

000 001 002 003 004 005 CARBoN: CALIBRATED BEST-OF-N SAMPLING 006 IMPROVES TEST-TIME REASONING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Allocating more computation during inference time (test-time scaling) improves language model performance, especially for reasoning tasks. However, popular methods like Best-of- N sampling often show diminishing returns as N increases. To address this inefficiency, we introduce a general **test-time calibration framework** that adaptively modifies the model toward high-reward reasoning paths, with theoretical guarantees of improving the lower bound of expected reward under finite sampling, all without large language model (LLM) retraining. Within this framework, we propose **CarBoN** (Calibrated Best-of- N), a two-phase method that first explores the solution space and then learns a calibration of the logits via an input-specific temperature T and additive shift vector δ , guiding generation toward more reliable reasoning. Experiments on MATH-500 and AIME-2024 show that CarBoN improves efficiency, with up to $4\times$ fewer rollouts to reach the same accuracy, while often achieving higher accuracy under fixed budgets. We also analyze the complementary roles of T and δ in balancing output diversity and correctness, and demonstrate that the framework also generalizes to step-level sampling strategies such as beam search.

1 INTRODUCTION

Test-time scaling (TTS) is a practical alternative to ever-larger training, enabling models to “think longer” at inference by allocating additional computation to reasoning. Methods such as chain of thought (OpenAI, 2024; Guo et al., 2025), sequential reasoning (Wang et al., 2022; Qu et al., 2024; Shinn et al., 2023), and parallel sampling (Snell et al., 2024; Beeching et al.; Puri et al., 2025; Liu et al., 2025) demonstrate that increased test-time effort consistently improves performance without retraining. As these studies suggest, TTS allows smaller LLMs to match or even outperform larger ones, providing a more cost-efficient and flexible inference strategy.

Despite these benefits, simply increasing test-time compute does not guarantee optimal performance. Recent work has shown that inference without effective verification is often sub-optimal, as models may spend additional computation on low-quality reasoning paths (Setlur et al., 2025). To overcome this inefficiency, we propose a general **test-time calibration framework** that strategically reallocates the inference budget by leveraging feedback from a verifier or reward model during inference. Rather than treating generation as a fixed forward pass, the model adaptively steers toward high-reward (likely correct) regions, improving reasoning reliability under a fixed query budget.

Why calibration for TTS? A motivating example of reward-based binary search. Let the task be finding a target in $[0, 10^4]$. Calibration means that before each search step the model can query n candidate points for reward, where n denotes the number of reward queries per step. The reward is defined as the inverse distance to the target plus noise. The baseline binary search, corresponding to naive TTS ($n = 0$), requires 13.3 steps on average. Increasing n significantly accelerates convergence: for example, with $n = 16$ the search depth is reduced by up to 74% (see Figure 1, left). Figure 1 (right) shows an example run where calibration quickly converges to the target, while vanilla binary search continues oscillating. This example highlights that reward feedback for calibration reshapes the sampling distribution and motivates its use for TTS.

Building on this principle, our framework reuses sampled completions that are normally discarded in parallel sampling methods (Wang et al., 2022; Brown et al., 2024; Snell et al., 2024) to extract

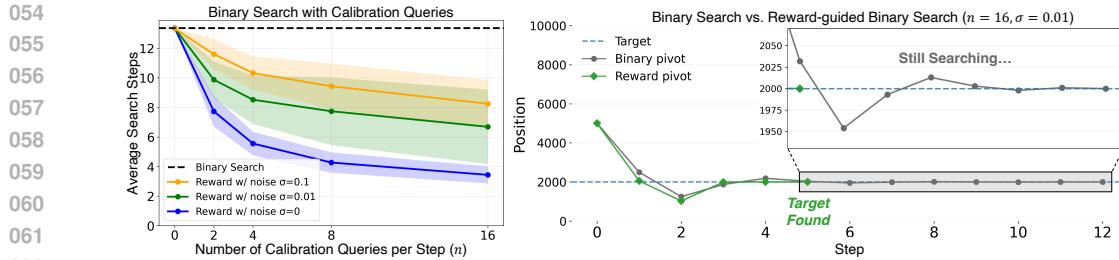


Figure 1: Reward-guided calibration accelerates binary search. Left: Increasing per-step noisy reward (inverse-distance signal + noise) lowers average search steps versus vanilla. Right: Example showing reward guidance converges early; vanilla keeps oscillating. See Appendix B.1 for details.

reward signals and perform calibration. Within this framework, we introduce **CarBoN** (Calibrated Best-of- N). Without modifying the original LLM, our framework allocates part of the budget to exploration and calibration, then focuses the remaining budget on high-scoring regions using logit calibration. Reusing high-scoring answer selected by reward model enhances answer quality and query efficiency, under the same inference budget.

Our main contributions are summarized as follows:

- **Test-Time Calibration Framework.** We introduce a test-time calibration framework that reallocates the inference budget (Figure 2a). Applied to Best-of- N , CarBoN first explores diverse candidates to identify high-scoring regions, then uses logit calibration to focus the remaining budget on high-scoring areas, improving accuracy under fixed rollout budget.
- **Theoretical Guarantees.** We provide formal proofs showing that optimal calibration parameters exist, which improve the expected reward’s lower bound under finite sampling and strictly outperform the uncalibrated baseline.
- **CarBoN Empirically Improves Test-Time Reasoning.** Across multiple models and benchmarks, including MATH-500 and the more challenging AIME-2024, CarBoN achieves higher or comparable accuracy with fewer queries than uncalibrated models, showing benefits for both general-purpose and math-specialized models.
- **Calibration Insights and Generalization.** In CarBoN, we find that temperature (T) controls output distribution sharpness, delta (δ) corrects token-level biases, and together they balance diversity and correctness to improve test-time reasoning. We further generalize test-time calibration beyond Best-of- N , applying to step-level sampling (beam search) to demonstrate broader applicability.

2 RELATED WORK

Reasoning with Intermediate Steps. Recent work has improved LLM reasoning by encouraging generation of intermediate steps, e.g., chain-of-thought (Wei et al., 2022; Kojima et al., 2022), least-to-most prompting (Zhou et al., 2022), and learned reasoning policies (Yue et al., 2023; Yu et al., 2023; Wang et al., 2023; OpenAI, 2024; Anthropic, 2025; Guo et al., 2025). These methods use a large token budget for multi-step reasoning within a single forward pass, effectively “thinking longer” at inference. However, they remain limited by context window and KV cache constraints, which can restrict feasible reasoning length and make naive scaling of token generation inefficient.

Iterative Refinement. Sequential revision methods improve outputs by feeding previous answers back. Recursive reasoning (Qu et al., 2024) uses multiple critique rounds to correct mistakes; the authors note early errors can propagate and gains often diminish after a few iterations. Reflective prompting (Shinn et al., 2023) adds self-assessment but its effectiveness is limited by memory and reflection quality. Overall, these methods enhance accuracy without retraining but increase latency, RAM usage, and computation linearly, and repeated refinement may yield diminishing returns.

Parallel Sampling Strategies. Parallel sampling methods can be divided into two groups. The first generates complete candidate answers per query without intermediate evaluation. This includes self-consistency (majority voting) and best-of- N (BoN), where the former selects the most frequent answer and the latter scores each candidate with a reward model, choosing the highest-scoring answer (Wang et al., 2022; Brown et al., 2024). Best-of- N generally outperforms majority voting,

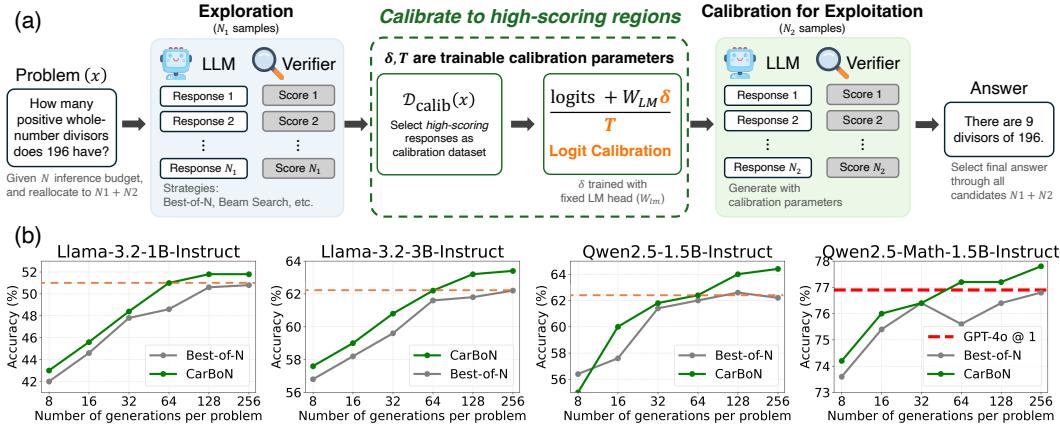


Figure 2: (a) Test-time calibration framework. With a rollout budget $N = N_1 + N_2$, the model first explores by generating and scoring N_1 candidate responses. The model then learns calibration parameters (δ, T) from high-scoring responses, using them to adjust the logits for the remaining N_2 generations. The final answer is selected from all N candidates. **(b) MATH-500 Results.** CarBoN improves weighted Best-of-N accuracy across four models. For all models, calibrated accuracy at $N = 64$ (orange dash line) matches or exceeds uncalibrated accuracy at $N = 256$, corresponding to up to a $4\times$ reduction in rollout budgets. Notably, with Qwen2.5-Math-1.5B-Instruct at $N = 64$, CarBoN surpasses GPT-4o (red dashed line), while uncalibrated Best-of-N with $N = 256$ does not.

as verifier-free selection is suboptimal (Setlur et al., 2025). This approach is simple, efficient, and provides a practical baseline.

The second group consists of step-level methods, which evaluate candidates at each generation step for finer-grained control and typically higher-quality results. These include Beam Search (Snell et al., 2024), Diverse Verifier Tree Search (DVTS) (Beeching et al.), and Particle Filtering (Puri et al., 2025), all of which are variations of Beam Search. Beam Search maintains the top- k high-scoring beams at each step. DVTS allows independent beams and optionally samples lower-scoring steps, balancing exploration and exploitation. Particle Filtering converts step scores into probabilities and samples candidate steps, maintaining a diverse particle set for probabilistic inference.

Step-level methods often improve quality and diversity but are computationally costly due to repeated scoring and pruning. In this work, we focus on Best-of- N as the main baseline for test-time calibration and include Beam Search experiments to validate the step-level framework.

Model Calibration. Model calibration traditionally aligns a model’s predicted probabilities with empirical correctness in classification, using techniques such as temperature scaling (Guo et al., 2017), histogram binning (Zadrozny & Elkan, 2001), isotonic regression (Zadrozny & Elkan, 2002), Dirichlet calibration (Kull et al., 2019), and joint input-output calibration (Tang et al., 2024). These methods generally operate post-hoc on fixed models to improve confidence estimation. In this work, we adopt the idea of post-hoc logits adjustment under a frozen LLM, but change the objective from correctness alignment to calibrating test-time scaling sampling, thereby shifting generation toward higher-reward regions without model retraining or relying on ground-truth labels.

3 TEST-TIME CALIBRATION

Building on our motivation in the introduction, we observe that parallel sampling typically generates many candidate completions, of which only the highest-scoring is selected while the rest are discarded. We hypothesize that the discarded completions contain valuable signals that, if reused, can better calibrate the model’s output and improve answer quality. This leads to our first research question (RQ): **RQ1. How can we guide LLM inference under test-time scaling by reusing information from discarded completions in parallel sampling in order to calibrate the output distribution and enhance answer quality under a fixed compute budget?**

162
163

3.1 BALANCING EXPLORATION AND EXPLOITATION AT TEST-TIME

164 To address RQ1, we first define logits calibration as a learnable transformation that reshapes the
 165 model’s output distribution at test time. Formally, let x be the input problem, $y = (y_1, \dots, y_T)$ a
 166 generated answer sequence, and θ the fixed LLM parameters. The calibrated next-token distribution
 167 is then defined as:

$$168 \quad p_\theta(y_t | y_{<t}, x; \delta, T) = \text{softmax}\left(\frac{\text{logits} + W_{LM} \cdot \delta}{T}\right), \quad (1)$$

171 where $\text{logits} \triangleq f_\theta(x, y_{<t})$ are the base logits for predicting y_t given the input x and prefix $y_{<t}$,
 172 $\delta \in \mathbb{R}^d$ is an additive shift vector, and $T > 0$ is a temperature parameter, both learned for calibration
 173 at test time. $W_{LM} \in \mathbb{R}^{V \times d}$ denotes the fixed language model head (lm_head) mapping the last
 174 hidden states of dimension d to logits over a vocabulary of size V . Since the model is autoregressive,
 175 this calibrated distribution adjusts the prediction of the current token and may propagate effects to
 176 future token predictions, influencing the generated sequence.

177 Building on this logits calibration, we design a two-phase optimization framework for test-time
 178 inference. Specifically, we split the given inference (rollout) budget $N = N_1 + N_2$. we first use N_1
 179 to explore the output space and identify a high-scoring (high-reward) distribution, then calibrate the
 180 model’s logits to this distribution and use the remaining N_2 for focused exploitation (see Figure 2a).

181 **Phase 1: Exploration (N_1 samples).** The model generates N_1 candidate answers from the uncali-
 182 brated distribution $p_\theta(y | x; \delta = 0, T_{\text{base}})$, where $\delta = 0$ and T_{base} indicate no calibration is applied
 183 in this phase. Each candidate is scored by a process reward model (PRM), and these scores are used
 184 to identify promising high-reward directions.

185 **Calibrate to high-scoring regions.** From the exploration results, the top- k highest-scoring com-
 186 pletions are selected as the calibration dataset $\mathcal{D}_{\text{calib}}(x) = \{y^{(i)}\}_{i=1}^k$. The calibration parameters
 187 (δ, T) are then optimized on this problem to shift the model’s logits toward high-reward regions (see
 188 Section 3.2 for training details).

189 **Phase 2: Calibration for Exploitation (N_2 samples).** Using the learned calibration parameters
 190 (δ^*, T^*), the model generates N_2 candidates. These samples are focused on the high-reward regions
 191 identified during exploration, increasing the likelihood of obtaining correct or high-quality solutions.

193 It is noteworthy that the final answer is selected from the union of all $N_1 + N_2$ candidates, since
 194 the ground truth is unknown during inference. The exploration phase does not guarantee correctness
 195 for any individual sample, but it efficiently identifies regions in the output space that are likely to
 196 contain high-reward or plausible solutions. The exploitation phase then intensifies sampling within
 197 these regions, providing a principled balance between exploration (breadth) and exploitation (focus)
 198 under a fixed inference budget.

199 Let $R(x, y)$ denote the reward score assigned by the process reward model (PRM) to completion y
 200 for input x . The expected reward under test-time calibration can be decomposed as:

$$201 \quad \mathbb{E}[R_{\text{final}}] = \mathbb{E}\left[\max_{y \in \mathcal{Y}_{\text{explore}} \cup \mathcal{Y}_{\text{exploit}}} R(x, y)\right], \quad (2)$$

203 where $\mathcal{Y}_{\text{explore}}$ and $\mathcal{Y}_{\text{exploit}}$ are the N_1 exploration and N_2 exploitation samples, respectively. This
 204 simple formulation highlights the exploration-exploitation tradeoff: exploration samples help cover
 205 diverse regions of the output space, while exploitation focuses on high-reward areas, jointly influ-
 206 encing the final maximum reward.

208 3.2 TRAINING δ AND T FOR TEST-TIME CALIBRATION

210 To guide the model toward high-reward outputs, we introduce two input-specific test-time calibration
 211 parameters: an additive shift vector $\delta \in \mathbb{R}^d$ and a temperature scaling factor $T > 0$. For each input,
 212 the learned shift vector δ is projected through the fixed language model head W_{LM} to produce a
 213 token-specific bias in logit space. To reduce dimensionality and avoid overfitting, δ is trained in a
 214 lower-dimensional last hidden space \mathbb{R}^d and mapped via W_{LM} , since directly learning a full logits-
 215 space bias would be extremely high-dimensional ($V \gg d$). The temperature T is also learned for
 each input, providing control over the sharpness of the distribution, where lower T concentrates

216 probability mass and higher T flattens it. Together, (δ, T) provide fine-grained alignment toward
 217 high-reward completions without modifying the base model parameters.
 218

219 To efficiently learn the calibration parameters (δ, T) , we leverage the top- k high-reward candidates
 220 from the exploration phase, scored by the PRM, as a calibration set $\mathcal{D}_{\text{calib}}(x) = \{y^{(i)}\}_{i=1}^k$. Instead
 221 of repeatedly performing forward passes through the full model during calibration, we cache the
 222 base logits $f(x, y_{<t})$ for each prefix $y_{<t}$ of the high-reward candidates. The calibration parameters
 223 (δ, T) are then optimized directly on these cached logits, making training lightweight and efficient.
 224

$$(\delta^*, T^*) = \arg \min_{\delta, T > 0} \mathbb{E}_{y \sim \mathcal{D}_{\text{calib}}(x)} [-\log p_\theta(y | x; \delta, T)] + \lambda_\delta \|\delta\|_2^2, \quad (3)$$

226 where $p_\theta(y | x) = \prod_{t=1}^T p_\theta(y_t | y_{<t}, x)$ factorizes the sequence probability over tokens, and
 227 $p_\theta(y | x; \delta, T)$ applies the additive shift δ and temperature T at each token. The regularization
 228 coefficient λ_δ mitigates overfitting to the limited calibration set. This calibration captures token-
 229 level effects of (δ, T) , enabling input-specific adjustments under a fixed inference budget. Further
 230 insights into the roles of T and δ in calibration are provided in Sec. 6.1.
 231

232 4 THEORETICAL ANALYSIS

234 Building on the previous section, we now provide theoretical foundations for test-time calibration.
 235 We focus on answering the following question: **RQ2. Can we provide provable guarantees that**
 236 **test-time calibration improves the expected reward under finite sampling?** To answer this, we first
 237 establish the existence of a joint calibration solution and then show that it provably improves the
 238 expected reward under Best-of- N sampling.
 239

240 4.1 EXISTENCE OF JOINT CALIBRATION SOLUTIONS

241 We begin by proving the existence of a joint calibration solution (δ^*, T^*) that strictly increases the
 242 probability of generating a high-quality output, proceeding by construction to show that a non-trivial
 243 δ and T can always beneficially alter the output distribution.
 244

245 **Lemma 1** (Existence of an Improving Joint Solution (δ, T)). *Let the joint loss function be $\mathcal{L}(\delta, T) =$
 246 $\mathbb{E}_{y \sim \mathcal{D}_{\text{calib}}(x)} [-\log p_\theta(y | x; \delta, T)]$. Let \bar{p}_θ be the model’s average predictive distribution and \bar{p}_{target}
 247 be the empirical average one-hot distribution, both averaged over all generation steps in the cali-
 248 bration set $\mathcal{D}_{\text{calib}}(x)$. Suppose the base model is not perfectly calibrated in the sense that at least one
 249 of the following conditions holds: (1) $\bar{p}_\theta \neq \bar{p}_{\text{target}}$, or (2) the average logit of ground-truth tokens
 250 does not equal to the average expected logit. Then there exists a joint solution $(\delta, T) \in \mathbb{R}^D \times (0, \infty)$,
 251 where $(\delta, T) \neq (\mathbf{0}, 1)$, such that the loss is strictly reduced: $\mathcal{L}(\delta, T) < \mathcal{L}(\mathbf{0}, 1)$*

252 *Proof.* The proof is given in Appendix A.1.
 253

254 4.2 EXPECTED REWARD IMPROVEMENT FROM CALIBRATION

255 Building on the existence guarantee, we next prove that applying such a joint calibration improves
 256 the expected reward under finite Best-of- N sampling. This theorem formally establishes the benefit
 257 of our calibration method. The proof demonstrates that the calibrated distribution achieves first-order
 258 stochastic dominance over the baseline. Intuitively, this means the calibrated process is more likely
 259 to generate high-reward outputs, which in turn guarantees a higher expected maximum reward.
 260

261 **Theorem 2** (Joint Calibration (δ, T) Improves Expected Reward from Best-of- N Sampling). *Let*
 262 $p_\theta(y | x; \delta, T)$ *be the model’s probability distribution over outputs $y \in \mathcal{Y}$, parameterized by a cali-
 263 bration vector δ and a temperature T . Let the base model be configured with parameters $(\mathbf{0}, T_{\text{base}})$
 264 for some $T_{\text{base}} > 0$. Let $R(x, y)$ be a reward function, and assume there exists a unique output
 265 $y^* \in \mathcal{Y}$ with a strictly maximum reward, i.e., $r^* = R(x, y^*) > \max_{y \neq y^*} R(x, y) = r_{\text{other_max}}$. We
 266 consider cases where joint calibration with parameters (δ^*, T^*) improves upon the base model by
 267 increasing the probability of the unique optimal output, i.e.,*

$$p_\theta(y^* | x; \delta^*, T^*) > p_\theta(y^* | x; \mathbf{0}, T_{\text{base}}).$$

268 *Then, for any $n \geq 1$ within the remaining inference budget after calibration, the lower bound on
 269 the expected best-of- N reward under the jointly calibrated model is strictly greater than that of the*

270 *base model. Specifically, let $R_{LB}(p) = r^* - (1-p)^n(r^* - r_{other,max})$ be a valid lower bound for the*
 271 *expected best-of- N reward, where p is the probability of sampling y^* . The improvement in this lower*
 272 *bound, $\Delta_{R_{LB}}(x, n) = R_{LB}(p_\theta(y^* | x; \delta^*, T^*)) - R_{LB}(p_\theta(y^* | x; \mathbf{0}, T_{base}))$, is strictly positive.*

273
 274 *Proof.* The proof is given in Appendix A.2.

275 As a direct consequence of this theorem, we present a corollary that provides theoretical justification
 276 for our two-phase sampling strategy. During test-time inference, one might be tempted to discard
 277 the initial exploration samples and rely only on the “exploited” ones. We show that this strategy
 278 is suboptimal, and to maximize the expected reward the final answer should be selected from the
 279 combined set of all N_1 exploration and N_2 exploitation candidates. This result highlights that the
 280 exploration phase is essential, contributing irreplaceable value by ensuring the final candidate pool
 281 is both broad and targeted.

282 **Corollary 3** (Sub-optimality of Exploitation Alone). *The final candidate is selected by maximizing*
 283 *$R(x, y)$ over a set of candidates \mathcal{Y} . Since $\mathcal{Y}_{exploit}$ is a subset of the union $\mathcal{Y} = \mathcal{Y}_{explore} \cup \mathcal{Y}_{exploit}$, the*
 284 *strategy of only selecting from $\mathcal{Y}_{exploit}$ is sub-optimal compared to selecting from the union. This is*
 285 *because the maximum reward achievable from the union is greater than or equal to the maximum*
 286 *reward achievable from the exploitation set alone.*

$$287 \max_{y \in \mathcal{Y}_{explore} \cup \mathcal{Y}_{exploit}} R(x, y) \geq \max_{y \in \mathcal{Y}_{exploit}} R(x, y)$$

290 *Proof.* The proof is given in Appendix A.3.

291 In summary, these results affirmatively answer RQ2, showing that effective test-time calibration is
 292 achievable and beneficial.

294 5 RESULTS

297 5.1 EXPERIMENTAL SETUP

298 **Models.** We evaluate Llama-3.2-1B/3B-Instruct (Meta AI, 2024) and Qwen2.5-1.5B-Instruct /
 299 Qwen2.5-Math-1.5B/7B-Instruct (Qwen Team, 2024; Yang et al., 2024), all in bf16. These in-
 300 clude general-purpose (Llama, Qwen2.5) and math-specialized (Qwen2.5-Math) models, providing
 301 diverse capabilities for calibration evaluation.

302 **Process Reward Model (PRM).** All experiments use Qwen2.5-Math-PRM-7B (Zhang et al.,
 303 2025), a state-of-the-art reward model for mathematical reasoning. It assigns step-level scores (0–1)
 304 to intermediate reasoning steps, enabling fine-grained evaluation beyond final answers. Following
 305 Zhang et al. (2025), we adopt the reward of the final step (*last score*) as the overall score, which
 306 outperforms product and minimum strategies for PRMs trained via Monte Carlo estimation.

307 **Baseline Setup.** We set $T = 0.8$ for the baseline best-of- N method, as this value achieves the
 308 overall best results in a grid search over $[0.1, 1.6]$ and is consistent with previous studies (Snell
 309 et al., 2024). For a comprehensive analysis of temperature effects, see Appendix C.2.

311 **Calibration Training.** Calibration parameters (δ, T) are optimized on cached logits using the top-
 312 k high-scoring completions from an initial $N_1 = N/2$ runs ($T = 0.8$) as the calibration dataset. The
 313 remaining $N_2 = N/2$ completions are generated using the learned parameters. This two-stage
 314 procedure is lightweight, requires no additional inference, and learns δ and T at test time for each
 315 input. More details are provided in Appendix C.3.

316 **Dataset.** We use the MATH benchmark (Hendrycks et al., 2021), covering high-school level com-
 317 petition problems of varying topics and difficulty. Experiments are conducted on the MATH-500
 318 test split (Lightman et al., 2023), widely adopted for evaluating LLM mathematical reasoning. Ad-
 319 ditionally, we include AIME-2024 (HuggingFaceH4, 2024), a smaller and more challenging dataset
 320 (30 problems/year), evaluated using the math-specialized Qwen2.5-Math models (1.5B and 7B).

321 **Evaluation Metric.** Accuracy is the proportion of completions whose final answers exactly match
 322 the ground truth. For *vanilla*, the highest-scoring completion among N candidates is selected. For
 323 *weighted*, PRM scores for identical answers are summed and the answer with the highest aggregated
 score is chosen. All comparisons are made with the same rollout (inference) budget N .

324 **Table 1: Accuracy (%) of four models on MATH-500, comparing Weighted Best-of- N methods**
 325 **before and after calibration.** CarBoN enables further improvements beyond the plateau of standard
 326 Best-of- N , with calibrated accuracy at $N = 64$ exceeding the uncalibrated results at $N = 256$,
 327 corresponding to up to $4\times$ less rollout budgets. Bold indicates better accuracy for each N .

Model	Method	N				
		8	16	32	64	128
Llama-3.2-1B-Instruct	Best-of- N	42.0	44.6	47.8	48.6	50.6
	CarBoN	43.0	45.6	48.4	51.0	51.8
Llama-3.2-3B-Instruct	Best-of- N	56.8	58.2	59.6	61.6	61.8
	CarBoN	57.6	59.0	60.8	62.2	63.2
Qwen2.5-1.5B-Instruct	Best-of- N	56.4	57.6	61.4	62.0	62.6
	CarBoN	55.0	60.0	61.8	62.4	64.0
Qwen2.5-Math-1.5B-Instruct	Best-of- N	73.6	75.4	76.4	75.6	76.4
	CarBoN	74.2	76.0	76.4	77.2	77.8

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 5.2 CARBoN: CALIBRATED BEST-OF- N IMPROVES ACCURACY AND EFFICIENCY

We evaluate CarBoN, which applies test-time calibration to the Best-of- N strategy, on different LLMs using the MATH-500 benchmark. We report Weighted results in Table 1 (full tables including Vanilla are in Appendix B.2), showing similar trends with greater stability across models and N .

For large rollout N (64, 128, 256), uncalibrated Best-of- N results plateau, yielding minimal gains. Llama-3.2-3B-Instruct improves only 0.6% from $N = 64$ to 256, and Qwen2.5-1.5B-Instruct gains between 0.2% and 0.6%, peaking at $N = 128$. In contrast, CarBoN continues to improve performance beyond this limit. For example, all models achieve higher accuracy at $N = 64$ with CarBoN than the uncalibrated baseline at $N = 256$, reducing the required rollout budgets by up to $4\times$. Notably, Qwen2.5-Math-1.5B-Instruct with CarBoN at $N = 64$ reaches 77.2% accuracy, surpassing GPT-4o @1 (77.0%; see Appendix B.3 for more details and results on larger models), while the uncalibrated Best-of- N at $N = 256$ reaches only 76.8%.

At $N = 256$, CarBoN improves Weighted decoding by over 1% across all models. Vanilla decoding also shows notable gains, up to 3.6% for Qwen2.5-1.5B-Instruct. These results show that CarBoN not only increases accuracy but also reduces sampling costs.

We also experiment with larger math-specialized models (Qwen2.5-Math-7B-Instruct) and a more challenging benchmark, AIME-2024 (HuggingFaceH4, 2024), which contains 30 high-difficulty problems. Table 2 reports the number of correct answers for both Qwen2.5-Math-1.5B/7B-Instruct across different rollout budgets N . Even on this small and difficult dataset, CarBoN improves over the uncalibrated Best-of- N , demonstrating that test-time calibration boosts performance for larger models and harder problems while requiring fewer rollouts.

Overall, these results show that CarBoN, which is a concrete instance of the test-time calibration framework, consistently improves reasoning performance and enhances the quality of selected outputs without modifying the underlying decoding strategy.

377 **Table 2: Correct answers (out of 30) on the AIME-2024 benchmark for two math-specialized**
 378 **models, comparing Best-of- N and CarBoN across different rollout budgets.** CarBoN enables
 379 further improvements beyond the plateau of standard Best-of- N . Bold numbers indicate the higher
 380 number of correct answers for each N .

Model	Method	N				
		16	32	64	128	256
Qwen2.5-Math-1.5B-Instruct	Best-of- N	4/30	5/30	6/30	6/30	6/30
	CarBoN	4/30	5/30	6/30	7/30	7/30
Qwen2.5-Math-7B-Instruct	Best-of- N	5/30	5/30	6/30	6/30	6/30
	CarBoN	5/30	6/30	6/30	6/30	7/30

378 5.3 EFFECT OF THE CALIBRATION PARAMETERS (δ, T)
379380 We perform an ablation study on a general-purpose model (Llama-3.2-1B-Instruct) and a math-
381 specialist model (Qwen2.5-Math-1.5B-Instruct) to isolate the contributions of the additive shift δ and
382 temperature T (full tables including Vanilla decoding are in Appendix B.2). For each experiment,
383 we retrain calibration with only one parameter enabled, isolating the effect of δ or T .384 Table 3 shows that adding δ alone already improves over the baseline once N is sufficiently large,
385 while the combination of δ and T (CarBoN) yields the strongest gains. For instance, CarBoN reaches
386 51.8% for Llama-3.2-1B-Instruct and 77.8% for Qwen2.5-Math-1.5B-Instruct. These results indicate
387 that using δ and T together provides the most reliable gains. In the next section, we analyze
388 how δ and T contribute to answer quality.
389390 6 DISCUSSION OF CALIBRATION AND GENERALIZATION
391392 Beyond the main results and ablation studies, we further analyze the distinct roles of temperature T
393 and δ , and examine the generalization of test-time calibration beyond Best-of- N sampling.
394395 6.1 HOW TOKEN-LEVEL CALIBRATION IMPROVES ANSWER QUALITY
396397 **Temperature Adaptation.** We find that calibration temperature strongly correlates with problem
398 difficulty. In Figure 3 (with $N_1 = 128$ for exploration, $k = 32$ for calibration), harder questions
399 have higher temperatures, since greater diversity improves the chance of reaching correct answers.
400 To explain this, we analyze the entropy of the top- k high-scoring completions used for calibration.
401 The blue curve shows entropy rising with difficulty, meaning the model produces more diverse
402 outputs when less confident. Although calibration only uses high-scoring responses, this diversity
403 remains, enabling the model to learn an appropriate temperature for different difficulty levels.
404405 Beyond difficulty, we also find that the calibration temperature increases with N , as higher tem-
406 peratures promote diversity and better utilize the inference budget (see Appendix B.4). Larger N
407 enables more exploration, while a higher temperature prevents near-identical samples, ensuring that
408 the additional budget contributes meaningfully. This highlights that temperature should adapt to
409 problem difficulty and inference budget, and our calibration achieves this adaptation.
410411 **Delta Adjustment.** We report four overlap metrics
412 with respect to top- k high-scoring answers: Jaccard
413 and Dice (set-level similarity), and Recall and Preci-
414 sion (token-level coverage and specificity), with full
415 definitions in the Appendix B.6. After applying δ
416 calibration, the generated tokens show higher set-
417 level similarity, as measured by Jaccard and Dice,
418 and increased token-level Precision, with the results
419 for each metric comparing the calibrated and uncal-
420 brated models.
421422 **Table 4:** Token-level overlap with/without
423 δ calibration against top- k high-scoring an-
424 swers on Llama-3.2-1B-Instruct ($N_1 =$
425 128, $k = 32$).
426

Metric	Calibration w/ δ	No Calibration
Jaccard Overlap \uparrow	0.5184	0.4838
Dice Overlap \uparrow	0.6805	0.6497
Token Recall \uparrow	0.8804	0.8919
Token Precision \uparrow	0.5590	0.5147

427 **Table 3: Ablation study on calibration parameters (δ, T) and their combination (CarBoN)**
428 **for Best-of- N search on MATH-500.** We compare applying a shift (δ), a temperature scaling
429 (T), and their joint calibration (CarBoN) under Weighted selection. All values report accuracy
430 (%) . Results show that CarBoN consistently improves accuracy across different N , highlighting the
431 complementary benefits of δ and T . Bold numbers indicate the better accuracy for each N .
432

Model	Method	N					
		8	16	32	64	128	256
Llama-3.2-1B-Instruct	Best-of- N	42.0	44.6	47.8	48.6	50.6	50.8
	Best-of- N w/ δ	41.8	43.8	48.2	49.0	51.0	51.2
	Best-of- N w/ T	42.0	45.0	47.0	49.6	49.8	50.6
	CarBoN	43.0	45.6	48.4	51.0	51.8	51.8
Qwen2.5-Math-1.5B-Instruct	Best-of- N	73.6	75.4	76.4	75.6	76.4	76.8
	Best-of- N w/ δ	74.2	74.8	75.6	77.0	76.6	77.0
	Best-of- N w/ T	73.2	75.2	76.0	76.4	76.0	76.6
	CarBoN	74.2	76.0	76.4	77.2	77.2	77.8

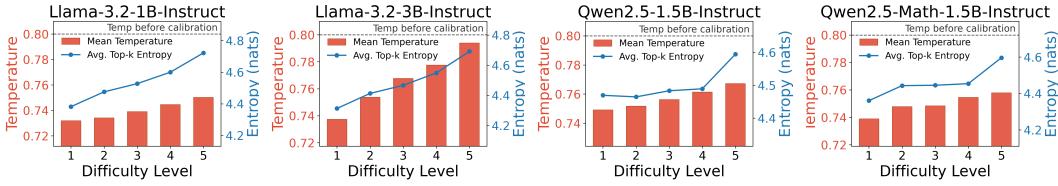


Figure 3: Correlation between problem difficulty, calibrated temperature, and top- k completion entropy on MATH-500. Bars (left y-axis) show the average learned temperature across five difficulty levels, while the line plot (right y-axis) shows the normalized entropy of the top- k completions used for calibration. Both temperature and entropy strongly increase with problem difficulty, indicating that harder problems require higher temperatures to capture the more diverse top- k token distributions. See Appendix B.5 for full Spearman correlation statistics.

ibrated settings presented in Table 4, indicating that the model’s generations are more aligned with the patterns of high-quality responses. These results are consistent with our ablation study in Table 3, where incorporating δ improves task-level accuracy, particularly when aggregating a larger candidate pool, suggesting that δ effectively guides the model toward high-scoring behavior.

6.2 GENERALIZING TEST-TIME CALIBRATION BEYOND BEST-OF- N

While test-time calibration improves reasoning ability in Best-of- N and offers greater efficiency, other step-level strategies score each reasoning step before proceeding to the next. While such methods (e.g., beam search, DVTS, and particle filtering) can achieve higher performance when more fine-grained guidance is available during generation, they need heavier computation due to repeated verifier calls. To illustrate that test-time calibration can generalize beyond Best-of- N , we focus on beam search as a representative step-level sampling strategy.

As shown in Table 5, calibrated beam search provides improvements over the standard baseline in most settings across both models. Notably, with $N = 32$, the calibrated beam search reaches accuracy close to or even matching that of beam search with $N = 64$, indicating that calibration improves sample efficiency by reducing the number of candidates required to achieve a given performance level. This demonstrates that test-time calibration is not limited to Best-of- N but can also enhance fine-grained step-level decoding, suggesting a promising direction for integrating calibration with step-level sampling methods.

Table 5: Accuracy (%) of standard and calibrated beam search on the MATH-500 benchmark. Calibrated beam search generally improves test-time reasoning performance, especially for larger N .

Model	Method	N			
		8	16	32	64
Llama-3.2-1B-Instruct	Beam Search	56.0	58.4	60.4	62.2
	Calibrated Beam Search	57.2	60.0	62.2	64.2
Qwen2.5-Math-1.5B-Instruct	Beam Search	79.0	79.2	80.2	81.4
	Calibrated Beam Search	78.6	79.6	81.2	82.8

7 CONCLUSION

We introduced test-time calibration, a framework to adapt LLMs at inference under test-time scaling via additive logits shifts and adaptive temperature scaling, instantiated as CarBoN on Best-of- N . Our theoretical analysis shows calibration can provably improve accuracy and the lower bound of expected reward under finite samples. Empirically, CarBoN consistently improves performance across benchmarks, rollout budgets, and step-wise sampling, demonstrating its generalization potential. We believe this framework will inspire and advance future designs of test-time scaling methods.

486 REFERENCES
487

488 Anthropic. Tracing the thoughts of a large language model. <https://www.anthropic.com/research/tracing-thoughts-language-model>, 2025. Accessed: 2025-09-10.

489

490 Edward Beeching, Lewis Tunstall, and Sasha Rush. Scaling test-time compute with
491 open models. URL <https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute>.

492

493 Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
494 Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
495 *arXiv preprint arXiv:2407.21787*, 2024.

496

497 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
498 networks. In *International conference on machine learning*, pp. 1321–1330. PMLR, 2017.

499

500 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
501 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
502 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

503

504 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
505 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv
506 preprint arXiv:2103.03874*, 2021.

507

508 HuggingFaceH4. Huggingfaceh4/aime_2024. https://huggingface.co/datasets/HuggingFaceH4/aime_2024, 2024. A dataset consisting of 30 problems from AIME I and
509 II 2024.

510

511 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
512 language models are zero-shot reasoners. *Advances in neural information processing systems*,
513 35:22199–22213, 2022.

514

515 Meelis Kull, Miquel Perello Nieto, Markus Kängsepp, Telmo Silva Filho, Hao Song, and Peter
516 Flach. Beyond temperature scaling: Obtaining well-calibrated multi-class probabilities with
517 dirichlet calibration. *Advances in neural information processing systems*, 32, 2019.

518

519 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
520 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth
521 International Conference on Learning Representations*, 2023.

522

523 Runze Liu, Junqi Gao, Jian Zhao, Kaiyan Zhang, Xiu Li, Biqing Qi, Wanli Ouyang, and Bowen
524 Zhou. Can 1b llm surpass 405b llm? rethinking compute-optimal test-time scaling. *arXiv preprint
525 arXiv:2502.06703*, 2025.

526

527 Meta AI. Llama 3.2: Revolutionizing edge ai and vision with open,
528 customizable models, 2024. URL <https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/>. Accessed: 2025-08-06.

529

530 OpenAI. Learning to reason with llms, 2024. URL <https://openai.com/index-learning-to-reason-with-llms/>. Accessed: 2025-08-06.

531

532 Isha Puri, Shivchander Sudalairaj, Guangxuan Xu, Kai Xu, and Akash Srivastava. A probabilistic
533 inference approach to inference-time scaling of llms using particle-based monte carlo methods.
534 *arXiv preprint arXiv:2502.01618*, 2025.

535

536 Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching
537 language model agents how to self-improve. *Advances in Neural Information Processing Systems*,
538 37:55249–55285, 2024.

539 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.

540 Amrith Setlur, Nived Rajaraman, Sergey Levine, and Aviral Kumar. Scaling test-time compute
 541 without verification or rl is suboptimal. *arXiv preprint arXiv:2502.12118*, 2025.

542

543 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
 544 Language agents with verbal reinforcement learning. *Advances in Neural Information Processing
 545 Systems*, 36:8634–8652, 2023.

546 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
 547 can be more effective than scaling model parameters. *arXiv preprint arXiv:2408.03314*, 2024.

548

549 Yung-Chen Tang, Pin-Yu Chen, and Tsung-Yi Ho. Neural clamping: Joint input perturbation and
 550 temperature scaling for neural network calibration. *Transactions on Machine Learning Research*,
 551 2024. ISSN 2835-8856. URL <https://openreview.net/forum?id=qSFToMqLcq>.

552 Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
 553 Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. *arXiv
 554 preprint arXiv:2312.08935*, 2023.

555

556 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 557 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 558 *arXiv preprint arXiv:2203.11171*, 2022.

559

560 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 561 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 562 neural information processing systems*, 35:24824–24837, 2022.

563

564 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
 565 Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
 566 Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical ex-
 567 pert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024.

568

569 Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
 570 guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
 571 for large language models. *arXiv preprint arXiv:2309.12284*, 2023.

572

573 Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhui Chen.
 574 Mammoth: Building math generalist models through hybrid instruction tuning. *arXiv preprint
 575 arXiv:2309.05653*, 2023.

576

577 Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability estimates from decision trees
 578 and naive bayesian classifiers. In *ICML*, volume 1, 2001.

579

580 Bianca Zadrozny and Charles Elkan. Transforming classifier scores into accurate multiclass proba-
 581 bility estimates. In *Proceedings of the eighth ACM SIGKDD international conference on Knowl-
 582 edge discovery and data mining*, pp. 694–699, 2002.

583

584 Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
 585 Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
 586 reasoning. *arXiv preprint arXiv:2501.07301*, 2025.

587

588 Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
 589 mans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex
 590 reasoning in large language models. *arXiv preprint arXiv:2205.10625*, 2022.

591

592

593

594 LLM USAGE DISCLOSURE
595596 We used Large Language Models to assist in writing and coding for this paper. ChatGPT and Gemini
597 were employed to help polish language, improve clarity, and refine expression. GitHub Copilot was
598 used to provide autocomplete suggestions and minor code snippets. All core ideas, designs, and
599 conclusions were independently developed and verified by the authors.
600601 REPRODUCIBILITY STATEMENT
602603 To ensure reproducibility, we provide detailed descriptions of our methodology, theoretical derivations,
604 and experimental setup in the paper and appendix. The code used for experiments is included
605 in the supplementary materials to support verification and replication of our results.
606607 A MATHEMATICAL PROOFS
608609 A.1 PROOF OF LEMMA 1
610611 **Lemma 1** (Existence of an Improving Joint Solution (δ, T)) *Let the joint loss function be*
612 $\mathcal{L}(\delta, T) = \mathbb{E}_{y \sim \mathcal{D}_{\text{calib}}(x)} [-\log p_\theta(y | x; \delta, T)]$. *Let \bar{p}_θ be the model's average predictive distri-*
613 *bution and \bar{p}_{target} be the empirical average one-hot distribution, both averaged over all generation*
614 *steps in the calibration set $\mathcal{D}_{\text{calib}}(x)$. Suppose the base model is not perfectly calibrated in the sense*
615 *that at least one of the following conditions holds: (1) $\bar{p}_\theta \neq \bar{p}_{\text{target}}$, or (2) the average logit of*
616 *ground-truth tokens does not equal to the average expected logit. Then there exists a joint solution*
617 *$(\delta, T) \in \mathbb{R}^D \times (0, \infty)$, where $(\delta, T) \neq (\mathbf{0}, 1)$, such that the loss is strictly reduced:*

618
$$\mathcal{L}(\delta, T) < \mathcal{L}(\mathbf{0}, 1)$$

619

620 *Proof.* The proof demonstrates that the joint loss function $\mathcal{L}(\delta, T)$ is continuously differentiable
621 and that its gradient, evaluated at the initial point $(\delta, T) = (\mathbf{0}, 1)$, is a non-zero vector. For a
622 continuously differentiable function, a non-zero gradient at a point guarantees the existence of a
623 strict descent direction, ensuring that a nearby point with a lower loss value exists.
624625 **Continuity and Differentiability.** The loss $\mathcal{L}(\delta, T)$ is the average of the per-step negative log-
626 likelihoods (NLL) $L_{i,j}(\delta, T)$ over the calibration set. The per-step NLL is a function of the logits,
627 which are an affine transformation of δ , divided by temperature T , and then passed through a log-
628 softmax function. Specifically, $L_{i,j}(\delta, T) = -\log(\text{softmax}((W_{\text{lm}}(h_{i,j} + \delta))/T))_{y_{i,j}}$. Since affine
629 transformations, division by a non-zero scalar, the exponential function, and the logarithm function
630 are all continuously differentiable (C^∞) on their domains, their composition, the log-softmax, is
631 also continuously differentiable. As \mathcal{L} is a finite sum of such functions, it is also continuously
632 differentiable on its domain $\mathbb{R}^D \times (0, \infty)$.
633634 **The Joint Loss Function.** The loss $\mathcal{L}(\delta, T)$ is the average negative log-likelihood (NLL) over the
635 calibration set $\mathcal{D}_{\text{calib}}(x) = \{y_i\}_{i=1}^K$. Let n_i denote the length of the sequence y_i . The NLL for a
636 single answer sequence $y_i = (y_{i,1}, \dots, y_{i,n_i})$ is the sum of the NLLs for each of its n_i generation
637 steps:

638
$$-\log p_\theta(y_i | x; \delta, T) = \sum_{j=1}^{n_i} -\log p_\theta(y_{i,j} | x, y_{i,<j}; \delta, T)$$

639

640 The total loss \mathcal{L} is the average of this quantity over all K sequences. Let $N = \sum_{i=1}^K n_i$ be the total
641 number of generation steps across the entire calibration set. The loss can be written as an average
642 over all these steps:
643

644
$$\mathcal{L}(\delta, T) = \frac{1}{N} \sum_{i=1}^K \sum_{j=1}^{n_i} L_{i,j}(\delta, T)$$

645

646 where $L_{i,j}$ is the NLL for predicting token $y_{i,j}$ given the context $(x, y_{i,<j})$. We then evaluate the
647 gradient $\nabla \mathcal{L}(\delta, T) = [\nabla_\delta \mathcal{L}, \frac{\partial \mathcal{L}}{\partial T}]$ at the initial point $(\mathbf{0}, 1)$.
648

648 **Evaluating the Gradient Components at $(\delta, T) = (\mathbf{0}, 1)$.**
649650 GRADIENT WITH RESPECT TO δ . At each generation step (i, j) , the shift δ is added to the hidden
651 state $h_{i,j}$ before the final projection: $W_{\text{lm}}(h_{i,j} + \delta)$. The total gradient $\nabla_{\delta}\mathcal{L}$ is the average of the
652 step-wise gradients. At $(0, 1)$, this is:
653

654
$$\nabla_{\delta}\mathcal{L}(\mathbf{0}, 1) = \frac{1}{N} \sum_{i=1}^K \sum_{j=1}^{n_i} W_{\text{lm}}^{\top} (p_{i,j} - \mathbf{e}_{y_{i,j}}) = W_{\text{lm}}^{\top} (\bar{p}_{\theta} - \bar{p}_{\text{target}}) \quad (4)$$

655
656

657 where $p_{i,j} = p_{\theta}(\cdot \mid x, y_{i,<j})$ is the base model's probability distribution for that step, $\mathbf{e}_{y_{i,j}}$ is the
658 one-hot vector for the target token, $\bar{p}_{\theta} = \frac{1}{N} \sum_{i,j} p_{i,j}$ is the average predicted distribution, and
659 $\bar{p}_{\text{target}} = \frac{1}{N} \sum_{i,j} \mathbf{e}_{y_{i,j}}$ is the average target distribution.
660661 GRADIENT WITH RESPECT TO T . Let $g_{i,j}$ be the vector of base model logits at step (i, j) . The
662 step-wise loss is $L_{i,j}(T) = \log \left(\sum_{k=1}^C e^{g_{i,j,k}/T} \right) - \frac{g_{i,j,y_{i,j}}}{T}$. We now derive its partial derivative
663 with respect to T :
664

665
$$\frac{\partial L_{i,j}(T)}{\partial T} = \frac{\partial}{\partial T} \left[\log \left(\sum_k e^{g_{i,j,k}/T} \right) \right] - \frac{\partial}{\partial T} \left[\frac{g_{i,j,y_{i,j}}}{T} \right] \quad (5)$$

666
667

668
$$= \frac{1}{\sum_k e^{g_{i,j,k}/T}} \cdot \left(\sum_k e^{g_{i,j,k}/T} \cdot \frac{-g_{i,j,k}}{T^2} \right) + \frac{g_{i,j,y_{i,j}}}{T^2} \quad (6)$$

669
670

671
$$= \frac{g_{i,j,y_{i,j}}}{T^2} - \frac{1}{T^2} \sum_k \frac{e^{g_{i,j,k}/T}}{\sum_l e^{g_{i,j,l}/T}} \cdot g_{i,j,k} \quad (7)$$

672
673

674
$$= \frac{1}{T^2} (g_{i,j,y_{i,j}} - \mathbb{E}_{p_{i,j}(T)}[g_{i,j}]) \quad (8)$$

675

676 where $\mathbb{E}_{p_{i,j}(T)}[g_{i,j}]$ is the expected logit value under the softmax distribution with temperature T .
677678 Evaluating at $T = 1$ and averaging over all steps gives the total gradient for T :
679

680
$$\frac{\partial \mathcal{L}}{\partial T} \Big|_{(\mathbf{0}, 1)} = \frac{1}{N} \sum_{i=1}^K \sum_{j=1}^{n_i} (g_{i,j,y_{i,j}} - \mathbb{E}_{p_{i,j}}[g_{i,j}]) \quad (9)$$

681
682

683 **The Joint Gradient is Non-Zero.** The joint gradient is zero only if both of its components are
684 zero.
685

1. **δ -gradient:** By our premise, $\bar{p}_{\theta} \neq \bar{p}_{\text{target}}$. The gradient $\nabla_{\delta}\mathcal{L}(\mathbf{0}, 1)$ is zero only if the non-zero vector $(\bar{p}_{\theta} - \bar{p}_{\text{target}})$ lies in the null space of W_{lm}^{\top} . This is equivalent to the error vector being orthogonal to the column space of W_{lm} . For large language models where $D \ll C$, this column space (of dimension at most D) is a very small subspace of \mathbb{R}^C . It is therefore highly improbable for a specific error vector, arising from model-data mismatch, to lie in the orthogonal complement of this subspace. Thus, we can assert with high confidence that $\nabla_{\delta}\mathcal{L}(\mathbf{0}, 1) \neq \mathbf{0}$.
2. **T -gradient:** The T -gradient is zero only if $\frac{1}{N} \sum_{i,j} g_{i,j,y_{i,j}} = \frac{1}{N} \sum_{i,j} \mathbb{E}_{p_{i,j}}[g_{i,j}]$. This condition implies a perfect balance where the average logit of the ground-truth tokens equals the average expected logit over the vocabulary. An uncalibrated model typically exhibits systematic over-confidence (target logit is higher than the average, making the gradient negative) or under-confidence (target logit is lower, making the gradient positive). It is therefore highly unlikely for this gradient to be exactly zero unless the model is already well-calibrated in this specific sense.

700 Given that the model is not perfectly calibrated, it is guaranteed that at least one of the gradient
701 components is non-zero. Therefore, the joint gradient $\nabla \mathcal{L}(\mathbf{0}, 1)$ is non-zero.

702 **Existence of an Improving Solution.** A non-zero gradient at the point $(\mathbf{0}, 1)$ implies the existence
 703 of a strict descent direction, $-\nabla \mathcal{L}(\mathbf{0}, 1)$. By Taylor's theorem for multivariate functions, for a small
 704 step $\alpha > 0$ in this direction, the new point $(\delta', T') = (\mathbf{0}, 1) - \alpha \nabla \mathcal{L}(\mathbf{0}, 1)$ will satisfy $\mathcal{L}(\delta', T') <$
 705 $\mathcal{L}(\mathbf{0}, 1)$. This proves the existence of an improving joint solution.

□

708 **A.2 PROOF OF THEOREM 2**

710 **Theorem 2** (Joint Calibration (δ, T) Improves Expected Reward from Best-of-N Sampling) *Let*
 711 $p_\theta(y | x; \delta, T)$ *be the model's probability distribution over outputs $y \in \mathcal{Y}$, parameterized by a cali-*
 712 *bration vector δ and a temperature T . Let the base model be configured with parameters $(\mathbf{0}, T_{base})$*
 713 *for some $T_{base} > 0$. Let $R(x, y)$ be a reward function, and assume there exists a unique output*
 714 *$y^* \in \mathcal{Y}$ with a strictly maximum reward, i.e., $r^* = R(x, y^*) > \max_{y \neq y^*} R(x, y) = r_{other,max}$. We*
 715 *consider cases where joint calibration with parameters (δ^*, T^*) improves upon the base model by*
 716 *increasing the probability of the unique optimal output, i.e.,*

$$717 \quad p_\theta(y^* | x; \delta^*, T^*) > p_\theta(y^* | x; \mathbf{0}, T_{base})$$

719 *Then, for any $n \geq 1$ within the remaining inference budget after calibration, the lower bound on*
 720 *the expected best-of- N reward under the jointly calibrated model is strictly greater than that of the*
 721 *base model. Specifically, let $R_{LB}(p) = r^* - (1-p)^n(r^* - r_{other,max})$ be a valid lower bound for the*
 722 *expected best-of- N reward, where p is the probability of sampling y^* . The improvement in this lower*
 723 *bound, $\Delta_{R_{LB}}(x, n) = R_{LB}(p_\theta(y^* | x; \delta^*, T^*)) - R_{LB}(p_\theta(y^* | x; \mathbf{0}, T_{base}))$, is strictly positive.*

724 *Proof.* The proof proceeds in three steps. First, we establish the expression for the expected best-
 725 of- N reward and derive its lower bound $R_{LB}(p)$. Second, we prove that this lower bound $R_{LB}(p)$
 726 is a strictly increasing function of p , the probability of sampling the optimal output y^* . Finally, we
 727 use this monotonicity to prove the theorem's main claim.

729 **Derivation of the Lower Bound $R_{LB}(p)$.** Let $p = p_\theta(y^* | x)$ be the probability of sampling the
 730 unique optimal output y^* in a single trial. The expected best-of- N reward, $\mathbb{E}[\max_{i=1, \dots, n} R(x, y_i)]$,
 731 can be formulated by conditioning on whether y^* is sampled at least once in n trials.

732 The probability of sampling y^* at least once is $1 - (1-p)^n$. In this event, the maximum reward
 733 obtained is exactly r^* . The probability of never sampling y^* in n trials is $(1-p)^n$. In this event, the
 734 expected maximum reward is $\mathbb{E}_{other} = \mathbb{E}[\max_{i=1, \dots, n} R(x, y_i) | \forall i, y_i \neq y^*]$.

736 The total expected reward is thus:

$$737 \quad \mathbb{E}[\max_{i=1, \dots, n} R(x, y_i)] = [1 - (1-p)^n]r^* + (1-p)^n\mathbb{E}_{other} \quad (10)$$

$$739 \quad = r^* - (1-p)^n(r^* - \mathbb{E}_{other})$$

741 By definition, \mathbb{E}_{other} is the expected maximum reward from a set of outputs where none is y^* .
 742 Therefore, this value cannot exceed the maximum possible reward in that set, $r_{other,max}$. This
 743 gives the inequality $\mathbb{E}_{other} \leq r_{other,max}$. Since $(r^* - x)$ is a decreasing function of x , this implies
 744 $(r^* - \mathbb{E}_{other}) \geq (r^* - r_{other,max})$.

745 Substituting this into the expression for the expected reward yields a valid lower bound, which we
 746 denote $R_{LB}(p)$:

$$747 \quad \mathbb{E}[\max_{i=1, \dots, n} R(x, y_i)] \geq r^* - (1-p)^n(r^* - r_{other,max}) := R_{LB}(p) \quad (11)$$

749 **Prove the Monotonicity of $R_{LB}(p)$.** We now show that $R_{LB}(p)$ is a strictly increasing function
 750 of p for $p \in [0, 1]$. We take the derivative of $R_{LB}(p)$ with respect to p :

$$752 \quad \frac{dR_{LB}}{dp} = \frac{d}{dp}[r^* - (1-p)^n(r^* - r_{other,max})] \quad (12)$$

$$753 \quad = -(-n(1-p)^{n-1})(r^* - r_{other,max})$$

$$754 \quad = n(1-p)^{n-1}(r^* - r_{other,max})$$

756 By the theorem's assumptions, $n \geq 1$ and $r^* > r_{\text{other},\max}$, which means $(r^* - r_{\text{other},\max}) > 0$. For
 757 $p \in [0, 1]$, the term $(1 - p)^{n-1}$ is also strictly positive. Therefore, $\frac{dR_{LB}}{dp} > 0$ for all $p \in [0, 1]$,
 758 which proves that $R_{LB}(p)$ is a strictly increasing function of p .
 759

760 **Conclusion.** Let $p_{\text{cal}} = p_{\theta}(y^* | x; \delta^*, T^*)$ and $p_{\text{base}} = p_{\theta}(y^* | x; \mathbf{0}, T_{\text{base}})$. The theorem's central
 761 premise is $p_{\text{cal}} > p_{\text{base}}$. Since $R_{LB}(p)$ is a strictly increasing function of p , the inequality $p_{\text{cal}} > p_{\text{base}}$
 762 directly implies:

$$R_{LB}(p_{\text{cal}}) > R_{LB}(p_{\text{base}}) \quad (13)$$

763 This proves that the lower bound on the expected reward is strictly greater for the calibrated model.
 764 The magnitude of this improvement, $\Delta_{R_{LB}}(x, n)$, is given by:
 765

$$\begin{aligned} 767 \Delta_{R_{LB}}(x, n) &= R_{LB}(p_{\text{cal}}) - R_{LB}(p_{\text{base}}) \\ 768 &= [r^* - (1 - p_{\text{cal}})^n (r^* - r_{\text{other},\max})] \\ 769 &\quad - [r^* - (1 - p_{\text{base}})^n (r^* - r_{\text{other},\max})] \\ 770 &= (r^* - r_{\text{other},\max}) [(1 - p_{\text{base}})^n - (1 - p_{\text{cal}})^n] \end{aligned} \quad (14)$$

772 Since $p_{\text{cal}} > p_{\text{base}}$, it follows that $(1 - p_{\text{cal}}) < (1 - p_{\text{base}})$. For $n \geq 1$, this implies $(1 - p_{\text{cal}})^n < (1 - p_{\text{base}})^n$. Thus, the term in the square brackets is strictly positive, and consequently $\Delta_{R_{LB}}(x, n) > 0$.
 773

774 This completes the proof. □
 775

777 A.3 PROOF OF COROLLARY 3

779 **Corollary 3** (Sub-optimality of Exploitation Alone) *The final candidate is selected by maximizing
 780 $R(x, y)$ over a set of candidates \mathcal{Y} . Since $\mathcal{Y}_{\text{exploit}}$ is a subset of the union $\mathcal{Y} = \mathcal{Y}_{\text{explore}} \cup \mathcal{Y}_{\text{exploit}}$, the
 781 strategy of only selecting from $\mathcal{Y}_{\text{exploit}}$ is sub-optimal compared to selecting from the union. This is
 782 because the maximum reward achievable from the union is greater than or equal to the maximum
 783 reward achievable from the exploitation set alone.*

$$784 \max_{y \in \mathcal{Y}_{\text{explore}} \cup \mathcal{Y}_{\text{exploit}}} R(x, y) \geq \max_{y \in \mathcal{Y}_{\text{exploit}}} R(x, y)$$

787 *Proof.* Let $R_{\text{explore}}^* = \max_{y \in \mathcal{Y}_{\text{explore}}} R(x, y)$ and $R_{\text{exploit}}^* = \max_{y \in \mathcal{Y}_{\text{exploit}}} R(x, y)$. The reward se-
 788 lected from the exploitation set is R_{exploit}^* , while the reward from the combined set is $R_{\text{final}} =$
 789 $\max_{y \in \mathcal{Y}_{\text{explore}} \cup \mathcal{Y}_{\text{exploit}}} R(x, y)$.
 790

791 By the definition of the maximum function, the maximum of a set is greater than or equal to any of
 792 its elements. It follows that for any sampling outcome:
 793

$$R_{\text{final}} = \max(R_{\text{explore}}^*, R_{\text{exploit}}^*) \geq R_{\text{exploit}}^* \quad (15)$$

794 This inequality holds universally for every possible generated set. By the monotonicity of expecta-
 795 tion, taking the expectation over all outcomes yields:
 796

$$\mathbb{E}[R_{\text{final}}] \geq \mathbb{E}[R_{\text{exploit}}^*] \quad (16)$$

797 This demonstrates that retaining all $N_1 + N_2$ candidates yields an expected reward that is provably
 798 no worse than the reward obtained from the exploitation phase alone, and may in fact be better.
 799 Therefore, only using the candidates from the exploitation phase is a suboptimal strategy.
 800

803 B ADDITIONAL RESULTS

806 B.1 DETAILS OF REWARD-GUIDED BINARY SEARCH: ALGORITHM & MOTIVATION

808 **Algorithm Description.** Reward-guided binary search extends classic binary search by leveraging
 809 a reward model to guide the search process (see Algorithm 1 for pseudocode). At each step, instead
 810 of simply splitting the interval in half, the algorithm first queries the reward at n candidate points

within the current interval. The reward is designed as the inverse of the distance to the target, possibly perturbed by noise to reflect real-world model uncertainty. Crucially, the algorithm selects the candidate point with the highest observed reward to refine the search interval, which is similar to the strategy in test-time calibration, where high-reward completions are used as anchor points to guide subsequent exploration. This approach fundamentally alters the sampling distribution: rather than always bisecting the interval, the search adaptively concentrates queries near regions with higher estimated reward, dynamically steering the search direction. As a result, reward feedback not only accelerates convergence but also enables more efficient and adaptive exploration, especially when the reward model is reliable.

Reward Model and Noise. The reward function is defined as $r(x) = \frac{1}{|x-t|+1}$ where t is the unknown target. In practice, the reward model may be noisy due to imperfect estimation, so we add Gaussian noise: $r_{\text{obs}}(x) = r(x) + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma^2)$. This noise models the fact that real-world reward models are not perfectly accurate and may deviate from the ground truth, making the search more challenging and realistic.

Motivation. Calibration (i.e., reward guiding) before each search step allows the algorithm to more efficiently narrow down the search space, especially when the reward model is reliable. Importantly, calibration fundamentally alters the sampling distribution: instead of always splitting the interval at the midpoint, the algorithm adaptively selects query points based on reward feedback, concentrating samples near regions with higher estimated reward. As shown in our experiments, increasing the number of calibration queries n can dramatically reduce the number of search steps required, even under moderate noise. This demonstrates the practical value of reward-guided search for tasks like TTS, where reward feedback reshapes the sampling distribution and accelerates convergence.

Algorithm 1: Reward-Guided Binary Search with Calibration

Input: Search domain $[L, H]$, target t , calibration count n , reward noise σ
Output: Estimated target position

```

while  $L < H$  do
  if  $n > 0$  then
    Select  $n$  evenly spaced probe points  $\{x_1, \dots, x_n\}$  in  $[L, H]$ ;
    foreach  $x_i$  do
      Query reward:  $r_i = \frac{1}{|x_i-t|+1} + \epsilon_i$ ,  $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ ;
      Let  $x^* = \arg \max_{x_i} r_i$ ;
      Estimate conservative bracket  $[L', H']$  around  $x^*$  using reward inversion and safety margin;
       $L \leftarrow \max(L, L')$ ;
       $H \leftarrow \min(H, H')$ ;
      Set comparison point  $x_c = \lfloor (L + H) / 2 \rfloor$ ;
    else
      Set comparison point  $x_c = \lfloor (L + H) / 2 \rfloor$ ;
    if  $x_c < t$  then
       $L \leftarrow x_c + 1$ ;
    else
       $H \leftarrow x_c$ ;
return  $L$ 

```

B.2 FULL EXPERIMENTAL RESULTS

In this subsection, we provide the full experimental results for the MATH-500 benchmark, complementing the summary tables in the main text.

Table 6 reports the total runtime (seconds) for each model under the same setup, comparing uncalibrated Best-of- N and CarBoN methods across different rollout budget N . Importantly, CarBoN achieves higher accuracy at smaller rollout budgets while maintaining competitive total runtime.

864
Table 6: Total runtime (seconds) of four models on the MATH-500 benchmark, comparing
865 **Weighted Best-of- N methods before and after calibration.** CarBoN achieves higher accuracy at
866 lower rollout budgets, while maintaining comparable or faster total runtime relative to the corre-
867 sponding uncalibrated Best-of- N : for example, $N = 64$ with CarBoN outperforms the uncalibrated
868 Best-of- N at $N = 256$ in accuracy.

869 870 871 872 873 874 875 876 877 878	Model	Method	N					
			8	16	32	64	128	256
879 880 881 882 883 884	Llama-3.2-1B-Instruct	Best-of- N	4.26	5.46	7.20	10.76	17.66	30.30
		CarBoN	6.27	11.09	16.82	34.47	47.98	82.15
885 886 887 888	Llama-3.2-3B-Instruct	Best-of- N	5.06	7.70	9.68	14.08	19.14	32.48
		CarBoN	7.36	13.33	19.29	29.74	49.27	88.92
889 890 891 892 893 894	Qwen2.5-1.5B-Instruct	Best-of- N	5.44	10.92	15.10	17.00	25.72	44.14
		CarBoN	8.25	14.00	20.59	31.54	55.23	99.59
895 896 897 898 899 900	Qwen2.5-Math-1.5B-Instruct	Best-of- N	7.80	9.54	15.32	16.22	25.62	46.22
		CarBoN	9.39	12.49	20.93	27.19	60.56	113.05

For $N = 64$, CarBoN surpasses the uncalibrated Best-of- N at $N = 256$ in accuracy for all models. Compared to the corresponding Best-of- N , the total runtime with CarBoN is lower for three of the four models, with the largest reduction for Qwen2.5-Math-1.5B-Instruct (27.19 sec vs. 46.22 sec), while for Llama-3.2-1B-Instruct the runtime is slightly higher (34.47 sec vs. 30.30 sec).

Table 7 reports the corresponding accuracy results for both Vanilla and Weighted decoding across all four models and different N . For small N , Vanilla selection can occasionally achieve the highest accuracy, but for larger N (128, 256), CarBoN consistently outperforms other methods, showing stable gains under both Vanilla and Weighted selection.

Table 8 presents the ablation study for calibration parameters (δ, T) on two models (Llama-3.2-1B-Instruct and Qwen2.5-Math-1.5B-Instruct). Each experiment includes cases with only δ , only T , or both combined (CarBoN), under both Vanilla and Weighted selection. While Vanilla selection occasionally achieves the highest accuracy for specific N with a single parameter, Weighted decoding consistently performs best when combining δ and T , highlighting the complementary benefits of the two calibration parameters. All values are reported as accuracy (%).

895
Table 7: Accuracy (%) of four models on the MATH-500 benchmark, comparing Vanilla and
896 **Weighted Best-of- N methods before and after calibration.** CarBoN enables further improve-
897 ments beyond the plateau of standard Best-of- N , with calibrated accuracy at $N = 64$ exceeding the
898 uncalibrated results at $N = 256$, corresponding to up to $4 \times$ less rollout budgets. Bold numbers in-
899 dicate the better accuracy *within the same method type* (Vanilla vs. Vanilla, Weighted vs. Weighted)
900 for each N .

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917	Model	Method	N						
			8	16	32	64	128	256	
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 9999	Llama-3.2-1B-Instruct	Best-of- N	Vanilla	44.2	45.8	47.6	49.4	49.8	50.0
			Weighted	42.0	44.6	47.8	48.6	50.6	50.8
		CarBoN	Vanilla	43.8	47.4	48.0	49.0	50.0	50.6
			Weighted	43.0	45.6	48.4	51.0	51.8	51.8
9999	Llama-3.2-3B-Instruct	Best-of- N	Vanilla	56.8	59.0	60.0	60.2	60.4	60.6
			Weighted	56.8	58.2	59.6	61.6	61.8	62.2
		CarBoN	Vanilla	57.0	58.8	61.0	61.6	61.6	61.8
			Weighted	57.6	59.0	60.8	62.2	63.2	63.4
9999	Qwen2.5-1.5B-Instruct	Best-of- N	Vanilla	53.6	54.4	55.2	55.8	56.2	56.0
			Weighted	56.4	57.6	61.4	62.0	62.6	62.2
		CarBoN	Vanilla	50.8	53.8	53.8	56.8	56.6	59.6
			Weighted	55.0	60.0	61.8	62.4	64.0	64.4
9999	Qwen2.5-Math-1.5B-Instruct	Best-of- N	Vanilla	71.0	70.8	71.0	70.8	70.8	70.8
			Weighted	73.6	75.4	76.4	75.6	76.4	76.8
		CarBoN	Vanilla	70.4	71.2	73.0	72.6	73.4	73.4
			Weighted	74.2	76.0	76.4	77.2	77.2	77.8

918 **Table 8: Ablation study on calibration parameters (δ, T) and their combination (CarBoN) for**
919 **Best-of- N search on MATH-500.** We compare vanilla Best-of- N , applying a shift (δ), a tem-
920 **perature scaling (T), and their joint calibration (CarBoN), under both vanilla and weighted selection**
921 **strategies. All values report accuracy (%). Results show that CarBoN consistently improves acc-**
922 **curacy across different N , especially with the weighted variant, highlighting the complementary**
923 **benefits of δ and T . Bold numbers indicate the better accuracy *within the same method type* (Vanilla**
924 **vs. Vanilla, Weighted vs. Weighted) for each N .**

Model	Method	N						
		8	16	32	64	128	256	
Llama-3.2-1B-Instruct	Best-of- N	Vanilla	44.2	45.8	47.6	49.4	49.8	50.0
		Weighted	42.0	44.6	47.8	48.6	50.6	50.8
	Best-of- N w/ δ	Vanilla	42.8	46.6	48.8	48.2	49.6	50.0
		Weighted	41.8	43.8	48.2	49.0	51.0	51.2
	Best-of- N w/ T	Vanilla	42.4	47.6	46.8	48.4	50.4	50.4
		Weighted	42.0	45.0	47.0	49.6	49.8	50.6
	CarBoN	Vanilla	43.8	47.4	48.0	49.0	50.0	50.6
		Weighted	43.0	45.6	48.4	51.0	51.8	51.8
	Best-of- N	Vanilla	71.0	70.8	71.0	70.8	70.8	70.8
Qwen2.5-Math-1.5B-Instruct		Weighted	73.6	75.4	76.4	75.6	76.4	76.8
	Best-of- N w/ δ	Vanilla	71.0	71.0	71.2	71.0	70.8	70.8
		Weighted	74.2	74.8	75.6	77.0	76.6	77.0
	Best-of- N w/ T	Vanilla	70.0	71.2	71.0	70.8	70.8	70.8
		Weighted	73.2	75.2	76.0	76.4	76.0	76.6
	CarBoN	Vanilla	70.4	71.2	73.0	72.6	73.4	73.4
		Weighted	74.2	76.0	76.4	77.2	77.2	77.8

915 **Table 9: Pass@1 accuracy on larger closed-source and open-source models.** Evaluated under
916 the same setup as in the main experiments (system prompt and $T = 0.8$), these results serve as
917 reference points for comparing test-time scaling with smaller models.

Type	Model	MATH-500	AIME-2024
Closed Source LLMs	gpt-5-nano	—	11/30
	o1-preview	87.0%	12/30
	gpt-4o	77.0%	4/30
Open Source LLMs	Qwen2.5-Math-7B-Instruct	73.2%	4/30
	Qwen2.5-7B-Instruct	61.4%	3/30
	LLaMA-3.1-8B-Instruct	41.4%	3/30

954 B.3 SUPPLEMENTARY RESULTS ON LARGER MODELS (PASS@1)

955 For reference, we additionally report results on several larger closed-source and open-source mod-
956 els, evaluated under the same setup as in the main experiments (identical system prompt as shown in
957 Appendix C.4 and sampling temperature $T = 0.8$). These results provide additional context, illus-
958 trating that test-time scaling with smaller models can approach the performance level of substantially
959 larger models. Table 9 reports single-sample (@1) accuracies for the selected models.

960 B.4 TEMPERATURE SCALING WITH SAMPLE SIZE N

961 We further investigate how the learned calibration temperature varies with the sample size N . Fig-
962 ure 4 plots the temperature across five difficulty levels as N increases. Two consistent trends emerge:
963 (i) more difficult problems require higher temperatures, as discussed in the main text, and (ii) larger
964 N also leads to higher optimal temperatures. The latter reflects that with more samples, a higher
965 temperature is necessary to encourage sufficient diversity and thereby better utilize the expanded in-
966 ference budget. Otherwise, generating many samples under a low temperature yields near-identical
967 outputs, effectively wasting the additional budget. A simple example is buying 100 lottery tickets
968 with the same number (low T), where even with more tickets the outcome remains largely un-
969 changed. With diverse numbers (high T), additional tickets meaningfully increase the chance of
970 winning.

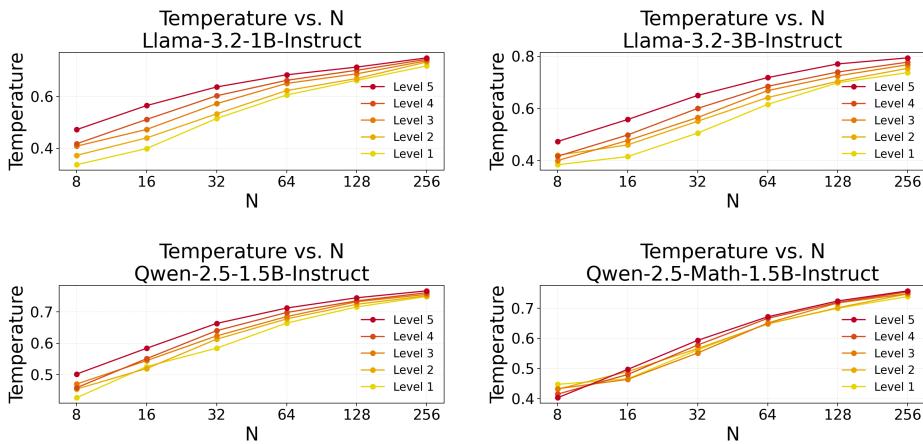


Figure 4: Learned calibration temperatures across different rollout budget N and problem difficulty levels. Both larger N and higher difficulty consistently lead to higher T , reflecting the increased diversity of top- k completions. This adaptive scaling complements our earlier grid-search results in Appendix C.2, where small N favored lower temperatures but larger N required higher temperatures to fully leverage the broader exploration.

Table 10: Spearman rank correlations (ρ) in the best-of- N setting (rollout budget $N = 256$), between problem difficulty and calibration dataset entropy from top- k completions ($N_1 = 128$, $k = 32$ for calibration dataset), and learned calibration temperature ($N_2 = 128$).

Model	Entropy	Temperature
Llama-3.2-1B-Instruct	0.999	0.999
Llama-3.2-3B-Instruct	0.999	0.999
Qwen2.5-1.5B-Instruct	0.899	0.999
Qwen2.5-Math-1.5B-Instruct	0.999	0.999

This finding aligns with our earlier grid-search experiments (Appendix C.2). For small N , lower temperatures tend to reach peak accuracy earlier, while higher temperatures show little improvement initially but yield greater gains for larger N . This indicates that temperature affects the growth rate of accuracy, and that a fixed temperature may either converge early (low T) or show delayed benefits (high T), highlighting the need to adapt T to N . Importantly, adapting T to N also explains why baseline methods with a fixed temperature tend to converge sooner than CarBoN, while CarBoN continues to improve as N increases. Together, these results highlight that temperature is not a fixed hyperparameter, but should adapt naturally to both task difficulty and inference-time compute.

B.5 CORRELATION BETWEEN PROBLEM DIFFICULTY AND CALIBRATION STATISTICS

To further examine how calibration relates to problem difficulty, we computed Spearman rank correlations (ρ) in our best-of- N study with $N = 256$ setting, where $N_1 = 128$ samples are generated for exploration (select top- k score completions to construct the calibration dataset), and $N_2 = 128$ samples are used in the second phase for exploitation.

Specifically, we considered two quantities: (i) the entropy of the calibration dataset constructed from top- k completions in the exploration phase (N_1), and (ii) the learned temperature estimated from the calibration dataset and applied in the exploitation phase (N_2).

As shown in Table 10, the learned temperature exhibits an almost perfect correlation with problem difficulty across all four models ($\rho \approx 0.99999$, $p < 10^{-5}$). For the calibration dataset entropy, three models exhibit near-perfect correlations, while Qwen2.5-1.5B-Instruct shows a slightly weaker yet still strong correlation ($\rho \approx 0.9$, $p \approx 0.037$).

1026
1027B.6 TOP- k TOKEN OVERLAP METRICS FOR HIGH-SCORING ANSWERS1028
1029
1030
1031
1032

We formalize four token-level overlap metrics that quantify how closely a group of generated answers (either after calibration with δ or an uncalibrated set) aligns lexically with the vocabulary used by the top- k highest-scoring answers for each problem. All metrics are computed independently per problem and then macro-averaged across the full dataset (i.e., each problem contributes equally regardless of length).

1033
1034
1035
1036

Let Target denote the de-duplicated set of token IDs appearing in the union of the top- k high-scoring answers for a given problem with special tokens removed. Let X be the comparison token set built from either (i) calibrated generations after applying *delta* ("calibration w/ δ ") or (ii) the uncalibrated ("No Calibration"). Define:

1037
1038

$$I = |\text{Target} \cap X|, \quad U = |\text{Target} \cup X|, \quad n_{\text{Target}} = |\text{Target}|, \quad n_X = |X|.$$

1039
1040

We report:

1041
1042
1043
1044
1045
1046
1047
1048
1049

- Jaccard similarity: $J(\text{Target}, X) = \frac{|\text{Target} \cap X|}{|\text{Target} \cup X|} = \frac{I}{U}$.
- Dice (Sørensen–Dice) coefficient: $D(\text{Target}, X) = \frac{2|\text{Target} \cap X|}{|\text{Target}| + |X|} = \frac{2I}{n_{\text{Target}} + n_X} = \frac{2J}{1+J}$.
- Recall (coverage of high-scoring tokens): $\text{Recall}(\text{Target} \rightarrow X) = \frac{|\text{Target} \cap X|}{|\text{Target}|} = \frac{I}{n_{\text{Target}}}$.
- Precision (specificity toward high-scoring tokens): $\text{Precision}(\text{Target} \leftarrow X) = \frac{|\text{Target} \cap X|}{|X|} = \frac{I}{n_X}$.

1050
1051
1052
1053
1054
1055
1056

Interpretation. Jaccard and Dice provide set-level similarity that penalizes both omissions (missing reference tokens) and additions (extra tokens outside the reference). Recall measures how completely the high-quality lexical signal is covered by the generated group, while Precision measures how selectively the group reuses only that high-quality signal (penalizing off-pattern or noisy additions). A calibration that increases Jaccard/Dice and Precision while maintaining high Recall indicates convergence toward the lexical core of high-scoring answers without excessive loss of useful diversity.

1057
1058
1059

All four metrics are first computed per problem and then averaged uniformly across all problems (macro average). This prevents problems with larger token sets from dominating the aggregate.

1060
1061

C EXPERIMENT DETAILS

1062
1063

C.1 COMPUTATIONAL ENVIRONMENT

1064
1065
1066
1067

Experiments were conducted on two types of nodes: (i) two nodes with $4 \times$ NVIDIA H100 (80GB) GPUs, 96 CPU cores, and 1 TB RAM; and (ii) two nodes with $8 \times$ NVIDIA RTX 3090 (24GB) GPUs, up to 44 CPU cores, and 768 GB RAM. All experiments used Python 3.11.11, PyTorch 2.4.0, vLLM 0.6.3, and CUDA 12.9.

1068
1069

C.2 TEMPERATURE GRID SEARCH.

1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 5 shows the results of Llama-3.2-1B-Instruct on the MATH-500 dataset using different temperatures ($T \in [0.1, 1.6]$ with step size 0.1) for best-of- N inference, with majority voting (left), naive (middle), and weighted (right) selection strategies. Across all settings of $N = 1, 2, 4, \dots, 64$, lower temperatures (blue curves) consistently yield higher accuracy by focusing generation on high-quality answers. However, when the temperature is too low, the improvement with increasing N becomes marginal, especially for majority voting and weighted selection, indicating that excessive concentration limits diversity and exploration. Conversely, higher temperatures (red curves) increase diversity but reduce accuracy for mathematical problems; at extremely high temperatures (e.g., $T = 1.6$), the model struggles to solve the tasks and accuracy drops sharply, highlighting the importance of careful temperature tuning. Previous findings (Beeching et al.) show that sampling with $T = 1.0$ sometimes leads the model to unexpectedly generate Chinese characters mid-solution

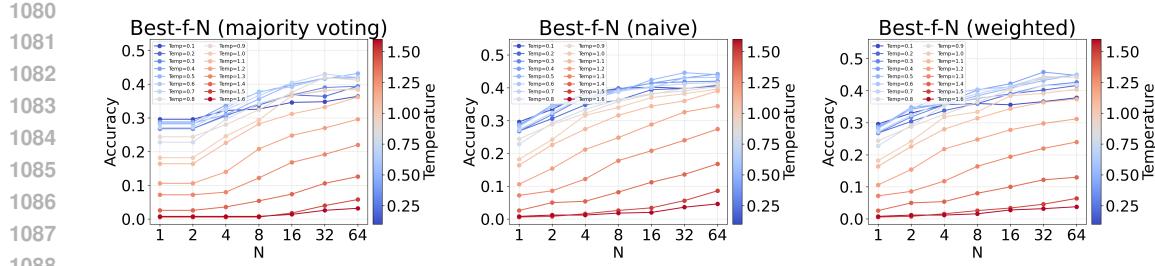


Figure 5: Results of Llama-3.2-1B-Instruct on MATH-500 with different temperatures T for best-of- N inference. From left to right: majority voting, naive, and weighted selection. Blue curves indicate lower temperatures, red curves indicate higher temperatures. Lower temperatures improve accuracy, but overly low temperatures limit diversity and the benefit of increasing N .

and hurts performance. Considering both accuracy and exploration, and following previous work (Snell et al., 2024), we adopt $T = 0.8$ as the baseline temperature for all experiments.

C.3 CALIBRATION TRAINING DETAILS.

Calibration parameters (δ, T) are optimized using AdamW in a full-batch setting for 100 epochs per problem. The learning rate is 0.001 with a constant schedule, and a weight decay of 10^{-2} is applied only to δ . The parameters are initialized as $\delta = 0$ and $T = 0.8$. The loss is the negative log-likelihood over the top- k candidates.

For each evaluation budget N , we split it evenly into $N_1 = N_2 = N/2$. In the first stage, N_1 completions are generated at $T = 0.8$, and the top- k highest-scoring completions ($k = N_1/4$) form the calibration dataset. The calibration parameters (δ, T) are then trained directly on cached logits. In the second stage, the remaining N_2 completions are generated using the learned (δ, T) .

This procedure ensures lightweight test-time calibration, requiring no additional model forward passes beyond the initial generation.

C.4 SYSTEM PROMPT

For all test-time scaling experiments, we follow previous work Snell et al. (2024) and adopt the same system prompt across all models to ensure consistency and comparability of results. This allows us to isolate the effects of the scaling methods without introducing variability from different prompts, as detailed in Table 11.

Table 11: System Prompt for all experiments

System Prompt

Solve the following math problem efficiently and clearly:

- For simple problems (2 steps or fewer):

Provide a concise solution with minimal explanation.

- For complex problems (3 steps or more):

Use this step-by-step format:

Step 1: [Concise description]

[Brief explanation and calculations]

Step 2: [Concise description]

[Brief explanation and calculations]

...

Regardless of the approach, always conclude with:

Therefore, the final answer is: \$\\boxed{\\text{answer}}\$. I hope it is correct.

Where [answer] is just the final number or expression that solves the problem.