et al. (2024b); Sun et al. (2023). But they necessitate retraining
the model, which sacrifices their ability to generate the most realistic and detailed textures. Instead,
our GANEmb directly improves the inference process based on the trained SDSR model without
additional training.

As discussed in the previous section, we empirically divide the inference process into the initial 40%
sampling steps for consistency preservation and the last 60% sampling steps for detail generation.
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Figure 7: Visual comparisons among different Real-ISR methods. Please zoom in for a better view.

Although GAN methods exhibit limited generative capacity, they can effectively remove degradation
and obtain a refined latent representation. This aligns with the early sampling timesteps in the
diffusion model, to some extent. As shown in Algorithm 2, our GANEmb strategy leverages the
pretrained Real-ESRGAN to skip early diffusion steps until tmax. We leverage the refined start
point to reduce the model’s reconstruction complexity, thereby accelerating the inference process
while still maintaining the generative capabilities.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We train ConsisSR on the ImageNet dataset (Deng et al., 2009). We employ the degra-
dation pipeline from Real-ESRGAN (Wang et al., 2021) to generate LQ-HQ training pairs. For
testing datasets, we adopt the widely used DIV2K-Val (Agustsson & Timofte, 2017) as the synthetic
dataset, along with RealSR Cai et al. (2019) and DrealSR Wei et al. (2020) as the real-world datasets.

Evalution Metrics. For quantitative evaluation of Real-ISR models, we first adopt traditional full-
reference metrics, including PSNR, SSIM, and LPIPS (Zhang et al., 2018a) for consistency evalua-
tion. Then for generation quality, we adopt the no-reference metrics, including NIQE (Mittal et al.,
2012), MANIQA (Yang et al., 2022), MUSIQ (Ke et al., 2021) and CLIPIQA (Wang et al., 2023).

Implementation details. We first crop central patches from the ImageNet images and resize them
to 224× 224 for robust CLIP fine-tuning. The CLIP image encoder is trained with 2 NVIDIA L40s
GPUs and the batch size is set to 8 per GPU. We adopt Adam as optimizer (β1 = 0.9, β2 = 0.99),
and we train the model for 100K iterations with a learning rate fixed at 1× 10−5.

Then for SDSR training, the Stable Diffusion 2.1-base is used as the pretrained T2I model. We
crop central patches of size 512 × 512 from ImageNet for training. The batch size is set to 2 per
GPU, totaling 8 with 4 NVIDIA L40s GPUs. Our SDSR model is trained for 200K iterations with
the Adam optimizer (β1 = 0.9, β2 = 0.99) and the learning rate is fixed at 5 × 10−5. For 50-
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Table 1: Qualitative Comparison with SOTA methods. The best results are highlighted in red and
the second best results are highlighted in blue.

Datasets Methods Full-reference IQA No-reference IQA Rank(avg)PSNR↑ SSIM↑ LPIPS↓ NIQE↓ MANIQA↑ MUSIQ↑ CLIPIQA↑

DrealSR

StableSR 28.03 0.7536 0.3284 6.5239 0.5601 58.51 0.6356 4.00
DiffBIR 26.71 0.6571 0.4557 6.3124 0.5930 61.07 0.6395 4.14
PASD 27.36 0.7073 0.3760 5.5474 0.6169 64.87 0.6808 2.86
SeeSR 28.17 0.7691 0.3189 6.3967 0.6042 64.93 0.6804 2.29
Ours 28.47 0.7581 0.3463 6.3668 0.6224 65.28 0.6965 1.71

RealSR

StableSR 24.70 0.7085 0.3018 5.9122 0.6221 65.78 0.6178 4.00
DiffBIR 24.75 0.6567 0.3636 5.5346 0.6246 64.98 0.6395 4.43
PASD 25.21 0.6798 0.3380 5.4137 0.6487 68.75 0.6620 2.86
SeeSR 25.18 0.7216 0.3009 5.4081 0.6442 69.77 0.6612 2.00
Ours 25.51 0.7033 0.3223 5.2655 0.6552 69.48 0.6925 1.71

DIV2K

StableSR 23.26 0.5726 0.3113 4.7581 0.6192 65.92 0.6771 3.43
DiffBIR 23.64 0.5647 0.3524 4.7042 0.6210 65.81 0.6704 3.86
PASD 23.14 0.5505 0.3571 4.3617 0.6483 68.95 0.6788 3.14
SeeSR 23.68 0.6043 0.3194 4.8102 0.6240 68.67 0.6936 2.57
Ours 23.95 0.5896 0.3145 4.8323 0.6433 69.13 0.7153 2.00

step inference, we adopt the spaced DDPM sampling (Nichol & Dhariwal, 2021). For GANEmb
inference, the sampling process only requires 10 timesteps.

4.2 COMPARISONS WITH SOTA METHODS

We compare our ConsisSR with diffusion-based SR methods, which are split into two groups: The
first group, comprising full-scale models, primarily aims to generate the most realistic and detailed
textures, which includes StableSR (Wang et al., 2024a), DiffBIR (Lin et al., 2023), PASD (Yang
et al., 2024) and SeeSR (Wu et al., 2024). The second group focuses on accelerated diffusion models,
achieving faster sampling speeds through adjustments in sampling strategy or model distillation,
which include ResShift (Yue et al., 2024), SinSR (Wang et al., 2024b) and CCSR (Sun et al., 2023).

Full-scale SDSR methods. The quantitative results for these methods are presented in Table 1,
and their average rank is listed in the last column. This comparison highlights the effectiveness of
our model in handling Real-ISR tasks, showcasing its performance against other methods.

To emphasize the superior performance of our approach, we provide qualitative comparisons in Fig-
ure 7. For distinct and regular textures like glass curtain walls, our approach can produce sharper and
well-aligned edges while preventing excessive artifact generation in smooth regions. For intricate
and random textures like foliage and flowers, our method can also generate convincing and realistic
texture details. These comparisons vividly illustrate that our method achieves superior SR results,
marked by clearer textures and sharper edges.

Accelerated diffusion methods. To compare with these methods, we restrict the sampling steps
of our ConsisSR to 10. By adjusting the start point tmax in Algorithm 2, we introduce two models:
tmax = 600 focusing more on reconstruction consistency, referred to as ours-rec, and tmax = 1000
emphasizing detail generation, known as ours-gen. Their results are demonstrated in Table 2 and
Figure 7. We can find that our model continues to outperform other methods. Specifically, ours-rec
and ours-gen each achieve exceptional performance on full-reference and no-reference metrics.

4.3 ABLATION STUDY

We further implement several variants of our method to demonstrate the effectiveness of each com-
ponent in our model. Unless otherwise specified, our ablation models adhere to the same training
settings as our ConsisSR model. And we report PSNR and LPIPS as full-reference metrics, along
with NIQE and CLIPIQA as no-reference metrics on the RealSR dataset.

Effectiveness of our transformer block. Firstly, we make minor adjustments to the self-attention
layers by integrating learned absolute positional embeddings into the original layers and introducing
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Table 2: Qualitative Comparison with SOTA diffusion acceleration methods.The best results are in
red and the second best results are in blue.

Datasets Methods Full-reference IQA No-reference IQA Rank(avg)PSNR↑ SSIM↑ LPIPS↓ NIQE↓ MANIQA↑ MUSIQ↑ CLIPIQA↑

DrealSR

ResShift-s15 28.46 0.7673 0.4006 8.1249 0.4586 50.60 0.5342 4.33
SinSR-s1 28.36 0.7515 0.3665 6.9907 0.4884 55.33 0.6383 3.71

CCSR-s16 28.96 0.7710 0.2922 5.9100 0.5682 58.82 0.5467 2.29
Ours-rec-s10 29.46 0.8149 0.3132 8.5790 0.5484 59.89 0.6049 2.17
Ours-gen-s10 28.82 0.8020 0.3439 9.3679 0.5947 64.47 0.6837 2.50

RealSR

ResShift-s15 26.31 0.7421 0.3460 7.2635 0.5285 58.43 0.5444 4.00
SinSR-s1 26.28 0.7347 0.3188 6.2872 0.5385 60.80 0.6122 3.00

CCSR-s16 26.24 0.7365 0.2559 5.7400 0.5974 63.64 0.5287 3.00
Ours-rec-s10 26.12 0.7495 0.3076 7.1198 0.6032 65.06 0.6063 2.00
Ours-gen-s10 25.48 0.7291 0.3399 7.6902 0.6393 68.73 0.6897 3.00

DIV2K

ResShift-s15 24.65 0.6181 0.3349 6.8212 0.5454 61.09 0.6071 3.33
SinSR-s1 24.41 0.6018 0.3240 6.0159 0.5386 62.82 0.6471 3.43

CCSR-s16 24.46 0.6113 0.3045 4.6100 0.5912 62.78 0.5367 2.86
Ours-rec-s10 24.57 0.6310 0.3528 6.5367 0.5889 64.93 0.6679 2.50
Ours-gen-s10 24.34 0.6262 0.3751 7.5866 0.6011 66.60 0.7242 2.86

transposed self-attention to better capture global context. As depicted in the upper part of Table 3,
these modifications led to a 0.4dB increase in PSNR with a slight drop in generation quality.

Then we focus on our proposed
HPA module. We mainly compare
with two other prompt extractor: the
IP-Adapter (Ye et al., 2023) from
image-to-image generation task and
the DAPE soft prompt layers from
SeeSR (Wu et al., 2024). The re-
sults are listed in the lower part of
Table 3.

Table 3: Ablation studies on our transformer block.

Methods Full-reference IQA No-reference IQA
PSNR↑ LPIPS↓ NIQE↓ CLIPIQA↑

Attention
Type

SA(baseline) 24.76 0.3420 5.5183 0.6815
SA w/ PE 24.91 0.3482 5.3348 0.6889

SA w/ PE+TSA 25.16 0.3418 5.5665 0.6783

Prompt
Extractor

+ IP-Adapter 24.41 0.3560 5.4109 0.6947
+ DAPE 25.07 0.3219 5.4126 0.6878
+ HPA 25.50 0.3206 5.4083 0.6917

We can observe that IP-Adapter needs to make a significant sacrifice in consistency to achieve good
generation results. This is primarily because its generation task only pays attention to semantic
similarity rather than pixel-level consistency in Real-ISR. Regarding DAPE, its overall performance
also falls short of our HPA.

The effective exploitation of precise semantic guidance is inherently a complex task that requires
extensive training. Our HPA’s superiority lies in leveraging the joint embedding space of CLIP to
adapt the cross-attention prior from the image prompt, thereby enhancing the semantic consistency
of the generated results.

Effectiveness of our TALA training strategy. Our TALA is primarily introduced to enhance the
sampling consistency with HQ target. Therefore, we first demonstrate the full-reference metrics of
our model with respect to timesteps with and without TALA, as shown in Figure 8. We repeat ten
times for each parameter setting and calculate the mean value. It can be observed that during the
early timesteps, our model trained with TALA achieved remarkable advantages in terms of PSNR,
SSIM, and LPIPS.

02004006008001000
Timestep

24.8

25.3

25.8

26.3

PS
N

R

w/ TALA
wo TALA

02004006008001000
Timestep

0.675

0.700

0.725

0.750
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IM

w/ TALA
wo TALA

02004006008001000
Timestep

0.31
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0.40

L
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w/ TALA
wo TALA

Figure 8: Full-reference IQA metrics over timesteps with and without TALA.
Furthermore, we conducted ablation experiments on the time-dependent probability function p(t),
as shown in Table 4. For the empirical parameter γ, we tested values of 5, 10, and 20, corresponding
to strong, medium, and slight augmentations, respectively. It can be observed that even with slight
augmentation (γ = 20) TALA significantly improves sampling consistency. The best trade-off
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Table 4: Ablation studies on our Time-aware Latent Augmentation.

2004006008001000

Timestep

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
γ= 20

γ= 10 (ours)
γ= 5

Methods Full-reference IQA No-reference IQA
PSNR↑ LPIPS↓ NIQE↓ CLIPIQA↑

DDPM 24.77 0.3337 5.7709 0.6881
TALA(γ = 5) 25.16 0.3197 5.7447 0.6624
TALA(γ = 10) 25.50 0.3206 5.4083 0.6917
TALA(γ = 20) 25.38 0.3280 5.4905 0.6811

between consistency and visual quality is achieved with γ = 10. However, when γ decreases to 5,
its generation capability rapidly deteriorates. This is primarily due to the excessive augmentation,
which greatly compresses the detail enhancement process in the later timesteps.

Effectiveness of our GANEmb inference strategy. Regarding our inference strategy, there are
two key parameters to determine: the start point tmax for embedding GAN refined latent and the
number of diffusion steps. By adjusting these parameters, we can dynamically achieve a trade-off
between reconstruction consistency and detail generation without the need for additional training.

Firstly, we visualize the generated results for diffusion steps of 5, 10, and 20 in Figure 9. And it is
evident that as the number of steps increases, the edges of each potato strip become sharper and more
distinct. Furthermore, we quantify the trends in PSNR and CLIPIQA under different experimental
settings as shown in Figure 10. And we also present various metrics for different start points with
10 diffusion steps.

LQ patch Real-ESRGAN

5 steps 10 steps 20 steps

LQ

Figure 9: Generated results for different
number of diffusion steps.

1000 800 600
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27

28
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20 steps

0.46

0.54

0.62

0.70

C
L

IP
IQ

A

PSNR
CLIPIQA
PSNR
CLIPIQA

Figure 10: Ablation studies on GANEmb strategy,
with PSNR in bar chart and CLIPIQA in line chart.

It can be clearly observed that as the start point decreases from 1000 to 600, the PSNR steadily
increases while the CLIPIQA drops. This can be attributed to the higher noise intensity near 1000,
resulting in a lower percentage of GAN refined latent and thereby freeing up more of the model’s
generative capacity. Similarly, under the same start point conditions, increasing the number of dif-
fusion steps leads to lower PSNR and higher CLIPIQA. This aligns with our previous observations
with the full-scale model, where more diffusion steps imply better texture detail capabilities.

5 CONCLUSION

Pretrained T2I diffusion models offer generative priors for Real-ISR task, yet they typically empha-
size semantic consistency while neglecting pixel-level fidelity. To bridge the gap between T2I gen-
eration and Real-ISR tasks, we present ConsisSR, which adeptly exploit semantic and pixel-level
consistency. Utilizing the powerful CLIP image embeddings, our Hybrid Prompt Adapter (HPA)
seamlessly integrates both text and image modalities, providing semantic guidance for diffusion
process. Furthermore, we introduce Time-aware Latent Augmentation (TALA) to improve pixel-
level consistency in early timesteps. By randomly selecting LQ and HQ latent inputs, our model
handles timestep-specific diffusion noise and refines latent states in the meantime. Additionally, our
GAN-Embedding strategy, leveraging pretrained Real-ESRGAN, accelerates the diffusion process
to just 10 steps without sacrificing quality. Our innovative approach achieves state-of-the-art results
among both full-scale and accelerated diffusion models.
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