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Abstract

Recent research in tabular data synthesis has focused on single tables, whereas real-
world applications often involve complex data with tens or hundreds of intercon-
nected tables. Previous approaches to synthesizing multi-relational (multi-table)2

data fall short in two key aspects: scalability for larger datasets and capturing
long-range dependencies, such as correlations between attributes spread across dif-
ferent tables. Inspired by the success of diffusion models in tabular data modeling,
we introduce Cluster Latent Variable guided Denoising Diffusion Probabilistic
Models (ClavaDDPM). This novel approach leverages clustering labels as interme-
diaries to model relationships between tables, specifically focusing on foreign key
constraints. ClavaDDPM leverages the robust generation capabilities of diffusion
models while incorporating efficient algorithms to propagate the learned latent vari-
ables across tables. This enables ClavaDDPM to capture long-range dependencies
effectively. Extensive evaluations on multi-table datasets of varying sizes show
that ClavaDDPM significantly outperforms existing methods for these long-range
dependencies while remaining competitive on utility metrics for single-table data.

1 Introduction

Motivation. Synthetic data has attracted significant interest for its ability to tackle key challenges
in accessing high-quality training datasets. These challenges include: i) data scarcity [14, 53], ii)
privacy [2, 19], and iii) bias and fairness [46]. The interest in synthetic data has extended to various
commercial settings as well, notably in healthcare [18] and finance [36] sectors. The synthesis of
tabular data, among all data modalities, is a critical task with approximately 79% of data scientists
working with it on a daily basis [45]. While the literature on tabular data synthesis has predominantly
focused on single table (relation) data, datasets in real-world scenarios often comprise multiple
interconnected tables and raise new challenges to traditional single-table learning [38, 3, 12, 22].
These challenges have even enforced a join-as-one approach [15, 17], where the multi relations are
first joined as a single table. However, with more than a couple of relations (let alone tens or hundreds
of them as in the finance sector) this approach is neither desirable nor feasible.

Challenges. Synthetic Data Vault [35] and PrivLava [5] are recent efforts to synthesize multi-
relational data using hierarchical and marginal-based approaches. These methods exhibit significant
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2In the context of databases, a table is formally referred to as a relation. Throughout this work, we use these

terms interchangeably.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



limitations in processing speed and scalability, both with respect to the number of tables and the
domain size of table attributes, and they often lack robustness in capturing intricate dependencies.
Alternatively, diffusion models have emerged as powerful tools for data synthesis, demonstrating
remarkable success in various domains [37]. These models are particularly noted for their strong
capabilities in controlled generation. Despite their potential, the application of diffusion models to
tabular data synthesis has been limited to unconditional models [25, 50, 28, 24], leaving a gap in
effectively addressing the multi-table synthesis problem.

Solution. To address these challenges, we introduce ClavaDDPM (Cluster Latent Variable guided
Denoising Diffusion Probabilistic Models). Our novel approach leverages the controlled generation
capabilities of diffusion models by utilizing clustering labels as intermediaries to model the relation-
ships between tables, focusing on the foreign-key constraints between parent and child tables. This
integration of classifier guidance within the diffusion framework allows ClavaDDPM to effectively
capture complex multi-table dependencies, offering a significant advancement over existing methods.

Contributions. In this work, we: 1) provide a complete formulation of the multi-relational mod-
eling process, as well as the essential underlying assumptions being made, 2) propose an efficient
framework to generate multi-relational data that preserves long-range dependencies between tables, 3)
propose relationship-aware clustering as a proxy for modeling parent-child constraints, and apply the
controlled generation capabilities of diffusion models to tabular data synthesis, 4) apply an approxi-
mate nearest neighbor search-based matching technique, as a universal solution to the multi-parent
relational synthesis problem for a child table with multiple parents, 5) establish a comprehensive
multi-relational benchmark, and propose long-range dependency as a new metric to measure synthetic
data quality specific to multi-table cases, and 6) show that ClavaDDPM significantly outperforms
existing methods for these long-range dependency metrics while remaining competitive on utility
metrics for single-table data.

2 Related work

Single-table synthesis models. Bayesian network [48] is a traditional approach for synthetic data
generation for tabular data. They represent the joint probability distribution for a set of variables
with graphical models. CTGAN [47] is a tabular generator that considers each categorical value as
a condition. CTAB-GAN [52] includes mixed data types of continuous and categorical variables.
Several studies have explored how GAN-based models can contribute to fairness and bias removal
[44, 45]. In privacy, GAN-based solutions boosted with differential privacy have not been as
successful as their Baysian-network-based competitors [34, 51]. Recent popular Diffusion Models,
[20, 40, 42, 41], offer a different paradigm for generative modeling. TabDDPM [25] utilizes denoising
diffusion models, treating numerical and categorical data with two disjoint diffusion processes. STaSy
[24] uses score-based generative modeling in its training strategy. CoDi [28] processes continuous
and discrete variables separately by two co-evolved diffusion models. Unlike the previous three
which perform in data space, TabSyn [50] deploys a transformer-based variational autoencoder and
applies latent diffusion models. Privacy and fairness research for diffusion models are currently
limited to a few studies in computer vision [26, 11, 16].

Multi-table synthesis models. There have been few proposals for synthetic data generation for
multi-relational data. A study proposed this synthesis through graph variational autoencoders [31],
the presented evaluation is nevertheless very limited. The Synthetic Data Vault [35] uses the Gaussian
copula process to model the parent-child relationship. SDV iterates through each row in the table and
performs a conditional primary key lookup in the entire database using the ID of that row, making a
set of distributions and covariance matrices for each match. This inhibits an efficient application of
SDV to the numerous tables case. PrivLava [5], synthesizes relational data with foreign keys under
differential privacy. The key idea of PrivLava is to model the data distribution using graphical models,
with latent variables included to capture the inter-relational correlations caused by foreign keys.

3 Background

Multi-relational databases. A multi-relational database R consists of m tables (or relations)
(R1, . . . , Rm). Each table is a collection of rows, which are defined over a sequence of attributes.
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Figure 1: Berka sample tables (left), and the foreign key constraint graph for Berka (right)

One of the attributes, let’s consider the first attribute without loss of generality, is the primary key of
table R, which serves as the unique identifier for each row in the table. No rows in the same table
have repeated values for the primary key attribute. We use Berka database [4] as our running example
in this work, as in Figure 1. Note the Account ID, the primary key for the Account table in Berka.

Given a table Rj , we say a relation Ri has a foreign key constraint with Rj , or Ri refers to Rj , if Ri
has an attribute known as foreign key that refers to the primary key of Rj : for every row ri ∈ Ri,
there exists a row rj ∈ Rj such that rj’s primary key value equals to ri’s foreign key value. For
example, the Account ID of the Loan table refers to the primary key of the Account table. If an
account row is removed from the Account ID table, so would all the referring rows in the Loan table
to this account, for foreign key constraint to hold. Note that the primary key of a table can consist of
multiple attributes. In this paper, we focus on the case of a single attribute that is common in practice.
Also note that all keys are considered row identifiers and are thus not treated or modeled alongside
the actual table attributes in this work.

A multi-relational database under foreign key constraints forms a directed acyclic graph (DAG),

G = (R, E) , E = {(Ri → Rj) | i, j ∈ {1, . . . ,m} , i ̸= j, Ri refers to Rj} (1)

with the tablesR being the set of nodes, and E being the set of edges. In addition, for Ri referring
to Rj , we also call this a parent-child relationship, where Rj is the parent and Ri is the child. We
use the maximum depth to denote the number of nodes on the longest path in G. Figure 1 shows the
corresponding graph to Berka database and its maximum depth is 4.

Multi-relational synthesis problem. Given a multi-relational databaseR = {R1, . . . , Rm}, we
would like to generate a synthetic version R̃ = {R̃1, . . . , R̃m} that has the same structure and
foreign-key constraints as R and preserves attribute correlations within R, including 1) the inter-
column correlations within the same table; 2) the intra-group correlations within the same foreign key
group; 3) the inter-table correlations. The first aspect has been well defined, measured, and tackled
in the literature of single-table synthesis [52, 25, 50] while the other two aspects are raised due to
foreign-key constraints between tables [5]. For instance, in Berka database (Figure 1), the foreign key
constraint between the Loan table and the Account table via Account ID adds an important intra-group
correlation for the combinations of loans associated with an account and many 1-hop inter-table
correlations between columns in the Loan table and the columns in the Account table. Even for the
Loan table and the Demographic table that are indirectly constrained by foreign keys, their columns
are correlated as well, e.g., how is the average salary in a district related to the status of loans, an
example for 2-hop inter-table correlation.

Classifier-guided DDPM. DDPM [20] uses two Markov chains, a forward chain that perturbs data
to noise through a series of Gaussian transitions, and a reverse chain that converts noise back to data
with the same number of steps of Gaussian transitions (Equation 2).

q (xt |xt−1) := N
(
xt;

√
1− βtxt−1, βtI

)
pθ (xt−1 |xt) := N (xt−1;µθ (xt, t) ,Σθ (xt, t)) .

(2)

Prior work [40] shows that given label y, the conditional reverse process has the form

pθ,ϕ (xt |xt+1,y) ∝ pθ (xt |xt+1) pϕ (y |xt) . (3)
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By approximating log pϕ (y |xt) using Taylor expansion around xt = µ, the conditional reverse
process (Equation 3) can be approximated with a perturbed Gaussian transition [10]

log (pθ,ϕ (xt |xt+1,y)) ≈ log (p (z)) + C, z ∼ N (µ+Σg,Σ) , (4)

where C is a constant and g = ∇xt
log (Pϕ (y |xt)) |xt=µ computed from the classifier Pϕ.

4 ClavaDDPM

Here, we elaborate on the training and synthesis process of ClavaDDPM, and each design’s rationale.

4.1 Modeling generative process for two-table relational databases

Notations. Consider a database of two tables R = {R1, R2}, e.g. {Loan, Account} in Berka,
where the child table R1 refers to parent table R2. To model the entire database, we first use X and
Y as the variables for the child table R1 and parent table R2, respectively (dropping their primary
key attributes and indexing their respective row variables starting from one). In this section, we use
boldface to represent random variables. e.g. Y ∼ Y , where Y is the data of R2, and Y is the random
variable Y being sampled from. In addition, we use subscript to represent the parent row some data
or random variable refers to. e.g. xj represents the child random variable who refers to parent yj .
Refer to Appendix A for a complete list of notations used and the corresponding design choices.

Assumptions. 1) The parent table has no constraints itself. Hence, we can follow previous work on
single-table synthesis [13, 25, 47, 50, 52] to make an i.i.d assumption on the rows in the parent table.
The parent table Y can be modeled as a list of i.i.d. row variables

{
yj | j = 1, . . . , |R2|

}
, where j is

the index or the primary key value of the jth row, and each row follows a distribution p(y).

2) The i.i.d assumption does not apply to the child table rows (xj’s) as they are constrained by their
respective parent rows. Consider two loans associated with the same account id; if one’s status is in
debt (“C”), the other one is likely so too. To capture this dependency, we make a Bayesian modeling
assumption that, although child rows associated with the same parent row are not independent, they
are conditionally independent of child rows associated with other parent rows, given their respective
parent. For example, consider an account table (parent) and a loan table (child). Loans related to
the same account (i.e., the same parent) are not independent due to shared account-specific factors.
However, loans from different accounts can be considered conditionally independent when accounting
for their respective account-level information. Hence, we model X by

{
gj | j = 1, . . . , |R2|

}
, where

each group gj =
{
xij | i = 1, . . . ,

∣∣gj∣∣} represents a set of child table rows referring to the parent
row yj .

3) Without violating the assumptions made above, we further make an i.i.d assumption on (gj ,yj),
which leads to an approximated distribution for the parent-child tables:

P (X = X,Y = Y ) ≈
|R2|∏
j=1

P
(
gj = gj ,yj = yj

)
or p(X,Y ) =

∏
j

p(gj , yj) (5)

where X = ∪|R2|
j=1gj and gj = {x1j , . . . , x

|gj |
j }. This model allows us to capture the inter-table

correlations (the correlation between tuples from different tables) and the intra-group correlations.

Modeling. Despite the simplified formulation with several aforementioned assumptions, learning
the distribution p (gj , yj) is non-trivial. In particular, (gj , yj) cannot be flattened into a matrix form
for learning since the set structured attributes in gj , e.g., the size of a group variable gj is not fixed.

A naive solution is to model a conditional distribution of the group given the parent row

p (gj , yj) = p (gj | yj) p (yj) (6)

Direct modeling of Equation (6) still has the same issue as before for the foreign key group gj , which
can take an arbitrary number of child rows. In particular, when modeling gj = f (xj) for some
function f , there is no trivial structured support for gj if we model for gj using only the attributes
or features of the child rows. Furthermore, the conditioning space of the parent row y can be very
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large (e.g., Account table has a domain size of more than 11,000), which can lead to poorly learned
conditional distribution if we treat y as labels in the classifier-guided DDPM. The original space of y
is high-dimensional and noisy and does not guarantee any spatial proximity or smoothness. In the
context of deep modeling, this drastically worsens the quality of conditional sampling.

To address these two challenges, we introduce latent random variables c such that gj is independent
from yj conditioned on c

gj |= yj | c (7)

With this assumption, we get an indirect modeling of inter-table correlations through c:

p(gj , yj) =
∑
c

p(gj , yj |c)p(c) =
∑
c

p(gj |c)p(yj |c)p(c) =
∑
c

p (gj | c) p (y, c) (8)

Compared to Equation (6), when c is selected to be lying on a low-dimensional, compact manifold,
the latent conditional distribution p (gj | c) will be easier to model than p (gj | yj).
For each foreign key group gj , we model its size explicitly with a variable sj . By making an
assumption that sj is conditionally independent from its child row variables {x1

j , . . . ,x
sj
j } given

the latent random variable c, we essentially defined a generative process for gj : first sample its size
sj ∼ sj , then sample gj child row variables. In addition, we make an i.i.d assumption on the child
row variables given the latent variable. Hence, we have

p(gj |c) = p(sj |c)
sj∏
i=1

p(xij |c) (9)

Putting all together, we have the final formulation of the generative process for a two-table case:

p (X,Y ) ≈
|R2|∏
j=1

p (gj , yj) i.i.d assumption on
(
gj ,yj

)
Equation (5)

≈
|R2|∏
j=1

∑
c

p(sj |c)
sj∏
i=1

p(xij |c)p(yj , c) =
|R2|∏
j=1

∑
c

p (yj , c) p (sj | c)
sj∏
i=1

p
(
xij | c

)
.

(10)

Unlike our naive method that uses a direct modeling of p (xj | yj), we model p (xj | cj), which
greatly reduced the condition space, thus better capturing the inter-table correlation between X and
Y . On the other hand, the intra-group correlations are intrinsically addressed, because our modeling
of

(
gj ,yj

)
and the corresponding dependency assumptions enforce that two child rows are drawn

from the same distribution if and only if they belong to the same foreign key group.

Based on Equation (10), we introduce our generative process for two-table case.

Phase I: Latent learning and table augmentation: (1) Learn latent variable c on the joint space
(X;Y ), such that each parent row yj corresponds to a learned latent variable cj . (2) Augment the
parent table into TY = (Y ;C), where C corresponds to the latent variable values cj for each row yj .

Phase II: Training: (3) Train diffusion model pθ (y, c) on augmented table TY and child diffusion
model pϕ (x). (4) Given learned latents and child table, train classifier pψ (c |x). (5) Estimate the
foreign key group size distributions conditioned on latent variables p (s | c).

Phase III: Synthesis: (6) Synthesize the augmented parent table T̃Y = (Ỹ ; C̃) ∼ pθ (·, ·). (7) For
each synthesized latent variable c̃j ∈ C, sample group size s̃j ∼ p (· | c̃j). (8) Given s̃j , sample
each child row within the foreign key group xij ∼ pϕ,ψ (· | c̃j), where pϕ,ψ performs classifier guided
sampling by perturbing pϕ with the gradient of pψ . We denote steps (7) and (8) by X̃ ∼ p(·|C).

4.2 Extension to more parent-child constraints

We learn the latent variables between a parent and a child pair in a bottom-up fashion (starting
from the leaf nodes in G) and pass all the latent variable values to the parent table for the next
set of latent variables at higher levels. Given a parent-child pair (Y,X), the child table X also
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has k leaf node children, Z1, . . . , Zk. Let cX,Zi represent the latent variables learned on the joint
space (X;Zi). The augmented table for X is formed by appending all its latent variable values,
i.e., TX = (X;CX,Z1 ; . . . ;CX,Zk

). Then, the latent variable cY,X is learned on the joint space of
(Y ;TX) instead of (Y ;X). Therefore, our latent learning process follows a bottom-up topological
order, ensuring each child table is already augmented by the time we learn the latent variable to
augment its parent.

The training phase and the synthesis phase are similar to the two-table case, by handling the parent-
child tables in a top-down topological order using the augmented tables. We detail the end-to-end
algorithms for the complex data in Appendix B. However, we would like to highlight a special
case when a table X has multiple parents Y1, . . . , Yk. During synthesis, we will have k synthetic
latent variable C̃1, . . . , C̃k corresponding to the k parents, and thus k copies of synthetic child tables
X̃1 ∼ p(· | C̃1), . . . , X̃k ∼ p(· | C̃k). Unifying these diverged synthetic tables presents a challenge
and we present a universal solution in Section 4.3.3.

Extending the model to include more tables allows for capturing longer-range dependencies, beyond
just those between adjacent tables. For example, as shown in Figure 1, the dependency between the
Demographic table and the Credit Card table can also be captured and quantified. Further details are
provided in Section 5.

4.3 Design choices for ClavaDDPM

We detail how design decisions for ClavaDDPM meet our goals and align with our assumptions.

4.3.1 Relationship-aware clustering

Given the conditional independence between the parent row and its foreign key group (Equation (7)),
it is important to model the latent variable c such that it can effectively capture the inter-table
correlation within the same foreign key group. In ClavaDDPM, we learn c using Gaussian Mixture
Models (GMM) in the weighted joint space of X and Y , denoted as H = (X;λY ), where λ is a
weight scalar controlling the importance of child and parent tables when being clustered. Concretely,
we consider k clusters, and model the distribution of h = (x;λy) with Gaussian distributed around
its corresponding centroid c, i.e., P (h) =

∑k
c=1 P (c)P (h | c) =

∑k
c=1 πcN (h;µc,Σc) .

Note that diagonal GMMs are universal approximators, given enough mixtures of Gaussian distri-
butions [49]. Therefore, we can further enforce diagonal covariance, i.e., Σc = diag

(
. . . ,σ2

l , . . .
)
,

which, being properly optimized, immediately satisfies our assumptions that the foreign key groups
are conditionally independent of their parent rows given c. In addition, the family of Gaussian
Process Latent Variable Models (GPLVM) [30, 27, 33] has been used as an embedding technique to
find low-dimensional manifolds that map to a noisy, high-dimensional space. This satisfies our need
to learn a stochastic map between the noisy parent space and a condensed latent space. Thus, we can
achieve a better trade-off by sacrificing some information fidelity during this quantization process
while making the conditional space better shaped.

However, such clustering in the joint space (X;λY ) could potentially lead to inconsistency when
we create the augmented table TY = (Y ;C). Though we add a weight λ to the parent rows such that
child rows with the same parent rows are likely to be assigned to the same cluster, there is still some
chance that they end with different clusters. In particular, for each parent row yj ∈ Y , its child rows
are assigned to different clusters. In ClavaDDPM, we impose a majority voting step to find the most
popular cluster label in each foreign key group and assign it to the parent row yj . In practice, the
voting agree rates tend to be high, and this can be further enforced by assigning a higher weight to
the parent table (increasing λ) during GMM clustering. We evaluate the choice of λ and voting agree
rates in our ablation study in Section 5.3.

While alternative latent learning algorithms could potentially be applied, such as TabSyn [50] that
demonstrated the utility of latent encoding of tabular data with VAE, this work focuses on demon-
strating the effectiveness of a simple diagonal Gaussian Mixture Model (GMM) for ClavaDDPM.
Our experiments (detailed in Section 5) reveal that ClavaDDPM with a diagonal GMM achieves
state-of-the-art results while maintaining low computational overhead. We leave the exploration of
more complex latent learning techniques for future work.
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4.3.2 Learning with DDPM

Gaussian diffusion backbone. We consider one of the state-of-the-art diffusion models for single
tabular data, TabDDPM [25], as the backbone model. TabDDPM models numerical data with
Gaussian diffusion (DDPM [20]), and models categorical data with multinomial diffusion ([21]) with
one-hot encoding, and carries out disjoint diffusion processes. However, the modeling of multinomial
diffusion suffers significant performance overheads, and poses challenges to guided sampling. Instead,
ClavaDDPM uses a single Gaussian diffusion backbone to model both numerical and categorical data
in a unified space, where categorical data is mapped to the numerical space through label-encoding.
To be specific, for a categorical feature with m distinct values C = {c1, . . . , cm}, a label encoding
E : C → {0, . . . ,m− 1} maps each unique category ci to an assigned unique integer value. For a
table row x = [xnum; · · · ;xcati ; · · · ], where xnum represents all the numerical features and xcati
represent a categorical feature, we obtain the unified feature by xuni = [xnum; · · · ;E (xcati) ; · · · ].
Based on this encoding, we learn pθ (y, c) on the augmented parent table TY = (Y ;C) through
training a Gaussian diffusion model on the unified feature space (Yuni;E (C)).

Classifier guided synthesis. As defined in Equation (10), we model p
(
xij | cj

)
by leveraging

classifier-guided sampling of diffusion models, following [10]. In practice, with the sheer power of
diffusion models, we jointly model p (x | c) for the entire table without distinguishing j. First, we
train a Gaussian diffusion model pϕ on child table row x, with its reverse process modeled with xt ∼
N (xt+1;µϕt+1

,Σϕt+1). Then, we train a classifier that classifies cluster labels based on x. The con-
ditional reverse process can be approximated by xt | c ∼ N (xt+1;µϕt+1

+ ηΣϕt+1gψt+1
,Σϕt+1),

where gψt+1
= ∇xt+1

log (pϕ (c |xt+1)) and η is a scale parameter controlling the strength of
conditioning. One can regard η as a hyper parameter measuring the trade-off between single-table
generation quality and inter-table correlations, to be demonstrated by our ablation study in Section 5.3.

4.3.3 Multi-parent dilemma: matching

Consider the case where some child table X has two parent tables Y1, Y2. Our parent-child syn-
thesis modeling paradigm would lead to two divergent synthetic child tables X̃1 ∼ X |Y 1, and
X̃2 ∼X |Y 2 Each synthetic table encodes its own parent-child relationship, i.e. the foreign keys.
Combining X̃1 and X̃2 so that the synthetic child table contains foreign keys from both parents p1
and p2 is non-trivial, and we call it a multi-parent dilemma. One possible approach is to explicitly
constrain the model sample space of X |Y 2 to be the synthetic data X̃1, as used in PrivLava [5].
However, this approach is not applicable to diffusion models that sample from a continuous space.

We provide a universal solution for all generative models. Consider some real data point x with
two parent rows yj1 and yk2 . Ideally, some synthetic data point x̃ following the same distribution
as real data point x should be sampled from x |yj1,yk2 . This can be approximated by finding the
intersection of two conditional distributions x |y1 and x |y2. Specifically, we estimate x̃ by finding
two synthetic data points x̃1 ∈ X̃1 and x̃2 ∈ X̃2, such that x̃1 ∼ x |yj1 and x̃2 ∼ x |yk2 , and the
two points are close enough. We reason as follows: although x̃1 was sampled from x |y1, as long
as it is close enough to some other synthetic data point x̃2 sampled from x |y2, then x̃1 will also
be within in the high density region of the distribution x |y2, indicating a high probability that x̃1

follows x |y1,y2. Symmetrically, the same reasoning also holds for x̃2.

Therefore, we can estimate the true sample data point by x̃ = f (x̃1, x̃2) if x̃1 is close to x̃2, where
f can simply be an interpolation between two data points in practice. We call this a matching process
between two divergent synthetic tables X̃1 and X̃2, and this can be done efficiently using approximate
nearest neighbor search. Although we call this a "matching", it does not require finding a one-to-one
mapping. Note that this estimate can be further improved by resampling X̃1 and X̃2 and estimate X̃
with more data points rather than just a pair, and the trade-off is a larger computational overhead, and
we leave this for future research. Empirically, sampling X̃1 and X̃2 only once is already strong, and
an ablation study on the effectiveness of parent matching is in Section 5.3.
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5 Evaluation

We evaluate ClavaDDPM’s performance in multi-relational data synthesis, using both single-table
and multi-tables utility metrics (including the new long-range dependency). We present an end-to-end
comparison of ClavaDDPM to the SOTA baselines, followed by an ablation study for ClavaDDPM.

5.1 Experimental setup

Real-world datasets. We experiment with five real-world multi-relational datasets including Califor-
nia [6], Instacart 05 [23], Berka [4], Movie Lens [39, 32], and CCS [32]. These datasets vary in the
number of tables, the maximum depth, the number of constraints, and complexity. Among all, Berka,
Movie Lens, and CCS exhibits complex multi-parent and multi-children structures. We use Berka in
our work for ablation study and model anatomy. Details can be found in Appendix C.1.

Baselines. We adopt two multi-relational synthesis models in literature as our baselines: PrivLava [5]
as a representative of state-of-the-art marginal-based methods, and SDV [35] as a statistical method
specially designed for multi-relational synthesis. We also introduce two multi-relational synthesis
pipelines, SingleT(ST) and Denorm(D), as our additional baselines. SingleT learns and generates
each table individually, but it also assigns foreign keys to each synthetic child table accordingly to
the real foreign key group size distribution such that the group size information is preserved. Denorm
follows the baseline idea that joins table first, but it is hard to join all tables into a single table.
Hence, Denorm first applies single-table backbone model to generate the joined table between every
parent-child table pair and then split it. For these two pipelines, we use CTGAN [47] and TabDDPM
[25] as the single-table backbone models, representing the SOTA tabular synthesis algorithms with
GAN-based models and diffusion-based models. The details can be found in Appendix C.2.

Evaluation metrics. We evaluate the quality of the synthetic data using: 1) cardinality to measure the
foreign key group size distribution for the intra-group correlations; 2) column-wise density estimation
(1-way) to estimate the density of every single column for all tables; 3) pair-wise column correlation
(k-hop) for the correlations of columns from tables at distance k, e.g., 0-hop refers to columns within
the same table and 1-hop refers to a column and another column from its parent or child table;
4) average 2-way, which computes the average of all k-hop column-pair correlations, taking into
consideration of both short-range (k = 0) and longer-range (k > 0) dependencies. For each measure,
we report the complement of Kolmogorov-Smirnov (KS) statistic and total variation (TV) distance 3

between the real data and the synthetic data, ranging from 0 (the worst utility) to 1 (the best utility).
The reported results are averaged over 3 randomly sampled synthetic data.

We also consider higher-order single-table evaluation metrics for some representative tables as prior
work [50]. We include their details and experiemntal results in Appendix D due to space constraints.

All experiments are conducted with an NVIDIA A6000 GPU and 32 CPU cores, with a time limit of
7 days. If an algorithm fails to complete within the time limit, we report TLE (time limit exceeded).
Implementation details and hyperparameter specifics are in Appendix C.3.

5.2 End-to-end evaluation

We conducted multi-table synthesis experiments on five multi-table datasets and report the averaged
utility with standard deviation for all algorithms in Table 1. First, the evaluation shows that ClavaD-
DPM has an overall advantage against all the baseline models in terms of correlation modeling,
and is surpassing the baselines by larger margins for longer-range dependencies. e.g. in Instacart
05, our model outperforms the best baseline by 58.29% on 2-hop correlations, and in Berka, our
model exceeds the best baseline by 20.24% on 3-hop correlations. For single-column densities and
cardinality distributions, ClavaDDPM exhibits a competitive result compared to the state-of-the-art
baseline models. We also evaluate ClavaDDPM against baselines on high-order single-table metrics
(Appendix D.3), which shows that our model has advantages in preserving data fidelity, generating
diverse data, and achieving high machine learning efficacy.

It is worth noting that ClavaDDPM, despite its complexity and capability, is more efficient and robust
than some simpler baselines. PrivLava demonstrates strong performance on the California dataset

3The complement to KS/TV distance between two distributions P and Q is 1.0−DKS/TV(P ||Q). We use
KS for numerical values and TV for categorical values.
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End-to-end PrivLava SDV ST-CTGAN ST-TabDDPM ST-ClavaDDPM D-CTGAN D-TabDDPM D-ClavaDDPM ClavaDDPM

California
CARDINALITY 99.90 ± 0.03 71.45 ± 0.00 99.93 ± 0.02 99.94 ± 0.00 99.89 ± 0.04 99.90 ± 0.07 99.94 ± 0.00 99.87 ± 0.02 99.19 ± 0.29

1-WAY 99.71 ± 0.02 72.32 ± 0.00 91.59 ± 0.50 83.27 ± 0.07 99.51 ± 0.04 91.22 ± 0.07 93.10 ± 0.84 94.99 ± 0.02 98.77 ± 0.02

0-HOP 98.49 ± 0.05 50.23 ± 0.00 87.67 ± 0.63 79.27 ± 0.08 98.69 ± 0.08 86.58 ± 0.44 91.12 ± 1.35 94.17 ± 0.01 97.65 ± 0.05

1-HOP 97.46 ± 0.12 54.89 ± 0.00 84.82 ± 0.61 78.44 ± 0.04 92.96 ± 0.05 82.72 ± 0.30 84.43 ± 1.80 87.24 ± 0.10 95.16 ± 0.39

AVG 2-WAY 97.97 ± 0.09 52.56 ± 0.00 86.25 ± 0.60 78.85 ± 0.06 95.83 ± 0.07 84.65 ± 0.35 87.78 ± 1.57 90.71 ± 0.04 96.41 ± 0.20

Instacart 05
CARDINALITY

DNC DNC

95.78 ± 0.96

TLE

94.73 ± 0.14 93.81 ± 0.39

TLE

94.98 ± 0.84 95.30 ± 0.79

1-WAY 79.85 ± 0.96 89.30 ± 0.00 69.07 ± 0.57 71.83 ± 0.32 89.84 ± 0.29

0-HOP 78.27 ± 0.28 99.70 ± 0.00 84.85 ± 0.44 88.74 ± 0.00 99.62 ± 0.04

1-HOP 62.48 ± 0.16 66.93 ± 0.07 60.26 ± 0.38 62.58 ± 0.05 76.42 ± 0.39

2-HOP 24.82 ± 8.02 16.22 ± 13.41 0.00 ± 0.00 0.00 ± 0.00 39.29 ± 3.38

AVG 2-WAY 60.05 ± 1.40 66.66 ± 2.37 56.19 ± 0.33 58.52 ± 0.03 76.02 ± 0.78

Berka
CARDINALITY

DNC DNC

96.08 ± 0.18 68.29 ± 0.00 97.06 ± 0.80 97.72 ± 0.29 97.71 ± 0.00 96.06 ± 1.15 96.92 ± 0.71

1-WAY 79.78 ± 0.75 76.41 ± 2.21 94.58 ± 0.01 83.00 ± 0.65 80.09 ± 0.68 83.28 ± 0.97 94.29 ± 0.44

0-HOP 74.24 ± 0.32 72.80 ± 1.23 91.72 ± 0.23 76.04 ± 0.34 74.82 ± 0.49 72.12 ± 0.73 91.49 ± 0.82

1-HOP 66.59 ± 0.54 54.01 ± 2.35 81.77 ± 1.19 75.25 ± 0.55 61.99 ± 2.10 55.77 ± 2.80 86.86 ± 2.74

2-HOP 75.83 ± 1.07 59.88 ± 1.39 78.09 ± 0.53 72.40 ± 0.43 63.94 ± 1.33 57.68 ± 1.67 89.25 ± 2.27

3-HOP 72.58 ± 0.86 55.29 ± 1.58 75.56 ± 0.34 71.74 ± 0.69 62.67 ± 2.26 55.59 ± 1.48 87.27 ± 1.92

AVG 2-WAY 73.22 ± 0.45 61.74 ± 1.57 82.33 ± 0.40 73.94 ± 0.37 66.29 ± 1.30 60.93 ± 1.49 89.21 ± 1.95

Movie Lens
CARDINALITY

DNC DNC

98.91 ± 0.06

TLE

98.99 ± 0.16 98.70 ± 0.40

TLE

98.87 ± 0.26 99.07 ± 0.18

1-WAY 86.58 ± 0.80 99.19 ± 0.00 68.38 ± 0.36 78.03 ± 0.17 99.34 ± 0.10

0-HOP 72.80 ± 0.86 98.56 ± 0.01 31.96 ± 0.32 57.33 ± 0.10 98.69 ± 0.15

1-HOP 74.86 ± 0.63 92.72 ± 0.09 58.00 ± 0.05 77.45 ± 1.93 96.19 ± 0.11

AVG 2-WAY 74.10 ± 0.62 94.87 ± 0.06 48.45 ± 0.09 70.07 ± 1.19 97.11 ± 0.02

CCS
CARDINALITY

DNC

74.36 ± 8.40 99.00 ± 0.53 93.70 ± 0.00 99.37 ± 0.16 26.98 ± 0.05 26.97 ± 0.00 26.70 ± 0.20 99.25 ± 0.16

1-WAY 69.04 ± 4.38 82.21 ± 0.32 82.72 ± 0.06 95.20 ± 0.00 73.68 ± 0.35 79.28 ± 0.10 79.29 ± 0.13 92.37 ± 2.30

0-HOP 94.84 ± 1.00 87.02 ± 0.18 88.10 ± 0.07 98.96 ± 0.00 81.70 ± 0.33 87.15 ± 0.16 86.60 ± 0.14 98.47 ± 0.79

1-HOP 21.74 ± 9.62 49.84 ± 2.30 47.11 ± 0.06 51.62 ± 0.22 56.86 ± 0.66 61.53 ± 1.50 57.77 ± 0.69 83.15 ± 4.22

AVG 2-WAY 41.68 ± 6.73 59.98 ± 1.72 58.29 ± 0.06 64.53 ± 0.16 63.64 ± 0.57 68.51 ± 1.11 65.64 ± 0.50 87.33 ± 3.12

Table 1: End-to-end results. DNC denotes Did Not Converge, and TLE denotes Time Limit Exceeded.
ST stands for Single-T and D stands for Denorm. Statistical metrics described in Section 5.1 are
reported.

Default Varying k Varying λ Varying η

Berka k = 20, λ = 1.5, η = 1 k = 1 k = 1000 λ = 0 λ = 10 λ = 100 η = 0 η = 2 No Matching

CARDINALITY 96.92 ± 0.71 97.05 ± 0.40 95.12 ± 0.85 97.21 ± 0.40 97.22 ± 0.39 97.17 ± 0.47 96.89 ± 0.24 96.95 ± 0.29 97.76 ± 0.36

1-WAY 94.29 ± 0.44 94.04 ± 0.60 93.73 ± 0.55 94.30 ± 0.57 94.64 ± 0.45 94.82 ± 0.44 94.67 ± 0.39 94.14 ± 0.49 94.71 ± 0.29

0-HOP 91.49 ± 0.82 87.96 ± 2.02 89.67 ± 0.27 88.60 ± 2.11 89.94 ± 0.80 90.84 ± 1.37 88.55 ± 1.20 90.40 ± 0.52 88.75 ± 1.02

1-HOP 86.86 ± 2.74 77.31 ± 0.85 84.97 ± 1.33 81.72 ± 5.11 84.62 ± 1.65 84.19 ± 1.88 81.63 ± 1.23 85.19 ± 1.84 81.97 ± 2.00

2-HOP 89.25 ± 2.27 80.78 ± 0.68 88.18 ± 1.09 83.24 ± 4.35 87.78 ± 1.54 85.64 ± 2.52 84.42 ± 0.43 87.64 ± 1.14 82.41 ± 1.70

3-HOP 87.27 ± 1.92 75.53 ± 2.75 86.10 ± 1.63 77.15 ± 7.05 85.29 ± 2.16 79.19 ± 5.35 80.66 ± 3.16 82.58 ± 3.76 74.78 ± 2.00

AVG 2-WAY 89.21 ± 1.95 81.64 ± 1.09 87.77 ± 0.80 84.01 ± 3.98 87.52 ± 1.36 86.36 ± 2.12 84.69 ± 0.26 87.57 ± 0.89 83.59 ± 1.59

AVG AGREE-RATE 81.12 ± 0.99 100.00 ± 0.00 65.97 ± 0.17 78.85 ± 0.73 80.87 ± 0.73 82.44 ± 0.77 81.32 ± 0.80 81.37 ± 1.09 80.88 ± 0.58

Table 2: Ablation studies on number of clusters k, parent scale λ, and classifier gradient scale η. Note
that η and matching have no effect on agree rates. Statistical metrics described in Section 5.1 are
reported.

(the simplest data), but fails to converge on all the other datasets. SDV also tends to fail on complex
datasets, and is limited to datasets with at most 5 tables and maximum depth of 2 [9]. Although
TabDDPM shares a similar model backbone with ClavaDDPM, its synthesis fails to complete within
7 days on multiple datasets, while ClavaDDPM completes all experiments within 2 days.

5.3 Ablation study

Gaussian diffusion backbone. To decouple the effect of our Gaussian diffusion only backbone with
the latent conditioning training paradigm, we also included two models in Table 1: ST-ClavaDDPM
and D-ClavaDDPM, which use the Gaussian diffusion model in ClavaDDPM as backbone model,
but are trained and synthesized following Single-T and Denorm. Compared to other baselines,
ST-ClavaDDPM exhibits superiority in modeling both single column densities and column-pair
correlations. ST-ClavaDDPM significantly outperforms its sibling ST-TabDDPM, which proves
the effectiveness of using Guassian diffusion for tabular data synthesis solely. On the other hand,
ST-ClavaDDPM falls short on longer-range correlations when compared to the full ClavaDDPM
model. This observation provides solid evidence to the efficacy of our multi-table training paradigm.

Besides the study of the single-table backbone models, we perform a comprehensive ablation study
using Berka (for it has the most complex multi-table structure) on each component of ClavaDDPM
and provide empirical tuning suggestions. The full results are in Table 2.
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Number of clusters k. We study the necessity of using latent cluster conditioning: (i) no conditioning
with k = 1; (ii) many clusters with k = 1000 to approximate a direct conditioning on parent rows
rather than latent variables. When k = 1, the quality of long-range correlation degrades drastically.
When k = 1000, we still get reasonably strong performance, which showcases ClavaDDPM’s
robustness. Compared to the default setting (k = 20), the metrics are lower in all of cardinality
distribution, single column densities, and column correlations — proper latent variable learning leads
to better results than direct conditioning on parent rows. We also report a new metric avg agree-rate,
the average of all per-table agree rates for the labels within each foreign key group (Section 4.3.1).
This measure highly depends on k, but a higher rate does not always imply a better performance (e.g.,
k=1 achieves perfect rates). We provide more insights on how it varies with the next parameter. We
also conducted finer-grained experiments to examine the effect of k on model performance, as shown
in Appendix D.2.

Parent scale λ. Varying the parent scale parameter λ changes the agree-rates as shown in Table 2,
but the downstream model performance does not vary too much. This result indicates that the
relation-aware clustering process is robust against such factors, and the GMM model is capable of
capturing nuances in data patterns. The detailed discussion is in Appendix D.1.

Classifier gradient scale η. This parameter controls the magnitude of classifier gradients when
performing guided sampling, and thus the trade-off between the sample quality and conditional
sampling accuracy. Table 2 shows that, when η = 0, which essentially disables classifier conditioning,
the single column densities (1-way) are slightly higher than the default setting. However, it falls short
in capturing long-range correlations. When η = 2, the conditioning is emphasized with a higher
weight, which significantly improves the modeling of multi-hop correlations compared to η = 0 case.

Comparing with no matching for multi-parent dilemma. Berka (Figure 1) suffers from the multi-
parent dilemma , where the Disposition table has two parent tables, Account and Client. Our abalation
study switch the table matching technique to a naive merging of two synthetic table (Appendix C.2).
The experiment result show that even if trained with the same hyper parameters and model structures,
ClavaDDPM with matching is significantly stronger than the no-matching setup in terms of long-range
correlations, with 3-hop correlations 16.70% higher than no-matching.

6 Conclusion

We proposed ClavaDDPM as a solution to the intricate problem of synthetic data generation for
multi-relational data. ClavaDDPM utilizes clustering on a child table to learn the latent variable that
connects the table to its parents, then feeding them to the diffusion models to synthesis the tables. We
presented ClavaDDPM’s seamless extension to multiple parents and children cases, and established
a comprehensive multi-relational benchmark for a through evaluation – introducing a new holistic
multi-table metric long-range dependency. We demonstrated ClavaDDPM not only competes closely
with the existing work on single-table synthesis metrics, but also it outperforms them in ranged
(inter-table) dependencies. We deliberately selected the more complex public databases to exhibit
ClavaDDPM’s scalability, and introduce it as a confident candidate for a broader impact in industry.

We focused on foreign key constraints in this work, and made the assumption that child rows are
conditionally independent given corresponding parent rows. This brings three natural follow-up
research directions: i) extension to the scenarios where this prior information is not available and these
relationships need to be discovered first[29], ii) further relaxing the assumptions, and iii) inspecting
multi-relational data synthesis with other integrity constraints (e.g, denial constraints[15], general
assertions for business rules). Furthermore, we evaluated ClavaDDPM’s privacy with the common
(in tabular data literature) DCR metric. Nonetheless, we think it is worthwhile to: i) evaluate the
resiliency of ClavaDDPM against stronger privacy attacks[43], and ii) investigate the efficacy of
boosting ClavaDDPM with privacy guarantees such as differential privacy. Similarly, the impacts of
our design on fairness and bias removal, as another motivating pillar in synthetic data generation, is
well worth exploring as future work. We believe the thorough multi-relational modeling formulation
we presented in this work, can serve as a strong foundation to build private and fair solutions upon.
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A Notation Summary

We use boldface to represent random variables. e.g. Y ∼ Y , where Y is the data of R2, and Y is the
random variable Y being sampled from. In addition, we use subscript to represent the parent row
some data or random variable refers to. e.g., xj represents the child random variable that refers to
parent yj . The important notations used in the paper are summarized in Table 3.

Relational database, relational table, synthetic table R, R, R̃
Random variable and data for a parent table Y , Y
Random variable and data for a child table X, X
Random variable and data for a grandchild table Z, Z
Random variable and data for jth parent row yj , yj
Random variable and data for foreign key group referring to jth parent row gj , gj
Random variable and data for child rows in jth foreign key group xij , x

i
j

Random variable and data for jth foreign key group size sj , sj
Latent cluster random variable and value c, c
Augmented table with a latent variable column TY = (Y ;C)
Directed acyclic graph, nodes, edges G = (R, E)
Diffusion model for augmented table T pT
Diffusion model for child data paremeterized by ϕ pϕ (x).
Latent variable classifier parameterized by ψ pψ (c |x)
Classifier guided distribution, parameterized by ϕ, ψ pϕ,ψ (x | c)

Table 3: Notation summary

B Algorithm Details

B.1 Diagram for two-table relational databases

Figure 2 summarizes the generative process for two-table cases.

Figure 2: ClavaDDPM overview for a two-table relational database

B.2 End-to-end algorithms for more tables

We detail the end-to-end algorithms for the three phases of ClavaDDPM, including (i) latent learning
and table augmentation, (ii) training, and (iii) synthesis.

Latent learning and table augmentation. As shown in Algorithm 1, given a database R =
{R1, . . . , Rm} and foreign key constraint graph G, we learn the set of latent variables Ci,j for every
pair of parent-child (Ri → Rj) ∈ G.E and augment all the latent variables to the parent table and the
child table, denoted by Tj and T ′

i , respectively. We initialize each augment table with its original
table (line 1). This algorithm follows a bottom-up topological order starting from the leaf child with
its parent (line 2), ensuring each child table is already augmented by the time we learn the latent
variable to augment its parent. For each parent-child pair Ri → Rj , we join Ti (not T ′

i ) with Rj into
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a single table (X;Y ) (line 3) and then run the clustering algorithm using GMM and maximum voting
described in Section 4.3.1. We append the corresponding clustering labels Ci,j to the augmented
parent table Tj and augmented child table Ti, respectively.

Algorithm 1 ClavaDDPM: Latent learning and table augmentation.
Input: tablesR = {R1, . . . , Rm}, foreign key constraint graph G
Output: latent variables {Ci,j |(Ri → Rj) ∈ G.E}, augmented parent tables {T1, . . . , Tm},

augmented child tables {T ′
1, . . . , T

′
m}

1: Initialize augmented tables {T1, . . . , Tm} ← R, {T ′
1, . . . , T

′
m} ← R

2: for (Ri → Rj) in bottom-up topological order of G do
3: Join parent and augmented child (X;Y )← (Ti, Rj)
4: Ci,j ← Clustering (X;Y ) ▷ Relationship-aware clustering in Section 4.3.1
5: Augment parent Tj ← (Tj ;Ci,j)
6: Augment child T ′

i ← (T ′
i ;Ci,j).

7: end for

Training. As shown in Algorithm 2, the training phase takes in the augmented parent tables
{T1, . . . , Tm} and the foreign key constraint graph G. For each augmented table Tj , we train a
diffusion model pTj

(lines 2-4). Then, for each parent-child pair Ri → Rj (lines 5-7), we train a
child classifier pϕ(ci,j |x) with Ri’s child augment table T ′

i , where the latent column Ci,j is used as
labels, and all remaining columns are used as training data (including the augmented latent columns
corresponding to Ri’s children). Using the same table, we also estimate the foreign key group size
distribution conditioned on the latent variable p(s|ci,j).

Algorithm 2 ClavaDDPM: Training
Input: augmented parent tables {T1, . . . , Tm}, augmented child tables {T ′

1, . . . , T
′
m}, foreign

key constraint graph G
Output: diffusion models D, classifiers C, group size distributions S

1: Initialize D, C,S ← ∅
2: for Rj in G.R do
3: Train pTj

with Tj , and add to D
4: end for
5: for (Ri → Rj) in topological order of G do
6: Learn classifier pϕ(ci,j |x) and p(s|ci,j) using with T ′

i (ignoring irrelevant latent columns)
and add to C and S respectively

7: end for

Synthesis. Algorithm 3 takes in learned diffusion models D, classifiers C, group size distri-
butions S, and the DAG representation of the database G, and outputs the synthetic database
R̃ =

{
R̃1, . . . , R̃m

}
. We first initialize the synthetic augmented tables to be empty (line 1).

Then, for root augmented tables, since they have no parents to condition on, they can be directly
synthesized from their diffusion models (line 2-4). Next, we traverse the database in topological order
to synthesize the remaining augmented tables (line 5-16): If we have already synthesized T̃i before,
which means we encounter the multi-parent dilemma, we just store the old version and continue to
generate a new version (line 6-9). For each parent-child relationship Ri → Rj , we must have already
sampled the augmented parent table T̃j . This is because we follow the topological order of a DAG,
and all root augmented tables have been synthesized as base cases. Therefore, we can obtain the
synthetic latent variables C̃i,j from the synthetic augmented parent T̃j (line 10). Then, we iterate
through each synthetic latent value c̃i,j and perform a two-step sampling: (1) use the learned group
size distribution to conditionally sample a group size s̃ (line 12); (2) sample s̃ rows of data conditioned
on c̃i,j using classifier guided sampling (line 13). We repeat this process until the augmented child
table T̃i is fully synthesized. We simply obtain synthetic tables from synthetic augmented tables
by removing all synthetic latent columns (line 17-19). Finally, for all the encountered multi-parent
dilemmas, we follow Section 4.3.3 to match the divergent versions.
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Algorithm 3 ClavaDDPM: Synthesis
Input: diffusion models D, classifiers C, group size distributions S , foreign key constraint graph

G
Output: Synthetic tables

{
R̃1, . . . , R̃m

}
1: Initialize T̃1, . . . , T̃m ← ∅, . . . , ∅
2: for Rj in root nodes do
3: Sample T̃j ∼ pTj

4: end for
5: for (Ri → Rj) in topological order of G do
6: if T̃i already synthesized then
7: Store T̃i as T̃i,k, where k is the parent that synthesized T̃i,k
8: Reinitialize T̃i ← ∅
9: end if

10: Split T̃j into
(
· ; C̃i,j

)
11: for c̃i,j in C̃i,j do
12: Sample s̃ ∼ p (s | c̃)
13: Classifier-guided sample s̃ rows of data: t̃i ∼ p (ti | c̃i,j)
14: Append t̃i to T̃i
15: end for
16: end for
17: for T̃j in all synthetic augmented tables do
18: R̃j ← all latent columns removed from T̃j
19: end for
20: for R̃j with multiple synthetic versions do
21: R̃j ←MATCHING

(
R̃j,p1 , . . . , R̃j,pq

)
22: end for

# TABLES # FOREIGN KEY PAIRS DEPTH TOTAL # ATTRIBUTES # ROWS IN LARGEST TABLE

California 2 1 2 15 1, 690, 642
Intacart 05 6 6 3 12 1, 616, 315

Berka 8 8 4 41 1, 056, 320
Movie Lens 7 6 2 14 996, 159

CCS 5 4 2 11 383, 282

Table 4: Dataset Specifics

C Experimental Details

C.1 Datasets

Here we describe the real-world datasets used in our evaluation in detail. The specifics of datasets are
in Table 4.

California: The California dataset is a real-world census database ([6]) on household information. It
consists of two tables in the form of a basic parent-child relationship.

Instacart 05: The Instacart 05 is created by downsampling 5-percent from the Kaggle competition
dataset Instacart ([23]), which is a real-world transaction dataset of instacart orders. This dataset
consists of 6 tables in total with a maximum depth of 3.

Berka: The Berka dataset is a real-world financial transaction dataset ([4]), consisting of 8 tables
with a maximum depth of 4. This will be the main dataset in our work for ablation study and model
anatomy.

Movie Lens: The Movie Lens dataset ([39], [32]) consists of 7 tables with a maximum depth of 2.
This dataset exhibits complex multi-parent and multi-children structures.
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CCS: The CCS dataset ([32]) is a real-world transactional dataset Czech debit card company. It
consists of 5 tables with a maximum depth of 2, which exhibits complex multi-parent and multi-
children patterns.

C.2 Baselines

We adopt two multi-relational synthesis models in literature as our baselines: PrivLava [5] as a
representative of state-of-the-art marginal-based methods, and SDV [35] as a statistical method
specially designed for multi-relational synthesis. In addition, we introduce two types of multi-
relational synthesis pipelines, SingleT and Denorm, as our additional baselines. For the additional
baselines, we use CTGAN ([47]) and TabDDPM ([25]) as backbone models, representing the state-
of-the-art tabular synthesis algorithms with GAN-based models and diffusion-based models. In the
following, we describe the high-level ideas of Single-T and Denorm.

Single-T: Given a single-table backbone model, we first learn and synthesize each table individually.
Then, for each parent-child table pair (p, c), we assign foreign keys to the synthetic child table R̃c
by randomly sampling group sizes in the real table Rc, which enforces the synthetic group size
distributions to be similar to real ones.

Denorm: For each parent-child table pair (p, c), we join the table into Rp,c, then use the single-table
backbone model to synthesize the joint table R̃p,c. Finally, we split R̃p,c into two synthetic tables R̃p
and R̃c as follows: (1) Lexicographically sort R̃p,c, where the parent columns are prioritized. This
guarantees that similar parent records are grouped together. (2) From the real table Rc, randomly
sample group sizes g̃ with replacement. Then, for each sampled g̃, the consecutive g̃ rows in R̃p,c
will be taken as a synthetic foreign key group g̃p,c. The child columns part of g̃p,c will be assigned
the same foreign key and appended to the child synthetic table R̃c. Then, we randomly sample a
parent row in g̃p,c and append to the parent synthetic table R̃p. We follow the exact same way as in
ClavaDDPM to extend 2-table Denorm to the entire database.

Random matching: We conduct ablation study by training a ClavaDDPM model with the same
setup as the default setting, while instead of performing table matching to handle the multi-table
dilemma, it performs a naive merging of two synthetic tables. For the diverged synthetic tables R̃D,A
and R̃D,C , where R̃D,A is the Disposition table synthesized conditioned on the Account table, and
R̃D,C is conditioned on the Client table, we simply keep R̃D,A, and randomly assign the (D,C)

foreign keys from R̃D,C to R̃D,A.

C.3 Implementation Details

C.3.1 Classifier Training

We use an MLP for classifier with layers 128, 256, 512, 1024, 512, 256, 128. The output layer size
is adapted to the number of clusters k. We use learning rate of 1e− 4, and optimize with AdamW
optimizer, and use cross entropy loss as objective. The overall training paradigm follows [10], where
we incorporate timestep information by encoding the timesteps into sinusoidal embeddings, which
are then added to the data. For experiments on California, we train the classifier for 10000 iterations,
and for all other datasets we train 20000 iterations.

C.3.2 Hyper Parameters

Baseline models. PrivLava was run under a non-private setup by setting privacy budget ϵ = 50,
and the datasets are prepossessed spesifically for PrivLava to have domain sizes less than 200.

For all models with ClavaDDPM or TabDDPM backbones, we use the same set of hyper parameters.
We set diffusion timesteps to 2000, and use learning rate of 6e− 4. In terms of model architecture,
we use MLP with layer sizes 512, 1024, 1024, 1024, 1024, 512. The model architecture details are
following the implementation of TabDDPM [25]. All DDPM-based models are trained 100, 000
iterations on California dataset, and 200, 000 on other datasets.
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CALIFORNIA INSTACART 05 BERKA MOVIE LENS CCS

Num Clusters k 25 50 20 50 25
Parent Scale λ 1 1 1.5 1 1

Classifier Scale η 1 1 1 1 1

Table 5: Hyper parameters of ClavaDDPM on each dataset.

We conducted CTGAN experiments using the interface from SDV library, and follows the default
parameters, where the learning rates for the generator and discriminator are both 2e−4, and is trained
300 epochs.

PrivLava’s code is not publicly available, and we directly followed the authors’ settings. Note that
PrivLava requires a privacy budget searching process, and ϵ = 50 is the largest working privacy
budget according to our experiments, where larger ϵ leads to failure. We consider this as large enough
to resemble a non-private setting.

For SDV, we used the default setting of their HMASynthesizer, which by default uses a Gaussian
Copula synthesizer.

ClavaDDPM settings. We list the major hyper parameters used by ClavaDDPM for each dataset in
Table 5, and we provide an empirical guidance for hyper parameter tuning: it is suggested to use
number of clusters k to be at least 20, and classifier scale η to be in [0.5, 2]. We empirically find
ClavaDDPM consistently perform well in such a range across all datasets. Parent scale λ is a less
sensitive factor, and λ = 1 is a stable starting point for tuning. In general, ClavaDDPM is robust,
with a small hyper parameter space, and there is very little need for tuning.

C.3.3 Metrics

C2ST. The Classifier Two Sample Test trains a logistic regression classifier to distinguish synthetic
data from real data. We consider this metric as a high-level reflection of data fidelity.

Machine Learning Efficacy. Different from prior works that evaluate MLE utilities [25, 52, 50],
who work on datasets with predefined machine learning tasks, the five real-world multi-relational
datasets we use do not come with a designated downstream task. In addition, the prior knowledge
about which column will be used for downstream predictions will introduce significant inductive
bias to the training process, especially for models capable of performing task-oriented training. To
avoid such issue, we evaluate machine learning efficacy on each of the columns. To be specific,
each time we select a column as target, and train an XGBoost [8] model on remaining columns.
For categorical target columns, we perform regression and evaluate R2, and for categorical target
columns we perform classification and evaluate F1. The overall MLE is measured by average R2

and average F1 across all columns.

To evaluate the single-table MLE on synthetic data generated from multi-table synthesis process,
instead of performing an independent train-test split on each table, we split by foreign key relationship.
e.g. for California dataset, we first perform a random 90%, 10% split on the parent table Household,
and then we follow the foreign key constraints to assign corresponding child rows, i.e. Individuals
to the corresponding buckets. Note that although this splitting method does not lead to the same
train/test ratio on child table, we consider such sampling to be foreign key relationship preserving,
which is a more important property in the context of multi-table synthesis.

D Additional Experiments

D.1 Agree rate discussion

As introduced in Section 4.3.1, within each foreign key group, we perform a majority voting to
synchronize the assigned cluster label among the group. To measure the consistency of such majority
voting process, we introduce the measurement of agree rate, which computes the average ratio of
agreeing on the mode within each foreign key group, and the metric avg agree-rate is the average of
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all per-table agree rates within a multi-table dataset.

A(g) =
mg

|g|
(11)

A(g) represents the agree rate of some group g, where mg represents the number of records that are
assigned the mode cluster within g, and the avg agree-rate

AAVG =
1

|G|
∑
g∈G

A(g) (12)

is computed as the average of the agree rates across all groups.

However, our experiment results in Table 2 indicate that the relationship-aware clustering process is
robust against such factors, and the GMM model is capable of capturing nuances in data patterns. In
our experiments on Berka dataset, ClavaDDPM’s clustering process achieves a consistent agree rate
around 81%, which is practically high enough given we have 20 clusters. Intuitively, when parent
scale approaches infinity, the clustering is performed completely on parent table, which will lead to a
perfect agree rate. Also note that a higher agree rate does not always imply a better performance, and
the disagreement can potentially come from the intrinsic parent-child relationships. e.g. when child
data is intrinsically independent of parent data, it is reasonable to have noisy learned latent variables,
leading to low agree rates. However, in such cases the noisy latent variable would not degenerate
model performance, because the best strategy will be a direct sampling of child table, rather than
conditioning on some enforced prior distribution. In addition, as shown in Table 2, agree rates are
highly affected by the number of clusters chosen, and there exists a trade-off between the granularity
in clustering and consistency. In an extreme case where we have k = 1 cluster, indicating an infinitely
coarse-grained latent learning, it trivially achieves perfect agree rates.

D.2 Selecting Number of Clusters k

We conducted finer-grained experiments to examine the effect of the number of clusters k on model
performance, as shown in Figure 3, which offer empirical insights for selecting k. Based on the
results, (1) a binary search approach could be used to efficiently find a suitable k, and (2) while it
may require more computational resources, opting for a larger k is generally a safe choice.

Figure 3: Smoothed model performance on Berka dataset regarding different k (measured by AVG
2-way), where k =∞ represents assigning each row a unique class.

D.3 High-order Single-table Evaluation

We also consider higher-order single-table evaluation metrics for the quality of some representative
tables as prior work [50]: 1) α-precision and β-recall [1] to measure fidelity and diversity of synthetic
data; 2) Machine Learning Efficacy (MLE) to measure the downstream-task utility; 3) Classifier Two
Sample Test (C2ST) to measure if the synthetic data is distinguishable from real data by machine
learning models.
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PrivLava SDV ST-CTGAN ST-TabDDPM ST-ClavaDDPM D-CTGAN D-TabDDPM D-ClavaDDPM ClavaDDPM

Household
α-PRECISION 97.79 ± 1.18 87.32 ± 0.06 83.23 ± 1.71 85.68 ± 0.09 99.83 ± 0.02 91.59 ± 0.02 90.92 ± 1.38 90.94 ± 0.17 99.77 ± 0.00

β-RECALL 61.64 ± 3.18 19.14 ± 0.05 43.32 ± 0.14 48.57 ± 0.03 58.92 ± 2.36 43.51 ± 0.33 43.68 ± 4.42 53.74 ± 2.82 59.08 ± 2.07

C2ST 97.06 ± 1.68 85.56 ± 0.00 77.54 ± 0.70 66.68 ± 0.16 99.60 ± 0.00 68.04 ± 0.02 63.93 ± 5.45 71.19 ± 0.02 99.55 ± 0.13

AVG F1 47.02 ± 0.06 31.90 ± 0.32 51.06 ± 0.33 48.58 ± 0.22 51.59 ± 0.31 50.86 ± 0.71 45.21 ± 1.32 49.46 ± 0.09 51.46 ± 0.21

AVG R2 67.89 ± 0.02 −18.24 ± 0.19 63.00 ± 0.70 65.96 ± 0.22 66.31 ± 0.74 64.07 ± 0.19 64.24 ± 1.50 66.33 ± 0.00 66.71 ± 0.59

Individual
α-PRECISION 99.44 ± 0.02 55.88 ± 0.08 83.56 ± 0.07 88.41 ± 0.01 99.74 ± 0.06 87.52 ± 0.01 96.98 ± 0.24 99.55 ± 0.15 98.69 ± 0.50

β-RECALL 60.49 ± 5.19 0.52 ± 0.01 46.65 ± 0.48 51.09 ± 0.13 63.14 ± 1.74 39.33 ± 0.21 57.33 ± 2.22 62.44 ± 2.09 65.12 ± 4.71

C2ST 99.63 ± 0.25 5.29 ± 0.00 78.32 ± 0.73 68.23 ± 0.08 99.76 ± 0.17 76.44 ± 0.12 94.50 ± 1.46 99.23 ± 0.01 97.36 ± 0.19

AVG F1 59.50 ± 0.04 22.87 ± 0.03 58.57 ± 0.16 59.19 ± 0.07 61.35 ± 0.18 57.58 ± 0.22 57.94 ± 1.17 60.93 ± 0.00 61.22 ± 0.06

AVG R2 73.51 ± 0.30 −167.24 ± 6.42 80.52 ± 0.30 81.53 ± 0.18 83.13 ± 0.00 77.91 ± 0.97 82.23 ± 0.43 83.08 ± 0.03 83.12 ± 0.07

Table 6: High-level single-table metrics evaluated on the Household table and the Individual table
from the California dataset.

Household Individual Transaction Order
DCR-SMOTE 0.0295 0.0304 0.0082 0.0029

DCR-CLAVADDPM 0.0647 0.0407 0.0097 0.0101

Table 7: Median DCR comparison between ClavaDDPM and SMOTE.

We evaluated high-order single-table metrics on the California dataset across all baseline models
and ClavaDDPM. Following [50], for the evaluation of MLE we perform a 90%, 10% train-test split,
where the F1 and R2 metrics are evaluated on the 10% holdout set. Note that although PrivLava has
an advantage on the California dataset when evaluated with statistical tests (Table 1), ClavaDDPM
exhibits competitive, or even stronger performance than PrivLava on higher-order metrics. Especially
for MLE, ClavaDDPM surpasses PrivLava by 13.07% in terms of average R2 in Individual table, and
also beats PrivLava on average F1 in both tables. Also notice that the baseline ST-CLAVADDPM
dominates in high-order metric evaluations, demonstrating the strength of our Gaussian diffusion-only
backbone model.

ClavaDDPM achieves a second-highest β-recall on Household table and ranks first in β-recall
on Individual table with large margin, gaining a 7.65% advantage over the best baseline without
ClavaDDPM backbone. This serves as strong evidence that ClavaDDPM is not only data fidelity
preserving, but is also capable of generating highly diverse data.

D.4 Privacy Sanity Check

We follow TabDDPM [25] to perform a privacy sanity check against SMOTE [7], which is an
interpolation-based method that generates new data through convex combination of a real data point
with its nearest neighbors. We use the median Distance to Closest Record (DCR) [52] to quantify the
privacy level. We compare the median DCR, as well as DCR distributions of ClavaDDPM against
SMOTE on selected tables.

As shown in table 7, ClavaDDPM although neither specialized in privacy preserving, nor in single
table synthesis, it still maintains a reasonable privacy level. The charts 4 demonstrates the distributions
of DCR scores, where ClavaDDPM is in blue. The overall distribution is more leaning to the right
side, indicating an overall higher DCR distribution.

(a) Household (b) Individual (c) Transaction (d) Order

Figure 4: DCR distributions of four selected tables. The y axis is log-scaled for better presentation.
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E Complexity Analysis

Given a multi-relational database G = (R, E), with m tables, n foreign key constraints, and p
rows per table. For a p-row table, we denote the time complexity of performing GMM clustering
as cGMM(p), training a diffusion model as cdiff(p), training a classifier as cclass(p), synthesizing as
csyn(p), ANN searching as cANN(p).

Phase 1: latent learning and table augmentation

n · cGMM(p) (13)

Phase 2: training
n · cclass(p) +m · cdiff(p) (14)

Note that in practice this phase is dominated by diffusion training, primarily influenced by m.

Phase 3: synthesis
n · csyn(p) (15)

Additional step: matching
n · cANN(p) (16)

Note that the runtime in this phase is negligible compared to the earlier phases, particularly with the
FAISS implementation in the non-unique matching setup.

Total
n
(
cGMM(p)+cclass(p) + csyn(p) + cANN(p)

)
+mcdiff(p) (17)

the overall runtime is dominated by Phase 2 (training) and Phase 3 (synthesis), with the critical factors
being m, n, and p. The model remains robust against the number of clusters in Phase 1, as the impact
on runtime is minimal due to the dominance of the later phases.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide empirical evidence in the evaluation section for the claims made in
the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the conclusion section (second paragraph), we discuss the limitations of our
work and our interest in addressing them as future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We list all the assumptions required to derive our generative process. We do
not have any proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We detail the datasets, baseline algorithms, implementation details of our
algorithms, and evaluation metrics in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material? [Yes] Justification: We upload supplementary materials including code for
reproducibility.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
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