
FLAME: Fast Long-context Adaptive Memory for
Event-based Vision

Biswadeep Chakraborty
Georgia Institute of Technology,

Mercuria Energy Trading
bchakraborty6@gatech.edu

Saibal Mukhopadhyay
School of Electrical and Computer Engineering

Georgia Institute of Technology

Abstract

We propose Fast Long-range Adaptive Memory for Event (FLAME), a novel
scalable architecture that combines neuro-inspired feature extraction with robust
structured sequence modeling to efficiently process asynchronous and sparse event
camera data. As a departure from conventional input encoding methods, FLAME
presents Event Attention Layer, a novel feature extractor that leverages neuromor-
phic dynamics (Leaky Integrate-and-Fire (LIF)) to directly capture multi-timescale
features from event streams. The feature extractor is integrates with a structured
state-space model with a novel Event-Aware HiPPO (EA-HiPPO) mechanism that
dynamically adapts memory retention based on inter-event intervals to understand
relationship across varying temporal scales and event sequences. A Normal Plus
Low Rank (NPLR) decomposition reduces the computational complexity of state
update from O(N2) to O(Nr), where N represents the dimension of the core
state vector and r is the rank of a low-rank component (with r ≪ N). FLAME
demonstrates state-of-the-art accuracy for event-by-event processing on complex
event camera datasets.

1 Introduction

Neuromorphic cameras promise low operation power by generating asynchronous and sparse event
data instead of dense pixel maps. Although spatial and temporal resolutions of event cameras
are increasing [1, 2, 3], extracting features from long sequence of events remains challenging and
computationally expensive [4, 5]. One class of event camera algorithms aggregate events over a
period of time into a volumetric representation [6, 7, 8, 9]. They show higher accuracy but incur
higher computational cost and longer decision latency. Alternatively, event-by-event processing
methods maintains a spatiotemporal representation and updates that for every new event[10, 4, 11].
They have less computation and latency, but lower accuracy in complex datasets. Simultaneously
achieving low computational cost, event-by-event processing, and high accuracy for complex event
camera data remains challenging.

Recent approaches for computationally efficient event camera processing primarily include methods
based on Graph Neural Networks (GNNs), Transformers, and Spiking Neural Networks (SNNs).
While GNNs and Transformers can model complex inter-event relationships to achieve high accuracy,
their core operations (e.g., graph convolution and attention mechanisms) typically process events in
aggregated batches or windows [12, 13, 14, 15, 16, 17]. This operational paradigm fundamentally
limits their ability to perform continuous, low-latency event-by-event updates and often incurs
high computational and memory demands, especially with large event volumes and long sequences
[18, 19, 20]. Conversely, SNN-based methods inherently support event-by-event processing with
promising computational efficiency. However, they often exhibit lower accuracy on complex tasks
involving high spatial and temporal resolutions (i.e., longer event sequences). This performance gap
for SNNs frequently stems from challenges in effectively training very deep architectures and the

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

(b) Event Attention Layer

(a) Overall FLAMES
Model (c) Event Aware HiPPO (d) EA-HiPPO Convolution Layer

Events

Attention

Figure 1: Block diagram of the proposed FLAME architecture. (a) Overall architecture, combining
neuro-inspired feature extraction with efficient state-space modeling. (b) The Event Attention Layer
(EAL) uses multi-branch Leaky Integrate-and-Fire (LIF) dynamics to extract multi-timescale temporal
features from raw event streams. (c) The core Event-Aware HiPPO (EA-HiPPO) dynamically
modulates memory retention based on event timing (∆t), retaining context better than standard HiPPO
after sparse events. (d) The EA-HiPPO Convolution Layer achieves efficiency via asynchronous
updates, Normal-Plus-Low-Rank (NPLR) decomposition, and FFT-based convolution.

inherent transient memory of basic spiking neuron models, which can impede the robust retention of
contextual information over extended event sequences.

State Space Models (SSMs) have emerged as an effective paradigm for modeling complex sequences
[21, 22]. They demonstrated good performance on event datasets but with event aggregation, and
hence, high computational cost [23, 24]. Advanced SSMs use HiPPO (High-Order Polynomial
Projection Operator) framework [25] to compress and represent an input’s history through structured
state-space dynamics. The SSMs built on HiPPO principles (e.g., S4 [21]) excel on dense, regularly
sampled data such as images. However, the HiPPO mechanism and subsequent SSM dynamics
inherently assume continuous or regularly-sampled inputs and require initial encoding layers to
convert events into dense representations. Hence, they do not leverage the discrete, asynchronous,
and sparse nature of event data for computational efficiency and event-by-event processing.

This paper presents FLAME (Fast Long-context Adaptive Memory for Event-based Systems), a
novel, computationally efficient, and scalable SSM-based framework for event-by-event processing
of large-scale event-based vision data. The FLAME architecture makes following key contributions.

• Novel Event-Driven Input Encoding with Neuromorphic Dynamics: We propose the
Event Attention Layer, which utilizes neuromorphic-inspired dynamics (such as Leaky
Integrate-and-Fire mechanisms) for direct, multi-timescale feature extraction from raw
asynchronous event streams. This approach overcomes limitations of conventional input
encoders for SSMs when applied to event data, by inherently processing information event-
by-event and preserving crucial temporal precision and sparsity without requiring dense,
fixed-size input patches or hand-crafted features.

• Event-Aware HiPPO (EA-HiPPO) for Adaptive Memory: We present a novel adaptation
of HiPPO principles where the state-space dynamics are made explicitly sensitive to the
precise timing of discrete input events. Unlike standard HiPPO which assumes continuous
inputs, EA-HiPPO dynamically modulates memory retention based on inter-event intervals.
This allows it to effectively capture diverse temporal patterns in varying timescales and
maintain context within sparse and asynchronous event streams.

• Computationally Efficient SSM Framework for Events: We apply Normal-Plus-Low-
Rank (NPLR) decomposition within the EA-HiPPO core, which reduces state update com-

2

plexity from O(N2) [21] to O(Nr). The reduced computational cost makes FLAME for
high-dimensional event streams.

Our theoretical analysis substantiates the FLAME framework, establishing bounds on memory capac-
ity [26, 27] versus computational cost for these event-driven SSM representations. Our experimental
results on multiple event camera datasets, namely, HAR-DVS, Celex-HAR, N-Caltech101, and
CIFAR10-DVS, demonstrates that state-of-the-art accuracy with event-by-event processing but at a
reduced computational cost (FLOPS/event) and processing latency. Crucially, on high-resolution
data like CeleX-HAR, FLAME achieves comparable accuracy (≈ 72.2%) at ≈ 90× lower com-
pute (0.41 GFLOPs vs. 37.2 GFLOPs) compared to EventMamba, highlighting our efficiency
focus.

Table 1: Qualitative Comparison of FLAME with prior methods

Model Specific Type
Dynamic
Memory

Retention

Direct
Event-by-Event

Processing

Scalable
Long-Context

Memory

Low
Computational

Overhead

Fully
Asynchronous

Updates

Adaptability
to Sparse

Data

Graph Neural Networks (GNN)
AEGNN [18] Asynchronous GNN ✗ ✓ ✗ ✗ ✓ ✓
EventGTS [28] Tracking GNN ✗ ✗ ✗ ✗ ✗ ✓
GEC-Net [29] Classification GNN ✗ ✗ ✗ ✗ ✗ ✓

Transformers
EventNet (Alert-TF) [15] Alert-driven TF ✗ Partial Partial ✗ ✓ ✓
Spiking Transformer [14] Spiking TF Partial ✓ ✓ Partial ✓ ✓
RVT [30] Recurrent Vision TF ✓ ✗ Partial ✗ ✗ ✗
SpikeGPT [31] Autoregressive Spiking

TF
Partial ✓ Partial Partial ✓ ✓

EST [32] Spatio-temporal TF ✗ ✗ ✗ ✗ ✗ ✗

Spiking Neural Networks (SNN)
DH-LIF [33] Dual-threshold LIF

SNN
✗ ✓ ✗ ✓ ✓ ✓

HOTS [34] Time-Surface
(SNN-inspired)

✓ ✓ ✗ ✓ ✓ ✓

SLAYER-SNN [35] SNN (generic) Partial ✓ ✗ ✓ ✓ ✓
LoCoSNN [36] Low-complexity SNN ✗ ✓ ✗ ✓ ✓ ✓
LIAF-Net [37] LIF SNN w/ Attention Partial ✗ ✗ Partial ✗ ✓

State Space Models (SSM)
SpikingLMU [38] Spiking LMU-TF

(Hybrid)
✓ Partial ✓ ✗ Partial ✓

BinaryS4D [39] Binarized S4D (SSM) ✗ ✗ ✓ ✓ ✗ ✗
S4 [21] (applied to events) Structured SSM ✗ ✗ ✓ ✓ ✗ ✗
EventMamba [40] Hybrid CNN-SSM Partial ✗ ✓ ✗ ✗ ✗
SSM-Event [23] Structured SSM ✓ ✗ ✓ Partial ✗ ✗
PRE-Mamba [24] Mamba-based SSM ✓ ✗ ✓ Partial ✗ ✗

FLAME (Ours) Event-Aware SSM ✓ ✓ ✓ ✓ ✓ ✓

2 Related Works

Event Processing with Graph Neural Networks Graph Neural Networks (GNNs) model event data
by constructing graphs from event windows or leveraging inherent event sparsity [29, 28]. While
capable of capturing complex spatio-temporal relationships (e.g., EventGTS [28], GEC-Net [29]),
GNNs often process aggregated event batches, limiting low-latency updates and incurring costs for
graph management with large event volumes. Though some aim for asynchronous updates (e.g.,
AEGNN [18]), GNNs generally lack the inherent, scalable long-context memory mechanisms that
FLAME’s SSM-based architecture provides without explicit graph construction.

Event Processing with Transformers Transformers [41], adapted for event data, range from operat-
ing on event volumes (RVT [30], EST [32]) to more event-driven variants like Alert-Transformer [15]
(partially asynchronous) and Spiking Transformers [14, 31] (aiming for SNN efficiency). However,
the core attention mechanism often remains computationally intensive for long event sequences
or requires windowing strategies that can compromise fully asynchronous, low-latency updates
[16, 42, 43]. FLAME utilizes efficient SSM recurrence, bypassing the quadratic complexity of full
attention for modeling long temporal contexts.

Spiking Neural Networks for Event Camera Processing Spiking Neural Networks (SNNs) natu-
rally suit event cameras’ asynchronous, sparse nature, promising efficiency [4]. Standard training
(SLAYER [35], surrogate gradients [44, 45]) has advanced SNNs (e.g., LoCoSNN [36]), which can
process event-by-event. We choose LIF over simpler Integrate-and-Fire (IF) neurons because the
leak is necessary to avoid unbounded build-up during long silent gaps and ensure training stability
in deeper setups. However, traditional LIF neurons often struggle with extended temporal contexts
due to rapid memory decay [46]. While enhancements like dendritic processing (DH-LIF [33]) exist,

3

FLAME uniquely integrates principles from such mechanisms in its initial Event Attention Layer
with its novel EA-HiPPO SSM core for robust long-context modeling, a common challenge for
standalone SNNs.

State Space Models for Event Cameras State Space Models (SSMs) like S4 [21] and Mamba
[22], built on the HiPPO framework [25], excel at long-sequence modeling but are designed for
dense, regularly sampled data, making them sub-optimal for raw, sparse, asynchronous event streams
[47, 48, 49]. Applying them to events often requires initial aggregation (e.g., into grids [23] or voxels
[40]), potentially losing fine temporal details. While recent works (SpikingLMU [38], BinaryS4D
[39], SpikingSSMs [50], P-SpikeSSM [51]) explore bridging SSMs and event-driven principles,
FLAME’s Event-Aware HiPPO (EA-HiPPO) offers a distinct approach. It directly adapts core SSM
state dynamics using measured inter-event time intervals, preserving HiPPO’s long-context strengths
while making memory evolution explicitly sensitive to event stream patterns.

Adaptive Memory Mechanisms in Event-Driven Systems Adaptive memory is crucial for event-
driven systems [45, 52, 27]. Approaches include Liquid Time-Constant (LTC) Networks [48]
(adapting neuron time-constants) or STDP-like local learning [53]. FLAME’s EA-HiPPO presents
a novel strategy: it achieves adaptivity by globally and explicitly modulating a structured SSM’s
memory dynamics based on the timing of incoming events [26, 54]. This direct modulation by event
statistics makes EA-HiPPO highly effective for efficient long-context modeling in neuromorphic
vision [55], temporal reasoning [56], and resource-constrained edge applications [57, 58, 59, 60].

3 Methods

FLAME introduces a novel neural network architecture engineered for the efficient processing
of high-dimensional, asynchronous data from event cameras. It addresses the critical need for
low computational overhead while effectively modeling complex spatio-temporal dynamics. The
architecture (Figure 1) strategically employs neuromorphic-inspired, event-driven computation for
its initial feature extraction and then integrates this with a powerful SSM core for robust temporal
modeling. This design philosophy allows FLAME to directly process raw event data, harness its
inherent sparsity, and overcome both the memory limitations of purely event-driven systems and the
dense-input requirements of traditional SSMs. The data pipeline comprises: an Event Attention
Layer for multi-timescale feature extraction from raw asynchronous events; a subsequent Spatial
Pooling Layer to enhance computational efficiency by reducing dimensionality; the core EA-HiPPO
Convolution Layer for modeling long-term sequential patterns through event-aware state-space
dynamics; and finally, Layer Normalization and a Readout Layer for task-specific outputs.

Input Representation: FLAME directly processes input as a sequence of asynchronous events,
the native output format of event cameras. Each event is typically a tuple (x, y, t, p) denoting
spatial coordinates, a precise timestamp, and polarity. This native, event-by-event processing is
fundamental to FLAME’s efficiency and its ability to preserve the rich temporal dynamics and
sparsity of neuromorphic sensor data, as computation is triggered only by new information. Our
goal with "event-by-event" is to ensure every update (feature extraction, pooling, and state updates)
happens without batching or delay, not to imply that every stage is determined by a single input spike
alone.

Event Attention Layer The initial stage of FLAME, the Event Attention Layer, is designed to
effectively capture the complex and varying temporal dynamics present in asynchronous event
streams from high-dimensional event cameras. This layer is essential for transforming the raw, sparse
event data into a richer feature representation while managing its inherent irregularity. Inspired by
the multi-timescale filtering capabilities of dendritic branches in biological neurons, this layer is
constructed using LIF neurons, each augmented with multiple conceptual branches (Figure 1(b)).
Each branch d is characterized by a distinct learnable timing factor τd, allowing it to act as a temporal
filter sensitive to a specific timescale. This is particularly important for event data where information
can be encoded across a wide spectrum of inter-event intervals.

The current id(t) in a conceptual branch d evolves according to:

did(t)

dt
= −

1

τd
id(t) + ∑

j∈Nd

wdjEj(t), (1)

4

or in its discrete-time form often used for simulation with a step ∆tsim (if applicable):

id(t +∆tsim) = e
−∆tsim

τd id(t) + (1 − e
−∆tsim

τd) ∑
j∈Nd

wdjEj(t), (2)

where Ej(t) represents an input event from source j (binary, 1 if an event occurs at t, 0 otherwise),
wdj are the learnable weights connecting input j to branch d, and Nd is the set of inputs to branch d.
This multi-timescale filtering allows each neuron to effectively "attend" to features across diverse
temporal windows within the sparse and irregular event stream, extracting meaningful patterns that
might otherwise be lost.

These branch currents are then integrated at the neuron’s soma τs
dV (t)

dt
= −V (t)+∑

d

gdid(t), where

V (t) is the membrane potential, τs is the somatic membrane time constant, and gd is the learnable
coupling strength of branch d to the soma. This late fusion mechanism, using independent branches
and separate coupling weights gd, is explicitly designed to minimize cross-talk between fast- and
slow-timescale responses, as the branches contribute separately to the final firing decision. An output
occurs when V (t) exceeds a threshold Vth, after which V (t) is reset. The output of this layer is thus
a new set of event trains, now enriched with multi-timescale temporal features, ready for further
processing. The EAL acts as an effective denoising and temporal abstraction layer, suppressing
isolated spikes while enhancing coherent spatio-temporal structures. An output occurs when V (t)
exceeds a threshold Vth, after which V (t) is reset. The output of this layer is thus a new set of event
trains, now enriched with multi-timescale temporal features, ready for further processing. This layer
acts as an efficient front-end for raw event data, using LIF neuron dynamics for event generation
which maintains sparsity.

Spatial Pooling Layer High-resolution event cameras (e.g., 1280 × 800) produce vast amounts of
spatial data, posing computational challenges. To manage this efficiently, FLAME incorporates
a Spatial Pooling Layer immediately after the Event Attention Layer. The intuition is to reduce
spatial dimensionality after initial rich feature extraction but before more complex temporal modeling,
preserving crucial spatio-temporal details that might be lost if pooling raw, unprocessed input.
Given an input event map I(x, y, t) from the Event Attention Layer, pooling (e.g., k × k max-
pooling) produces Ipooled(x

′, y′, t) = max(x,y)∈P (x′,y′){I(x, y, t)}. This operation is performed
per event timestamp using a local max operation, without using any voxel grid or frame-level
aggregation, fully preserving temporal resolution. Ablations show that applying pooling before the
EAL caused a consistent performance drop, justifying our chosen order. The output Ipooled is typically
flattened into Eflat(t) ∈ {0,1}

M for the EA-HiPPO layer.. This operation, performed at each event
time t, maintains precise event timing and significantly reduces the feature map size, critical for
the computational tractability of subsequent layers. The output Epooled is typically flattened into
Eflat(t) ∈ {0,1}

M for the EA-HiPPO layer.

EA-HiPPO Convolution Layer The core of FLAME’s capability to efficiently model long temporal
contexts from event data resides in the EA-HiPPO Convolution Layer. This layer adapts State
Space Model principles, particularly the HiPPO framework [25], to the sparse, event-driven nature
of the processed event vector Eflat(t). While termed "convolution" due to its conceptual link to
efficient parallel training modes of modern SSMs (e.g., S4), its inference is inherently recurrent and
event-driven, aligning with low-compute goals.

A state vector x(t) ∈ RN captures historical context, evolving as ẋ(t) = AS(t)x(t) +BEflat(t).
The novelty here is the time-varying adaptive state transition matrix AS(t) ≡AS(∆t) =A ○F(∆t).
Here, A is a base HiPPO matrix, and F(∆t) is a dynamic decay modulation matrix (with elements
Fij(∆t) = e−αij∆t and learnable αij > 0) that adapts to the inter-event interval ∆t. This Event-
Aware HiPPO (EA-HiPPO) design allows memory dynamics to respond to event sparsity: frequent
events (∆t ≈ 0) lead to AS ≈A (preserving memory), while sparse events (large ∆t) allow faster
decay of specific memory elements.

The matrix A is initialized using the HiPPO-LegS formulation, which guarantees that all its eigenval-
ues satisfy Re(λi(A)) < 0 (a Hurwitz matrix), ensuring the continuous-time system is asymptotically
stable. This stability is preserved in the event-adaptive variant AS(∆t) because the decay modulation
matrix F(∆t) ∈ (0,1] does not flip the sign of the eigenvalues.

5

This dynamic adaptation is crucial for asynchronous event streams. For event-driven discrete-time
updates (interval ∆tk, input Eeventk+1):

x(tk+1) = eAS(∆tk)∆tkx(tk) + (AS(∆tk))
−1
(eAS(∆tk)∆tk − I)BEeventk+1 . (3)

The matrix exponential is efficiently approximated using a second-order Taylor expansion. This, along
with Normal-Plus-Low-Rank (NPLR) decomposition of A (reducing complexity to O(Nr)), ensures
low computational cost. Specifically, we use N = 64 and fix the rank to r = 8 in all experiments. The
output state x(t) thus encodes long-term sequential patterns informed by precise event timings. The
output state x(t) thus encodes long-term sequential patterns informed by precise event timings.

Layer Normalization and Readout Layer Following the EA-HiPPO Convolution Layer, Layer
Normalization is applied to the state representation x(t) to stabilize learning from sparse and
dynamic event-driven activations. The final Readout Layer then maps these learned temporal
representations to task-specific predictions. It typically aggregates information from the state sequence
x(t1), . . . ,x(tL) (e.g., via temporal averaging of the last K states to get xpooled) and passes this
through a linear layer with an appropriate output activation (e.g., softmax for classification, ypred =

Softmax(Woutxpooled + bout)). This provides an efficient mechanism to derive final outputs.

4 Theoretical Analysis

This section establishes theoretical guarantees for FLAME, our adaptive state-space framework. We
focus on three key aspects: computational efficiency of state updates, the ability to model extended
temporal contexts from event data, and overall system stability. Formal bounds are presented to
analyze how FLAME’s components ensure robust and efficient processing. Detailed proofs for all
theorems and lemmas are provided in the Suppl. Material.

4.1 Computational Complexity: Enabling Efficient Event Processing

Lemma 1 (Computational Efficiency of Adaptive State Updates). The state update for the EA-HiPPO
dynamics, ẋ(t) = AS(∆t)x(t) +BEflat(t) (as defined in Sec. 3, where Eflat(t) is the flattened
input event vector), with x(t) ∈ RN and AS(∆t) = A ○ F(∆t), has a complexity of O(N2) per
input event if the base HiPPO matrix A ∈ RN×N is dense. With a Normal-Plus-Low-Rank (NPLR)
decomposition applied to A, this complexity reduces to O(Nr) per input event, where r ≪ N is the
rank of the low-rank component, provided F(∆t) allows for efficient element-wise operations.

This lemma highlights a cornerstone of FLAME’s efficiency: the NPLR decomposition drastically
reduces the computational cost of each state update from quadratic to near-linear (O(Nr)) in the
state size N . This reduction is essential for real-time processing of potentially high-rate event data,
as the core operations involving the adaptive state matrix AS(∆t) remain computationally tractable.

4.2 Modeling Extended Temporal Contexts in Event Streams

Theorem 1 (Preservation of Information over Extended Durations). Let x(t) ∈ RN evolve according
to the EA-HiPPO dynamics:

ẋ(t) =AS(∆t)x(t) +BEflat(t),

where AS(∆t) = A ○ F(∆t), A is a base HiPPO matrix with eigenvalues λi(A) satisfy-
ing Re(λi(A)) < 0, F(∆t) is the adaptive decay matrix (Fij(∆t) = e−αij∆t), inputs satisfy
∥Eflat(t)∥ ≤ E∞, and x(0) = x0. If all eigenvalues λk(AS(∆t)) of the adaptive state matrix
AS(∆t) have negative real parts for relevant inter-event intervals ∆t, then the state norm is
bounded:

∥x(t)∥ ≤ e−αeff t∥x0∥ +
∥B∥E∞
αeff

(1 − e−αeff t),

where αeff =mink ∣Re(λk(AS(∆t)))∣ > 0 is the memory retention rate, that adapts with ∆t.

Theorem 1 demonstrates FLAME’s capacity to maintain information over long durations and un-
derstand temporally distant relationships within event streams. The EA-HiPPO dynamics allow the
effective memory retention rate, αeff , to be small when necessary, preserving long-term context.

6

Crucially, the adaptive nature of AS(∆t), modulated by F(∆t) based on input event sparsity (inter-
event interval ∆t), allows this retention to be dynamically adjusted, aligning with the principles
described in Sec. 3.

4.3 Numerical Stability of Event-Driven State Updates

Lemma 2 (Stability of Taylor Expansion for State Update). Approximating the matrix exponential
eAS(∆t)∆t using an n-th order truncated Taylor series (Sec. 3), the single-step approximation error
En is bounded by:

∥En∥ ≤
∥AS(∆t)∆t∥n+1

(n + 1)!
e∥AS(∆t)∆t∥.

This bound (Lemma 2) justifies using a low-order Taylor expansion (e.g., n = 2, as in Sec. 3) for the
matrix exponential. This balances computational efficiency with numerical stability, ensuring reliable
updates even with varying inter-event intervals ∆t.

Theorem 2 (Global System Stability). The state trajectory x(t) of FLAME, governed by ẋ(t) =
AS(∆t)x(t) +BEflat(t), remains bounded (i.e., ∥x(t)∥ ≤ C for some constant C > 0, ∀t ≥ 0) if:

1. Bounded Inputs: Input event streams ensure ∥Eflat(t)∥ ≤ E∞, ∀t ≥ 0.

2. Uniform Hurwitz Stability of AS(∆t): For encountered inter-event intervals ∆t, AS(∆t)
is uniformly Hurwitz (all eigenvalues λk(AS(∆t)) satisfy Re(λk(AS(∆t))) ≤ −ϵ < 0 for
some fixed ϵ > 0).

3. Lyapunov Condition: For each relevant AS(∆t), ∃ a positive definite P(∆t) s.t.
AS(∆t)TP(∆t) +P(∆t)AS(∆t) = −Q(∆t) for some positive definite Q(∆t).

Theorem 2 ensures the overall stability of FLAME. It guarantees that the internal state representation
remains well-behaved and does not diverge, even when processing extended and sparse event streams,
provided the adaptive state matrix AS(∆t) maintains stability across the typical dynamics of inter-
event intervals.

Discussion: Balancing Efficiency and Memory for Event Data: Our theoretical analysis highlights
how FLAME is engineered for efficient event-based processing. The NPLR decomposition (Lemma
1) is fundamental to achieving low per-event update costs (O(Nr)), enabling the model to handle
complex memory representations from event data without prohibitive computation. Concurrently,
the EA-HiPPO mechanism’s adaptive state matrix AS(∆t) dynamically modulates the memory
retention rate αeff (Theorem 1) in response to input event sparsity, using the learnable decay matrix
F(∆t). This creates an intrinsic balance between preserving information over extended temporal
contexts and adapting to new, incoming events. Coupled with guarantees of numerical and global
system stability (Lemma 2, Theorem 2), these theoretically-grounded design choices make FLAME
particularly suitable for robust and resource-aware processing of high-dimensional event streams.

5 Experiments and Results

We conduct empirical evaluation of FLAME to demonstrate its effectiveness and efficiency in pro-
cessing asynchronous, event-driven data from event cameras across various challenging benchmarks.
Our experiments are designed to assess: (1) performance on demanding event-based vision datasets,
including high-resolution and complex activity scenarios; (2) computational efficiency in terms of
FLOPs, parameters, and inference latency, including profiling on diverse hardware backends; and (3)
the specific contributions of key architectural components through targeted ablation studies.

5.1 Experimental Setup

Datasets: We evaluate FLAME on a diverse set of public benchmarks to assess its capabilities in
event-based vision. For event-based vision, these include DVS Gesture [7] (gesture recognition), HAR-
DVS [61] (human activity), Celex-HAR [2] (high-resolution human activity), CIFAR10-DVS [62]
(neuromorphic image classification), and N-Caltech101 [63] (neuromorphic object recognition).
Additional evaluations cover event-based speech datasets, namely Spiking Heidelberg Digits (SHD)

7

 (a) (b)

1

0.9
5

0.
9

0.8
5

0.
8

0.7
5

(c)

Figure 2: Accuracy versus GFLOPs across various event-based vision datasets, comparing
FLAME variants with other State-of-the-Art (SOTA) models. (a) Performance on DVSGesture128,
including ablation studies for FLAME demonstrating the impact of removing the Event Attention
Layer (No Dendrite) or replacing EA-HiPPO with standard LIF neurons (No SA-HiPPO). (b)
Performance on the high-resolution CeleX-HAR dataset, showcasing FLAME’s efficiency at scale. (c)
Performance on HAR-DVS, highlighting the competitive accuracy of FLAME variants. Note: FLAME
variants consistently occupy favorable positions, indicating superior accuracy for their computational
budget.

and Spiking Speech Commands (SSC) [64], and Sequential CIFAR-10/100 [65] for sequential image
classification, with further details provided in Appendix B.

Table 2: Performance and Efficiency Comparison of FLAME-Normal against State-of-the-Art (SOTA)
models across various event-based datasets. Dataset sizes are approximate. FLOPs are GigaFLOPs.

Dataset Resolution Size (Samples; Classes) SOTA Model (Acc. %) SOTA
FLOPs (G)

FLAME-
Normal (Acc.

%)

FLAME-Normal
FLOPs (G)

CIFAR10-DVS
[62]

128 × 128 ∼10k Events/Img; 10 Cls Spike-VGG11
(85.11%)

8.9 80.5% 0.43

N-Caltech101 [63] Orig: 302 × 245
(varies)

∼8.7k Samples; 101 Cls EFV++ (89.7%) - 70.5% 1.34

DVS128 Gesture
[7]

128 × 128 ∼1.3k Samples; 11 Cls EventMamba (99.2%) 0.219 96.5% 0.43

HAR-DVS [61] 346 × 260 ∼1.4k Samples; 6 Cls EXACT (90.10%) 1.3 88.29% 0.41
CeleX-HAR [2] 1280 × 800 ∼125k Samples; 150 Cls EVMamba (72.3%) 37.2 72.2% 0.41

Across all datasets, FLAME processes inputs event-by-event, dynamically updating its hidden state
with each incoming event to preserve high temporal resolution. Comprehensive details on all dataset
characteristics and specific task setups are available in Appendix B.1.

FLAME Model Variants: We evaluate three primary variants of FLAME—Tiny, Small, and
Normal—to demonstrate scalability and the trade-offs between performance and computational
complexity. Their architectural details (e.g., number of distinct timing factors in the Event Attention
Layer, filter counts, readout layer neurons) are provided in Suppl. Sec. C. All variants employ the
EA-HiPPO mechanism.

Evaluation Metrics and Implementation: We report accuracy, GFLOPs (Giga Floating Point
Operations), number of parameters, and inference latency (ms). FLAME models are implemented
in PyTorch. Main training and inference for event datasets are conducted on NVIDIA A100 GPUs.
Further details on hyperparameters and training procedures are in Appendix B.

5.2 Performance on Event-Based Vision Benchmarks

FLAME demonstrates strong performance across multiple event-based vision datasets, often achieving
a superior accuracy-efficiency trade-off. This highlights its suitability for processing high-dimensional
event camera data with low compute requirements.

DVS Gesture: As shown in Figure 2(a), FLAME-Normal obtains 96.5%, while FLAME-Small
(93.7%) and FLAME-Tiny (89.2%) offer graceful performance degradation at lower compultation.

8

These results compare favorably against models like EventMamba [40] and PointNet++ [66] but at
much less FLOPS. Detailed comparisons in Suppl. Table 7.

Contrast with EventMamba: This comparison highlights the models’ architectural focus. While
EventMamba achieves slightly higher accuracy on the low-resolution DVS Gesture dataset (99.2%
vs. FLAME’s 96.5%) at comparable FLOPs, FLAME demonstrates its architectural advantage
in processing high-resolution, sparse data on CeleX-HAR. Here, FLAME maintains comparable
accuracy (72.2%) while operating at ≈ 90× lower computational cost (0.41 GFLOPs vs. 37.2
GFLOPs), showcasing superior efficiency and scalability. We detail this trade-off further in Appendix
B.4.

HAR-DVS: On this dataset for human activity recognition from event streams (Figure 2(c)), FLAME
show strong performance, outperforming several state-of-the-art DNNs, with fewer computation.

Celex-HAR (Scaling to HD Event Streams): Figure 2(b) illustrates FLAME’s scalability to
high-resolution (1280 × 800) event streams. FLAME-Normal surpasses the accuracy of models
like TSM [67] and VisionMamba-S [68] while operating with significantly lower GFLOPs. This
highlights EA-HiPPO’s effectiveness in managing spatio-temporal complexity in high-dimensional
event data efficiently.

Other Datasets: FLAME also shows strong performance on other event datasets like CIFAR10-DVS,
NCaltech101, SHD and SSC event-based speech datasets as shown in Suppl. Table 6.

For completeness, we note that comparisons with voxel-based models like EventMamba are omitted
for datasets such as SHD and SSC because those models rely on frame-wise or voxel-based recon-
struction, which is not directly applicable to classification tasks where ground-truth labels are defined
at the sequence level.

5.3 Efficiency Analysis

FLOPs and Parameters: Figure 2 provides a comparative visualization of accuracy versus GFLOPs
across DVSGesture128, Celex-HAR, and HAR-DVS. FLAME variants consistently occupy favorable
positions, indicating superior accuracy for their computational budget compared to many established
models. For instance, on DVSGesture128, FLAME-Normal achieves high accuracy with significantly
fewer parameters and GFLOPs than several competing methods (further details in Appendix B).
The methodology for estimating FLOPs, particularly for our event-driven components, is detailed in
Appendix C.7.

Inference Latency: We measured inference latency on an NVIDIA A100 GPU (40GB VRAM).
As shown in Figure 3 for the challenging Celex-HAR dataset, FLAME models exhibit significantly
lower latency, crucial for real-time event processing. FLAME-Tiny achieves the lowest latency
at 0.162 ms. FLAME-Small (0.582 ms) and FLAME-Normal (1.867 ms) also maintain a strong
latency-accuracy profile compared to models like TimeSformer (255.425 ms) and even optimized
alternatives like VideoMamba-S (19.707 ms). Detailed latency figures are in Suppl. Table 8. To
further assess practical deployability on diverse hardware, we profiled FLAME-Tiny across various
platforms, including CPUs and other GPU tiers. These results, detailed in Appendix B.6 (Table 10),
demonstrate consistent accuracy and highlight FLAME’s adaptability.

Ablation Studies: To validate the contributions of FLAME’s key architectural components to its
overall performance and efficiency, we conducted ablation studies, primarily on the DVS Gesture 128
dataset (see Figure 2(a) dashed lines and Suppl. Table 7 for full details).
Impact of Event Attention Layer: Removing the multi-timescale processing mechanism within the
Event Attention Layer resulted in a noticeable accuracy drop across all FLAME variants (e.g.,
FLAME-Normal accuracy decreased from 96.5% to 95.2%). This highlights the importance of this
specialized initial processing stage for effectively capturing diverse temporal features present in raw
event streams.
Impact of EA-HiPPO: Replacing the EA-HiPPO mechanism with standard LIF neurons (keeping
other architectural elements comparable for basic event processing) led to significant performance
degradation (e.g., FLAME-Normal accuracy further reduced to 90.4%). This underscores the critical
role of EA-HiPPO’s structured, adaptive memory in retaining long-range temporal context from event
data, a capability that simpler neuron models inherently lack for complex sequences.

9

(a) (b)
Figure 3: Efficiency analysis on the CeleX-HAR dataset, measured on an NVIDIA A100 GPU.
FLAME variants demonstrate a superior trade-off compared to SOTA models. (a) Accuracy versus
Parameters (M): FLAME achieves competitive accuracy with significantly lower parameter counts
than many high-performance models. (b) Accuracy versus Inference Latency (ms) (log scale):
FLAME models exhibit substantially lower latency, confirming the efficiency of the asynchronous,
event-by-event design for real-time applications.

These ablations confirm that both the Event Attention Layer and the EA-HiPPO mechanism are
integral to FLAME’s strong performance and its efficiency in processing event-based data.

6 Conclusion

In this paper, we introduced FLAME, a novel architecture engineered for the efficient processing of
large-scale, asynchronous event-based data. By integrating an event-driven, neuromorphic-inspired
front-end with a powerful state-space memory core, FLAME achieves compelling performance. Its
Event-Aware HiPPO (EA-HiPPO) mechanism dynamically adapts memory based on inter-event
intervals, enabling robust modeling of complex temporal patterns and the understanding of temporally
distant relationships in sparse data streams. Our comprehensive evaluations demonstrate FLAME’s
significant advantages in accuracy, computational efficiency (low FLOPs/latency), and scalability
across diverse benchmarks, including challenging event-based vision tasks and temporal reasoning,
establishing it as a capable framework for processing real-world event data on conventional hardware.

Current Limitations and Future Directions. Despite its efficiency, the current FLAME framework
has practical limitations. While it achieves high throughput on modern GPUs, it does not yet meet
real-time constraints on CPU-only systems and is designed for static offline training, currently lacking
mechanisms for on-device continual learning. Furthermore, as an event-driven model, its performance
in high-noise environments may be sensitive to sensor noise, a known trade-off mitigated but not
eliminated by the EAL filtering.

However, while FLAME incorporates event-driven principles, its core EA-HiPPO mechanism, as
a sophisticated state-space model, is not a purely spiking neuromorphic algorithm in its current
formulation. This means the full architecture is not directly translatable for end-to-end native
execution on existing neuromorphic hardware platforms. A key direction for future work is therefore
to adapt and extend the principles of FLAME, particularly its event-aware state dynamics, to enable
efficient mapping onto such specialized hardware. Our goal is to leverage these advancements for
ultra-low-power, large-scale, and efficient event-based vision at the edge, fully realizing the potential
of neuromorphic computing for these demanding applications.

10

Acknowledgements

This work is supported by the Defense Advanced Research Projects Agency (DARPA) under Grant
Numbers N660012324003. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either expressed or implied,
of the Department of Defence, DARPA, or the U.S. Government.

Broader Impacts

The primary societal impact of FLAME is derived from its architectural focus on efficiency and
real-time processing for event-based vision. The core positive impact is enabling the deployment
of sophisticated vision systems in resource-constrained environments. By achieving competitive
accuracy on high-resolution data at substantially lower computational costs and ultra-low latency,
this work significantly lowers the hardware and power barrier for applications in areas such as remote
environmental monitoring, advanced robotics, and autonomous navigation at the edge.

As foundational architecture research that utilizes only established, publicly available benchmark
datasets, this work introduces no unique negative societal risks beyond those generally associated
with technological progress in machine perception. We acknowledge that enhanced real-time sensing
capability could be potentially applied to advanced surveillance systems, but our focus remains on
promoting the responsible use of this technology, specifically for resource-efficient and beneficial
applications.

References
[1] Shoushun Chen and Menghan Guo. Live demonstration: Celex-v: a 1m pixel multi-mode event-

based sensor. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pages 1682–1683. IEEE, 2019.

[2] Xiao Wang, Shiao Wang, Chuanming Tang, Lin Zhu, Bo Jiang, Yonghong Tian, and Jin Tang.
Event stream-based visual object tracking: A high-resolution benchmark dataset and a novel
baseline. arXiv preprint arXiv:2408.09764, pages 19248–19257, 2024.

[3] Cedric Scheerlinck, Henri Rebecq, Timo Stoffregen, Nick Barnes, Robert Mahony, and Davide
Scaramuzza. CED: Color Event Camera Dataset. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 591–600, June
2019.

[4] Guillermo Gallego, Tobi Delbruck, Garrick Orchard, Chiara Bartolozzi, Ben Taba, Andrea
Censi, Stefan Leutenegger, Andrew J Davison, Jörg Conradt, Kostas Daniilidis, and Davide
Scaramuzza. Event-based vision: A survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 44(1):154–180, 2020.

[5] Catherine D Schuman, Shruti R Kulkarni, Maryam Parsa, J Parker Mitchell, Prasanna Date,
and Bill Kay. Opportunities for neuromorphic computing algorithms and applications. Nature
Computational Science, 2(1):10–19, 2022.

[6] Alex Zihao Zhu, Lixu Yuan, Kendall Chaney, and Kostas Daniilidis. Unsupervised event-based
learning of optical flow, depth, and egomotion. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pages 1–10. IEEE, 2018.

[7] Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo Di Nolfo,
Tapan Nayak, Alexander Andreopoulos, Guillaume Garreau, Marcela Mendoza, et al. A low
power, fully event-based gesture recognition system. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 7243–7252. IEEE, 2017.

[8] Xuan Peng, Michael Strecke, and Guido Reina. Event-based, direct camera tracking and
mapping in real-time. In 2020 IEEE International Symposium on Mixed and Augmented
Reality (ISMAR), pages 326–335. IEEE, 2020.

11

[9] Henri Rebecq, Elias Mueggler, Guillermo Gallego, and Davide Scaramuzza. EMVS: Event-
based multi-view stereo. In European Conference on Computer Vision (ECCV), pages 3–20.
Springer, 2016.

[10] Valentina Vasco, Arren Glover, and Chiara Bartolozzi. Event-based harris corner detection
for neuromorphic vision sensors. In 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5101–5107. IEEE, 2016.

[11] Ryad Benosman, Charles Clercq, Xavier Lagorce, Sio-Hoi Ieng, and Chiara Bartolozzi.
Event-based visual flow. IEEE Transactions on Neural Networks and Learning Systems,
25(2):407–417, 2014.

[12] Yin Bi, Aaron Chadha, Alhabib Abbas, Eirina Bourtsoulatze, and Yiannis Andreopoulos.
Graph-based spatio-temporal feature learning for neuromorphic vision sensing. IEEE Transac-
tions on Image Processing, 29:9084–9098, 2020.

[13] Yongjian Deng, Hao Chen, Hai Liu, and Youfu Li. A voxel graph cnn for object classification
with event cameras. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1172–1181, 2022.

[14] Man Yao, Jiakui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo Xu, and Guoqi Li. Spike-
driven transformer. Advances in neural information processing systems, 36, 2024.

[15] Carmen Martin Turrero, Maxence Bouvier, Manuel Breitenstein, Pietro Zanuttigh, and Vincent
Parret. Alert-transformer: Bridging asynchronous and synchronous machine learning for
real-time event-based spatio-temporal data. arXiv preprint arXiv:2402.01393, 2024.

[16] Biswadeep Chakraborty and Saibal Mukhopadhyay. Exploiting heterogeneity in timescales for
sparse recurrent spiking neural networks for energy-efficient edge computing. SRC TechCON
2024, 2024.

[17] Mathias Gehrig and Davide Scaramuzza. Recurrent vision transformers for object detection
with event cameras. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 13884–13893, 2023.

[18] Simon Schaefer, Daniel Gehrig, and Davide Scaramuzza. Aegnn: Asynchronous event-based
graph neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 12371–12381, 2022.

[19] Nico Messikommer, Daniel Gehrig, Antonio Loquercio, and Davide Scaramuzza. Event-based
asynchronous sparse convolutional networks. In European Conference on Computer Vision,
pages 415–431. Springer, 2020.

[20] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey.
In arXiv preprint arXiv:2009.06732, 2020.

[21] Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with
structured state spaces. In International Conference on Learning Representations, 2022.

[22] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752, 2023.

[23] Nikola Zubic, Dragana Zovkic, Anas Sadel, and Davide Scaramuzza. State Space Models for
Event Cameras. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2024.

[24] Ciyu Ruan, Ruishan Guo, Zihang Gong, Jingao Xu, Wenhan Yang, and Xinlei Chen. PRE-
Mamba: A 4d state space model for ultra-high-frequent event camera deraining. arXiv preprint
arXiv:2405.05307, 2024.

[25] Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent
memory with optimal polynomial projections. Advances in neural information processing
systems, 33:1474–1487, 2020.

12

[26] Wenjie Wei, Malu Zhang, Jilin Zhang, Ammar Belatreche, Jibin Wu, Zijing Xu, Xuerui Qiu,
Hong Chen, Yang Yang, and Haizhou Li. Event-driven learning for spiking neural networks.
arXiv preprint arXiv:2403.00270, 2024.

[27] Biswadeep Chakraborty and Saibal Mukhopadhyay. Heterogeneous recurrent spiking neural
network for spatio-temporal classification. arXiv preprint arXiv:2211.04297, 17:994517, 2022.

[28] Lei Shi, Yezhou Wang, and Shang Xu. Eventgts: Event-based graph tracking system with
spatio-temporal pyramid attention. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 12566–12576, 2023.

[29] Zhao Bi, Aayush Chadha, Ahmed Abbas, Eirina Bourtsoulatze, and Yiannis Andreopoulos.
GEC-Net: Graph-embedded event camera classification. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 644–653,
June 2020.

[30] Daniel Gehrig, Mathias Gehrig, John Monaghan, and Davide Scaramuzza. Recurrent vision
transformers for dense prediction. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV) Workshops, pages 3139–3148, 2021.

[31] Yiming Zhu, Bohan Yin, Jianing Chen, Zhaofei Liu, Deli Zhao, Boxin Li, Tiejun Mei, and
Feng Liu. SpikeGPT: Generative pre-trained spiking neural network for event-based vision.
In Advances in Neural Information Processing Systems (NeurIPS), volume 36, pages 34253–
34267, 2023.

[32] Zhipeng Zhang, Chang Liu, Shihan Wu, and Yan Zhao. EST: Event spatio-temporal transformer
for object recognition with event cameras. In ICASSP 2023 - 2023 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1–5. IEEE, 2023.

[33] Hanle Zheng, Zhong Zheng, Rui Hu, Bo Xiao, Yujie Wu, Fangwen Yu, Xue Liu, Guoqi Li,
and Lei Deng. Temporal dendritic heterogeneity incorporated with spiking neural networks
for learning multi-timescale dynamics. Nature Communications, 15(1):277, 2024.

[34] Xavier Lagorce, Garrick Orchard, Francesco Galluppi, Bertram E Shi, and Ryad Ben Benos-
man. Hots: A hierarchy of event-based time-surfaces for pattern recognition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 39(7):1346–1359, 2017.

[35] Sumit Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment in time. Advances
in Neural Information Processing Systems (NeurIPS), 31, 2018.

[36] Federico Paredes-Vallés, Julien Dupeyroux, and Guido C H E de Croon. LoCoSNN: A LOw-
COmplexity spiking neural network for event-based optical flow. Neural Computing and
Applications, 2024.

[37] Zhenzhi Wu, Hehui Zhang, Yihan Lin, Guoqi Li, Meng Wang, and Ye Tang. Liaf-net: Leaky
integrate and analog fire network for lightweight and efficient spatiotemporal information
processing. IEEE Transactions on Neural Networks and Learning Systems, 33(11):6249–6262,
2021.

[38] Zeyu Liu, Gourav Datta, Anni Li, and Peter Anthony Beerel. Lmuformer: Low complexity yet
powerful spiking model with legendre memory units. arXiv preprint arXiv:2402.04882, 2024.

[39] MI Stan and O Rhodes. Learning long sequences in spiking neural networks using state-space
models. Scientific Reports, 14(1):21957, 2024.

[40] Hongwei Ren, Yue Zhou, Jiadong Zhu, Haotian Fu, Yulong Huang, Xiaopeng Lin, Yue-
tong Fang, Fei Ma, Hao Yu, and Bojun Cheng. Rethinking efficient and effective point-
based networks for event camera classification and regression: Eventmamba. arXiv preprint
arXiv:2405.06116, 2024.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems (NeurIPS), volume 30, 2017.

13

[42] Biswadeep Chakraborty, Uday Kamal, Xueyuan She, Saurabh Dash, and Saibal Mukhopadhyay.
Brain-inspired spatiotemporal processing algorithms for efficient event-based perception. In
2023 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 1–6. IEEE,
2023.

[43] Hemant Kumawat, Biswadeep Chakraborty, and Saibal Mukhopadhyay. Robokoop: Efficient
control conditioned representations from visual input in robotics using koopman operator.
CoRL 2024, 2024.

[44] Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in
spiking neural networks. IEEE Signal Processing Magazine, 36(6):61–63, 2019.

[45] Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and Wolfgang Maass.
Long short-term memory and learning-to-learn in networks of spiking neurons. Advances in
neural information processing systems, 31, 2018.

[46] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

[47] Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
Combining recurrent, convolutional, and continuous-time models with linear state space layers.
Advances in neural information processing systems, 34:572–585, 2021.

[48] Ramin Hasani, Mathias Lechner, Yulia Yildiz, Radu Grosu, and Daniela Rus. Liquid time-
constant networks. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),
2021.

[49] Biswadeep Chakraborty and Saibal Mukhopadhyay. Topological representations of heteroge-
neous learning dynamics of recurrent spiking neural networks. IJCNN 2024, 2024.

[50] Shuaijie Shen, Chao Wang, Renzhuo Huang, Yan Zhong, Qinghai Guo, Zhichao Lu, Jianguo
Zhang, and Luziwei Leng. Spikingssms: Learning long sequences with sparse and parallel
spiking state space models. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pages 20380–20388, 2025.

[51] Malyaban Bal and Abhronil Sengupta. P-spikessm: Harnessing probabilistic spiking state
space models for long-range dependency tasks. arXiv preprint arXiv:2406.02923, 2024.

[52] Friedemann Zenke and Emre O Neftci. Brain-inspired learning on neuromorphic substrates.
Proceedings of the IEEE, 109(5):935–950, 2021.

[53] Biswadeep Chakraborty and Saibal Mukhopadhyay. Characterization of generalizability of
spike timing dependent plasticity trained spiking neural networks. Frontiers in Neuroscience,
(arXiv preprint arXiv:2105.14677), 2021.

[54] Albert Gu, Isys Johnson, Aman Timalsina, Atri Rudra, and Christopher Ré. How to train
your hippo: State space models with generalized orthogonal basis projections. arXiv preprint
arXiv:2206.12037, 2022.

[55] Daniel Gehrig and Davide Scaramuzza. Low-latency automotive vision with event cameras.
Nature, 629:1034–1043, 2024.

[56] Mingqing Xiao, Yixin Zhu, Di He, and Zhouchen Lin. Temporal spiking neural networks
with synaptic delay for graph reasoning. In Forty-first International Conference on Machine
Learning, 2024.

[57] Biswadeep Chakraborty, Beomseok Kang, Harshit Kumar, and Saibal Mukhopadhyay. Sparse
spiking neural network: Exploiting heterogeneity in timescales for pruning recurrent snn. In
The Twelfth International Conference on Learning Representations (ICLR). arXiv preprint
arXiv:2403.03409, 2024.

[58] Biswadeep Chakraborty and Saibal Mukhopadhyay. Brain-inspired spiking neural network for
online unsupervised time series prediction. In 2023 International Joint Conference on Neural
Networks (IJCNN), pages 1–8. IEEE, 2023.

14

[59] Hemant Kumawat, Biswadeep Chakraborty, and Saibal Mukhopadhyay. Stage net: Spatio-
temporal attention-based graph encoding for learning multi-agent interactions in the presence
of hidden agents. 2024.

[60] Biswadeep Chakraborty, Harshit Kumar, and Saibal Mukhopadhyay. A dynamical systems-
inspired pruning strategy for addressing oversmoothing in graph neural networks. arXiv
preprint arXiv:2412.07243, 2024.

[61] Xiao Wang, Zongzhen Wu, Bo Jiang, Zhimin Bao, Lin Zhu, Guoqi Li, Yaowei Wang, and
Yonghong Tian. Hardvs: Revisiting human activity recognition with dynamic vision sensors.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 5615–5623,
2024.

[62] Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-
stream dataset for object classification. Frontiers in neuroscience, 11:309, 2017.

[63] Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor. Converting static
image datasets to spiking neuromorphic datasets using saccades. Frontiers in neuroscience,
9:437, 2015.

[64] Benjamin Cramer, Yannik Stradmann, Johannes Schemmel, and Friedemann Zenke. The
heidelberg spiking data sets for the systematic evaluation of spiking neural networks. IEEE
Transactions on Neural Networks and Learning Systems, 33(7):2744–2757, 2020.

[65] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

[66] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. Advances in Neural Information Processing
Systems, 30, 2017.

[67] Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift module for efficient video un-
derstanding. In Proceedings of the IEEE International Conference on Computer Vision,
2019.

[68] Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang.
Vision mamba: Efficient visual representation learning with bidirectional state space model.
arXiv preprint arXiv:2401.09417, 2024.

[69] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learn-
ing spatiotemporal features with 3d convolutional networks. In Proceedings of the IEEE
international conference on computer vision, pages 4489–4497, 2015.

[70] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar Paluri. A
closer look at spatiotemporal convolutions for action recognition. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition, pages 6450–6459, 2018.

[71] Zhengwei Wang, Qi She, and Aljosa Smolic. Action-net: Multipath excitation for action
recognition. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 13214–13223, 2021.

[72] Zhaoyang Liu, Limin Wang, Wayne Wu, Chen Qian, and Tong Lu. Tam: Temporal adaptive
module for video recognition. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 13708–13718, 2021.

[73] Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin
transformer. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 3202–3211, 2022.

[74] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for
video recognition. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 6202–6211, 2019.

15

[75] Jiazhou Zhou, Xu Zheng, Yuanhuiyi Lyu, and Lin Wang. Exact: Language-guided conceptual
reasoning and uncertainty estimation for event-based action recognition and more. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
18633–18643, 2024.

[76] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[77] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun
Woo. Convolutional lstm network: A machine learning approach for precipitation nowcasting.
Advances in neural information processing systems, 28, 2015.

[78] Swathikiran Sudhakaran, Sergio Escalera, and Oswald Lanz. Gate-shift-fuse for video action
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(9):10913–
10928, 2023.

[79] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for
video understanding? In ICML, volume 2, page 4, 2021.

[80] Zhen Xing, Qi Dai, Han Hu, Jingjing Chen, Zuxuan Wu, and Yu-Gang Jiang. Svformer:
Semi-supervised video transformer for action recognition. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 18816–18826, 2023.

[81] Lan Chen, Dong Li, Xiao Wang, Pengpeng Shao, Wei Zhang, Yaowei Wang, Yonghong Tian,
and Jin Tang. Retain, blend, and exchange: A quality-aware spatial-stereo fusion approach for
event stream recognition. arXiv preprint arXiv:2406.18845, 2024.

[82] Yuchen Duan, Weiyun Wang, Zhe Chen, Xizhou Zhu, Lewei Lu, Tong Lu, Yu Qiao, Hongsheng
Li, Jifeng Dai, and Wenhai Wang. Vision-rwkv: Efficient and scalable visual perception with
rwkv-like architectures. arXiv preprint arXiv:2403.02308, 2024.

[83] Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye,
and Yunfan Liu. Vmamba: Visual state space model. ArXiv, abs/2401.10166, 2024.

[84] Kunchang Li, Xinhao Li, Yi Wang, Yinan He, Yali Wang, Limin Wang, and Yu Qiao. Video-
mamba: State space model for efficient video understanding. arXiv preprint arXiv:2403.06977,
2024.

[85] Benjamin Cramer, Sebastian Billaudelle, Simeon Kanya, Aron Leibfried, Andreas Grübl,
Vitali Karasenko, Christian Pehle, Korbinian Schreiber, Yannik Stradmann, Johannes Weis,
et al. Surrogate gradients for analog neuromorphic computing. Proceedings of the National
Academy of Sciences, 119(4):e2109194119, 2022.

[86] Nicolas Perez-Nieves, Vincent CH Leung, Pier Luigi Dragotti, and Dan FM Goodman. Neural
heterogeneity promotes robust learning. Nature communications, 12(1):5791, 2021.

[87] Julian Rossbroich, Julia Gygax, and Friedemann Zenke. Fluctuation-driven initialization for
spiking neural network training. Neuromorphic Computing and Engineering, 2(4):044016,
2022.

[88] Bojian Yin, Federico Corradi, and Sander M Bohte. Accurate online training of dynam-
ical spiking neural networks through forward propagation through time. arXiv preprint
arXiv:2112.11231, 2021.

[89] Biswadeep Chakraborty and Saibal Mukhopadhyay. Heterogeneous neuronal and synaptic
dynamics for spike-efficient unsupervised learning: Theory and design principles. In The
Eleventh International Conference on Learning Representations, 2023.

[90] Ziming Wang, Runhao Jiang, Shuang Lian, Rui Yan, and Huajin Tang. Adaptive smoothing
gradient learning for spiking neural networks. In International Conference on Machine
Learning, pages 35798–35816. PMLR, 2023.

16

[91] Ilyass Hammouamri, Ismail Khalfaoui-Hassani, and Timothée Masquelier. Learning delays in
spiking neural networks using dilated convolutions with learnable spacings. In The Twelfth
International Conference on Learning Representations, 2024.

[92] Sicheng Shen, Dongcheng Zhao, Guobin Shen, and Yi Zeng. Tim: An efficient temporal
interaction module for spiking transformer. arXiv preprint arXiv:2401.11687, 2024.

[93] Shimin Zhang, Qu Yang, Chenxiang Ma, Jibin Wu, Haizhou Li, and Kay Chen Tan. Tc-lif: A
two-compartment spiking neuron model for long-term sequential modelling. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 38, pages 16838–16847, 2024.

[94] Amirreza Yousefzadeh, Mina A Khoei, Sahar Hosseini, Priscila Holanda, Sam Leroux, Orlando
Moreira, Jonathan Tapson, Bart Dhoedt, Pieter Simoens, Teresa Serrano-Gotarredona, et al.
Asynchronous spiking neurons, the natural key to exploit temporal sparsity. IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, 9(4):668–678, 2019.

[95] Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, and Zhouchen Lin. Online training
through time for spiking neural networks. arXiv preprint arXiv:2210.04195, 35:20717–20730,
2022.

[96] Anand Subramoney. Efficient real time recurrent learning through combined activity and
parameter sparsity. arXiv preprint arXiv:2303.05641, 2023.

[97] Xueyuan She, Saurabh Dash, and Saibal Mukhopadhyay. Sequence approximation using
feedforward spiking neural network for spatiotemporal learning: Theory and optimization
methods. In International Conference on Learning Representations, 2021.

[98] Chang Liu, Xiaojuan Qi, Edmund Y Lam, and Ngai Wong. Fast classification and action
recognition with event-based imaging. IEEE access, 10:55638–55649, 2022.

[99] Mark Schöne, Neeraj Mohan Sushma, Jingyue Zhuge, Christian Mayr, Anand Subramoney,
and David Kappel. Scalable event-by-event processing of neuromorphic sensory signals with
deep state-space models. Neuromorphic Computing Conference, 2024.

[100] Simone Undri Innocenti, Federico Becattini, Federico Pernici, and Alberto Del Bimbo. Tem-
poral binary representation for event-based action recognition. In 2020 25th International
Conference on Pattern Recognition (ICPR), pages 10426–10432. IEEE, 2021.

[101] Shu Miao, Guang Chen, Xiangyu Ning, Yang Zi, Kejia Ren, Zhenshan Bing, and Alois Knoll.
Neuromorphic vision datasets for pedestrian detection, action recognition, and fall detection.
Frontiers in neurorobotics, 13:38, 2019.

[102] Qinyi Wang, Yexin Zhang, Junsong Yuan, and Yilong Lu. Space-time event clouds for
gesture recognition: From rgb cameras to event cameras. In 2019 IEEE Winter Conference on
Applications of Computer Vision (WACV), pages 1826–1835. IEEE, 2019.

[103] Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong
Tian. Incorporating learnable membrane time constant to enhance learning of spiking neural
networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 2661–2671, 2021.

[104] Yansong Peng, Yueyi Zhang, Zhiwei Xiong, Xiaoyan Sun, and Feng Wu. Get: Group event
transformer for event-based vision. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 6038–6048, 2023.

[105] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao,
Zheng Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
12009–12019, 2022.

[106] Lin Zuo, Yongqi Ding, Wenwei Luo, Mengmeng Jing, Xianlong Tian, and Kunshan Yang.
Temporal reversed training for spiking neural networks with generalized spatio-temporal
representation. arXiv preprint arXiv:2408.09108, 2024.

17

A Supplementary Section A: Detailed Proofs

A.1 Computational Complexity of Event-Driven SSMs

Lemma 1. Let the event-driven state-space model be governed by:

ẋ(t) = Ax(t) +BS(t),

where x(t) ∈ RN is the internal state, A ∈ RN×N is the state transition matrix, and S(t) ∈ RM is the
input event train. The computational complexity of updating the internal state x(t) at each event is
O(N2).

Proof. The event-driven state-space model is governed by:

ẋ(t) = Ax(t) +BS(t),

where x(t) ∈ RN represents the internal state of the system, A ∈ RN×N is the state transition matrix,
and S(t) ∈ RM represents the input event train. When a event occurs at time ti, the state update can
be represented by the following integral equation for t ∈ [ti, ti+1):

x(t+i) = e
A∆tix(t−i) + ∫

t+i

t−i

eA(t
+

i −τ)BS(τ)dτ,

where:

• t−i and t+i are the times just before and after the event at ti,

• ∆ti = t
+
i − t

−
i is infinitesimal,

• S(τ) contains Dirac delta functions at event times and is zero elsewhere.

For simplicity, we focus on the update at the event time ti to approximate the state transition at each
event.

The update of the internal state x(t) requires computing the matrix exponential eA∆t, where ∆t = t−ti
represents the time interval between successive events. Computing the exact matrix exponential for a
general matrix A ∈ RN×N is computationally expensive, involving O(N3) operations using standard
algorithms such as diagonalization or the Schur decomposition.

To reduce the computational cost, we approximate the matrix exponential using a truncated Taylor
series expansion:

eA∆ti ≈ I +A∆ti +
1

2
A2∆t2i .

where I is the identity matrix of size N ×N . This approximation is typically sufficient for small ∆t,
which is common between events.

In the Taylor series expansion approximation of eA∆t, the dominant computational cost arises from
multiplying the matrix A ∈ RN×N by itself and by the state vector x(t) ∈ RN .

The product Ax(t), where A ∈ RN×N and x(t) ∈ RN , requires N2 multiplications. Thus, the
computational cost for this step is O(N2).

The term A2 is computed by multiplying A by itself. Since A is an N × N matrix, computing
A2 explicitly would have a computational cost of O(N3). However, we avoid this by computing
A(Ax(t)), which involves two sequential matrix-vector products, each costing O(N2). Therefore,
the computational cost of computing A2x(t) is O(N2).

The term BS(t), where B ∈ RN×M and S(t) ∈ RM , involves O(NM) operations. Assuming M is
proportional to N or smaller, this computation contributes O(N2) to the overall complexity.

To update the internal state x(t), we perform the following operations: First, we multiply A by
x(t): O(N2); then multiply A2 by x(t): O(N2); followed by multiplying B by S(t): O(NM)
and finally add the resulting vectors.

Thus, the overall computational complexity for updating the internal state x(t) at each event is
O(N2).

18

In the general case, where A is a dense matrix, the cost of updating the state is O(N2). If the matrix
A has a specific structure, such as being sparse or block-diagonal, the computational cost can be
reduced. For example: - If A is sparse with k non-zero entries per row, the cost of multiplying A
by x(t) becomes O(kN), which can be significantly lower than O(N2) when k ≪ N . - If A is
block-diagonal, the cost can be reduced to O(N) per block, depending on the number and size of
the blocks. However, for the general case where no such structure is assumed, the computational
complexity remains O(N2). The computational complexity of updating the internal state x(t) at each
event, using the matrix exponential approximation with a Taylor series expansion, is dominated by
the matrix-vector multiplication operations. Additionally, accounting for the BS(t) term maintains
the overall complexity at O(N2). Therefore, the overall computational complexity for updating the
internal state at each event is O(N2).

A.2 Long-context Temporal Dependency Preservation Via Event-Based Hippo

Theorem 1. Let x(t) ∈ RN evolve according to

ẋ(t) = Ax(t) +BS(t),

where: - A ∈ RN×N is a HiPPO matrix with all eigenvalues satisfying Re(λi) < 0 for i = 1,2, . . . ,N ,
- B ∈ RN×M is the input matrix, - S(t) ∈ RM is the input event train, assumed to be bounded, i.e.,
there exists a constant S∞ > 0 such that ∥S(t)∥ ≤ S∞ for all t ≥ 0, - x0 = x(0) ∈ RN is the initial
state.

Then, the event-driven SSM preserves long-context temporal dependencies in the input event train
S(t), and the state x(t) satisfies the bound:

∥x(t)∥ ≤ e−αt∥x0∥ +
∥B∥S∞

α
(1 − e−αt) ,

where α = mini ∣Re(λi)∣ > 0 is the memory retention factor determined by the eigenvalues of the
HiPPO matrix A.

Proof. To establish the theorem, we will analyze the evolution of the internal state x(t) governed by
the differential equation:

ẋ(t) = Ax(t) +BS(t),

with initial condition x(0) = x0.

The differential equation is a non-homogeneous linear ordinary differential equation (ODE). Using
the variation of parameters method, the solution can be expressed as:

x(t) = eAtx0 + ∫

t

0
eA(t−τ)BS(τ)dτ,

where: - eAtx0 is the solution to the homogeneous equation ẋ(t) = Ax(t) with initial condition
x(0) = x0, - ∫

t
0 eA(t−τ)BS(τ)dτ accounts for the particular solution due to the input S(t).

Given that A is a HiPPO matrix, all its eigenvalues satisfy Re(λi) < 0 for i = 1,2, . . . ,N . This
implies that A is a Hurwitz matrix, ensuring that the system is asymptotically stable. Define the
memory retention factor α as:

α =min
i
∣Re(λi)∣ > 0.

This factor dictates the rate at which the influence of the initial state x0 decays over time.

Consider the homogeneous solution eAtx0. Since all eigenvalues of A have negative real parts, the
matrix exponential eAt satisfies:

∥eAt
∥ ≤ e−αt,

where ∥ ⋅ ∥ denotes an operator norm (e.g., the induced 2-norm). This inequality leverages the spectral
bound of A to provide an exponential decay rate.

Therefore, the contribution of the initial state is bounded by:

∥eAtx0∥ ≤ ∥e
At
∥ ⋅ ∥x0∥ ≤ e

−αt
∥x0∥.

19

Next, consider the particular solution:

∫

t

0
eA(t−τ)BS(τ)dτ.

To bound its norm, apply the triangle inequality and properties of operator norms:

∥∫

t

0
eA(t−τ)BS(τ)dτ∥ ≤ ∫

t

0
∥eA(t−τ)∥ ⋅ ∥B∥ ⋅ ∥S(τ)∥dτ.

Given that ∥S(τ)∥ ≤ S∞ and ∥eA(t−τ)∥ ≤ e−α(t−τ), we have:

∥∫

t

0
eA(t−τ)BS(τ)dτ∥ ≤ ∥B∥S∞ ∫

t

0
e−α(t−τ) dτ.

Evaluate the integral:

∫

t

0
e−α(t−τ) dτ = ∫

t

0
e−αs ds =

1 − e−αt

α
.

Thus, the bound becomes:

∥∫

t

0
eA(t−τ)BS(τ)dτ∥ ≤

∥B∥S∞
α

(1 − e−αt) .

Combining the bounds for the homogeneous and particular solutions, we obtain:

∥x(t)∥ ≤ ∥eAtx0∥ + ∥∫

t

0
eA(t−τ)BS(τ)dτ∥ ≤ e−αt∥x0∥ +

∥B∥S∞
α

(1 − e−αt) .

This inequality demonstrates that the influence of the initial state x0 decays exponentially at rate α.
Also, the accumulated influence of the input event train S(t) is bounded and grows to a steady-state
value determined by ∥B∥, S∞, and α.

The derived bound:

∥x(t)∥ ≤ e−αt∥x0∥ +
∥B∥S∞

α
(1 − e−αt) ,

reveals that the term e−αt∥x0∥ signifies that the system "forgets" its initial state exponentially fast,
ensuring that old information does not dominate the state indefinitely. Also, the integral term captures
the accumulated influence of the input event train S(t). Since S(t) is bounded, the state x(t) can
retain and reflect information from the input over extended periods without being overwhelmed by
the initial condition.

Therefore, the event-driven SSM governed by a HiPPO matrix A effectively preserves long-context
temporal dependencies in the input event train S(t), while ensuring that the memory of the initial
state x0 decays at an exponential rate determined by α.

A.3 Error Bound For Event-Driven Matrix Exponential Approximation

Lemma 2. Let the matrix exponential be approximated using a Taylor expansion up to the n-th term:

eA∆t
≈ I +A∆t +

A2∆t2

2!
+ ⋅ ⋅ ⋅ +

An∆tn

n!
.

Assume that the matrix norm ∥ ⋅ ∥ is submultiplicative, i.e., ∥AB∥ ≤ ∥A∥∥B∥ for any matrices A and
B of compatible dimensions. Then, the error En of this approximation satisfies

∥En∥ ≤
∥A∆t∥n+1

(n + 1)!
e∥A∆t∥.

Proof. The matrix exponential can be expressed as an infinite Taylor series:

eA∆t
=
∞
∑
k=0

(A∆t)k

k!
.

20

If we truncate this series after the n-th term, the remainder En is given by:

En = e
A∆t
−

n

∑
k=0

(A∆t)k

k!
=

∞
∑

k=n+1

(A∆t)k

k!
.

To bound the norm of the error En, we apply the submultiplicative property of the matrix norm:

∥En∥ = ∥
∞
∑

k=n+1

(A∆t)k

k!
∥ ≤

∞
∑

k=n+1

∥A∆t∥k

k!
.

Using the submultiplicative property of the matrix norm:

∥En∥ ≤
∞
∑

k=n+1

∥A∆t∥k

k!
.

Let x = ∥A∆t∥ ≥ 0. Then:

∥En∥ ≤
∞
∑

k=n+1

xk

k!
.

Since

∞
∑

k=n+1

xk

k!
= ex −

n

∑
k=0

xk

k!
= Rn(x),

where Rn(x) is the remainder of the Taylor series expansion of ex.

According to Taylor’s Remainder Theorem (Lagrange’s form), there exists ξ ∈ [0, x] such that:

Rn(x) =
xn+1

(n + 1)!
eξ.

Since ξ ≤ x and eξ ≤ ex for x ≥ 0, we have:

Rn(x) ≤
xn+1

(n + 1)!
ex.

Therefore:

∥En∥ ≤
xn+1

(n + 1)!
ex =

∥A∆t∥n+1

(n + 1)!
e∥A∆t∥.

Thus, the error En satisfies:

∥En∥ ≤
∥A∆t∥n+1

(n + 1)!
e∥A∆t∥.

—

A.4 Boundedness Of State Trajectories With Event Inputs

Theorem 2. Boundedness of State Trajectory in Event-Driven State-Space Models

For a given initial condition x0, the state trajectory x(t) of the FLAME model driven by the event
input S(t) is bounded, i.e., ∥x(t)∥ ≤ C, for some constant C > 0, provided that:

21

1. The input events S(t) are of finite magnitude, i.e., ∥S(t)∥ ≤ S∞ for all t ≥ 0.

2. The decay matrix AS is Hurwitz, meaning all its eigenvalues have negative real parts.

3. There exists a positive definite matrix P satisfying the Lyapunov equation AT
SP +PAS = −Q,

for some positive definite matrix Q.

Proof. Consider the FLAME governed by:

ẋ(t) = ASx(t) +BS(t),

where AS is a Hurwitz matrix, B is the input matrix, and S(t) is a bounded input event train with
∥S(t)∥ ≤ S∞ for all t ≥ 0.

We define a Lyapunov function V (x) = xTPx, where P is a positive definite matrix satisfying the
Lyapunov equation:

AT
SP + PAS = −Q,

with Q being a positive definite matrix. Such a P exists because AS is Hurwitz. The derivative of
V (x) along the system trajectories is computed:

V̇ (x) =
d

dt
(xTPx) = xT Ṗ x + xTPẋ + ẋTPx.

Since P is constant (Ṗ = 0), and ẋ = ASx +BS(t), this simplifies to:

V̇ (x) = xTP (ASx +BS(t)) + (ASx +BS(t))TPx.

Recognizing that P is symmetric (PT = P), we can write:

V̇ (x) = xT
(AT

SP + PAS)x + 2x
TPBS(t).

Substituting the Lyapunov equation AT
SP + PAS = −Q:

V̇ (x) = −xTQx + 2xTPBS(t).

The term 2xTPBS(t) is bounded using the Cauchy-Schwarz inequality as

2xTPBS(t) ≤ 2∥x∥ ⋅ ∥PB∥ ⋅ ∥S(t)∥ ≤ 2∥PB∥S∞∥x∥.

Next, let us define γ = 2∥PB∥S∞ The derivative V̇ (x) becomes:

V̇ (x) ≤ −xTQx + γ∥x∥.

Since Q is positive definite, xTQx ≥ λmin(Q)∥x∥
2, where λmin(Q) is the smallest eigenvalue of Q.

Therefore:

V̇ (x) ≤ −λmin(Q)∥x∥
2
+ γ∥x∥.

Completing the square:

V̇ (x) ≤ −λmin(Q)(∥x∥
2
−

γ

λmin(Q)
∥x∥) = −λmin(Q)(∥x∥ −

γ

2λmin(Q)
)

2

+
γ2

4λmin(Q)
.

This inequality indicates that V̇ (x) < 0 whenever ∥x∥ > γ
2λmin(Q) . Since V (x) ≥ 0 and V̇ (x) is

negative outside a ball of radius C = γ
2λmin(Q) , the state x(t) will ultimately remain within this

bounded region. Therefore, ∥x(t)∥ ≤ C for all t ≥ 0

22

B Supplementary Section B: Extended Experimental Results

B.1 Datasets and Tasks

In this study, we evaluate the performance of the FLAME model across a diverse set of datasets,
each presenting unique challenges in event-driven processing. The datasets include Sequential
CIFAR-10, Sequential CIFAR-100 [65], DVS Gesture [7], HAR-DVS [61], Celex-HAR [2], Spiking
Heidelberg Digits (SHD) [64], and Spiking Speech Commands (SSC). For all experiments, the
FLAME model processes inputs on an event-by-event basis, leveraging its temporal dynamics to
handle fine-grained temporal dependencies without accumulating events into frames. Below, we
provide detailed descriptions of each dataset and the corresponding experimental setups.

Sequential CIFAR-10 and CIFAR-100: The CIFAR-10 and CIFAR-100 datasets [65] consist of
32 × 32 RGB images across 10 and 100 classes, respectively. To simulate a temporal sequence, each
image is divided into 16 non-overlapping patches of size 8 × 8 pixels. These patches are presented
to the model sequentially in a raster-scan order, from top-left to bottom-right. Each patch is treated
as an independent event in the sequence. The task involves classifying the image based on the full
sequence of patches, requiring the model to integrate information over the entire sequence. This setup
evaluates the model’s ability to process spatial information in a temporal context.

DVS Gesture Dataset [7]: This dataset comprises recordings of 11 hand gestures performed by
29 subjects under varying lighting conditions, captured by a Dynamic Vision Sensor (DVS). Event
streams are processed at a resolution of 128 × 128 pixels. Sequences typically span approximately
1–6 seconds, and the maximum number of events processed per sequence is approximately 98k.
FLAME processes each event individually as it occurs, without frame accumulation, to preserve high
temporal resolution. The events in this dataset are highly sparse and asynchronous, with non-uniform
distributions over the sequence duration.

HAR-DVS Dataset [61]: The HAR-DVS dataset contains neuromorphic event streams representing
6 human activities, such as walking and running. These sparse, asynchronous streams are recorded
at a resolution of 346 × 260 pixels. Sequences generally last around 5 seconds, with the maximum
number of events processed per sequence reaching approximately 450k. Our model processes each
event-by-event, dynamically updating its internal state for each incoming event to precisely model
activity sequences. The events are characterized by their spatial coordinates, timestamp, and polarity,
exhibiting high sparsity and asynchronous, non-uniform temporal distribution.

Celex-HAR Dataset [2]: This dataset consists of high-resolution (1280 × 800 pixels) event streams
of human actions like sitting, standing, and walking, captured with a CeleX camera. Sequences
mostly last around 2–3 seconds, with some extending beyond 5 seconds. The maximum number of
events processed per sequence is up to approximately 3.1 million. FLAME processes each event-
by-event, enabling it to capture the fine-grained temporal dynamics of these high-resolution human
activities. Similar to other event-based datasets, the event data is highly sparse, asynchronous, and
non-uniformly distributed over the sequence duration.

Spiking Heidelberg Digits (SHD) and Spiking Speech Commands (SSC): The SHD and SSC
datasets [64] contain neuromorphic event streams derived from speech datasets. SHD consists of
spoken digit recordings converted to event trains using the CochleaAMS model, while SSC contains
event-based representations of spoken command audio, representing keywords like "yes," "no," and
"stop." Each event is characterized by its spatial location, timestamp, and polarity. The datasets
evaluate the model’s performance on tasks involving complex spatio-temporal patterns in speech data.
The FLAME model processes each event as it occurs, dynamically updating its state, ensuring high
temporal resolution and efficient processing for speech recognition tasks.

Across all datasets, the FLAME model processes inputs on an event-by-event basis. This approach
allows it to maintain high temporal resolution and capture fine-grained spatio-temporal patterns,
distinguishing it from frame-based methods. The event-by-event design also reduces computational
overhead and ensures low latency, making the model well-suited for real-time applications.

B.2 Ablation Studies:

To evaluate the contribution of individual components in the FLAME model, we performed extensive
ablation studies on the sequential CIFAR-10 dataset. Specifically, we analyzed the impact of removing

23

Table 3: Comparison of FLAME models with state-of-the-art on the HARDVS dataset. Accuracy is
measured in percentage, and computational cost is in GFLOPs.

Model GFLOPs Accuracy (%)
C3D [69] 0.1 50.52
R2Plus1D [70] 20.3 49.06
TSM [67] 0.3 52.63
ACTION-Net [71] 17.3 46.85
TAM [72] 16.6 50.41
V-SwinTrans [73] 8.7 51.91
SlowFast [74] 0.3 46.54
ESTF [61] 17.6 51.22
ExACT [75] 1.3 90.10

FLAME-Tiny [Ours] 0.034 65.42
FLAME-Small [Ours] 0.13 79.36
FLAME-Normal [Ours] 0.41 88.29

Table 4: Detailed Architecture of FLAME Models (Tiny, Small, and Normal)
Layer Type FLAME Tiny FLAME Small FLAME Normal

Input Representation Asynchronous Event Events (x, y, t, p)

Event Attention Layer 16 attention branches 32 attention branches 64 attention branches
τd = [τ1, . . . , τ16] τd = [τ1, . . . , τ32] τd = [τ1, . . . , τ64]

Convolutional Block 1 Conv2D (32 filters, 3x3) Conv2D (64 filters, 3x3) Conv2D (128 filters, 3x3)
Batch Norm, Max Pool (2x2) Batch Norm, Max Pool (2x2) Batch Norm, Max Pool (2x2)

Convolutional Block 2 Conv2D (32 filters, 3x3) Conv2D (64 filters, 3x3) Conv2D (128 filters, 3x3)
Batch Norm, Max Pool (2x2) Batch Norm, Max Pool (2x2) Batch Norm, Max Pool (2x2)

Spatial Pooling Layer Pool (2x2) Pool (2x2) Pool (2x2)
FLAME Convolution State Update using Event-Aware HiPPO and NPLR decomposition for efficient event-driven convolution

Normalization Layer Layer Norm Layer Norm Layer Norm
Normalizes the state variables to stabilize training

Readout Layer Fully Connected (256 neurons) Fully Connected (512 neurons) Fully Connected (1024 neurons)
Softmax for classification Softmax for classification Softmax for classification

or replacing key components such as the event attention layer, Event-Aware HiPPO (EA-HiPPO),
NPLR decomposition, and FFT convolution. The results of these experiments, along with the
corresponding model parameters and computational costs (in GFLOPs), are summarized in Table 7.

Impact of Event Attention Layer (EAL) Removing the event based attention mechanism leads
to a reduction in both accuracy and model parameters. The accuracy drops across all channel
configurations, with the largest channels (128) seeing a decrease from 90.25% to 85.83%. The
smaller channel configurations (64 and 32) experience similar drops, highlighting the event based

DVS

FLAMES (32)
[Ours]

FLAMES (64)
[Ours]

FLAMES (128)
[Ours]

SRNN (Yin 2021)LSTM
(Cramer 2020)

DH-SRNN
(Zheng 2024)

DH-SFNN
(Zheng 2024)

EventSSM
(Schone 2024)

DCLS
(Hammouamri 2024)

FLAMES
(32) No
Dendrite
[Ours]

FLAMES (64) [Ours]

FLAMES (128) [Ours]

FLAMES
(64) No
Dendrite
[Ours]

FLAMES (128) No
Dendrite [Ours]

FLAMES (32)
[Ours]

LERT
(Martin-Turrero 2024)

ALERT
(Martin-Turrero 2024)

EventSSM (Schone
2024)HSNN

(She 2021)

CNN+ S5 time-frame
(Schone 2024)

CNN+ S5
event-frame
(Schone 2024)

SSCSHD

EventSSM (Schone 2024)
DCLS (Hammouamri 2024)

LSTM (Cramer 2020)

SRNN (Yin 2021)

DH-SFNN (Zheng 2024)

DH-SRNN
(Zheng 2024)

SRNN
(Cramer 2020)

SCNN
(Rossbroich 2022)

SRNN
(Perez 2021)

SRNN
(Cramer 2022)

FLAMES (32)
[Ours]

FLAMES (64)
[Ours]

FLAMES (128)
[Ours]

Ac
cu

ra
cy

 (%
)

Parameters (M) Parameters (M)

SRNN
(Perez 2021)

FLAMES (32) No HiPPO
[Ours]

FLAMES (64) No HiPPO
[Ours]

FLAMES (128) No HiPPO
[Ours]

TIM
(Shen et al. 2024)

STC-LIF
(Wang et al. 2024)

TC-LIF (Zhang 2024)
TIM
(Shen 2024)

Parameters (M)

Figure 4: Comparison of our FLAME to the state-of-the-art on DVS128-Gesture[7], Spiking Heidel-
berg digits (SHD) and Spiking Speech Commands (SSC) [64] datasets

24

Table 5: Experimental results on CeleX-HAR dataset.

No. Algorithm Publish Arch. FLOPs Params acc/top-1 Code
01 ResNet-50 [76] CVPR-2016 CNN 8.6G 11.7M 0.642 URL
02 ConvLSTM [77] NIPS-2015 CNN, LSTM - - 0.539 URL
03 C3D [69] ICCV-2015 CNN 0.1G 147.2M 0.630 URL
04 R2Plus1D [70] CVPR-2018 CNN 20.3G 63.5M 0.679 URL
05 TSM [67] ICCV-2019 CNN 0.3G 24.3M 0.704 URL
06 ACTION-Net [71] CVPR-2021 CNN 17.3G 27.9M 0.685 URL
07 TAM [72] ICCV-2021 CNN 16.6G 25.6M 0.705 URL
08 GSF [78] TPAMI-2023 CNN 16.5G 10.5M 0.703 URL
09 V-SwinTrans [73] CVPR-2022 ViT 8.7G 27.8M 0.689 URL
10 TimeSformer [79] ICML-2021 ViT 53.6G 121.2M 0.680 URL
11 SlowFast [74] ICCV-2019 ViT 0.3G 33.6M 0.680 URL
12 SVFormer [80] CVPR-2023 ViT 196.0G 121.3M 0.610 URL
13 EFV++ [81] arXiv-2024 ViT, GNN 36.3G 39.2M 0.695 URL
14 ESTF [61] AAAI-2024 ViT, CNN 17.6G 46.7M 0.673 URL
15 VRWKV-S [82] arXiv-2024 RWKV 4.6G 23.8M 0.661 URL
16 VRWKV-B [82] arXiv-2024 RWKV 18.2G 93.7M 0.668 URL
17 Vision Mamba-S [68] ICML-2024 SSM 5.1G 26.0M 0.701 URL
18 VMamba-S [83] arXiv-2024 SSM 11.2G 44.7M 0.713 URL
19 VMamba-S(V2) [83] arXiv-2024 SSM 8.7G 50.4M 0.715 URL
20 VMamba-B [83] arXiv-2024 SSM 18.0G 76.5M 0.720 URL
21 VMamba-B(V2) [83] arXiv-2024 SSM 15.4G 88.9M 0.718 URL
22 VideoMamba-S [84] ECCV-2024 SSM 4.3G 26.0M 0.669 URL
23 VideoMamba-M [84] ECCV-2024 SSM 12.7G 74.0M 0.691 URL
24 EVMamba arXiv-2024 SSM 37.2G 76.5M 0.723 URL
25 EVMamba w/o Voxel Scan arXiv-2024 SSM 18.0G 76.5M 0.720 URL
26 FLAME-Tiny (Ours) - SSM 0.034G 7.91M 0.632 -
27 FLAME-Small (Ours) - SSM 0.13G 13.35M 0.692 -
28 FLAME-Normal (Ours) - SSM 0.41G 25.57M 0.722 -

attention’s role in improving the spatio-temporal feature representation. Interestingly, removing this
mechanism slightly reduces the model’s GFLOPs since the computations associated with the event
attention layer are avoided.

Impact of Event-Aware HiPPO Replacing EA-HiPPO with a simple LIF-based mechanism leads
to a moderate drop in accuracy (e.g., from 90.25% to 87.62% for 128 channels). However, this
modification does not alter the computational cost (GFLOPs), as EA-HiPPO primarily affects the
temporal memory adaptation rather than the core matrix or convolution operations. These results
emphasize EA-HiPPO’s critical role in retaining and managing temporal dynamics effectively.

Impact of NPLR Decomposition The NPLR decomposition significantly reduces the computational
complexity of state-space updates. For the FLAME-Normal (128 channels) model, removing NPLR
also resulted in a notable increase in GPU memory usage by approximately 38% (from 5.00 MB to
6.91 MB), confirming NPLR’s essential role in minimizing both computational cost and memory
footprint for real-time deployment. Despite this computational overhead, the accuracy remains
relatively stable, highlighting that NPLR’s primary advantage is computational efficiency rather than
feature extraction performance.

Impact of FFT Convolution FFT convolution is integral to efficiently handling long-context temporal
dependencies. Replacing FFT convolution with standard time-domain convolution increases the
GFLOPs substantially (e.g., from 0.43 GFLOPs to 1.2 GFLOPs for 128 channels). Furthermore,
the accuracy sees a more pronounced decline (e.g., from 90.25% to 86.47%), particularly in tasks
requiring high temporal resolution. These results underscore FFT convolution’s dual role in reducing
computational cost and maintaining temporal modeling performance.

Summary of Findings The ablation studies validate the critical importance of each component in the
FLAME model:

• The event attention layer enhances the spatio-temporal feature representation, significantly
improving accuracy.

25

https://github.com/KaimingHe/deep-residual-networks
https://github.com/ndrplz/ConvLSTM_pytorch
https://github.com/leftthomas/R2Plus1D-C3D
https://github.com/leftthomas/R2Plus1D-C3D
https://github.com/mit-han-lab/temporal-shift-module
https://github.com/V-Sense/ACTION-Net
https://github.com/liu-zhy/temporal-adaptive-module
https://github.com/swathikirans/GSF
https://github.com/SwinTransformer/Video-Swin-Transformer
https://github.com/facebookresearch/TimeSformer
https://github.com/facebookresearch/SlowFast
https://github.com/ChenHsing/SVFormer
https://github.com/Event-AHU/EFV_event_classification/tree/EFVpp
https://github.com/Event-AHU/HARDVS
https://github.com/OpenGVLab/Vision-RWKV
https://github.com/OpenGVLab/Vision-RWKV
https://github.com/hustvl/Vim
https://github.com/MzeroMiko/VMamba
https://github.com/MzeroMiko/VMamba
https://github.com/MzeroMiko/VMamba
https://github.com/MzeroMiko/VMamba
https://github.com/OpenGVLab/VideoMamba
https://github.com/OpenGVLab/VideoMamba
https://github.com/Event-AHU/CeleX-HAR/tree/main
https://github.com/Event-AHU/CeleX-HAR/tree/main

Table 6: Comparison of classification accuracy and parameters of different models across SHD and
SSC datasets.

Model SHD SSC
#Parameters Accuracy (%) #Parameters Accuracy (%)

SFNN [64] 0.09 M 48.1 0.09 M 32.5
SRNN [64] 1.79 M 83.2 - -
SRNN [85] 0.17 M 81.6 - -
SRNN [86] 0.11 M 82.7 0.11 M 60.1
SCNN [87] 0.21 M 84.8 - -
SRNN [88] 0.14 M 90.4 0.77 M 74.2
HRSNN [89] - 80.01 - 59.28
LSTM [64] 0.43 M 89.2 0.43 M 73.1
DH-SRNN [33] 0.05 M 91.34 0.27 M 81.03
DH-SFNN [33] 0.05 M 92.1 0.35 M 82.46
ASGL [90] - 78.90 - 78.90
DCLS [91] 0.2 M 95.07 2.5 M 80.69
TIM [92] 2.59 M 86.3 0.111 M 61.09
TC-LIF [93] 0.142 M 88.91 - -
FLAME-Normal (128) [Ours] 0.513 M 94.68 0.513 M 87.52
FLAME-Small (64) [Ours] 0.129 M 90.57 0.129 M 82.08
FLAME-Tiny (32) [Ours] 0.033 M 86.24 0.033 M 72.19

• EA-HiPPO dynamically adjusts temporal memory retention, contributing to performance
robustness without additional computational overhead.

• NPLR decomposition ensures scalability by reducing the computational cost of state-space
updates, making the model efficient for large-scale tasks.

• FFT convolution is indispensable for capturing long-context dependencies efficiently while
keeping computational complexity low.

B.3 DVS Gesture Recognition

To further investigate the combined effectiveness of Event-based Attention mechanisms and FLAME
convolutions in event-based processing, we evaluate our model on the DVS Gesture dataset. This
dataset consists of event streams recorded from a Dynamic Vision Sensor (DVS) at a resolution of
128×128, providing a challenging benchmark for evaluating temporal dynamics in gesture recognition
tasks involving varying speeds and motions.

Our goal is to assess how the integration of event-based attention mechanisms with FLAME convolu-
tion layers enhances the model’s ability to capture multi-scale temporal dependencies. Specifically,
we examine how event-based attention can serve as a temporal attention mechanism that helps
FLAME effectively focus on the most relevant events, while FLAME convolutions manage the overall
temporal and spatial evolution of features.

The experiment involves training variants of our model—one incorporating both event-based atten-
tion mechanisms and FLAME convolutions, and the other using only FLAME—to determine the
contribution of event-based attention . Table 7 summarizes the test accuracy of our models compared
to other state-of-the-art approaches. The results are measured in terms of classification accuracy,
along with the number of parameters, to highlight model efficiency.

As shown in Table 7, the FLAME model with 128 channels, incorporating event-based attention ,
achieves 96.5% accuracy while maintaining a significantly lower parameter count compared to many
other state-of-the-art models. This shows that our approach effectively utilizes sparse event-driven
inputs to achieve high accuracy with reduced computational complexity. The use of event-based
attention mechanisms allows the model to dynamically adjust its focus on different temporal scales,
thus improving gesture recognition even in scenarios with rapid motion changes.

The variant without event-based attention , while still competitive, lags behind in adapting to the
multi-scale nature of the event data, especially for gestures with complex temporal characteristics.
This indicates that the event-based attention mechanism plays a crucial role in adaptively filtering

26

Table 7: Comparison of classification accuracy, parameters, and FLOPs of different models across
the DVS128-Gesture dataset.

Model #Parameters (M) GFLOPs Accuracy (%)
Yousefzadeh et al. [94] 1.2 - 95.2
Xiao et al. [95] - - 96.9
RTRL [96] 4.8 - 97.8
She et al. [97] 1.1 - 98.0
Liu et al. [98] - - 98.8
Chakraborty et al. [27] - - 96.5
Martin-Turrero et al. [15] 14 - 96.2
Martin-Turrero et al. [15] 14 - 94.1
CNN + S5 (time-frames) [99] 6.8 - 97.8
Event-SSM [99] 5 - 97.7
CNN + S5 (event-frames) [99] 6.8 - 97.3
TBR+I3D [100] 12.25 38.82 99.6
Event Frames + I3D [12] 12.37 30.11 96.5
EV-VGCNN [13] 0.82 0.46 95.7
RG-CNN [101] 19.46 0.79 96.1
PointNet++ [102] 1.48 0.872 95.3
PLIF [103] 1.7 - 97.6
GET [104] 4.5 - 97.9
Swin-T v2 [105] 7.1 - 93.2
TTPOINT [40] 0.334 0.587 98.8
EventMamba [40] 0.29 0.219 99.2
STC-LIF [106] 3.922 - 83.0
Spiking Transformer [14] 36.01 33.32 99.3
FLAME-Normal (128) [Ours] 0.513 0.43 96.5
FLAME-Small (64) [Ours] 0.129 0.14 93.7
FLAME-Tiny (32) [Ours] 0.033 0.07 89.2
FLAME-Normal (128 Channels) No Attention Branch [Ours - Ablation] 0.501 0.43 95.2
FLAME-Small (64 Channels) No Attention Branch [Ours - Ablation] 0.121 0.14 89.3
FLAME-Tiny (32 Channels) No Attention Branch [Ours - Ablation] 0.031 0.07 81.5
FLAME-Normal (128 Channels) No HiPPO [Ours - Ablation] 0.501 0.43 90.4
FLAME-Small (64 Channels) No HiPPO [Ours - Ablation] 0.121 0.14 82.6
FLAME-Tiny (32 Channels) No HiPPO [Ours - Ablation] 0.031 0.07 73.5

relevant temporal features, which is essential for handling the asynchronous, irregular inputs typical
of event cameras.

In addition, visualizations of the learned event-based attention reveal how the model attends to
different time segments, effectively filtering the incoming event streams to prioritize the most relevant
events. This adaptive filtering complements the FLAME convolutional operations, leading to more
robust and efficient temporal feature extraction.

Overall, the results validate the utility of combining event-based attention mechanisms with FLAME
convolutions for event-driven tasks, making the model well-suited for gesture recognition from DVS
inputs. The joint use of these components allows for efficient temporal modeling, maintaining a
favorable trade-off between accuracy and parameter efficiency.

B.4 Scaling to HD Event Streams

The scalability of the proposed FLAME model is evaluated on the Celex HAR dataset, a human
activity recognition dataset recorded at a high resolution of 1280 × 800. This dataset serves as a
challenging benchmark for assessing the model’s ability to maintain high accuracy and computational
efficiency when processing large-scale spatial and temporal data.

In this experiment, FLAME is used for action recognition on HD event streams, and its performance
is compared to that of baseline Spiking Neural Networks (SNNs) and State-Space Models (SSMs).
As shown in Figure 2, the results demonstrate that FLAME maintains high accuracy even at increased
resolutions, whereas the baseline models experience significant performance degradation due to
heightened computational demands. The integration of the FLAME convolution layer proves effective
in managing the complex spatial and temporal components of HD event data, providing robust
real-time processing capabilities with minimal computational overhead.

Figure 2 illustrates the trade-off between accuracy and computational cost, measured in terms of
FLOPs, for our FLAME models compared to state-of-the-art methods on the Celex-HAR dataset. The
FLAME variants—FLAME Tiny, FLAME Small, and FLAME Normal—demonstrate superior effi-

27

r
Table 8: Latency Comparison on Celex-HAR (in milliseconds)

Algorithm Latency (ms) Algorithm Latency (ms) Algorithm Latency (ms)
FLAME-Tiny 0.162 TAM 76.012 VideoMamba-S 19.707
FLAME-Small 0.582 GSF 75.558 VideoMamba-M 58.164
FLAME-Normal 1.867 V-SwinTrans 39.837 EVMamba 170.34
ResNet-50 41.575 TimeSformer 255.425 EVMamba w/o Voxel Scan 82.423
C3D 0.473 SlowFast 1.118 VRWKV-S 21.091
R2Plus1D 94.264 EFV++ 166.23 VRWKV-B 86.346
TSM 1.4266 ESTF 80.61 Vision Mamba-S 23.88
ACTION-Net 81.035 SVFormer 897.455 VMamba-S 53.302
TAM 76.012 VMamba-S(V2) 39.848
GSF 75.558 VMamba-B 82.421
V-SwinTrans 39.837 VMamba-B(V2) 70.514

ciency by achieving competitive or better accuracy while utilizing significantly fewer computational
resources.

Key observations from Figure 2 are as follows:

• Efficiency at Different Scales: FLAME Tiny achieves approximately 63.8% accuracy with
a fraction of the computational cost compared to larger models such as SlowFast and C3D.
As the model scales to FLAME Small and FLAME Normal, accuracy improves to 69.3%
and 72.1%, respectively, while maintaining a favorable computational cost profile.

• Performance with Reduced Complexity: FLAME Normal matches or exceeds the accuracy
of models like TSM and VisionMamba-S but at a substantially lower computational cost. This
efficiency is attributed to the integration of event-driven processing and effective state-space
dynamics.

The improved efficiency of FLAME can be credited to the event-based processing capabilities of the
FLAME architecture and the FLAME convolution layer, which optimally manage state-space
evolution without relying on dense operations. These features allow the model to capture complex
temporal dependencies while minimizing computational requirements, making FLAME particularly
effective for high-resolution event-based datasets like Celex-HAR.

HAR-DVS Results: The HAR-DVS dataset results underscore the advantages of our FLAME models,
achieving accuracies of 70.38%, 81.73%, and 88.29% for FLAME-Tiny, FLAME-Small, and
FLAME-Normal, respectively, while maintaining substantially lower computational costs compared
to other state-of-the-art models. Unlike traditional deep neural networks such as C3D and R2Plus1D,
which struggle to model the complex temporal relationships inherent in event streams, FLAME
leverages a novel event-by-event processing approach, preserving fine-grained temporal dynamics
essential for accurate action recognition.

Moreover, FLAME employs a unique event-based attention mechanism that enhances its ability to
capture long-context spatio-temporal dependencies efficiently. The prolonged and complex actions in
HAR-DVS demand robust temporal attention mechanisms, as highlighted in prior studies. FLAME’s
dendritic-inspired design meets these requirements while offering a computationally efficient solution,
making it particularly suitable for real-time, low-latency applications in dynamic event-driven
environments.

It is important to note that HAR-DVS provides frame-based data, as raw event data was unavailable
for download. Since FLAME is designed for event-by-event processing, we treated all events arriving
at the same timestamp as a single batch for processing, adhering to the event-driven principles of the
model.

28

B.5 Performance on N-Caltech101

To further assess the generalization capabilities of FLAME on object recognition tasks using event-
based data, we evaluated its performance on the N-Caltech101 dataset. The results for FLAME-Tiny,
FLAME-Small, and FLAME-Normal are presented in Table 9.

Table 9: Performance of FLAME Variants on N-Caltech101.
Model Variant Accuracy (%) Params (M) FLOPs (G)
FLAME-Tiny 65.9 0.033 0.71
FLAME-Small 68.3 0.129 0.86
FLAME-Normal 70.5 0.513 1.34

The results demonstrate that FLAME scales effectively with model capacity on this challenging
classification benchmark, achieving competitive accuracy while maintaining a low computational
footprint. This reinforces its suitability for real-world event-based learning scenarios involving
diverse object categories.

B.6 Hardware Deployment and Efficiency Profile

To assess the practical deployability and efficiency of FLAME beyond standard GPU benchmarks, we
profiled the FLAME-Tiny variant across a diverse range of hardware platforms. This evaluation aims
to demonstrate FLAME’ adaptability to both high-performance computing environments and more
resource-constrained settings, which is crucial for real-world applications of event-based systems.
The FLAME-Tiny model was selected for this profiling due to its design emphasis on minimal
computational footprint, making it a suitable candidate for edge deployment scenarios.

The performance of FLAME-Tiny, in terms of inference accuracy and latency, was measured on
several common hardware backends, including a standard CPU and various NVIDIA GPUs. The
results, obtained without any model retraining specifically for these hardware targets, are summarized
in Table 10.

Table 10: FLAME-Tiny Inference Performance on Diverse Hardware Platforms. Accuracy was
evaluated on the Celex-HAR dataset. Latency is reported in milliseconds (ms).

Hardware Accuracy (%) Latency (ms)
Intel Xeon CPU (2 vCPUs @2.2GHz) 63.2 42.1
NVIDIA T4 GPU 63.2 1.57
NVIDIA V100 GPU (32GB) 63.2 0.43
NVIDIA A100 GPU (40GB) 63.2 0.162

The results in Table 10 indicate that FLAME-Tiny maintains its accuracy (63.2% on Celex-HAR)
consistently across all tested hardware. As expected, the inference latency varies significantly,
with the NVIDIA A100 GPU providing the fastest processing time at 0.162 ms. Even on a CPU,
FLAME-Tiny achieves a reasonable latency of 42.1 ms, demonstrating its potential for deployment
in environments where specialized GPU hardware may not be available. The performance on the
NVIDIA T4, a GPU often used for inference in datacenter and edge scenarios, also shows a practical
latency of 1.57 ms.

These findings support the claim that FLAME, particularly its lightweight variants like FLAME-Tiny,
can be efficiently deployed across a spectrum of computational platforms, from high-end GPUs to
more general-purpose CPUs, without compromising accuracy. This versatility is a key advantage
for event-based processing, where applications can range from power-constrained mobile devices to
high-throughput server-side systems.

29

C Supplementary Section C: Methods and Architectural Details

Algorithm 1 FLAME Model Training

Require: Training dataset D = {(Xi,yi)}
N
i=1, learning rate η, total epochs E, threshold potential

Vth, decay factors αd, β
1: Initialize weights W, event-based attention timing factors τd, FLAME matrices A,B,C, low-

rank matrices P,Q, and kernel K(ω)
2: Initialize coupling strengths gd for each event attention branch d
3: for epoch = 1 to E do
4: for each (X,y) ∈ D do

Input Representation: Prepare input events for processing
5: Parse input event sequence X = {(xi, yi, ti, pi)}, where (xi, yi) are spatial coords, ti is

time, pi is polarity.
Event Attention Layer: Update attention branch currents and aggregate at soma

6: for each ti in event sequence do
7: for each attention branch d do
8: Update attention branch current: id(ti + 1) = αd ⋅ id(ti) +∑j∈Nd

wj ⋅ pj
9: end for

10: Aggregate currents at soma: V (ti + 1) = β ⋅ V (ti) +∑d gd ⋅ id(ti)
11: if V (ti + 1) > Vth then
12: Generate event and reset potential: V (ti + 1) ← 0
13: end if
14: end for

Spatial Pooling Layer: Reduce spatial dimensionality while preserving temporal resolution
15: Apply max pooling: Ipooled(x

′, y′, t) =max(x,y)∈P (x′,y′) I(x, y, t)
FLAME Conv. Layer: Apply EA-HiPPO, NPLR, & FFT for event dynamics

16: Initialize state vector x(0)
17: for each event time tk in Ipooled do
18: Compute ∆tk = tk+1 − tk, decay Fij(∆tk) = e

−αij ⋅∆tk

19: Compute event-aware HiPPO: AS =A ○F(∆tk)
20: Decompose: AS =VΛV∗ −PQ∗

21: eAS∆tk ≈ I +AS∆tk +
AS

2
(∆tk)

2

2
22: Update: x(tk+1) = eAS∆tk ⋅ x(tk) +AS

−1
(eAS∆tk − I) ⋅B ⋅ S(tk)

23: FFT-based convolution: x(tk+1) = IFFT(FFT(K(ω)) ⊙ FFT(x(tk+1)))
24: end for
25: Compute continuous output: y(t) =C ⋅ x(t)
26: Thresholding: Convert y(t) to events by applying yevent(t) = I(y(t) > Vth)

Normalization: Reduce variability in activations
27: Apply layer normalization: x̂l =

xl−µl√
σ2
l
+ϵ
⋅ γ + β

Readout Layer: Compute final output and update model parameters
28: Compute pooled state: xpooled,k =

1
p ∑

(k+1)p−1
i=kp x̂i

29: Final output: ypred =W ⋅ xpooled + b

30: Compute loss L(ypred,y), update W ←W − η ⋅ ∂L
∂W

31: end for
32: end for

Background and Preliminaries

State-Space Models: A state-space model (SSM) is a mathematical framework for modeling systems
that evolve over time. The dynamics of such systems are described by a set of first-order differential
equations, often expressed in continuous time as:

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t)

where:

• x(t) ∈ RN is the hidden state vector, representing the internal state of the system at time t,

30

• u(t) ∈ RM is the input signal, such as sensory data or external stimuli,

• y(t) ∈ RP is the output signal or observable state,

• A ∈ RN×N , B ∈ RN×M , C ∈ RP×N , and D ∈ RP×M are learned system matrices.

State-space models are often used in signal processing and control systems to model systems with
temporal dependencies. In many practical scenarios, however, the continuous-time formulation is
discretized:

xk+1 = Adxk +Bduk, yk = Cdxk +Dduk

where Ad, Bd, Cd, and Dd are the corresponding discrete-time matrices, and k indexes the discrete
time steps.

Highly Optimized Polynomial Projection (HiPPO): The HiPPO framework provides a method
for approximating the continuous history of an input signal by projecting it onto a set of polynomial
basis functions. The HiPPO matrix A is designed to optimally compress the history of the input into
a state vector x(t), allowing the model to retain relevant temporal dependencies over long time scales.
For example, the HiPPO-Legendre (HiPPO-LegS) matrix A is defined as:

Ank =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−
√
(2n + 1)(2k + 1) if n > k

n + 1 if n = k
0 if n < k

This matrix governs the dynamics of how the internal state evolves to represent the history of the
input in a compressed manner.

Mathematical Modeling and Event Generation Mechanism

Events in the FLAME model are generated through the dynamics of LIF neurons. The event
generation process is described in detail below:

• Current Integration in Event-based attention branch : Each DH-LIF neuron integrates
incoming events through its attention branches:

id(t + 1) = αdid(t) + ∑
j∈Nd

wjpj , (4)

where αd = e
− 1

τd represents the decay rate, wj is the synaptic weight, and pj is the input
event value.

• Soma Potential Update and Event Generation: The soma potential is updated based on
the integrated EAL attention branch currents:

V (t + 1) = βV (t) +∑
d

gdid(t), (5)

where β = e−
1
τs is the decay rate of the soma, and gd is the coupling strength of each

attention branch. A event is generated if V (t) exceeds the threshold Vth.
• Event Propagation: The generated events propagate through the network according to:

x(tk+1) = eA∆tkx(tk) +A
−1
(eA∆tk − I)BS(tk), (6)

preserving both spatial and temporal information.

Methods

The proposed model is designed to handle sparse, asynchronous event-based inputs effectively
while being scalable to high-definition (HD) event streams. It leverages concepts from Dendrite
Heterogeneity Leaky Integrate-and-Fire (DH-LIF) neurons in the first layer to capture multi-scale
temporal dynamics, crucial for preserving temporal details inherent in event streams while reducing
spatial and computational redundancy. The model then utilizes a series of event-based state-space
convolution layers, enabling efficient integration of both local and global temporal relationships. The
final readout layer employs event pooling and a linear transformation to produce a compact and
meaningful representation for downstream tasks such as classification or regression. This architecture
ensures robustness and scalability, making it suitable for high-resolution inputs.

31

Variables and Notations

To ensure clarity, we provide definitions for all variables and notation used in the equations:

Table 11: Summary of Variables and Notations

Variable Definition Variable Definition Variable Definition
Input Representation

x, y Spatial coordinates of the event t Timestamp of the event p Magnitude or polarity of the event

Event Attention Layer (EAL)

τd EAL timing factor id(t) EAL Attention current for branch d at t αd Decay rate of EAL d, e−
1
τd

Nd Presynaptic inputs to EAL d wj Synaptic weight of presynaptic input pj V (t) Soma membrane potential at t
β Soma decay rate, e−

1
τs gd Coupling strength of attention branches d Vth Threshold potential for event generation

Spatial Pooling Layer
I(x, y, t) Initial event activity Ipooled(x

′, y′, t) Pooled event activity P (x′, y′) Pooling window center at (x′, y′)

FLAME Convolution Layer
x(t) Internal state vector at t S(t) Input event train AS EA-HiPPO matrix for inter-event intervals
B,C Input/output coupling matrices ∆t Inter-event interval F (∆t) EA-HiPPO decay matrix, e−αij∆t

V,Λ Components of NPLR decomposition P,Q Low-rank matrices, r ≪ N K(ω) FFT convolution kernel, 1
ω−Λ

FFT(⋅) Fast Fourier Transform IFFT(⋅) Inverse FFT

Normalization Layer

xl Input at layer l µl, σ
2
l Mean, variance at layer l γ, β Learnable scale and shift parameters

Readout Layer
xpooled,k Pooled state vector W,b Learnable weight matrix and bias y Final output, y =Wxpooled + b

Overview of the FLAME Model

FLAME addresses the limitations of conventional event-based neural networks (SNNs) in capturing
long-context temporal dependencies while maintaining event-driven efficiency. The FLAME model
is composed of the following key components:

Algorithm 2 FLAME Model Processing

Require: Input event sequence X = {(xi, yi, ti, pi)}
1: Initialize model parameters
2: Process input through Event Attention Layer (Algorithm 3)
3: Apply Spatial Pooling Layer to reduce spatial dimensions (Algorithm 4)
4: Pass output to FLAME Convolution Layer to capture temporal dynamics (Algorithm 5)
5: Update state using Event-Aware HiPPO mechanism (Algorithm 5)
6: Aggregate information in the Readout Layer for final output (Algorithm 6)
7: Output: Model prediction y

C.1 Input Representation

The input to the model is represented as a sequence of events, each defined by the tuple (x, y, t, p),
where (x, y) are the spatial coordinates, t is the timestamp, and p represents the magnitude or polarity
of the event. These events are streamed asynchronously, reflecting the sparse nature of the data.
The model is also designed to handle higher resolutions, allowing scalability to HD event streams.
This input representation emphasizes the need for efficient aggregation of both spatial and temporal
information while minimizing computational load.

C.2 Event Attention Layer (EAL)

The model begins by passing the input through the Event Attention Layer (EAL), constructed using
DH-LIF neurons as shown in Fig. 1. Each DH-LIF neuron features multiple attention branches, each
with a unique timing factor τd, enabling the capture of temporal dynamics across a range of timescales,
which is essential for accommodating the diverse timescales present in asynchronous event inputs.
The dynamics of the attention current id(t) are governed by id(t + 1) = αdid(t) + ∑

j∈Nd

wjpj , where

αd = e
− 1

τd is the decay rate for branch d, and wj represents the synaptic weight associated with
presynaptic input pj . The set Nd represents the presynaptic inputs connected to attention branch d,
ensuring that each captures temporal features independently, functioning as independent temporal

32

filters. Unlike a standard CUBA LIF neuron model, which integrates all inputs uniformly at the soma
with a single timescale, the event-based attention layer introduces multiple event attention branches,
each independently filtering inputs at different temporal scales. This design enables the neuron to
selectively process asynchronous inputs and retain information across diverse temporal windows,
providing greater flexibility and adaptability.

The currents from each event attention branch are aggregated at the soma, resulting in the membrane
potential V (t + 1) = βV (t) + ∑

d

gdid(t), where β = e−
1
τs represents the soma’s decay rate, and

gd represents the coupling strength of attention branch d to the soma. The coupling strength gd is
explicitly separated from the synaptic weights wj (Equation 4) to allow for independent learning
of temporal filtering via τd and wj , and the relative significance of each timescale via gd. This
separation empirically improves training stability and prevents performance degradation observed
when collapsing the dendritic integration into a flattened structure. A event is generated whenever
the membrane potential exceeds a threshold Vth, allowing the neuron to selectively fire only when
sufficiently excited.

Algorithm 3 Event Attention Layer

Require: Input events X = {(xi, yi, ti, pi)}, timing factors {τd}, synaptic weights {wj}, coupling
strengths {gd}, threshold Vth

1: Initialize currents id(0) and membrane potential V (0)
2: for each time step t do
3: for each attention branch d do
4: Compute decay rate: αd ← e

− 1
τd

5: Update current: id(t + 1) ← αdid(t) +∑j∈Nd
wjpj

6: end for
7: Compute soma decay rate: β ← e−

1
τs

8: Update membrane potential: V (t + 1) ← βV (t) +∑d gdid(t)
9: if V (t + 1) > Vth then

10: Generate event at time t + 1
11: Reset membrane potential: V (t + 1) ← 0
12: end if
13: end for
14: Output: Spatio-temporal features I(x, y, t)

C.3 Spatial Pooling Layer

Following the event-based attention layer, a Spatial Pooling Layer is introduced to reduce the spatial
dimensionality of the resulting output. Given the initial event activity I(x, y, t) at location (x, y), the
pooling operation reduces spatial dimensions while preserving temporal resolution:

Ipooled(x
′, y′, t) = max

(x,y)∈P (x′,y′)
I(x, y, t)

where P (x′, y′) is a pooling window centered at (x′, y′). Pooling reduces spatial complexity,
simplifying subsequent processing in the network while retaining key features. This is especially
useful for HD event streams with extensive spatial information.

Algorithm 4 Spatial Pooling Layer

Require: Input event activity I(x, y, t) from Event Attention Layer, pooling window P (x′, y′)
1: for each spatial location (x′, y′) do
2: for each time step t do
3: Pool activity: Ipooled(x

′, y′, t) ← max
(x,y)∈P (x′,y′)

I(x, y, t)

4: end for
5: end for
6: Output: Pooled event activity Ipooled(x

′, y′, t)

33

Figure 5: The EA-HiPPO decay is needed to adapt the memory retention dynamically to the irregular
timing of events, allowing the system to prioritize recent events while efficiently managing the decay
of older information, which enhances stability and responsiveness for event-driven inputs.

C.4 FLAME Convolution

The FLAME Convolution Layer is a critical component of the FLAME model, specifically designed
for processing event-based inputs. It captures long-range dependencies and asynchronous dynamics
by integrating mechanisms such as the Event-Aware HiPPO (EA-HiPPO) framework, Normal
Plus Low-Rank (NPLR) Decomposition, and Fast Fourier Transform (FFT) Convolution. These
innovations collectively enable efficient and robust temporal feature extraction.

Overview and Intuition

Traditional convolutional layers are adept at extracting spatial features but often fail to capture
complex temporal dependencies, especially in asynchronous, sparse event-based data. The FLAME
Convolution Layer overcomes this limitation by incorporating state-space models that inherently
manage temporal dynamics. Leveraging the EA-HiPPO mechanism, the layer dynamically adapts
memory retention based on event timings, emphasizing recent events while allowing older infor-
mation to decay. The use of NPLR Decomposition and FFT-based convolution further enhances
computational efficiency, enabling scalability to high-dimensional, long-context temporal data.

Event-based State-Space Model: The temporal dynamics of the FLAME Convolution Layer are
governed by the Event-based State-Space Model:

ẋ(t) = ASx(t) +BS(t), y(t) = Cx(t), (7)

where:

• x(t) ∈ RN represents the internal state vector,

• S(t) ∈ RM is the input event train, with each component Si(t) = ∑k δ(t − t
k
i), where δ(t)

is the Dirac delta function,

• AS ∈ RN×N is the Event-Aware HiPPO matrix,

• B ∈ RN×M and C ∈ RP×N are the input and output coupling matrices.

This framework ensures that temporal dependencies inherent in event-based data are captured
effectively.

Event-Aware HiPPO Mechanism: The Event-Aware HiPPO (EA-HiPPO) (Fig. 5) mechanism is a
core component of the FLAME model, designed to efficiently capture long-term temporal depen-
dencies in the presence of sparse, event-based inputs. The HiPPO (Highly Optimized Polynomial
Projection) framework, originally developed to approximate continuous input signals, projects them
onto polynomial bases, enabling efficient temporal compression of input history. However, when
dealing with event-driven dynamics, where inputs are discrete and irregular, the conventional HiPPO
formulation must be adapted to properly address these challenges. The EA-HiPPO adapts the HiPPO
framework to efficiently handle discrete, event-driven inputs by introducing a decay matrix F (∆t).
This matrix adjusts memory retention based on the time elapsed between events (∆t), ensuring more
recent events have a greater influence while older information gradually decays. The Hadamard
product with the original HiPPO matrix enables adaptive modulation of memory, making it more

34

stable and suitable for asynchronous events. In a event-driven scenario, the input signal is represented
as a vector of event trains S(t) ∈ RM , with each element Si(t) defined by Si(t) = ∑

k

δ(t − tki),

where δ(t) is the Dirac delta function, and tki denotes the time of the k-th event for input i. Given
the irregular and sparse nature of these event-driven inputs, we introduce a Event-Aware HiPPO
(EA-HiPPO) matrix AS that extends the dynamics of the standard HiPPO to efficiently process events.
The EA-HiPPO matrix AS modifies the original HiPPO dynamics to adapt to the nature of event-based
events by incorporating a decay function that accounts for the time elapsed between successive events.
Specifically, the state evolution in the presence of events is modeled by ẋ(t) = ASx(t) +BS(t).
The matrix AS is defined as AS = A ○ F (∆t), where A ∈ RN×N is the original HiPPO matrix, and
F (∆t) ∈ RN×N is a decay matrix that weights the original HiPPO dynamics based on the inter-event
interval ∆t. The operator ○ denotes the element-wise (Hadamard) product. The decay matrix F (∆t)

is formulated as Fij(∆t) = e−αij∆t, where ∆t = tj − ti represents the time difference between event
i and event j, and αij is a decay parameter that controls how the influence of past events diminishes
over time. The exponential decay function ensures that the impact of previous events decreases
exponentially, allowing more recent events to have a stronger influence on the current state. This
weighting mechanism makes the HiPPO dynamics more adaptable to event-based inputs, capturing
both the recency and relevance of events for efficient temporal representation.

The state vector x(t) thus evolves in two distinct modes: continuous evolution between events and
instantaneous updates at event times. Between events, the state evolves according to the homogeneous
equation ẋ(t) = ASx(t). When a event occurs at time tk, the state is updated as:

x(tk+1) = eAS∆tkx(tk) +A
−1
S (e

AS∆tk − I)BS(tk)

where ∆tk = tk+1 − tk represents the time difference between successive events. To make the state
update computationally feasible, the matrix exponential eAS∆tk is approximated using a truncated
Taylor series expansion:

eAS∆tk ≈ I +AS∆tk +
A2

S∆t2k
2

This first-order or second-order approximation provides a good balance between computational
efficiency and accuracy, especially in scenarios with small inter-event intervals.

The EA-HiPPO mechanism effectively extends the temporal memory capabilities of the original
HiPPO framework by introducing a event-sensitive adaptation. It ensures that the state vector x(t)
retains relevant temporal information while accommodating the asynchronous nature of event inputs.
The decay function embedded within F (∆t) provides a means to dynamically adjust the influence of
past inputs, thereby making the model more responsive to recent events.

Normal Plus Low-Rank (NPLR) Decomposition: The NPLR Decomposition reduces computa-
tional complexity by expressing AS as:

AS = V ΛV ∗ − PQ∗, (8)

where:

• V ∈ CN×N is a unitary matrix,
• Λ ∈ CN×N is a diagonal matrix of decay rates,
• P,Q ∈ CN×r are low-rank matrices, with r ≪ N .

In all experiments, the state dimension is fixed at N = 64 and the low-rank perturbation rank is fixed
at r = 8. This decomposition reduces the complexity of matrix-vector multiplications from O(N2) to
O(Nr), facilitating scalability to large state spaces.

Fast Fourier Transform (FFT) Convolution: Long-range temporal dependencies are handled
efficiently using FFT-based convolution. The convolution operation is performed as follows:

1. Transform the state vector x(t) and convolution kernel K(ω) into the frequency domain
using FFT.

35

2. Perform element-wise multiplication in the frequency domain.
3. Apply the inverse FFT (IFFT) to obtain the updated state vector in the time domain.

This approach significantly accelerates the processing of long temporal sequences by leveraging
frequency-domain efficiencies. The FLAME Convolution Layer integrates these components to
achieve robust spatio-temporal feature extraction:

• Temporal Dynamics Modeling: EA-HiPPO captures event timing dependencies while
balancing memory retention and decay.

• Computational Efficiency: NPLR Decomposition and FFT convolution ensure scalability
and rapid processing.

• Efficient State Management: The state-space formulation ensures accurate updates for
event-based inputs.

C.4.1 FLAME Convolution Layer

Using all these concepts of EA-Hippo, NPLR Decomposition and FFT Convolution, we introduce
FLAME Convolution (FLAMEConv) layers, which generalize the event-aware state-space operations
into a convolutional framework. These layers are designed to extend the capabilities of FLAME by
transforming the temporal memory operations into a convolutional form, thus allowing for more
efficient feature extraction in both temporal and spatial domains. The FLAME Conv layer incorporates
event-based input while retaining the convolutional structure, enabling the model to operate efficiently
over high-dimensional data while capturing complex temporal dependencies. The continuous-time
state-space dynamics are given by:

d

dt
x(t) = Ax(t) +Bu(t)

where x(t) ∈ RN represents the state vector, u(t) ∈ RM is the input, A ∈ RN×N is the state transition
matrix, and B ∈ RN×M is the input coupling matrix. The state evolves based on both the internal
dynamics and the influence of incoming events. The Event-Aware dynamics incorporate both decay
and event-driven updates

ẋ(t) = Aevent(t)x(t) +Bevent(t)u(t), (9)
where Aevent(t) = Adecay + Atiming(t). The matrix Adecay = −

1
τm

I models natural decay, while
Atiming(t) represents event-driven effects and depends on the inter-event intervals. The model
discretizes these dynamics for efficient implementation, using a fixed time step ∆t:

xk+1 = xk +∆t(Aevent,kxk +Bevent,kuk) (10)

At each event time ti, the state undergoes an instantaneous update x(t+i) = x(t
−
i) +Bevent(ti). To

improve computational efficiency, the event-based state matrix Aevent is decomposed using the Normal
Plus Low-Rank (NPLR) decomposition:Aevent = V ΛV ∗ − PQ∗

where V ∈ CN×N is a unitary matrix, Λ ∈ CN×N represents the decay, and P,Q ∈ CN×r are low-rank
matrices. This reduces the cost of matrix-vector products from O(N2) to O(Nr), where r is the
rank of the low-rank perturbation. The resulting state update rule becomes:

xk+1 = xk +∆t ((V ΛV ∗ − PQ∗)xk +Beventuk)

The convolution operation in these layers is realized by transforming recurrent state-space updates
into a convolutional form, with the system’s impulse response precomputed. Using the Fast Fourier

Transform (FFT), the convolution kernel K(ω) can be efficiently calculated as K(ω) =
1

ω −Λ
. This

transformation allows the model to handle long-range temporal dependencies efficiently, even in
high-resolution event-based streams.

Computational Efficiency: The layer achieves notable computational advantages:

• Reduced Complexity: NPLR Decomposition transforms operations from O(N2) to
O(Nr).

36

• Accelerated Convolutions: FFT convolution rapidly processes long temporal sequences.

• Parallelization: FFT operations are well-suited for parallel hardware architectures, enhanc-
ing performance.

Event Generation in FLAME Convolution Layers: Events in the FLAME model are generated
through the interaction of Event attention layer (EAL) and soma compartments in the DH-LIF neurons.
These neurons are integral to the Event Attention Layer, which precedes each FLAME convolution
layer, ensuring asynchronous and event-driven signal processing.

The EAL branches act as independent temporal filters, accumulating and processing inputs over time:

id(t + 1) = αdid(t) + ∑
j∈Nd

wjpj ,

where αd = e
− 1

τd is the decay rate determined by the EAL branch’s time constant τd, wj is the
synaptic weight, and pj is the presynaptic event.

The soma aggregates these currents, with its membrane potential evolving as:

V (t + 1) = βV (t) +∑
d

gdid(t),

where β = e−
1
τs represents the soma’s decay factor, and gd is the coupling strength of each EAL

branch d.

A event is produced when the soma’s membrane potential V (t) exceeds the threshold Vth. After
firing, the potential resets, and these events serve as inputs to the next FLAME convolution layer.
This mechanism ensures the model maintains its asynchronous event-driven processing nature while
enabling precise temporal modeling across layers.

The FLAME Convolution Layer combines the strengths of EA-HiPPO, NPLR Decomposition, and
FFT Convolution to process asynchronous event-based inputs effectively. This integration enables
the model to extract meaningful spatio-temporal features while maintaining computational efficiency
and scalability, making it ideal for high-resolution, real-world applications.

C.5 Normalization and Residual

To maintain stability and ensure efficient learning, Layer Normalization (LN) is applied after each
event-based SSM convolution layer: x̂l =

xl − µl
√
σ2
l + ϵ

⋅γ+β, where µl and σ2
l are the mean and variance

of activations at layer l, respectively, and γ, β are learnable parameters. Normalization reduces
variability in activations, providing stable training regardless of fluctuations in inputs.

Additionally, residual connections help propagate information across layers by defining xl+1 =
f(xl) + xl, where f(xl) represents the transformation applied by the event-based convolution at
layer l. Residual connections prevent vanishing gradients, allow lower-level feature retention, and
enhance learning efficiency.

Table 12: Input-Output Descriptions for Each Block in the FLAME Model
Block Input Output
Input Representation Event events (x, y, t, p): (x, y) (spatial), t (time), p (magnitude/polarity) Preprocessed events for subsequent layers

Event Attention Layer

Event event stream with spatial and temporal coordinates (x, y, t, p) Aggregated membrane potential v(t), capturing spatio-temporal features at multiple timescales.

EAL Current Update:
Previous EAL branch current id(t), synaptic weights wj , and decay factor αd Updated EAL branch current id(t + 1) = αdid(t) +∑j∈Nd

wjpj

Soma Aggregation: Aggregated membrane potential v(t + 1) = βv(t) +∑d gdid(t)
Inputs from EAL branch currents id(t + 1), soma decay factor β, and coupling strengths gd

Event Generation: Event output if v(t + 1) > Vth, and reset potential (v(t + 1) ← 0)

Spatial Pooling Layer Aggregated events I(x, y, t) from the Event Attention Layer Pooled spatio-temporal representation Ipooled(x
′, y′, t), with reduced spatial dimensions

FLAME Convolution Layer

Pooled event features Ipooled(x
′, y′, t) Processed state y(t), thresholded to generate events.

EA-HiPPO: Event features and inter-event intervals (∆t) Adjusted state-space matrix AS, incorporating memory retention through a decay matrix

NPLR Decomposition: Decomposed matrix AS =VΛV∗ −PQ∗, reducing computational complexity
Adjusted state-space matrix AS

Matrix Exponential Approximation: Approximated exponential eAS∆tk for efficient state updates
Decomposed state-space matrix AS, time step ∆tk

FFT Convolution: State vector x(tk) and precomputed impulse response K(ω) Updated state vector x(tk+1) after efficient frequency-domain convolution

Layer Normalization Intermediate activations xl from the FLAME Convolution Layer Normalized activations x̂l, ensuring stable training by reducing variability in activations

Readout Layer Normalized features x̂l Final output y, generated via event pooling and a linear transformation

37

Algorithm 5 FLAME Convolution Layer

Require: Event train input S(t), HiPPO base matrix A, input coupling matrix B, output coupling
matrix C, decay function F(∆t), time step ∆t, low-rank matrices P, Q, total time T , rank r,
state space dimension N , FFT convolution kernel K(ω), threshold potential Vth

Ensure: Output event map Yevent(t)
Initialization

1: Initialize state vector x← 0 (N -dimensional state vector)
2: Initialize output Yevent ← [] (Empty list to store event outputs)

Precomputations
3: Compute event-aware HiPPO matrix: Aevent ←A ○F(∆t) (Hadamard product with decay

function)
4: Perform eigendecomposition: V,Λ← eig(Aevent)

5: Decompose using NPLR: ANPLR ←VΛV∗ −PQ∗
6: for t = 1 to T do

Event-Driven Dynamics
7: if S(t) contains events then
8: Compute time difference: ∆tk = tk+1 − tk
9: Approximate matrix exponential:

eAevent∆tk ≈ I +Aevent∆tk +
(Aevent)

2(∆tk)
2

2

10: Update state vector:

x(tk+1) ← x(tk) +∆tk ((VΛV∗ −PQ∗)x(tk) +BS(tk))

11: else
12: Update state for continuous dynamics: x← eAevent∆tx
13: end if

FFT-Based Convolution for Temporal Dependencies
14: Transform state and kernel to frequency domain:

Xfreq ← FFT(x), Kfreq ← FFT(K(ω))

15: Perform element-wise multiplication in frequency domain:

Yfreq ←Xfreq ⋅Kfreq

16: Transform back to time domain:

x(tk+1) ← IFFT(Yfreq)

17: Compute continuous output: yt ←C ⋅ x(t)
18: Threshold the output to generate events:

yevent(t) ← I(yt > Vth)

19: Append yevent(t) to Yevent
20: end for

Output: Yevent, the final event map

C.6 Readout Layer

The readout layer is inspired by the Event-SSM architecture and employs an event-pooling mech-
anism to subsample the temporal sequence length. The pooled output is computed as xpooled,k =

1

p

(k+1)p−1
∑
i=kp

xi, where p is the pooling factor. This operation ensures only the most relevant temporal

features are retained, reducing computational burden while preserving key information. The resulting
pooled sequence is passed through a linear transformation as y = Wxpooled + b where W and b
are learnable parameters. The combination of event pooling and linear transformation provides

38

Algorithm 6 Readout Layer

Require: State vectors {x(t)}, pooling factor p, weights W , bias b
1: for each pooled time step k do
2: Compute pooled state:

xpooled,k ←
1

p

(k+1)p−1
∑
i=kp

x(ti)

3: end for
4: Compute final output:

y ←Wxpooled + b

5: Output: Model prediction y

an efficient means for deriving a final representation suitable for downstream tasks, maintaining
scalability even with longer event sequences.

C.7 FLOPs Calculation Methodology

The estimation of Floating Point Operations (FLOPs) per event in the FLAME model considers the
computational costs associated with the primary components involved in processing each event. The
methodology is detailed below:

1. Event-Driven EAL Integration: Each incoming event can trigger current updates across
multiple EAL branches. The FLOPs for this stage are approximated as:

FLOPsEAL ≈ (No. of branches ×No. of inputs per branch × 2)

This accounts for one addition and one multiplication operation per active synapse connected
to the EAL branches influenced by the event. Let d represent the complexity related to EAL
operations, so FLOPsEAL = O(d).

2. EA-HiPPO State Update: The Event-Aware HiPPO (EA-HiPPO) mechanism updates its
state upon receiving input. When using a 2nd-order matrix exponential approximation and
NPLR decomposition, each update involves:

• Approximately 2 × (N × r) FLOPs for the Normal-Plus-Low-Rank (NPLR) matrix-
vector products, where N is the state dimension and r is the rank of the low-rank
component.

• O(N logN) FLOPs for the Fast Fourier Transform (FFT) and Inverse FFT (IFFT)
operations used in the convolutional implementation of the state space model.

Thus, the FLOPs for the EA-HiPPO component can be expressed as:

FLOPsEA-HiPPO ≈ 2Nr + c ⋅N logN

where c is a small constant factor associated with the FFT/IFFT computations.
3. Total Per-Event FLOPs: The total computational cost per event is the sum of the FLOPs

from the EAL integration and the EA-HiPPO state update:

FLOPsper_event = FLOPsEAL + FLOPsEA-HiPPO

Substituting the approximations, we get:

FLOPsper_event ≈ O(d) + 2Nr +O(N logN)

This methodology provides an estimate of the computational load incurred for each event processed by
the FLAME architecture, highlighting the contributions of its main computational blocks. The NPLR
decomposition and the efficiency of FFT-based convolutions are key to maintaining manageable
FLOP counts, especially in comparison to dense matrix operations.

39

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The final step for preparing your paper is to complete the Claims section of
the checklist with a concise, evidence-based justification. The justification must affirm that
the paper’s main contributions are accurately represented and experimentally supported.
You should state that the claims regarding the Event Attention Layer (EAL) and Event-
Aware HiPPO (EA-HiPPO) are backed by ablations showing significant performance drops
when they’re removed (Fig. 2a). Furthermore, emphasize that the claim of computational
efficiency is proven by achieving competitive accuracy on high-resolution data (CeleX-
HAR) at ≈ 90× lower GFLOPs than the leading voxel-based baseline, and by the technical
contribution of NPLR decomposition.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper explicitly discusses several limitations in Section 6, detailing areas
where the current framework’s scope is restricted. The authors acknowledge that, despite
achieving high throughput on modern GPUs, the current implementation does not meet
real-time performance constraints on CPU-only systems and lacks mechanisms for on-device
continual learning, as it is designed for static offline training. Furthermore, the model is
inherently sensitive to sensor noise —a known trade-off for event-driven models—and its
sophisticated state-space core is not directly translatable for end-to-end native execution on
existing neuromorphic hardware platforms.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

40

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper includes full theoretical analysis, with all proofs provided in the
Supplementary Material (Appendix A). Assumptions for each result are clearly stated or
referenced: for instance, Theorem 1 and Theorem 2 explicitly state the requirements for
Hurwitz stability (Re(λi) < 0) of the adaptive state matrix AS(∆t) and the boundedness
of inputs (∣∣Eflat(t)∣∣ ≤ E∞), ensuring system stability and bounded memory retention. All
theorems and lemmas are numbered and correctly cross-referenced.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The main claims accurately reflect the paper’s core contributions in efficient,
asynchronous processing, backed by strong experimental results. The core architectural
elements—the Event Attention Layer (EAL) and Event-Aware HiPPO (EA-HiPPO)—are
verified by ablation studies showing their removal leads to significant performance drops
across tasks (Fig. 2a). The claim of superior computational efficiency is definitively
supported by achieving competitive accuracy on the high-resolution CeleX-HAR dataset
at ≈ 90× lower GFLOPs than the voxel-based EventMamba baseline. This efficiency is
enabled by the Normal-Plus-Low-Rank (NPLR) decomposition, which drastically reduces
complexity and memory footprint.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may

41

be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The authors ensure full open access to faithfully reproduce the main experimen-
tal results. The paper confirms that the full codebase used for all experiments—including
the complete Event-Aware HiPPO module with NPLR and FFT support, the full EAL
implementation, spatial pooling routines, and all necessary training/evaluation scripts—will
be released soon alongside the final paper. Since all required datasets (e.g., DVS Ges-
ture, CeleX-HAR, SHD/SSC) are publicly available, this commitment, coupled with the
detailed architectural and hyperparameter descriptions in the paper and appendix, provides a
complete and verifiable path to reproduction.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

42

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specifies the majority of the details necessary to understand the
results, primarily through the appendix. All model variants (Tiny, Small, Normal) and their
architectural details (e.g., channel counts, readout layers) are provided. Key experimental
methodologies are detailed, such as event-by-event processing and ablation setups. Further-
more, the paper promises explicit details on critical aspects for reproduction, including the
specific optimizer, sequence lengths, EAL branch counts, and state/rank choices, will be
included in the final Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper provides limited information on statistical significance. Results
are primarily reported as single point estimates (e.g., accuracy percentage and GFLOPs)
without accompanying error bars, confidence intervals, or information on the variability
factors (e.g., initialization or multiple runs). While the performance figures are clear, the
lack of variability metrics means the statistical significance of the differences between the
proposed method and baselines is not formally quantified.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

43

Answer: [Yes]

Justification: Sufficient information is provided to quantify the compute resources required.
The main training and inference runs are stated to be conducted on NVIDIA A100 GPUs.
Detailed efficiency metrics (GFLOPs, parameters, and inference latency in milliseconds)
are provided for all major experiments (Figs. 2, 3, Table 2). Furthermore, Appendix B.6
provides a hardware deployment and efficiency profile for the FLAME-Tiny model across a
range of compute workers, giving explicit latency figures.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms to the NeurIPS Code of Ethics. This work is fundamen-
tal research focused on developing efficient neural network architectures for event-based
vision using public, established benchmark datasets (e.g., DVS Gesture, CeleX-HAR). It
does not involve human subjects, collect new private or sensitive data, or present immediate
dual-use concerns that would necessitate special consideration.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The research conforms to the NeurIPS Code of Ethics. This work is fundamen-
tal research focused on developing efficient neural network architectures for event-based
vision using public, established benchmark datasets (e.g., DVS Gesture, CeleX-HAR). It
does not involve human subjects, collect new private or sensitive data, or present immediate
dual-use concerns that would necessitate special consideration.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

44

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks. This work is foundational research developing
a novel neural network architecture. It does not involve the release of large pretrained
generative models (like LLMs or image generators) or the creation/curation of any scraped
or sensitive datasets. All data used consists of established, publicly available benchmark
datasets in the event-based vision community.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper respects all licensing requirements for existing assets. The work
exclusively uses publicly available, established benchmark datasets (e.g., DVS Gesture,
CeleX-HAR, SHD/SSC, CIFAR10-DVS, N-Caltech101), and the respective original papers
for all datasets are properly cited. As these are standard, openly cited research assets, this
constitutes proper crediting and adherence to community norms.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

45

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces a novel architectural framework, FLAME, which consti-
tutes a new asset. This asset is well-documented via: 1) A full architectural description in
Section 3, including detailed mathematical modeling of the Event Attention Layer and the
Event-Aware HiPPO dynamics. 2) Explicit commitment to releasing the complete codebase,
including NPLR logic and training scripts, alongside the final paper, which will ensure
complete documentation is provided with the assets upon release. No new datasets or models
posing high safety risks are introduced.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The research does not involve crowdsourcing experiments or primary research
with human subjects. The experiments rely exclusively on publicly available, established
benchmark datasets that were collected previously by other researchers.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or primary research with human
subjects. The experiments rely exclusively on publicly available, established benchmark
datasets that were collected previously by other researchers, making IRB approval non-
applicable.

46

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper does include a declaration of LLM usage, as acknowledged in the
submission’s metadata. The usage was primarily for editing, formatting, clarifying technical
concepts, and generating/filtering data for the submission, not as an integral part of the core
architectural method, scientific rigorousness, or originality of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.

47

https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Works
	Methods
	Theoretical Analysis
	Computational Complexity: Enabling Efficient Event Processing
	Modeling Extended Temporal Contexts in Event Streams
	Numerical Stability of Event-Driven State Updates

	Experiments and Results
	Experimental Setup
	Performance on Event-Based Vision Benchmarks
	Efficiency Analysis

	Conclusion
	Supplementary Section A: Detailed Proofs
	Computational Complexity of Event-Driven SSMs
	Long-context Temporal Dependency Preservation Via Event-Based Hippo
	Error Bound For Event-Driven Matrix Exponential Approximation
	Boundedness Of State Trajectories With Event Inputs

	Supplementary Section B: Extended Experimental Results
	Datasets and Tasks
	Ablation Studies:
	DVS Gesture Recognition
	Scaling to HD Event Streams
	Performance on N-Caltech101
	Hardware Deployment and Efficiency Profile

	Supplementary Section C: Methods and Architectural Details
	Input Representation
	Event Attention Layer (EAL)
	Spatial Pooling Layer
	FLAME Convolution
	FLAME Convolution Layer

	Normalization and Residual
	 Readout Layer
	FLOPs Calculation Methodology

