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Abstract

Differential measurement error, which occurs when the error in the measured out-
come is correlated with the treatment renders the causal effect unidentifiable from
observational data. In this work, we study conditional differential measurement
error, where a subgroup of the population is known to be prone to differential mea-
surement error. Under an assumption about the direction (but not magnitude) of the
measurement error, we derive sharp bounds on the conditional average treatment
effect, and present an approach to estimate them. We empirically validate our
approach on semi-synthetic da, showing that it gives more credible and informative
bound than other approaches. In addition, we implement our approach on real
data, showing its utility in guiding decisions about dietary modification intervals to
improve nutritional intake.

1 Introduction

One of the promises of estimating individual level causal effects of an intervention is that it can be
used to guide decision making in the real world. However, complexities in real world data pose a
challenge to the validity of causal analysis. Much of the recent work in causality has focused on
addressing these challenges including hidden confounding, limited overlap, inefficiency due to small
samples, among others [4, 15, 13, 18, 26, 12].

Differential measurement error, which occurs when the level of error in the measured outcome is
correlated with the treatment assignment, is one challenge that has not received much attention. In
the presence of differential measurement error, the causal effect is not identifiable from observational
data [5, 24]. In this paper, we study causal estimation methods in the presence of conditional
differential measurement error, where one subgroup’s outcomes are measured with differential error.
One example that we use throughout the paper, is estimating the causal effect of lifestyle interventions
that aim to change the participants’ dietary intake or physical exercise. These studies are prone to
differential measurement error due to the nature of the intervention itself: participants assigned to
the intervention arm might under/over-report dietary intake in order to appear compliant [16]. In
particular, older participants are prone to misreporting their dietary intake post intervention [19]. For
this group, and without additional assumptions, it is impossible to disentangle the true causal effect
of dietary modification on nutritional intake from the differential error in measuring the outcome.

Instead of attempting to fully identify the causal effect for the mismeasured subgroup, we study a
partial identification approach. We show that it is possible to estimate sharp, informative bounds on
the causal effect when the direction of the measurement error matches the direction of causal effect
modification due to membership in the mismeasured group. Here, our assumption of ‘matched direc-
tions’ represents the case where the dietary intervention is more effective among older participants,
and the measurement error leads to an inflated estimate of the causal effect among older participants.
We present a novel approach for estimating bounds on the conditional average treatment effects
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(CATE) and show that our bounds are sharp, meaning they cannot be improved without additional
assumptions. Our contributions are summarized as follows: (1) We characterize the identification
region of the CATE for the mismeasured subgroup. (2) We develop an efficient approach for es-
timating bounds on CATE. (3) We empirically test our approach on simulated data and real data
from the Women’s Health Initiative (WHI) [11], and show that our approach gives more reliable and
informative estimates than other approaches.

2 Related work
The majority of work on causality in the machine learning community studies the estimation of
causal effects when the common assumptions are satisfied, meaning when the CATE is identifiable
[1, 8, 14, 3, 18]. Work studying settings where the CATE is not identifiable focuses on lack of
identifiability due to violations of the common assumptions like conditional ignorability and overlap
[25, 27, 7, 28].

Relative to work on violation of the common assumptions, work on estimating the CATE in the
presence of differential measurement error in the outcome is limited. Existing work commonly makes
assumptions about the noise model, which are likely to be violated in practice. For example, Díaz and
van der Laan [5] give a sensitivity analysis for differential measurement error of either the exposure
or outcome. Their approach requires knowledge of a plausible range of the magnitude of differential
measurement error, which might be unrealistic in many cases. By contrast, we assume knowledge
about the direction rather than the magnitude of differential measurement error is known.

In different work, VanderWeele and Li [24] outlines a strategy to estimate bounds on the causal effect
by relying on the boundedness of the observed outcomes. As our empirical analysis shows, this
type of approach can give uninformative bound. Shu and Yi [23] study the impact of measurement
error for continuous variable outcome. They assume that a small proportion of the population might
have measurement error in the outcome. By contrast, our approach allows for an arbitrarily large
population to be measured with error, at the cost of requiring knowledge about which subpopulation
is mismeasured. We stress however, that this knowlegde is not required at training time. In addition,
in contrast to Shu and Yi [23], our approach can accommodate arbitrary types of outcomes (e.g.,
binary, categorical, etc.)

3 Preliminaries

We follow the convention of using capital letters to denote variables and small letters to denote their
values. We assume access to an observational dataset that consists of tuples of random variables
D{(xi, zi, ti, yi) : i = 1, . . . , n}. xi ∈ Rd is a d-dimensional feature vector, ti ∈ {0, 1} is the
treatment assignment indicator, and zi reflects membership in the subpopulation that is suspected to
have mismeasurement error. For simplicity, we will assume that the mismeasured group is defined
by Z = z′, whereas the non-mismeasured group is defined by Z ̸= z′. We assume that Z is binary,
although extensions of our approach to non-binary Z are possible. We use Y (1), Y (0) to denote the
potential outcome under treatment t = 0, 1, respectively. We define the conditional average treatment
effect (CATE) defined as: τ(X,Z) = E[Y (1)− Y (0) | X,Z], where the expectation is taken with
respect to the full unobserved distribution.

In addition, we define θt(X,Z) to be the measurement error of the observed outcome for
T = t, and f(X,Z) to be the magnitude of the differential measurement error, with f(X,Z) =
θ1(X,Z)− θ0(X,Z). We define g(X) to be the magnitude of the effect modification due to Z, with
g(X) = τ(X,Z = z)− τ(X,Z = z′). Finally, we use h(X,Z) = g(X) + f(X,Z) to denote the
nominal causal effect modifiction due to Z. We stress that h(X,Z) ̸= g(X) due to the differential
measurement error. The observed outcome is defined as:

y = t ·
(
Y (1) + θ1(X,Z)

)
+ (1− t) ·

(
Y (0) + θ0(X,Z)

)
. (1)

with θ0(X,Z = z) = θ1(X,Z = z) = 0. In this setting, CATE is identifiable for Z = z but not for
Z = z′ [5]. We define the nominal CATE for Z = z′ as τ ′ ̸= τ , with τ ′ defined as:

τ ′(X,Z = z′) = E[Y (1)− Y (0) + f(X,Z = z′) | X,Z = z′]. (2)

Our goal is to give a point estimate of the CATE for Z = z, that is τ̂(x, Z = z) because the
estimand is identifiable among the subpopulation defined by Z = z. For the subpopulation defined
by Z = z′, our goal is to give upper and lower bounds on the CATE, since their CATE is not
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identifiable due to differential measurement error. Specifically, for the population defined by Z = z′,
we aim to estimate a lower and upper bound defined as τ̂(x, z′), τ̂(x, z′), respectively such that
τ(x, z) ∈ [τ̂(x, z′), τ̂(x, z′)] with high probability.

3.1 Assumptions

Consistent with the majority of causal literature (e.g., [23, 12, 22]), we assume conditional ignorability
and consistency. In addition, we assume a modified version of the typical overlap assumption, stated
below.
Assumption 3.1. (Z, T )-Overlap. We assume that: 0 < Pr(T |X,Z) < 1 for T ∈ [0, 1] and
0 < Pr(Z|X,T ) < 1 for Z ∈ [z, z′]

(Z, T )-Overlap is a modification of the typical overlap assumption in that it requires overlap with
respect to the mismeasured group in addition to the treatment assignment. We make the following
two assumptions:
Assumption 3.2. The mismeasured group (i.e., the value of z′) is given.

We note that z′ need not be known at estimation or training time, as long as assumption 3.1 is satisfied
in the training data. Our proposed approach (which assumes that z′ is known at estimation time) is
extendable to the setting where z′ is given after estimation. We discuss this in section4.1.

We assume that the direction of effect modification by Z matches that of the measurement error:
Assumption 3.3. We assume that the direction of f(X,Z) and g(X) matches, i.e., that:
g(X) · f(X,Z) ≥ 0

We stress, however, that assumption 3.3 is an assumption on the direction but not the magnitude of
the effect modifiction or the measurement error. This makes it a less stringent assumption compared
to other work in differential measurement error (e.g., in [5]).

In our motivating example, this assumption would be satisfied if (1) the dietary modification inter-
vention is more effective among older women (the group defined by Z = z′) compared to younger
women, and (2) older women under-report their dietary intake leading to an inflated estimate of the
causal effect. Therefore, both measurement error and effect modification act in the positive direction
of the causal effect.

4 Characterizing and estimating bounds on CATE

In this section, we characterize the identification region of CATE for the subpopulation with differen-
tial measurement error, and present an approach to estimate the upper and lower bounds that define
the identification region. The identification region represents the range of all possible estimates of
CATE that are consistent with the observed data and the assumptions outlined in section 3.1. We
characterize that region in the following proposition.
Proposition 4.1. (Sharp bounds on CATE) Suppose that the assumptions in section 3.1 hold, and
suppose without loss of generality that f(X,Z) ≥ 0,∀X , then

τ(X,Z = z′) ∈ [τ(X,Z = z), τ(X,Z = z) + h(X,Z)]

and this bound is sharp.

The proof is presented in the Appendix. Proposition 4.1 shows that the CATE for the mismeasured
group can be bounded above and below by τ(X,Z = z), which is the CATE of the non-mismeasured
group, and τ ′(X, z′) = τ(X,Z = z) + h(X,Z), which is the nominal CATE of the mismeasured
group. Such a finding is important since both bounds can be estimated from observed data. In
addition, the proposition shows that these bounds are sharp, in that they cannot be improved without
further assumptions.

4.1 Implementation

Following the theoretical results, we propose an approach to estimate CATE for Z = z and bounds on
CATE for Z = z′. Our approach proceeds by estimating τ(X,Z = z) as is done in typical settings

3



where there is no mismeasurement error (e.g., using G-estimation or doubly robust approaches). This
estimate represents the final estimate for the group defined by Z = z and one of the two bounds for
the mismeasured group defined by Z = z′. As proposition 4.1 shows, the other bound is the nominal
causal effect for the mismeasured group, so it can be estimated from the data using the typical causal
estimation methods. Below, we outline two possible approaches to obtain point estimates for the two
groups defined by Z = z and Z = z′.

G-estimation approach. Using any nonparametric estimator, we estimate the expected potential,
µ(x, Z, t) = ED[y|X = x, Z, T = t], Z ∈ {z, z′}, where the expectation is taken with respect to the
observed data, D [9]. For Z = z, the estimate of the CATE is computed as τ̂(X,Z = z) = µ(x, Z =
z, t = 1)− µ(x, Z = z, t = 0).

For Z = z′, we estimate τ̂ ′(x, z′) = µ(x, Z = z′, t = 1) − µ(x, Z = z′, t = 0), and the final
estimated bounds on the unindentifiable τ(X,Z = z′) are:

τ̂(x, z′) = min{τ̂(x, z), τ̂ ′(x, z′)}, and τ̂(x, z′) = max{τ̂(x, z), τ̂ ′(x, z′)}.
For a well specified function class, τ̂(x, z), τ̂ ′(x, z′) are guaranteed to asymptotically converge to
τ(x, z), τ ′(x, z′) respectively [21].

In our implementation, we estimate µ(X,Z, T ) using 4 different models, one for each combination
of T,Z. This is similar in spirit to T-Learners [17]. In settings where the mismeasured group is
not known at estimation or training time, or when Z is not a binary variable, training 4 different
models is not possible. In that case, it is still possible to estimate bounds on τ(X,Z = z′) by
estimating 2 models, one for each treatment group. As long as the function space is well specified and
assumption 3.1 is satisfied, this estimation procedure should give asymptotically unbiased estimates.

Doubly-robust approach. We outline how a doubly-robust approach can be used to estimate the
bounds. Estimation proceeds similar to G-estimation, but during estimation, we inverse weight each
data point by its propensity to recieve the treatment t, and its propensity to belong in the mismeausred
group. The weighting scheme reweights the observed data using the Radon-Nikodym derivative of the
distribution where treatment assignment and membership in the mismeasured group are uncorrelated
with X , i.e., wi = p(xi)p(zi)p(ti)

p(xi,zi,ti)
. We show in appendix A.2 that the expected outcome with the

weighting scheme under the observed distribution D is equal to the expected outcome under the
new distribution D̂. We use permutation weighting to compute the weights [2]. Details of the
implementation are included in the appendix.

5 Experiments

We evaluate our algorithm on a semi-synthetic and a real dataset. We use ACIC data [6] for the
former, and data from the dietary modification arm of the WHI [11] for the latter1. Additional details
about the implementation are included in the appendix.

Baselines. We compare the two variants of our approach, the G-Estimation approach — GE (ours)—
and the Doubly Robust approach — DR (ours), to the following baselines: (1) Quantile regression
model — GE (QR), which uses quantile estimates to construct the upper and lower bounds of the
CATE for the subpopulation defined by Z = z′. Specifically, the QR proceeds by estimating the
0.1 and 0.9-quantile of E[Y |X = x, T = t], for t ∈ {0, 1}. The upper (lower) bound of τ(x, z′) is
given by the difference between 0.9 (0.1)-quantile of E[Y |X = x, T = 1] and 0.1 (0.9)-quantile
of E[Y |X = x, T = 0]. (2) Quantile regression model with doubly robust approach – DR (QR) –
is similar to the QR model, but in addition, we utilize inverse propensity score weights to estimate
µ(x, z, t) as described in section 4.1. (3) Simple Sensitivity Analysis (SSA), which is inspired by
previous work on differential measurement error [24]. The SSA model finds the maximum and
minimum observed outcome for each treatment T among the mismeasured group. Then the upper
(lower) bound is given by difference between maximum (minimum) value of yt=1 and minimum
(maximum) value of yt=0 with Z = z′. (4) Oracle model, which is an unattainable version of our
GE approach that has oracle estimates of µ(x, z, t). We only implement this model in semi-synthetic
data, in which µ(x, z, t) is available due to its simulated nature.

1WHI data is available for use, upon making a request for data access to the National Heart, Lung and Blood
Institute at biolincc.nhlbi.nih.gov
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Semi-synthetic data. In this setting, we test the ability of our approach to correctly cover the
true CATE under varying levels of differential measurement error. We use a semi-synthesic dataset,
ACIC [6], which consists of 4802 observations and 58 covariates. We randomly select 70% of
the data as the training sample and the remaining 30% as the testing sample. The original ACIC
data did not include measurement error, so we created conditional differential errors as follows.
We define the mismeasured group based on randomly selected variables that were not effect mod-
ifiers in the original dataset. We exclude variable that are effect modifiers because we want to
control the effect of the variable on the final outcome. The simulated observed outcome is defined
as y = ỹ + 1{Z = z′} · (t(κ1(Z)) + (1− t)κ0(Z)) where ỹ is the original simulation’s outcome,
κt(Z) denotes the total nominal effect of Z on the treatment t groups. We use 0 ≤ α < 1 to denote
the proportion of the nominal effect due to effect modification versus differential measurement error
and update CATE as τ̃(x, z′) = τ(x, z′) + α(κ1(Z)− κ0(Z))

Evaluation We evaluate algorithms with three different measures. We evaluate credibility with
correct coverage rate (CCR) and deviation. CCR is defined as the proportion of the test sample
for whom the true CATE τ falls within the estimated lower and upper bound τ̂ , τ̂ respectively,
i.e. CCR = n−1

∑
i τ ∈ [τ̂ , τ̂ ]. Deviation is defined as the average absolute difference between

the closest estimated bound and the true CATE, for data points that are not correctly covered, i.e.
deviation= m−1

∑
i|τ /∈[τ̂ ,τ̂ ]

min{|τ − τ̂ |, |τ − τ̂ |},m = |{i|τ /∈ [τ̂ , τ̂ ]}|. Unlike the CCR, deviation
takes into account how far the bound estimate is from the true CATE. We evaluate informativeness of
the estimated bounds by tightness, which is defined as the average absolute difference between the
upper and lower bound, i.e., tightness = n−1

∑
i |τ̂ − τ̂ |.

We evaluate all models’ performance at varying levels of differential measurement error by varying
α, going from high measurement error (α = 0), to low (α = 1). We train our approach and the QR
approach using a random forest model. Details are included in the appendix.

Algorithm Tightness (STD)

GE (ours) 8.93 (0.42)
DR (ours) 9.18 (1.03)
GE (QR) 14.31 (1.23)
DR (QR) 17.01 (4.98)

Oracle 9.0 (0)
SSA 66.03 (1.09)

Table 1: Results on the ACIC data, show-
ing the absolute width and standard de-
viation of the estimated bounds for the
mismeasured group. SSA gives uninfor-
mative bounds, while our approach gives
estimates that are close to the oracle.

Figure1 and table 1 show the results of this simulation
setting. The x−axis of the two plots in figure 1 shows
the proportion of the nominal CATE attributable to mea-
surement error. In figure 1(left), the y−axis shows the
CCR while in figure 1(right), the y−axis shows the de-
viance. Figure 1(left) demonstrates that our method has a
higher coverage rate than QR when the level of differential
measurement error is high. At low levels of differential
measurement error, our approach maintains a low devia-
tion than QR despite having a lower CCR. This happens
due to estimation error, as instances that are incorrectly
covered by our approach are “barely missed”, which is
not true for QR. The oracle model, which achieves perfect
CCR, deviation and tightness, demonstrates the unattain-
able performance of our approach if it did not incur any
estimation error. This implies that with a larger dataset
and assuming a well-specified function class, our approach
could have achieved near perfect performance. The doubly robust approach has a slightly lower CCR
than the G-estimation approach since in some experiments, it provides a bound that is even tighter
than the oracle method. Finally, SSA achieves perfect CCR but as table 1 reveals, this comes at the
cost of tightness: SSA gives credible yet uninformative bounds.

Real data. Due to the fundamental problem of causal inference [20, 10], it is impossible to
adequately evaluate our approach in a real data set. Still, we conduct the following analysis on the
WHI data to demonstrate the utility of our approach. Here, we study the causal effect of the dietary
modification intervention on the daily intake of sodium and fiber as well as the BMI of participants in
the WHI study [11]. In this study, 15,664 women were randomly assigned to the intervention arm,
where they attended sessions to promote a better diet. An additional 22,815 women were assigned
to the non-intervention arm. We randomly select 70% of the population for training and the rest is
kept as a held-out sample. By design, the intervention was assigned at random. However, to test
our approach in a more realistic setting, we create confounding in the training data by removing a
randomly chosen 70% of the women in the intervention who have a BMI below the median. This
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Figure 1: x−axis shows the level of the nominal CATE attributable to measurement error. (Left) Plot
shows that correct coverage rate (y−axis) is higher (i.e., better) for our approach compared to QR
algorithm when the level of measurement error is high. The unattainable oracle has a perfect correct
coverage rate, revealing that our approach can achieve near perfect coverage if not for estimation
error. (Right) Plot shows that deviation for our approach is small compared to others.

mimics a setting where women with a lower BMI are less likely to obtain guidance on dietary
modification. We evaluate the perfomance of our approach and baselines on the unconfounded held
out set. We take the mismeasured group to be womenin the highest quantile age. This is consistent
with existing literature suggesting that older age is correlated with a higher tendency to misreport
outcomes [19]. We compare our approach to the same baselines outlined in the ACIC experiment. We
use a random forest for both QR and our approach. Additional details are included in the appendix.

Evaluation Because we do not have access to the counterfactual outcomes, we cannot evaluate our
approach using the CCR and deviation. Instead, we evaluate how informative the estimated bounds
are for guiding intervention decisions among older women. Letting k = |i : Zi = z′|, we consider
intervention on sodium intake and BMI (fiber intake) as effective if both predicted upper and lower
bounds are less (greater) than 0: 1

k

∑
i:Zi=z′ 1τ̂≤0,τ̂≤0, ( 1k

∑
i:Zi=z′ 1τ̂≥0,τ̂≥0) obscure if predicted

upper and lower bounds have different signs: 1
k

∑
i:Zi=z′ 1τ̂ ·τ̂<0, and ineffective otherwise. Models

that lead to the lowest uncertainty are more desirable. However, inaccurate models can appear certain.
So, as a proxy for model accuracy, we measure the average treatment effect (ATE) among each group.
Define Ω to be the subset of individuals for whom the model predicts that the treatment is effective.
Let Ω0,Ω1 denote the subsets of Ω with treatment T = 0 and 1 respectively, then the estimated ATE
for this group is ATE = 1

|Ω1|
∑

i∈Ω1
yi − 1

|Ω0|
∑

i∈Ω0
yi. We run 100 experiments by sampling with

replacement and report the mean and standard deviation of the ATE. The ATE is similarly defined for
the two other groups (uncertain and ineffective). For reliable models, we expect that the ATE will be
high for effective groups, and low for ineffective groups.

Results for sodium intake are shown in table 2 and table 3. Results for fiber intake and BMI are
largely consistent with sodium intake, and are included in appendix A.3. In both tables, we present
results from the mismeasured population only (left panels) and the full population (right panels).
Table 2 shows that the SSA and QR approach predict almost every intervention in the mismeasured
group as uncertain, while our approach predicts the intervention as effective for roughly 30% of the
mismeasured group and ineffective for roughly 50 % of the mismeasured group. Table 3 shows the
ATE for the different groups. Note that since reductions in sodium are desirable, negative ATEs
signfy that the intervention is effective. The table shows that the ATE is favorable for the group that
our approach predicts will benefit from the intervention, which shows that our approach gives reliable
estimates of treatment efficacy. By contrast, the ATE of the group that GE (QR) predicts will benefit
from the intervention shows an undesirable increase in sodium intake for the “effective” group. In
addition, the group for whom QR deemed the treatment ineffective actually experience a decrease in
sodium intake due to the intervention.

6 Conclusion
In this paper, we provide a credible and informative bound for CATE in the presence of differential
measurement error of the outcome. Guided by our theoretical analysis, we presented an approach to
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Algorithm Mismeasured group Full population
Effective Uncertain Effective Uncertain

GE (ours) 18.57 (0.93) 28.38 (1.29) 27.40 (1.15) 9.87 (0.37)
DR (ours) 29.06 (0.01) 37.49 (1.39) 26.89 (1.18) 9.91 (0.51)
GE (QR) 0 100 29.80 (0.63) 25.64 (0.52)
DR (QR) 0 100 29.80 (0.63) 25.64 (0.52)

SSA 0 100 0 100
Table 2: Percent and standard deviation of each predicted group. SSA and QR give a higher level of
uncertainty compared to our approach.

Algorithm Mismeasured group Full population
Effective Uncertain & Ineffective Ineffective Effective Uncertain & Ineff Ineffective

GE (ours) -249 (189.23) 72.98 (32.51) 138.36 (14.56) -34.56 (22.24) 61.73 (26.79) 72.75 (21.94)
DR (ours) -138 (131.89) 45.66 (24.63) 104.54 (32.08) -57.45 (21.04) 80.36 (13.01) 91.84 (15.54)
GE (QR) – 150.02 (53.31) – 97.99 (19.64) -23.88 (20.18) -55.92 (45.06)
DR (QR) – 150.02 (53.31) – -51.44 (28.87) 89.61 (20.40) 117.02 (15.90)

Table 3: ATE and standard deviation of each predicted group within the mismeasured group and
the population. Our approach is better at identifying the population for whom the intervention is
effective.

estimate sharp bounds on the causal effects, and showed settings where it outperforms alternative
approaches. On a real dataset, we showed that our approach leads to less uncertainty about intervention
decisions when compared to other approaches.

Empirical results show that one limitation of our approach is that estimation error might lead to
lower coverage rates when the measurement error is high. Future work can focus on more efficient
estimation methods to address this issue. In addition, similar to all other estimation approaches, our
approach might give unreliable estimates when the assumptions outlined in section3 are violated.
Such unreliable estimates could lead to incorrect treatment decisions with negative societal impact.
Future work can focus on developing methods to quantify the sensitivity of our approach to different
assumptions made in section3.
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A Appendix

A.1 Proof of proposition 4.1

Proposition A.1. (Sharp bounds on CATE, restated proposition 4.1 from the main text) Suppose that
assumptions 3.1, 3.2, 3.3 and conditional ignorability hold, further suppose without loss of generality
that f(X,Z) ≥ 0,∀X , then

τ(X,Z = z′) ∈ [τ(X,Z = z), τ(X,Z = z) + h(X,Z)]

and this bound is sharp.

Proof. Note that by definition:

g(X,Z) = h(X,Z)− f(X,Z). (3)

By assumption 3.3, and that f(X,Z) ≥ 0, we have that all three terms, g(X,Z), h(X,Z), f(X,Z) ≥
0, which in turn implies that h(X,Z) ≥ f(X,Z), with equality only holding in the case where there
is no differential measurement error, i.e., f(X,Z) = 0. This means that f(X,Z) ∈ [0, h(X,Z)],
and we can rewrite f(X,Z) := βh(X,Z), where β is an unidentifiable parameter with taking values
between 0, 1. Substituting in equation 3, we get that:

g(X,Z) = h(X,Z)− βh(X,Z) = (1− β)h(X,Z) := αh(X,Z),

where α ∈ [0, 1] is unidentifiable from observational data.

We can now rewrite the unidentifiable CATE in terms of components that can be estimated from
observational data, as well as this unidentifiable but bounded α:

τ(X,Z = z′) = τ(X,Z = z) + g(X,Z) = τ(X,Z = z) + αh(X,Z).

Recall that τ(X,Z = z) is identifiable since it is simply the CATE for the group that is not
mismeasured, h(X,Z) is the nominal CATE which is also identifiable from observational data, and
α is bounded between 0, and 1. This allows us to define the identification region as the region defined
by extreme values of α, as follows:

min
α∈[0,1]

τ(X,Z = z) + αh(X,Z)

and
max
α∈[0,1]

τ(X,Z = z) + αh(X,Z).

By assumption, h(X,Z) ≥ 0, so it obtains its maximum when α = 1 and its minimum when α = 0,
which means that:

τ(X,Z = z′) ∈ [τ(X,Z = z), τ(X,Z = z) + h(X,Z)]
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Note that these bounds are sharp in that the true τ(X,Z = z′) is equal to the upper bound if there
is no differential measurement error (i.e., f(X,Z) = 0 making h(X,Z) = g(X,Z)), and the true
τ(X,Z = z′) is equal to the lower bound if there is no effect modification (i.e., g(X,Z) = 0). Hence,
the bounds could not be made tighter without additional assumptions.

A.2 Doubly robust justification

We show that the expected outcome with the weighting scheme under the observed distribution D is
equal to the expected outcome under the distribution D̂ where treatment assignment and membership
in the mismeasured group is uncorrelated with X, i.e.,

ED(ŷ) = ED̃(y)

with ŷ = P (X=x)P (Z)P (T=t)
P (X=x,Z,T=t) y.

The proof is as follows

ED[ŷ] = ED[ED[ŷ|X = z, Z, T = t]]

=

∫
P (X = x, Z, T = t)

∫
P (X = x)P (Z)P (T = t)

P (X = x, Z, T = t)
yP (y|X = x, Z, T = t)dyd(X,Z, T )

Note that if X,Z, T are fixed, P (X=x)P (Z)P (T=t)
P (X=x,Z,T=t) is a constant, so we can take it out of the second

integral and the numerator cancel out with P (X = x, Z, T = t), then it becomes

=

∫
P (X = x)P (Z)P (T = t)

∫
yP (y|X = x, Z, T = t)dyd(X,Z, T )

=

∫
P (X = x)P (Z)P (T = t)ED̂[y|X = x, Z, T = t]d(X,Z, T )

= ED̂[y]

A.3 Implementation details

Permutation weighting. Permutation weighting proceeds by making a copy of the original data
set, and permuting Z and T randomly in the copied data. Points in the original data are given a label
C = 0 while the permutated points are given a label C = 1. Denote P as the probability function.
We stack the two datasets together and estimate wi =

P(C=1|X=x,Z=z,T=t)
P(C=0|X=x,Z=z,T=t) .

Algorithm psuedocode The pseudocode for our G-estimation approach is listed as follows:

Algorithm 1
Input: Factual sample (x1, t1, z1, y1), . . . , (xn, tn, zn, yn), non-parametric estimator M

1: µt,z = M(Yt,z ∼ Xt,z)
2: µt,z′ = M(Yt,z′ ∼ Xt,z′)
3: τ̂0(x) = µt=1,z(x)− µt=0,z(x)
4: τ̂1(x) = µt=1,z′(x)− µt=0,z′(x)

Output: τ̂(x) = min{τ̂0(x), τ̂1(x)}, τ̂(x) = max{τ̂0(x), τ̂1(x)}

Training details Both experiments were implemented on CPUs, with a total compute time of 50
hours. For both experiments, we use random forest classifiers to compute permutation weighting and
grid-search cross-validation to select parameters. We set the number of estimators to be 500 and
compare parameters with ’max-depth’ over [1, 2, 5, 10, 20, 40, 60, 100] using negative mean square
error as the regression score function. We use random forest regressors to train our models and
grid-search cross-validation to select parameters. We set the number of estimators to be 500 and
compare parameters with ’max-depth’ over [5, 10, 20, 40, 60, 100] using negative mean square error
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as the regression score function. We use random forest quantile regressor to train the QR method,
and we use grid-search cross-validation to select parameters. We set the number of estimators to
be 500 and compare parameters with ’max-depth’ over [5, 10, 20, 40, 60, 100] using negative mean
square error as the regression score function.

Experiment results The complement experiment results for sodium intake, fiber intake and BMI.

Algorithm Sodium Fiber BMI
Effective Uncertain Tightness Effective Uncertain Tightness Effective Uncertain Tightness

GE (ours) 18.57 (0.93) 28.38 (1.29) 150.28 (1.64) 98.37 (0.61) 1.60 (0.58) 1.28 (0.04) 87.65 (0.59) 12.03 (0.58) 0.54 (0.01)
DR (ours) 29.06 (0.01) 37.49 (1.39) 189.61 (3.46) 97.64 (0.52) 2.35 (0.52) 1.54 (0.03) 84.75 (0.62) 14.18 (0.61) 0.68 (0.01)
GE (QR) 0 100 4273.16 (19.24) 0 98.11 (1.30) 26.95 (0.34) 0 100 9.72 (0.07)
DR (QR) 0 100 4152.96 (10.72) 0 100 (0) 26.56 (0.28) 0 100 9.72 (0.07)

SSA 0 100 30633.53 (0) 0 100 114.93 (0) 0 100 99.85 (0)

Table 4: Percentage of each predicted group and the absolute width and standard deviation of the
estimated bounds for the mismeasured group in non-confounding setting.

Algorithm Sodium Fiber BMI
Effective Uncertain & Ineffective Ineff Effective Uncertain & Ineff Ineffective Effective Uncertain & Ineff Ineffective

GE (ours) -249 (189.23) 72.98 (32.51) 138.36 (14.56) 3.54 (0.44) 3.39 (0.49) – -0.95 (0.15) 0.05 (1.43) –
DR (ours) -138 (131.89) 45.66 (24.63) 104.54 (32.08) 3.54 (0.44) 3.39 (0.49) – -0.65 (0.13) -1.81 (0.36) –

Table 5: Average treatment effect of each predicted group within mismeasured group.

Algorithm Sodium Fiber BMI
Effective Uncertain Effective Uncertain Effective Uncertain

GE (ours) 27.40 (1.15) 9.87 (0.37) 97.38 (0.15) 2.39 (0.41) 91.34 (0.57) 5.22 (0.44)
DR (ours) 26.89 (1.18) 9.91 (0.51) 98.23 (0.18) 1.52 (0.23) 93.18 (0.46) 3.91 (0.37)
GE (QR) 29.80 (0.63) 25.64 (0.52) 71.74 (0.20) 25.64 (0.51) 68.60 (0.93) 25.63 (0.52)
DR (QR) 24.78 (1.02) 25.64 (0.52) 74.24 (0.12) 25.64 (0.51) 71.43 (0.69) 25.64 (0.52)

SSA 0 100 0 100 0 100
Table 6: Percentage of each predicted group within whole population. SSA and QR give a higher
level of uncertainty compared to our approach.

Algorithm Sodium Fiber BMI
Effective Uncertain & Ineffective Ineff Effective Uncertain & Ineff Ineffective Effective Uncertain & Ineff Ineffective

GE (ours) -34.56 (22.24) 61.73 (26.79) 72.75 (21.94) 3.67 (0.33) 3.64 (0.32) – -0.68 (0.15) 0.61 (0.45) 0.42 (0.74)
DR (ours) -57.45 (21.04) 80.36 (13.01) 91.84 (15.54) 3.70 (0.33) 3.64 (0.32) – -0.64 (0.06) 0.33 (0.92) 3.25 (1.16)
GE (QR) 97.99 (19.64) -23.88 (20.18) -55.92 (45.06) 3.74 (0.46) 3,41 (0.49) – 1.58 (0.39) -0.66 (0.05) -0.59 (0.08)
DR (QR) -51.44 (28.87) 89.61 (20.40) 117.02 (15.90) 3.66 (0.33) 3.75 (0.46) – -0.61 (0.07) -0.51 (0.23) 1.58 (1.21)

Table 7: Average treatment effect of each predicted group within the whole population.

12


	Introduction
	Related work
	Preliminaries
	Assumptions

	Characterizing and estimating bounds on CATE
	Implementation

	Experiments
	Conclusion
	Appendix
	Proof of proposition 4.1
	Doubly robust justification
	Implementation details


