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ABSTRACT

Stochastic Bilevel Optimization (StocBO) has gained traction given its unique
nested structure, which is increasingly popular in machine learning areas like
meta-learning and hyperparameter optimization. A recent innovation by Dagréou
et al. (2022) provided a unified single-loop framework for finite-sum StocBO. This
presented the SABA method, a SAGA-type approach, achieving an iteration com-
plexity of O((m+n)3/2/T) and a memory cost of O((m+ n)(d+ p)). In this con-
text, m and n symbolize the finite sum counts for the outer and inner-level tasks,
while d and p describe their parameter dimensions. However, a drawback sur-
faces with memory consumption, especially with significantly large values of m
or n. In response to this, we present the SBO-LSVRG, an adept solution inspired
by Loopless-SVRG (LSVRG) (Kovalev et al., 2020). This avant-garde method
not only achieves the desired iteration complexity but also substantially trims the
memory cost to a leaner O(d+ p). To our awareness, this paper pioneers in illus-
trating, from a theoretical lens, the application of LSVRG to bilevel optimization,
particularly in non-convex realms. Furthermore, our variance-reduced method,
SBO-LSVRG, excels with an optimal convergence speed. Comprehensive experi-
ments validate the efficiency of our proposed approach.

1 INTRODUCTION

Bilevel optimization is increasingly attracting attention in machine learning due to its broad appli-
cations, such as in meta-learning (Franceschi et al., 2018; Ji et al., 2020; Rajeswaran et al., 2019)
and hyperparameter tuning (Bengio, 2000; Bertrand et al., 2020; Pedregosa, 2016). In this paper, we
primarily focus on the standard Stochastic Bilevel Optimization (StoBO) problem, expressed in the
finite-sum form:

min
x∈Rd

Φ(x) =
1

m

m∑
j=1

Fj(y
⋆(x), x), s.t. y⋆(x) ∈ argmin

y∈Rp

1

n

n∑
i=1

Gi(y, x), (StoBO)

where functions Fj and Gi represent outer- and inner-level problems, indexed by j ∈ [m] and
i ∈ [n] respectively. The intuitive approach involves running multiple local steps to obtain the
optimal y⋆(x) or a good approximation thereof. We then use this to update the outer loop (Ghadimi
& Wang, 2018; Ji et al., 2021; Arbel & Mairal, 2021; Yang et al., 2021a). However, this kind of
two-loop method often falls short in terms of efficiency during implementation. For this reason,
simultaneously updating the outer- and inner-level parameters typically yields better performance,
as seen in SVRB Guo et al. (2021a), SBFW Akhtar et al. (2021), FSLA Li et al. (2022), and SABA
Dagréou et al. (2022).

By leveraging the implicit function theorem under appropriate assumptions, we can utilize the gen-
eral single-loop framework suggested by Dagréou et al. (2022). We define v to approximate the
inverse Hessian, enabling us to formulate any algorithm based on the following update rules: for
each iteration t, in the context of a single node, we have:

1



Under review as a conference paper at ICLR 2024

Table 1: Summary of variance reduced methods for solving StoBO.

Method Loops VR Method(a) Iteration Complexity Space # Round

SVRB Guo et al. (2021a) Single STORM Õ(ϵ−3) O(d + p)

VRBO Yang et al. (2021b) Double SARAH Õ(ϵ−1.5) O(d + p)

SABA Dagréou et al. (2022) Single SAGA O
(
(m + n)2/3ϵ−1

)
O((m + n)(d + p))

SBO-LSVRG (Ours) Single L-SVRG O
(
(m + n)2/3ϵ−1

)
O(d + p)

(a) The term ”Variance Reduction (VR) Method” refers to techniques employed to reduce the variance resulting from stochastic gradient
estimation. The following table outlines the primary concept behind each paper. It is important to note that the methods may not be
exactly the same, as the objective StoBO introduces novel elements.

yt+1 = yt − ρtDt
y, s.t. Dt

y = ∇yG(y, x)

vt+1 = vt − ρtDt
v, s.t. Dt

v = ∇2
yyG(y, x)v +∇yF (y, x)

xt+1 = xt − γtDt
x, s.t. Dt

x = ∇2
xyG(y, x)v +∇xF (y, x),

(1)

where Dt
y, D

t
v, D

t
x are the updating directions for the inner model, the Hessian inverse approxima-

tion parameter, and the outer model at iteration t. ∇yy and ∇xy denotes the Hessian and Jacobian
matrix with respect to parameters x and y. Given that the inner problem with respect to y and the
linear system with respect to v exhibit similar conditioning, we follow the approach similar to SABA
from Dagréou et al. (2022), wherein we employ the same stepsize for updating both y and v.

SABA, as proposed by Dagréou et al. (2022), introduced the following SAGA-like updates, as noted
in Defazio et al. (2014). Let’s say the update rules in eq. (1). Without lose of generality, let’s
consider the update for y. Assume we select i from [n], the brief idea of Defazio et al. (2014) in
SABA is we consider the following update:

gty = ∇yGi(y
t, xt)−∇yGi(w

t
y,i, w

t
x,i) +

1

n

n∑
j=1

∇yGj(w
t
y,j , w

t
x,j), (2)

where wt
y,j , w

t
x,j represent the stored local vectors for node i. Suppose z ∈ {y, x}, wt+1

z,j is updated
as follows:

wt+1
z,j =

{
zt j = i

wt
z,j j ̸= i.

(3)

For obtaining gty in Equation (2), the corresponding additional memory space cost is n × p. Con-
sidering the whole update for all the y, v and x, the total memory cost is (m+ n)d+ (m+ 2n)p =
O((m+n)(d+p)). In practical scenarios where m or n is large, the total space complexity becomes
substantially high.

Our paper primarily focuses on reducing the space complexity of single-loop methods while still
maintaining a satisfactory level of performance. Additionally, we are keen to extend the single-loop
framework suggested by Dagréou et al. (2022) in light of potential connections to federated learning
and minimax optimization.

Contributions. Our contributions can be summarized as follows:

• a) Taking inspiration from the loopless stochastic variance reduced gradient estimator (L-
SVRG) proposed by Kovalev et al. (2020), we propose an innovative method, SBO-LSVRG,
which achieves state-of-the-art iteration complexity. When compared with SABA, our ap-
proach has a significantly lower memory cost that remains constant in relation to m and n,
making it more desirable. This approach is far from trivial.
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• b) To our knowledge, SBO-LSVRG is the first paper to consider L-SVRG for problems with
a nested structure. Furthermore, it is the only approach that addresses non-convex L-SVRG
(where the outer-problem exhibits the L-SVRG style, but does not necessarily have to be
convex). We compared related methods in Tab.1

• c) We establish the link between our method and related areas, such as federated learning
and minimax optimization, and we provide a theoretical analysis for both of these areas.

• d) We conduct thorough experiments to validate the efficiency of our proposed methods.

2 PRELIMINARY

In this section, we state the main assumptions and recall some useful lemmas.

2.1 ASSUMPTIONS

We first state the standard assumptions on the functions G and F .

Assumption 1 (Convexity) The inner-level function G(·, x) is µG-strongly convex for any x ∈ Rd.

The strong convexity of the inner problem guarantees the existence and uniqueness of solutions for
optimizing G for any x ∈ Rd. Such an assurance is a staple when analyzing bilevel optimiza-
tion. Importantly, note that the outer-level function F is not mandated to be strongly convex. This
suggests that our configuration is of a strongly-convex-nonconvex nature. We now delve into the
standard Lipschitz-smoothness.

Assumption 2 (Smoothness) Here we consider the smoothness for both the inner- and outer-level
functions G and F :

• G is three times continuously differentiable on Rp × Rd. The derivatives ∇G,∇2G and
∇3G are Lipschitz continuous in (y, x) with Lipschitz constants LG

1 , L
G
2 and LG

3 .

• F is twice continuously differentiable. The derivatives ∇F and ∇2F are Lipschitz contin-
uous in (y, x) with constants LF

1 and LF
2 .

• For all i ∈ [n] and j ∈ [m], the gradients ∇Gi,∇Fj ,∇2
yyGi and ∇2

xyGi are Lipschitz
continuous in (y, x).

Furthermore, to ensure the boundedness of v⋆, we follow a similar approach to Dagréou et al. 2022
Assumption 3.3-3.7, where we bound the gradient of the outer problem F with respect to y. Addi-
tionally, to maintain equivalent complexity for the single-level problem, it’s necessary to bound the
expected norm of the directional gradient Dt

x. These two bounding conditions are articulated in the
subsequent assumption.

Assumption 3 (Variance Bounds) There exists CF > 0 and Bx > 0 suc that for any x and t, we
have ∥∇yF (y⋆(x), x)∥ ≤ CF and Et

[
∥Dt

x∥
2
]
≤ B2

x.

2.2 USEFUL LEMMAS

Next, we present two useful lemmas related to bound the directional gradients Dy, Dv and Dx, and
the smoothness constant of function Φ.

Lemma 1 (Dagréou et al. 2022, Lemma 3.4) Let Assumption 1 and 2 hold, there exist constants
Ly, Lv and Lx such that

∥Dy(y, v, x)∥2 ≤ L2
y∥y − y⋆(x)∥2,

∥Dv(y, v, x)∥2 ≤ L2
v(∥y − y⋆(x)∥2 + ∥v − v⋆(x)∥2),

∥Dx(y, v, x)∥2 ≤ L2
x(∥y − y⋆(x)∥2 + ∥v − v⋆(x)∥2),
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where Ly = LG
1 , Lv = Lx =

√
2max

(
LG

2 CF

µG
+ LF

1 , L
G
1

)
.

Lemma 2 (Ghadimi & Wang 2018, Lemma 2.2) Let Assumption 1 and 2 hold, the function Φ is
LΦ-smooth for some Lh > 0, where

LΦ = LF
1 +

2LF
1 L

G
2 + C2

FL
G
2

µG
+

LG
11L

G
1 CF + LG

1 L
G
2 CF +

(
LG
1

)2
LF
1

µ2
G

+

(
LG
1

)2
LG
2 CF

µ3
G

.

3 CONVERGENCE ANALYSIS OF SBO-LSVRG

In this section we propose SBO-LSVRG and present its convergence analysis.

3.1 SBO-LSVRG

Next we present the details of our proposed method SBO-LSVRG. The general idea is that we con-
sider the L-SVRG-like (Kovalev et al., 2020) updates for equation StoBO. We already present the
directional gradient for y, v, x in Equation (1), the main idea is that we introduce a global variable
for each full gradient computation to avoid high computation costs. Without loss of generality, we
take Dt

y = ∇yG(y, x) as an example. Suppose at iteration t, we sample i ∈ [n] and j ∈ [m]. For
simplexity, we are interested in the uniform sampling which means qy = 1/n, qx = 1/m. Then the
updating rule in SBO-LSVRG is

Dt
y = ∇yGi(y

t, xt)−∇yGi(w
t
y, w

t
x) +∇yG(wt

y, w
t
x). (4)

Similar to Defazio et al. (2014) and Dagréou et al. (2022), we can view out method as having two
“parallel” memories for each variable set (wt

y, w
t
v, w

t
x) for i ∈ [n] corresponding to calls in G and

(w′t
y , w

′t
v , w

′t
x ) for j ∈ [m] corresponding to calls to F , which reflects on the sampling of Gi and Fj ,

respectively. We can formulate the update as follows

{wt+1
y , wt+1

v , wt+1
x } =

{{wt
y, w

t
v, w

t
x} with probability(1− qy)(1− qx)

others otherwise.
(5)

Then, the updating for the other two directional gradients for v and x are as follows

Dt
v = ∇2

yyGi(y
t, xt)vt −∇2

yyGi(w
t
y, w

t
x)w

t
v +∇2

yyG(wt
y, w

t
x)w

t
v

+∇yFj(y
t, xt)−∇yFj(w

′t
y , w

′t
x ) +∇yF (w′t

y , w
′t
x )

Dt
x = ∇2

xyGi(y
t, xt)vt −∇2

xyGi(w
t
y, w

t
x)w

t
v +∇2

xyG(wt
y, w

t
x)w

t
v

+∇xFj(y
t, xt)−∇xFj(w

′t
y , w

′t
x ) +∇xF (w′t

y , w
′t
x )

(6)

Combining the updating rules in Equation (5) and Equation (6), now its clear that we will have
probability (1 − qy)(1 − qx) with constant gradient computes and the rest of probability with the
same number of gradient computes as SABA and SOBA. In practice, m and n are supposed to be
very large, considering the uniform probability qy = 1/n and qx = 1/m, and then (1− qy)(1− qx)
will be very close to 1, which means we always have less gradient computes compared with SABA
and SOBA Besides, our space memory cost is constant as we only need to store six global variables
(wt

y, w
t
v, w

t
x, w

′,t
y , w′,t

v , w′,t
x ).

It’s obvious to know they are all unbiased estimators w.r.t. i and j, e.g.,

Et

[
Dt

y(y
t, vt, xt)

]
=

n∑
i=1

1

n
∇yGi(y

t, xt)−
n∑

i=1

1

n
∇yGi(w

t
y, w

t
x) +∇yG(wt

y, w
t
x)

=
1

n

n∑
i=1

∇yGi(y
t, xt) := Dy(y

t, vt, xt).

(7)

We present the algorithm details of SBO-LSVRG in Algorithm 1.
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Algorithm 1 SBO-LSVRG: Loopless SVRG for optimizing Equation (StoBO)

1: Parameters: Initialize y0 ∈ Rp, z0 ∈ Rp, x0 ∈ Rd, number of iterations T , step size sequences
{αt

y}t<T , {αt
v}t<T and {αt

x}t<T .
2: for t = 0, 1, . . . , T − 1 do
3: Compute the directional gradient Dt

y for y by Equation (4).
4: Compute the directional gradient Dt

x and Dt
v by Equation (6).

5: Update y : yt+1 = yt − ρtDt
y .

6: Update v : vt+1 = vt − ρtDt
v .

7: Update x : xt+1 = xt − γtDt
x.

8: Update stored global memory by Equation (5).
9: end for

3.2 CONVERGENCE ANALYSIS

Now, we are ready to present our main theory.

Theorem 1 (Convergence of SBO-LSVRG.) Assume Assumptions 1, 2, 3 hold. Let xt the iterates
of SBO-LSVRG. Following the updating rules Equations (4) and (6) to optimize StoBO. Then,

1

T

T∑
t=1

E
[∥∥∇h(xt)

∥∥2] = O
(
(m+n)2/3/T

)
.

Theorem 1 emphasizes that the expected second moment of the conjugated gradient will be bounded
by O((m+n)2/3/T), where m and n is the number of the finite-sum for the outer and the inner prob-
lems. This result leads to the convergence rate O(ϵ−1), which is optimal in stochastic bilevel opti-
mization. Given that the oracle calls per iteration amount to O(1), it follows that the sample com-
plexity is O(ϵ−1). To the best of our knowledge, this sample complexity is also optimal. Next, our
focus will shift to exploring the convergence rates of downstream tasks. In this context, single-level
optimization with the finite-sum form is a standard approach in federated learning. Additionally,
minimax optimization is a popular formulation for the training of generative adversarial networks.

Corollary 1 (Single-level optimization) Although the work of Kovalev et al. (2020) reveals that
the iteration complexity of L-SVRG, when dealing with a µ-strongly convex problem and employing
uniform sampling, is O

(
max

{
Lmax

µ , n
}
log ϵ−1

)
, the rate under nonconvex conditions remains

unclear. We initially introduce a rate of O(n2/3ϵ−1) in our analysis by setting ρt ≡ 0.

Our theory is general and can also be extended to minimax optimization, which is the special case
by letting G := 1

n

∑n
i=1 Gi = −F := 1

m

∑m
i=1 Fj and assuming m = n:

min
x∈Rd

Φ(x) :=
1

n
max
y∈Rp

n∑
i=1

Fi(y, x) (Minimax)

Corollary 2 (Minimax optimization) The iteration complexity for solving the minimax problem
Minimax under strongly-convex setting is O(n2/3ϵ−1).

It’s clear that bilevel optimization presents more challenges than minimax optimization, a fact also
theoretically established in Ji & Liang (2023). Our proof remains consistent when addressing mini-
max optimization, leading to the rate of O(n2/3ϵ−1). This aligns with the known optimal factor of
−1 in ϵ (Zhang et al., 2019). An intriguing avenue for future research could involve reformulating
the existing proof for bilevel optimization to achieve a tighter bound for the minimax problem.

Next we consider the theoretical results based on a popular Polyak- Lojasiewicz (PL) Inequality,
which is always useful to prove the linear convergence of gradient descent methods.

Assumption 4 (Polyak- Lojasiewicz (PL) Inequality) Suppose Φinf is the bound from below such
that Φ(x) ≥ Φinf for all x ∈ Rd. Then there exists µϕ > 0 such that ∀x ∈ Rd, Φ(x) − Φinf ≤
1

2µϕ
∥∇Φ(x)∥2.
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Figure 1: Testing accuracy on the covtype dataset.

Theorem 2 (Convergence of SBO-LSVRG under PL) Assume Assumptions 1, 2, 3, 4 hold. Let xt

the iterates of SBO-LSVRG and c′ = min(Φh,
1

16P ′ ) with P ′ and the learning rate γ′ specified in
the appendix. Given C0 depending on the initialization of y, v, x. Following the updating rules
Equation (4) and Equation (6) to optimize StoBO. Then,

E
[
ΦT
]
− Φinf = (1− c′γ′)T (Φ0 − Φinf + C0).

Theorem 2 suggests the linear convergence of SBO-LSVRG. Drawing parallels with the analysis
presented in Theorem 1, we can seamlessly derive the linear convergence of SBO-LSVRG for both
minimax and single-layer finite-sum optimization tasks.

4 EXPERIMENTS

Baselines. We aimed to explore popular and easily implementable baselines that resonate with our
objectives. In our experiments, we evaluated two-loop solvers: BSA (Ghadimi & Wang, 2018) and
StocBiO (Ji et al., 2021), as well as one-loop solvers: TTSA (Hong et al., 2020), MRBO Yang et al.
(2021a), FSLA (Li et al., 2022), and SABA (Dagréou et al., 2022).

4.1 HYPERPARAMETERS SELECTION

Our primary objective is to identify optimal hyperparameters for the ℓ2 logistic regression, empha-
sizing the determination of regularization parameters. We employ the Covtype dataset (Blackard,
1998) for this purpose. The inner function, denoted as G, is expressed as

G(x, z) =
1

n

n∑
i=1

ℓ(di; z) +R(x, z),

where d1, . . . , dn represent training data samples, z is the machine learning model’s parameter, and
the loss function ℓ quantifies the accuracy with which the parameter z predicts data di.

The function also incorporates a regularization term, R, parameterized by the regularization
strengths x. This regularization encourages a specific structure on the parameters z. Conversely,
the outer function, F , is the unregularized loss over unseen data and is defined as

F (x, z) =
1

m

m∑
j=1

ℓ(d′j ; z),

where d′1, . . . , d
′
m are samples distinct from the training set but from the same underlying dataset.

The Covtype dataset facilitates the logistic regression task. In this context, data samples are denoted
as di = (ai, yi), where ai ∈ Rp are the features and yi ∈ {−1, 1} signifies the binary target. For
this regression problem, the loss is given by

ℓ(di, z) = log(1 + exp(−yia
T
i z)),
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and the regularization is defined as

R(x, z) =
1

2

p∑
j=1

exp(xj)z
2
j ,

where each coefficient in z is independently regularized by the strength exp(xj).

The dataset comprises 581, 012 samples, each characterized by p = 54 features, and spanning across
7 distinct classes. For our experiments, we utilized n = 371, 847 samples for training, m = 92, 962
samples for validation, and the remaining 116, 203 samples for testing. We applied a multiclass
logistic regression to this dataset, designating one hyperparameter for each class.

We showcase the testing accuracy results in Figure 1. The left-hand side of Figure 1 displays a
comparative analysis of the absolute distance between the current value and the optimal. The x-axis
represents the number of iterations. Notably, when contrasted with prevalent baselines, our proposed
SBO-LSVRG not only converges more swiftly but also settles closer to the optimal value.

Furthering our examination, the right-hand side of Figure 1 quantifies the temporal and spatial com-
plexities associated with each baseline. More explicitly, let τa denote the time usage and τb symbol-
ize the space consumption. We characterize the presented oracle as τa+λτb, where λ > 0 serves as a
weighting factor harmonizing the impacts of both time and space expenditures. In our experiments,
we’ve set λ = 0.001.

A prominent observation is that our SBO-LSVRG consistently outperforms other baselines. Our
keen interest gravitates towards its juxtaposition with SABA, given both share an identical optimal
convergence rate. Yet, SABA exhibits a pronounced lag, chiefly attributable to its substantial space
cost—a finding congruent with our theoretical predictions.

4.2 DATA HYPER-CLEANING

Our next endeavor involves applying the concept of data hyper-cleaning, as introduced by Franceschi
et al. (2017), to the MNIST dataset (LeCun, 1998). We segregate the dataset into three distinct sets:
a training set (dtri , y

tr
i ) consisting of 20,000 samples, a validation set (dvali , yvali ) with 5,000 samples,

and a test set holding 10,000 samples. The labels, denoted as y, span values from 0 to 9, and the
sample features, represented by x, have a dimensionality of 784.

Within the training set, each sample faces potential ”corruption” with a probability p. A sample is
deemed corrupted if its original label yi gets substituted by a random label from the range 0− 9.
Notably, the validation and test samples remain pristine, free from any corruption.

The crux of data hyper-cleaning is to meticulously train a multinomial logistic regression on the
training set, with the overarching goal to discern a distinct weight for each training sample. Ideally,
the weights attributed to corrupted samples should gravitate towards 0.

This principle finds its expression in the bilevel optimization problem delineated by equation StoBO.
Herein, F (θ, λ) = 1

m

∑m
i=1 ℓ(θd

val
i , yvali ) and G(θ, λ) = 1

n

∑n
i=1 σ(λi)ℓ(θd

tr
i , y

tr
i )+Cr|θ|2, where

ℓ stands for the cross-entropy loss, while σ signifies the sigmoid function.

In this construct, θ operates as the inner variable, manifesting as a 10× 784 matrix. Conversely, λ,
the outer variable, is a vector spanning a dimension of ntr = 20, 000.

For our analysis, we adopted varying corruption rates, the outcomes of which are visualized in Fig-
ure 2. A distinctive trait emerges for our hyper-cleaning method: the performance on the test dataset
exhibits heightened stability relative to other baselines. For instance, while alternatives like TTSA
exhibit pronounced variance—especially at a corruption ratio of 0.5 on MNIST—our approach re-
mains consistently stable. Although stocBiO delivers commendably in hyper-parameter selection
tasks, its convergence is sporadic, especially under conditions like a corruption ratio of 0.9. In stark
contrast, our method not only converges briskly but also ensures that the convergence point remains
both stable and proximate to the optimal solution.
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Figure 2: Testing accuracy on the MNIST dataset. The x-axis represents the combined consumption
of time and space. Given the time usage τa and the memory space consumption τb, with the balanc-
ing factor λ set to 0.001, the x-axis is quantified as τa + λτb.

5 RELATED WORKS

Bilevel optimization presents a higher level of complexity compared to single-level optimization
due to its nested structure. Under specific assumptions, and leveraging the implicit function theorem
from Griewank & Walther (2008), we can obtain the hypergradient for the outer problem as:

∇Φ(x) = ∇xF (y⋆(x), x)−∇2
xyG(y⋆(x), x)

[
∇2

yyG(y⋆(x), x)
]−1 ∇yF (x, y⋆).

A key challenge lies in computing this hypergradient directly, as it requires intricate computation
of the involved Hessian, its inverse, and the Jacobian matrix. Stochastic bilevel optimization as
outlined in eq. (StoBO) proves even more challenging, given the lack of a straightforward unbiased
hypergradient estimator and the ongoing exploration of variance reduction methods for stochastic
gradient estimators.

To calculate it efficiently, three prevalent general approaches are utilized: Back Propagation through
iterations (BP), Neumann series (NS), and Conjugate gradient (CG). BP is formulated based on the
chain rule, while NS and CG are constructed on varying strategies for approximating the inverse
Hessian

[
∇2

yyG(y⋆(x), x)
]−1

. The study Li et al. (2022) introduced a general representation that
encompasses all the mentioned approaches as special cases.

Given the nested structure in Stochastic Bilevel Optimization (StoBO), two distinct strategies nat-
urally emerge. The first involves a two-loop approach, where the optimal or near-optimal y⋆(x) is
first obtained, after which x is updated accordingly (Ghadimi & Wang, 2018; Ji et al., 2021; Yang
et al., 2021b; Arbel & Mairal, 2021; Ji & Liang, 2023). A more direct single-loop strategy proposes
updating all parameters simultaneously (Hong et al., 2020; Guo et al., 2021b; Yang et al., 2021a;
Chen et al., 2022; Khanduri et al., 2021; Guo et al., 2021a; Akhtar et al., 2021; Li et al., 2022).
As the two-loop methods tend to be inefficient due to the separation in the optimization design, we
focus our attention on the single-loop optimization method. Our study is motivated by the novel
single-loop network proposed in Dagréou et al. (2022).

In order to reduce the noise introduced by stochastic estimation in StoBO, variance reduction tech-
niques are also utilized (Cutkosky & Orabona, 2019; Defazio et al., 2014; Kovalev et al., 2020). We
provide a more comprehensive discussion of existing variance reduction methods in the Appendix.
Our interest lies in the types and implementation of variance reduction methods within StoBO.

Due to the task’s challenging nature, only a few works have addressed this issue (Guo et al., 2021a;
Yang et al., 2021b; Dagréou et al., 2022). The SVRB algorithm contemplates a single-loop method,
drawing inspiration from the technique of STORM (Cutkosky & Orabona, 2019), which employs a
variant of the momentum term akin to Adam (Kingma & Ba, 2015). Concurrently, VRBO leverages
SARAH (Nguyen et al., 2017) and achieves state-of-the-art iteration complexity among double-loop
methods.

Rather than incorporating momentum-based variance reduction techniques to solve eq. (StoBO),
the SABA algorithm Dagréou et al. (2022) attained state-of-the-art performance by using a simpler
SAGA-like (Defazio et al., 2014) update. Nevertheless, SABA lacks memory efficiency due to the

8
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need to store a large number of local weights. When the number of distribution parameters m and n
for the outer- and inner-level problems are significant, SABA becomes highly cost-intensive.

Motivated by L-SVRG (Kovalev et al., 2020), we propose a new algorithm termed SBO-LSVRG,
which substantially reduces the memory cost of SABA while achieving optimal iteration complexity.

A concurrent work, SRBA (Dagréou et al., 2023), also builds on the single-loop framework proposed
by Dagréou et al. (2022) and utilizes the SARAH recursive structure for updating stochastic gradient
estimates. Nonetheless, the recursive structure of SRBA leads to an increased sample complexity
per iteration. Setting the number of inner iterations p− 1 = m+ n− 1 yields a sample complexity
per iteration of O(m + n), leading to a total sample complexity at a stationary point of O((m +
n)1/2ϵ−1 ∨ (m+ n)) as detailed in Corollary 3.6 in SRBA. In practical scenarios with significantly
large m or n, the sample complexity becomes O(m+n). In contrast, our method achieves a sample
complexity of O((m+n)2/3ϵ−1). Especially when m or n is large, our method proves more efficient
by a factor of (m+ n)1/6. Furthermore, SRBA’s analysis right below Corollary 3.6 reveals that for
large m + n, the sample complexity approaches O(ϵ−2), which is suboptimal with respect to ϵ. In
conclusion, as m + n becomes large (indicating an increase in data volume), the memory space
required in SABA for storing additional status vectors becomes substantial and increases linearly.
Meanwhile, SRBA’s sample complexity deviates from the optimal O(ϵ−1). Our method, in contrast,
is more practical for large-scale data scenarios and effectively addresses these issues.

6 FUTURE WORK

One interesting future work is the experiments on Federated Learning (FL) tasks. FL is a burgeoning
framework in machine learning that allows multiple clients to perform computations on their own
private data, while periodically communicating with a remote server. The StoBO problem outlined
in StoBO can be adapted to a federated learning scenario by setting m = n, where n represents the
number of clients.

One intriguing interpretation of bilevel optimization for federated learning could involve person-
alization, akin to what was presented in Hanzely et al. (2023). Here, we optimize the following
objective:

min
ω

F (ω, β) :=
1

m

m∑
i=1

Fj(ω, βj),

In this scenario, βj is a specific optimal value for personalization. For instance, works such as
Gasanov et al. (2021) and Kai et al. (2023) proposed that this could be a local optimum. This
concept could be expanded to include the interpolation of the inner and outer output within a nested
structure. Here, fine-tuning would occur post-acquisition of the global ω, thereby updating the local
β. Exploring the performance of SBO-LSVRG under FL setting could be of vital importance.

7 CONCLUSION

In summary, this paper tackles the intricate challenges posed by Stochastic Bilevel Optimization
(StocBO) within the realm of machine learning. We introduce the innovative SBO-LSVRG method,
drawing inspiration from Loopless-SVRG (LSVRG). Remarkably, while retaining the optimal itera-
tion complexity of the recently proposed SABA, our method markedly trims memory costs, present-
ing a robust solution for extensive problems. A pivotal highlight is that SBO-LSVRG represents the
pioneering application of LSVRG in bilevel optimization, even under non-convex frameworks, and
exhibits unparalleled convergence rates. These breakthroughs chart an exciting course for forthcom-
ing inquiries and advancements in StocBO.
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A OVERVIEW AND COMPARATIVE ANALYSIS OF VARIANCE REDUCTION
TECHNIQUES

This section provides an overview and comparison of several pertinent variance reduction methods.
We presuppose, for the sake of simplicity and without loss of generality, that our objective is to
optimize a single-level finite-sum optimization model given by

min
x∈Rd

F (x) =
1

m

m∑
i=1

Fi(x),

where x denotes the optimization parameter, m represents the quantity of nodes, clients, or data
points, and Fi serves as the objective function for each index i within the range of [m]. The focal
point of our discussion revolves around the comparison of variance-reduced techniques including
STOchastic Recursive Momentum (STORM) (Cutkosky & Orabona, 2019), Stochastic Average Gra-
dient Algorithm (SAGA) (Defazio et al., 2014), StochAstic Recursive grAdient algoritHm (SARAH),
and Loopless Stochastic Variance Reduced Gradient (L-SVRG) (Kovalev et al., 2020).

STORM. STORM achieves variance reduction by utilizing a variant of the momentum term, akin
to the momentum heuristic in the Adam optimization algorithm (Kingma & Ba, 2015). The momen-
tum term is updated by the following rule:

ct = g(xt) + (1− γt)(ct−1 − g(xt−1)),

given the decay parameter γt, the current gradient estimate ∇g(xt), and the preceding gradient
estimate ∇g(xt−1). Consequently, it is necessary to maintain the prior gradient g(xt−1) and the
previous momentum term ct−1.

SAGA. SAGA (Defazio et al., 2014) employs a gradient estimator for its operations. Assuming that
we randomly sample the index i from the range [m], the gradient estimator for SAGA at iteration t
is given by:

gt = ∇fi(x
t)−∇fi(w

t
i) +

1

n

n∑
j=1

∇fj(w
t
j),

where wt
j denotes the stored local vector for each node j and is updated as:

wt+1
j =

{
xt j = i

wt
j j ̸= i.

Despite its simplicity and impressive performance in practical scenarios, SAGA lacks memory effi-
ciency due to the requirement to store m local vectors, each with a dimensionality of d.

SARAH. SARAH Nguyen et al. (2017) utilizes a recursive framework to update stochastic gradient
estimates. Assuming i is sampled uniformly at random from the set [m], we define the gradient
estimator as follows:

gt = ∇fi(x
t)−∇fi(x

t−1) + gt−1, where xt+1 = xt − γgt.

L-SVRG. L-SVRG (Kovalev et al., 2020), a technique inspired by the original SVRG
method (Johnson & Zhang, 2013), eliminates the outer loop and employs a probabilistic update
of the full gradient. Assuming the index i is sampled uniformly at random from the range [m], the
gradient estimator for L-SVRG at iteration t is:

gt = ∇fi(x
t)−∇fi(w

t) +∇f(wt),

13
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with the globally stored weight wt updated as follows:

wt+1 =

{
xt with probability p

wt with probability 1− p.

L-SVRG offers enhanced flexibility and memory efficiency when compared to SAGA. Firstly, we
can select different values of p; when p = 1/m (uniform sampling), Kovalev et al. (2020) recovers
the same convergence rate as SAGA under convex settings. The performance under non-convex
conditions remains uncertain; nonetheless, we present the first convergence result with O(1/ϵ) in
this paper. Secondly, we assert that L-SVRG is more efficient since it only requires storing one global
weight wt rather than individual node-wise ones, a factor that inspired this paper.

B BASIC FACTS

B.1 BREGMAN DIVERGENCE, L-SMOOTHNESS AND µ-STRONGLY CONVEXITY

The Bregman divergence of a differentiable function f : Rd → R for all x, y ∈ Rd is defined by

Df (x, y) := f(x)− f(y)− ⟨∇f(y), x− y⟩ . (8)

Then it is easy to have

⟨∇f(x)−∇f(y), x− y⟩ = Df (x, y) +Df (y, x), ∀x, y ∈ Rd. (9)

We say a function f : Rd → R is L-smooth if for all x, y ∈ Rd, we have

Df (x, y) ≤
L

2
∥x− y∥2 and

1

2L
∥∇f(x)−∇f(y)∥2 ≤ Df (x, y). (10)

Similarly, we say f µ-strongly convex if

µ

2
∥x− y∥2 ≤ Df (x, y) and Df (x, y) ≤

1

2µ
∥∇f(x)−∇f(y)∥2. (11)

B.2 VARIANCE DECOMPOSITIOIN

For a random vector x ∈ Rd (with finite second moment) and any c ∈ Rd, the variance can be
decomposed as

E
[
∥x− E [x]∥2

]
= E

[
∥x− c∥2

]
− ∥E [x]− c∥2. (12)

B.3 YOUNG’S INEQUALITY

For any two vectors x, y ∈ Rd, we have

∥x+ y∥2 ≤ 2∥x∥2 + 2∥y∥2. (13)

An extended version of Youngs’s inequality is for all x, y ∈ Rd, α > 0, we have

⟨x, y⟩ ≤ ∥x∥2
2α

+
α∥y∥2

2
. (14)
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B.4 JENSEN’S INEQUALITY

For a convex function h : Rd → R and any vectors x1, · · · , xn ∈ Rd, we have

h

(
1

n

n∑
i=1

xi

)
≤ 1

n

n∑
i=1

h(xi). (15)

Consider the squared norm with h(x) = ∥x∥2, we have

∥∥∥∥∥ 1n
n∑

i=1

xi

∥∥∥∥∥
2

≤ 1

n

n∑
i=1

∥xi∥2. (16)

C MISSING PROOFS

C.1 PROOF OF THEOREM 1

STEP 1: Bound the error between the iterates and the memories We first control the error
between the iterates and the memories. We define the following to make things simpler

Et
y =

1

n

n∑
i=1

E
[∥∥yt − wt

y

∥∥2] , Et
v =

1

n

n∑
i=1

E
[∥∥vt − wt

v

∥∥2] , Et
x =

1

n

n∑
i=1

E
[∥∥xt − wt

x

∥∥2]
For the corresponding calls to F , similarly we have E′t

y , E
′t
v and E′t

x with probabilities qx and q′x.

We first prove the bound for Et
y . Recall the updating rule of SBO-LSVRG,

wt+1
y =

{
yt with qy
wt

y with 1− qy,

we have

Et

[∥∥yt+1 − wt+1
y

∥∥2] = qyEt

[∥∥yt+1 − yt
∥∥2]+ (1− qy)Et

[∥∥yt+1 − wt
y

∥∥2]︸ ︷︷ ︸
T1

(17)

Using the unbiasedness property of Et

[
Dt

y(y
t, vt, xt)

]
in Eqn. 7, assume the constant learning rates

ρ and γ, we have

T1 = Et

[∥∥yt+1 − yt + yt − wt
y

∥∥2]
= Et

[∥∥yt+1 − yt
∥∥2]+ Et

[∥∥yt − wt
y

∥∥2]+ 2E
[〈
yt+1 − yt, yt − wt

y

〉]
7
= Et

[∥∥yt+1 − yt
∥∥2]+ Et

[∥∥yt − wt
y

∥∥2]− 2ρ
〈
Dy(y

t, vt, xt), yt − wt
y

〉
16
= Et

[∥∥yt+1 − yt
∥∥2]+ ρ

α

∥∥Dy(y
t, vt, xt)

∥∥2 + (1 + ρα)
∥∥yt − wt

y

∥∥2
(18)

Put Eqn.18 into Eqn.17 and take the expectation over all i, we have

Et+1
y :=

1

n

n∑
i=1

E
[∥∥yt+1 − wt+1

y

∥∥2]
≤ (1 + ρα)(1− qy)E

t
y + ρ2E

[∥∥Dt
y

∥∥2]+ ρ

α
(1− qy)E

[∥∥Dy(y
t, vt, xt)

∥∥2] . (19)
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By setting α = 1
2nρ and define Dy(t) := Dy(y

t, vt, xt), we have

Et+1
y ≤

(
1− 1

2n

)
Et

y + ρ2E
[∥∥Dt

y

∥∥2]+ 2nρ2E
[
∥Dy(t)∥2

]
, (20)

Similarly, for other terms, we have

Et+1
v ≤

(
1− 1

2n

)
Et

v + ρ2E
[∥∥Dt

v

∥∥2]+ 2nρ2E
[
∥Dv(t)∥2

]
,

Et+1
x ≤

(
1− 1

2n

)
Et

x + γ2E
[∥∥Dt

x

∥∥2]+ 2nρ2E
[
∥Dx(t)∥2

]
,

E′t+1
y ≤

(
1− 1

2m

)
Et

y + ρ2E
[∥∥Dt

y

∥∥2]+ 2nρ2E
[
∥Dy(t)∥2

]
,

E′t+1
v ≤

(
1− 1

2m

)
Et

v + ρ2E
[∥∥Dt

v

∥∥2]+ 2nρ2E
[
∥Dv(t)∥2

]
,

E′t+1
x ≤

(
1− 1

2m

)
Et

x + ρ2E
[∥∥Dt

x

∥∥2]+ 2nγ2E
[
∥Dx(t)∥2

]
.

(21)

Noticed that for the above bounds, each term should not be necessary to be bounded with conditions
qy, q

′
y, qx, q

′
x.

STEP 2: Bound the expected variances Dt
y, D

t
v, D

t
x. Now we are ready to bound the variances

w.r.t. E
[∥∥Dt

y

∥∥2] ,E [∥Dt
v∥

2
]
,E
[
∥Dt

x∥
2
]
.

Suppose we consider i sampled from [n] at iteration t, we have

Dt
y = ∇yGi(y

t, xt)−∇yGi(w
t
y, w

t
x) +∇yG(wt

y, w
t
x) .

Then we have

Et[∥Dt
y(y

t, vt, xt)∥2] = Et[∥∇yGi(y
t, xt)−∇yGi(w

t
y, w

t
x) +∇yG(wt

y, w
t
x) (22)

−∇yG(yt, xt) +∇yG(yt, xt)∥2] (23)
15
≤ 2∥∇yG(yt, xt)∥2 + 2Et[∥∇yGi(y

t, xt)−∇yGi(w
t
y, w

t
x) (24)

+∇yG(wt
y, w

t
x)−∇yG(yt, xt)∥2] . (25)

Using the unbiaseness property (Eqn. 7) again, the second term is the variance of ∇yGi(y
t, xt) −

∇yGi(w
t
y, w

t
x), which can be upper-bounded by

Et[∥∇yGi(y
t, xt)−∇yGi(w

t
y, w

t
x) +∇yG(wt

y, w
t
x)−∇yG(yt, xt)∥2] (26)

12
= Et[∥[∇yGi(y

t, xt)−∇yGi(w
t
y, w

t
x)∥2]−

∥∥E [∇yGi(y
t, xt)−∇yGi(w

t
y, w

t
x)
]∥∥2

(27)

≤ Et[∥[∇yGi(y
t, xt)−∇yGi(w

t
y, w

t
x)∥2] (28)

=
1

n

n∑
i=1

∥[∇yGi(y
t, xt)−∇yGi(w

t
y, w

t
x)∥2 (29)

10
≤ L′

y

n

n∑
i=1

(∥yt − wt
y∥2 + ∥xt − wt

x∥2) (30)

where the last inequality comes from the Lipschitz continuity of each ∇yGi with L′
y =

maxi∈[n] L
Gi
y with the definition of smoothness in Eqn. 10.
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Then by putting equation 26 into equation 22 and taking the total expectation, we have

E[∥Dt
y(y

t, vt, xt)∥]2 ≤ 2E[∥Dy(y
t, vt, xt)∥2] + 2L′

y(E
t
y + Et

x) . (31)

Later we consider the bound on v, it holds

Et[∥Dt
v(y

t, vt, xt)∥2] =Et[∥∇yFj(y
t, xt)−∇yFj(w

′t
y, w

′t
x) +∇yF (w′t

y, w
′t
x) (32)

+∇2
yyGi(y

t, xt)vt −∇2
yyGi(w

t
y, w

t
x)w

t
v +∇2

yyG(w′t
y, w

′t
x)w

′t
v (33)

−Dv(y
t, vt, xt) +Dv(y

t, vt, xt)∥2] (34)

≤2[∥Dv(y
t, vt, xt)∥2 (35)

+ 2Et[∥∇yFj(y
t, xt)−∇yFj(w

′t
y, w

′t
x) +∇yF (w′t

y, w
′t
x) (36)

+∇2
yyGi(y

t, xt)vt −∇2
yyGi(w

t
y, w

t
x)w

t
v +∇yyG

2(w′t
y, w

′t
x)w

′t
v (37)

−Dv(y
t, vt, xt)∥2] (38)

Then we control the variance of ∇yFj(y
t, xt) − ∇yFj(w

′t
y, w

′t
x) + ∇2

yyGi(y
t, xt)vt −

∇2
yyGi(w

t
y, w

t
x)w

t
v . Since i and j are independent, this is a sum of two independent random vari-

ables, hence its variance is the sum of the variances, which is upper-bounded by

Et[∥∇yFj(y
t, xt)−∇yFj(w

′t
y, w

′t
x)∥2] + Et[∥∇2

yyGi(y
t, xt)vt −∇2

yyGi(w
t
y, w

t
x)w

t
v∥2] .

For Et[∥∇yFj(y
t, xt)−∇yFj(w

′t
y, w

′t
x)∥2] we use the Lipschitz continuity of the ∇yFj :

Et[∥∇yFj(y
t, xt)−∇yFj(w

′t
y, w

′t
x)∥2] ≤

[
max
j∈[m]

L
Fj

1

]
Et[∥yt − wt

j∥2 + ∥xt − wt
x∥2] (39)

≤
[
max
j∈[m]

L
Fj

1

]
1

m

m∑
j=1

(∥yt − wt
j∥2 + ∥xt − wt

x∥2) .

(40)

Managing the expectation Et[∥∇2
yyGi(y

t, xt)vt−∇2
yyGi(w

t
y, w

t
x)w

t
v∥2]presents a greater challenge

without the initial assumption of v’s boundedness. However, we can navigate around this complexity
by introducing ∇2

yyGi(y
∗(xt), xt)v∗(xt):

Et[∥∇2
yyGi(y

t, xt)vt −∇2
yyGi(w

t
y, w

t
x)w

t
v∥2] ≤ 4{Et[∥∇2

yyGi(y
t, xt)(vt − v∗(xt))∥2] (41)

+ Et[∥(∇2
yyGi(y

t, xt)−∇2
yyGi(y

∗(xt), xt))v∗(xt)∥2]
+ Et[∥(∇2

yyGi(y
∗(xt), xt)−∇2

yyGi(w
t
y, w

t
x))v

∗(xt)∥2]
+ Et[∥∇2

yyGi(w
t
y, w

t
x)(v

∗(xt)− wt
v)∥2]}

≤ 4((max
i∈[n]

LGi
1 )∥vt − v∗(xt)∥2 + (max

i∈[n]
LGi
2 )

CF

µG
∥yt − y∗(xt)∥2 (42)

+ (max
i∈[n]

LGi
2 )

CF

µG
(∥xt − wt

x∥2 + 2(∥yt − y∗(xt)∥2 + ∥yt − wt
y∥2))

+ (max
i∈[n]

LGi
1 )(∥xt − wt

x∥2 + 2(∥vt − v∗(xt)∥2 + ∥vt − wt
v∥2))

Taking the total expectation with defining L′
v = 4max

(
2maxi∈[n] L

Gi
1 , 2maxi∈[n] L

Gi
2

CF

µG
,maxj∈[m] L

Fj

1

)
and L′′

v = 4max
(
3maxi∈[n] L

Gi
1 ), 3maxi∈[n] L

Gi
2 )C

F

µG

)
, we have

E[∥Dt
v(y

t, vt, xt)∥2] ≤ 2E[∥Dv(y
t, vt, xt)∥2] + 2L′

v(E
t
y +Et

x +Et
v +E′t

z +E′t
x )+2L′′

v(δ
t
z + δtv).

(43)

Similarly for x we have

17
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E[∥Dt
x(y

t, vt, xt)∥2] ≤ 2E[∥Dx(y
t, vt, xt)∥2] + 2L′

x(E
t
y +Et

x +Et
v +E′t

z +E′t
x )+2L′′

x(δ
t
z + δtv)

(44)

We define St = Et
y + Et

x + Et
v + E′t

z + E′t
v + E′t

x , and letting Γ = min( 1
m , 1

n ). Note that
by definition, each quantity Et

y is smaller than St. We will therefore use the cruder bounds on
E[∥Dt

y∥2], E[∥Dt
v∥2] and E[∥Dt

x∥2] as follows

E[∥Dt
y(y

t, vt, xt)∥2] ≤ 2L2
zδ

t
y + 2L′

zS
t (45)

E[∥Dt
v(y

t, vt, xt)∥2] ≤ 2(L2
v + L′′

v)(δ
t
y + δtv) + 2L′

vS
t (46)

and
E[∥Dt

x(y
t, vt, xt)∥2] ≤ 2E[∥Dx∥2] + 2L′

xS
t + 2L′′

x(δ
t
z + δtv) . (47)

We have the following lemma

Lemma 3 If 4ρ2(L′
z + L′

v) + 4γ2L′
x ≤ Γ

2 and 4L′′
xγ

2 ≤ ρ2(L2
v + 4L′′

v), it holds

St+1 ≤
(
1− Γ

2

)
St + βszρ

2δty + βsvρ
2δtv + Pγ2E[∥Dx∥2]

for some Ls, βsz, P > 0.

Proof: It holds based on the previous analysis

St+1 ≤ (1− Γ)St + E
[
2ρ2(∥Dt

y∥2 + ∥Dt
v∥2) + 2γ2∥Dt

x∥2

+2(m+ n)[ρ2(∥Dz∥2 + ∥Dv∥2) + γ2∥Dx∥2]
]

.

Using the previous bounds equation 31, equation 43 and equation 44, we get

St+1 ≤
(
1− Γ + 4ρ2(L′

z + L′
v) + 4γ2L′

x

)
St + (2(m+ n) + 4)E[ρ2(∥Dz∥2 + ∥Dv∥2)

+ γ2∥Dx∥2]+4L′′
vρ

2(δtz + δtv) + 4L′′
xγ

2(δtz + δtv) .

Next, using 4ρ2(L′
z + L′

v) + 4γ2L′
x ≤ Γ

2 and letting P = (2(m+ n) + 4) we get

St+1 ≤
(
1− Γ

2

)
St+PE[ρ2(∥Dz∥2+∥Dv∥2)+γ2∥Dx∥2]++4L′′

vρ
2(δtz + δtv) + 4L′′

xγ
2(δtz + δtv).

To finish, we use 1 to have

St+1 ≤
(
1− Γ

2

)
St + P [ρ2((L2

y +L2
v)δ

t
y +L2

vδ
t
v)+(4L′′

vρ
2 + 4L′′

xγ
2)(δtz + δtv) + γ2E[∥Dx∥2]].

Then, using that 4L′′
xγ

2 ≤ ρ2(L2
v + 4L′′

v), we get the bound, letting Lsz = L2
y + L2

v + 4L′′
v and

Lsv = L2
v + 4L′′

v :

St+1 ≤
(
1− Γ

2

)
St + βszρ

2δty + βsvρ
2δtv + Pγ2E[∥Dx∥2]

with βsz = 2PLsz , βsv = 2PLsv . ■

STEP 3: Putting it all together. Recall that we denote gt = E[∥∇h(xt)∥2] and ht = E[h(xt)],
hence we have the following descent lemma

18
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Lemma 4 If

ρ ≤ min

(
µG

64L2
y

,
βzx

2βzx
,

µG

128(L2
v + L′′

v)
,

βvz

8(L2
v + L′′

v)
,
βvx

2βvx

)
and

γ ≤ min

(√
ρµG

64βzxL′′
x

,

√
L′
z

2L′
xβzx

ρ,

√
ρµG

128βvxL′′
x

,

√
ρβvz

4L′′
xβvx

,

√
L′
v

2L′
xβvx

ρ,
1

4Lh
,

L2
x

2LhL′′
x

)
then it holds

δt+1
z ≤

(
1− ρµG

8

)
δtz + 2L′′

xβzxγ
2δtv + 5L′

zρ
2St + 2βzx

γ2

ρ
E[∥Dx(y

t, vt, xt)∥2] , (48)

δt+1
v ≤

(
1− ρµG

16

)
δtv + 3βvzρδ

t
y + 5L′

vρ
2St + 2βvx

γ2

ρ
E[∥Dx(y

t, vt, xt)∥2] (49)

and

ht+1 ≤ ht − γ

2
gt − γ

4
E[∥Dx(y

t, vt, xt)∥2] + L2
xγ(δ

t
z + δtv) + LhL′

xγ
2St . (50)

Proof: We first have

δt+1
z ≤

(
1− ρµG

4
+ 4L2

yρ
2 + 4βzxL

′′
xγ

2
)
δtz + 2L′′

xβzxγ
2δtv (51)

+ (4L′
zρ

2 + 2L′
xβzxγ

2)St +

(
2βzxγ

2 + βzx

γ2

ρ

)
E[∥Dx(y

t, vt, xt)∥2]

Since ρ ≤ µG

64L2
y

and γ2 ≤ ρµG

64βzxL′′
x

, we have

−ρµG

4
+ 4L2

yρ
2 + 4βzxL

′′
xγ

2 ≤ −ρµG

8
. (52)

The condition γ2 ≤ L′
z

2L′
xβzx

ρ2 gives us

4L′
zρ

2 + 2L′
xβzxγ

2 ≤ 5L′
zρ

2 . (53)

With ρ ≤ βzx

2βzx
, we get

2βzxγ
2 + βzx

γ2

ρ
≤ 2βzx

γ2

ρ
. (54)

We can plug Equations equation 52, equation 53 and equation 54 into above and we end up with

δt+1
z ≤

(
1− ρµG

8

)
δtz + 2L′′

xβzxγ
2δtv + 5L′

zρ
2St + 2βzx

γ2

ρ
E[∥Dx(y

t, vt, xt)∥2] .

The proof for δtv is quite similar. From above,

δt+1
v ≤

(
1− ρµG

8

)
δtv + βvzρδ

t
y + 2ρ2V t

v + βvxγ
2V t

x + βvx

γ2

ρ
E[∥Dx(y

t, vt, xt)∥2] (55)

≤
(
1− ρµG

8
+ 4(L2

v + L′′
v)ρ

2 + 4L′′
xβvxγ

2
)
δtv + (4(L2

v + L′′
v)ρ

2 + 2L′′
xβvxγ

2 + βvzρ)δ
t
y+

(56)

+
(
4L′

vρ
2 + 2L′

xβvxγ
2
)
St +

(
2βvxγ

2 + βvx

γ2

ρ

)
E[∥Dx(y

t, vt, xt)∥2] .

Using ρ ≤ µG

128(L2
v+L′′

v )
and γ2 ≤ ρµG

128L′′
xβvx

, we get

−ρµG

8
+ 4(L2

v + L′′
v)ρ

2 + 4L′′
xβvxγ

2 ≤ −ρµG

16
. (57)
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With γ2 ≤ ρβvz

4L′′
xβvx

and ρ ≤ βvz

8(L2
v+L′′

v )
, we have

4(L2
v + L′′

v)ρ
2 + 2L′′

xβvxγ
2 + βvzρ ≤ 3βvzρ . (58)

The condition γ2 ≤ L′
v

2L′
xβvx

ρ2 yields

4L′
vρ

2 + 2L′
xβvxγ

2 ≤ 5L′
vρ

2 . (59)

With ρ ≤ βvx

2βvx
we get

2βvxγ
2 + βzx

γ2

ρ
≤ 2βvx

γ2

ρ
. (60)

As a consequence of Equations equation 57, equation 58, equation 59 and equation 60, we have

δt+1
v ≤

(
1− ρµG

16

)
δtv + 3βvzρδ

t
y + 5L′

vρ
2St + 2βvx

γ2

ρ
E[∥Dx(y

t, vt, xt)∥2] .

For the inequality on ht, we start from equation 47

ht+1 ≤ ht − γ

2
gt −

(γ
2
− Lhγ2

)
E[∥Dx(y

t, vt, xt)∥2] (61)

+

(
L2
x

2
γ + LhL′′

xγ
2

)
(δtz + δtv) + LhL′

xγ
2St .

Assuming γ ≤ min
(

1
4Lh ,

L2
x

2LhL′′
x

)
leads

ht+1 ≤ ht − γ

2
gt − γ

4
E[∥Dx(y

t, vt, xt)∥2] + L2
xγ(δ

t
z + δtv) + LhL′

xγ
2St . (62)

■

We are now ready to prove the final results.

Proof: We consider the Lyapunov function

Lt = ht + ϕsS
t + ϕzδ

t
y + ϕvδ

t
v (63)

for some constants ϕs, ϕz and ϕv .

We have

Lt+1 − Lt ≤ −γ

2
gt −

(
γ

4
− 2ϕzβzx

γ2

ρ
− 2ϕvβvx

γ2

ρ
− ϕsPγ2

)
E[∥Dx(y

t, vt, xt)∥2]

−
(
ϕz

µG

8
ρ− L2

xγ − 8ϕvβvzρ− ϕsβszρ
2
)
δtz

−
(
ϕv

µG

16
ρ− L2

xγ − 2ϕzL
′′
xγ

2 − ϕsβsvρ
2
)
δtv

−
(
ϕs

Γ

2
− 5ϕzL

′
zρ

2 − 5ϕvL
′
vρ

2 − LhL′
xγ

2

)
St .

To get a decrease, ϕz , ϕv and ϕs, ρ and γ must be such that:

2ϕzβzx

γ2

ρ
+ 2ϕvβvx

γ2

ρ
+ ϕsPγ2 ≤ γ

4

L2
xγ + 8ϕvβvzρ+ ϕsβszρ

2 ≤ ϕz
µG

8
ρ

L2
xγ + 8ϕzL

′′
xγ

2 + ϕsβsvρ
2 ≤ ϕv

µG

16
ρ

5ϕzL
′
zρ

2 + 5ϕvL
′
vρ

2 + LhL′
xγ

2 ≤ ϕs
Γ

2
.
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In order to take into account the scaling of the quantities with respect to N = n + m, we take
ρ = ρ′Nnρ , γ = γ′Nnγ , ϕz = ϕ′

zN
nz , ϕv = ϕ′

vN
nv and ϕs = ϕ′

sN
ns . Since Γ = O(N−1),

P = O(N), βsz = O(N) and βsv = O(N), we also define Γ′ = ΓN , P ′ = PN−1, β′
sz = βszN

−1

and β′
svN

−1. Now, the previous Equations read (after slight simplifications):

(2ϕ′
zβzx + 2ϕ′

vβvx)
γ′

ρ′
Nnz+nγ−nρ + ϕ′

sP
′γ′Nns+nγ+1 ≤ 1

4

L2
xγ

′Nnγ + 8ϕ′
vβvzρ

′Nnv+nρ + ϕ′
sβ

′
sz(ρ

′)2N2nρ+ns+1 ≤ ϕ′
z

µG

8
ρ′Nnz+nρ

L2
xγ

′Nnγ + 8ϕ′
zL

′′
x(γ

′)2N2nγ+nz + ϕ′
sβ

′
sv(ρ

′)2Nns+2nρ+1 ≤ ϕ′
v

µG

16
ρ′Nnv+nρ

5ϕ′
zL

′
z(ρ

′)2Nnz+2nρ + 5ϕ′
vL

′
v(ρ

′)2N2nρ+nv + LhL′
x(γ

′)2Nnγ ≤ ϕs
Γ′

2
Nns−1 .

In order to ensure that the exponents on N are lower in the left-hand-side than those on the right-
hand-side, we take nz = nv = 0, nρ = nγ = − 2

3 and ns = − 1
3 . The Equations become

(2ϕ′
zβzx + 2ϕ′

vβvx)
γ′

ρ′
+ ϕ′

sP
′γ′ ≤ 1

4

L2
xγ

′N−2/3 + 8ϕ′
vβvzρ

′N−2/3 + ϕ′
sβ

′
sz(ρ

′)2N−2/3 ≤ ϕ′
z

µG

8
ρ′N−2/3

L2
xγ

′N−2/3 + 8ϕ′
zL

′′
x(γ

′)2N−4/3 + ϕ′
sβ

′
sv(ρ

′)2N−2/3 ≤ ϕ′
v

µG

16
ρ′N−2/3

5ϕ′
zL

′
z(ρ

′)2N−4/3 + 5ϕ′
vL

′
v(ρ

′)2N−4/3 + LhL′
x(γ

′)2N−4/3 ≤ ϕ′
s

Γ′

2
N−4/3 .

We can replace the penultimate equation by the stronger

L2
xγ

′N−2/3 + 8ϕ′
zL

′′
x(γ

′)2N−2/3 + ϕ′
sβ

′
sv(ρ

′)2N−2/3 ≤ ϕ′
v

µG

16
ρ′N−2/3

so that we can simplify all the equations by dropping the dependencies in N :

(2ϕ′
zβzx + 2ϕ′

vβvx)
γ′

ρ′
+ ϕ′

sP
′γ′ ≤ 1

4

L2
xγ

′ + 8ϕ′
vβvzρ

′ + ϕ′
sβ

′
sz(ρ

′)2 ≤ ϕ′
z

µG

8
ρ′

L2
xγ

′ + 8ϕ′
zL

′′
x(γ

′)2 + ϕ′
sβ

′
sv(ρ

′)2 ≤ ϕ′
v

µG

16
ρ′

5ϕ′
zL

′
z(ρ

′)2 + 5ϕ′
vL

′
v(ρ

′)2 + LhL′
x(γ

′)2 ≤ ϕ′
s

Γ′

2
.

Let us take ϕ′
s = 1, ϕ′

z = ϕ′′
z
ρ′

γ′ and ϕ′
v = ϕ′′

v
ρ′

γ′ with ϕ′′
z = 1

32βzx

and ϕ′′
v = min

(
1

32βvx

, ϕ′′
z

µG

128βvz

)
.

The equations become

P ′γ′ ≤ 1

8

L2
xγ

′ + β′
sz(ρ

′)2 ≤ ϕ′′
z

µG

16

(ρ′)2

γ′

L2
xγ

′ + 8ϕ′′
zL

′′
xγ

′ρ′ + β′
sv(ρ

′)2 ≤ ϕ′′
v

µG

16

(ρ′)2

γ′

5ϕ′′
zL

′
z

(ρ′)3

γ′ + 5ϕ′′
vL

′
v

(ρ′)3

γ′ + LhL′
x(γ

′)2 ≤ Γ′

2
.

The condition γ′ ≤ 1
8P ′ ensures that the first equation is verified. With

γ′ ≤ min
(√

ϕ′′
z µG

32L2
x
ρ′,

ϕ′′
z µG

32β′
sz

)
, the second equations is verified. With γ′ ≤

min
(√

ϕ′′
vµG

48L2
x
ρ′,

ϕ′′
vµG

48β′
sv
,
√

ϕ′′
vµG

384ϕ′′
zL

′′
xρ

′

)
, the third is verified. With γ′ ≤

√
Γ′

6LhL′
x

, the last can
be simplified:

(5ϕ′′
zL

′
z + 5ϕ′′

vL
′
v)(ρ

′)3 ≤ Γ′

3
γ′ .
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Let us write γ′ = ξρ′. If we want that equation does no contradict the previous upper bound on γ′

involving ρ′ and the conditions of lemma 4, that is

γ′ ≤ min

(√
ϕ′′
zµG

32L2
x

,

√
ϕ′′
vµG

48L2
x

,

√
L′
z

2L′
xβzx

,

√
L′
v

2L′
xβvx

)
︸ ︷︷ ︸

K1

ρ′

γ′ ≤ min

(√
µG

64βzxL′′
x

,

√
µG

128βvxL′′
x

,

√
βvz

4L′′
xβvx

)
︸ ︷︷ ︸

K2

√
ρ′

γ′ ≤
√

ϕ′′
vµG

384ϕ′′
zL

′′
x︸ ︷︷ ︸

K3

1√
ρ′

γ′ ≤ min

(
1

4Lh
,

L2
x

2LhL′′
x

,

√
Γ′

6LhL′
x

,
1

8P ′ ,
ϕ′′
zµG

32β′
sz

,
ϕ′′
vµG

48β′
sv

)
︸ ︷︷ ︸

K4

γ′ ≥ 15(ϕ′′
zL

′
z + ϕ′′

vL
′
v)

Γ′︸ ︷︷ ︸
K5

ρ3

ξ must verify

ξ ≤ K1

ξ ≤ K2(ρ
′)−

1
2

ξ ≤ K3(ρ
′)−

3
2

ξ ≤ K4(ρ
′)−1

ξ ≥ K5(ρ
′)2

which is possible if ρ′ satisfies

ρ′ ≤ min

(√
K1

K5
,

(
K2

K5

)− 3
2

,

(
K3

K5

)− 5
2

,

(
K4

K5

)−2
)

.

Let us take

ρ′ = min

(√
K1

K5
,

(
K2

K5

)− 3
2

,

(
K3

K5

)− 5
2

,

(
K4

K5

)−2

,
µG

64L2
y

,
βzx

2βzx
,

µG

128(L2
v + L′′

v)
,

βvz

8(L2
v + L′′

v)
,
βvx

2βvx

)
(64)

and

ξ = min(K1,K2(ρ
′)−

1
2 ,K3(ρ

′)−
3
2 ,K4(ρ

′)−1) . (65)

Finally, we have
Lt+1 − Lt ≤ −γ

2
gt

and therefore, summing and telescoping yields

1

T

T∑
t=1

gt ≤ L1

γT
=

L0N
2
3

T
.

Since with respect to N we have

L0 = h0 + ϕzδ
0
z + ϕvδ

0
v + ϕsS

0 = O(N−1 + 1 + 1 +N− 1
3 ) = O(1) ,
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we end up with
1

T

T∑
t=1

E[∥∇h(xt)∥2] = O
(
N

2
3

T

)
.

■

C.2 PROOF OF THEOREM 2

Here, we have

ρ′ = min

√K ′
1

K5
,

(
K2

K5

) 2
5

,

(
K3

K5

) 2
7

,

(
K ′

4

K5

) 1
3

,
µG

64L2
z

,
βzx

2βzx
,

µG

128(L2
v + L′′

v)
,

βvz

8(L2
v + L′′

v)
,
βvx

2βvx

 ,

and
ξ = min(K ′

1,K2(ρ
′)−

1
2 ,K3(ρ

′)−
3
2 ,K ′

4(ρ
′)−1) .

where P ′ = PN−1, Γ′ = ΓN ,

ϕ′′
z =

1

32βzx

, ϕ′′
v = min

(
1

32βvx

, ϕ′′
z

µG

128βvz

)
,

K ′
1 = min

(
µG

64c′
,

√
ϕ′′
zµG

48L2
x

,

√
ϕ′′
vµG

64L2
x

,

√
L′
z

2L′
xβzx

,

√
L′
v

2L′
xβvx

)
,

K2 = min

(√
µG

64βzxL′′
x

,

√
µG

128βvxL′′
x

,

√
βvz

4L′′
xβvx

)
,

K3 =

√
ϕ′′
vµG

512ϕ′′
zL

′′
x

, K ′
4 = min

(
Γ′

6c′
,

1

4LΦ
,

L2
x

2LΦL′′
x

,

√
Γ′

6LΦL′
x

,
1

18P ′ ,
ϕ′′
zµG

48β′
sz

,
ϕ′′
vµG

64β′
sv

)
and

K5 =
20(ϕ′′

zL
′
z + ϕ′′

vL
′
v)

Γ′ .

Proof:

For simplicity, we assume that Φ∗ = 0 and so for any x ∈ Rd the PL inequality reads:

1

2
∥∇Φ(x)∥2 ≥ µΦΦ(x) . (66)

Then, eq. equation 50 gives

Φt+1 ≤
(
1− γµΦ

2

)
Φt−γ

4
E[∥Dx(z

t, vt, xt)∥2] + γL2
x(δ

t
z + δtv) + LΦL′

xγ
2St .

We take Lt the Lyapunov function given in eq. (63). We find

Lt+1 − Lt ≤ −γµΦΦ
t −
(
γ

4
− 2ϕzβzx

γ2

ρ
− 2ϕvβvx

γ2

ρ
− ϕsPγ2

)
E[∥Dx(z

t, vt, xt)∥2]

−
(
ϕz

µG

8
ρ− L2

xγ − 8ϕvβvzρ− ϕsβszρ
2
)
δtz

−
(
ϕv

µG

16
ρ− L2

xγ − 2ϕzL
′′
xγ

2 − ϕsβsvρ
2
)
δtv

−
(
ϕs

Γ

2
− 5ϕzL

′
zρ

2 − 5ϕvL
′
vρ

2 − LΦL′
xγ

2

)
St .

We now try to find linear convergence, hence we add to this cLt to get
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Lt+1 − (1− c)Lt ≤ −(γµΦ − c)Φt −
(
γ

4
− 2ϕzβzx

γ2

ρ
− 2ϕvβvx

γ2

ρ
− ϕsPγ2 − c

)
E[∥Dx(z

t, vt, xt)∥2]

−
(
ϕz

µG

8
ρ− L2

xγ − 8ϕvβvzρ− ϕsβszρ
2 − cϕz

)
δtz

−
(
ϕv

µG

16
ρ− L2

xγ − 2ϕzL
′′
xγ

2 − ϕsβsvρ
2 − cϕv

)
δtv

−
(
ϕs

Γ

2
− 5ϕzL

′
zρ

2 − 5ϕvL
′
vρ

2 − LΦL′
xγ

2 − cϕS

)
St .

Hence, the set of inequations for decrease becomes

c ≤ γµΦ

2ϕzβzx

γ2

ρ
+ 2ϕvβvx

γ2

ρ
+ ϕsPγ2 + c ≤ γ

4

L2
xγ + 8ϕvβvzρ+ ϕsβszρ

2 + ϕzc ≤ ϕz
µG

8
ρ

L2
xγ + 8ϕzL

′′
xγ

2 + ϕsβsvρ
2 + ϕvc ≤ ϕv

µG

16
ρ

5ϕzL
′
zρ

2 + 5ϕvL
′
vρ

2 + LΦL′
xγ

2 + ϕsc ≤ ϕs
Γ

2
.

We see that it is more convenient to write c = γc′. As previously, we write γ = γ′Nnγ , ρ = ρ′Nnρ ,
ϕz = ϕ′

zN
nz , ϕv = ϕ′

vN
nv , ϕs = ϕ′

sN
ns , P = P ′N , Γ = Γ′N−1, βsx = β′

sxN and βsv = β′
svN .

The equations read:

c′ ≤ µΦ

2ϕ′
zβzx

γ′

ρ′
Nnz+nγ−nρ + 2ϕ′

vβvx

γ′

ρ′
Nnv+nγ−nρ + ϕ′

sP
′γ′Nns+1+nγ + c′ ≤ 1

4

L2
xγ

′Nnγ + 8ϕ′
vβvzρ

′Nnv+nρ + ϕ′
sβ

′
sz(ρ

′)2Nns+2nρ+1 + ϕ′
zc

′γ′Nnz+nγ ≤ ϕ′
z

µG

8
ρ′Nnρ+nz

L2
xγ

′Nnγ + 8ϕ′
zL

′′
x(γ

′)2Nnz+2nγ + ϕ′
sβ

′
sv(ρ

′)2Nns+1+2nρ + ϕ′
vc

′γ′Nnv+nγ ≤ ϕ′
v

µG

16
ρ′Nnv+nρ

5ϕ′
zL

′
z(ρ

′)2Nnz+2nρ + 5ϕ′
vL

′
v(ρ

′)2Nnv+2nρ + LΦL′
x(γ

′)2N2nγ + ϕ′
sc

′γ′Nns+nγ ≤ ϕ′
s

Γ′

2
Nns−1 .

In order to ensure that the exponents on N are lower in the left-hand-side than those on the right-
hand-side, we take nz = nv = 0, nρ = − 2

3 , nγ = −1 and ns = − 1
3 . The Equations become

c′ ≤ µΦ

2ϕ′
zβzx

γ′

ρ′
N− 1

3 + 2ϕ′
vβvx

γ′

ρ′
N− 1

3 + ϕ′
sP

′γ′N− 1
3 + c′ ≤ 1

4

L2
xγ

′N−1 + 8ϕ′
vβvzρ

′N− 2
3 + ϕ′

sβ
′
sz(ρ

′)2N− 2
3 + ϕ′

zc
′γ′N−1 ≤ ϕ′

z

µG

8
ρ′N− 2

3

L2
xγ

′N−1 + 8ϕ′
zL

′′
x(γ

′)2N−2 + ϕ′
sβ

′
sv(ρ

′)2N− 2
3 + ϕ′

vc
′γ′N−1 ≤ ϕ′

v

µG

16
ρ′N− 2

3

5ϕ′
zL

′
z(ρ

′)2N− 4
3 + 5ϕ′

vL
′
v(ρ

′)2N−2 + LΦL′
x(γ

′)2N−2 + ϕ′
sc

′γ′N− 4
3 ≤ ϕ′

s

Γ′

2
N− 4

3 .
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Now we have to find ρ′, γ′, ϕ′
z , ϕ′

v and ϕ′
s that verifies the following conditions (which are a bit

stronger than thoose in the previous Equations):

c′ ≤ µΦ

2ϕ′
zβzx

γ′

ρ′
+ 2ϕ′

vβvx

γ′

ρ′
+ ϕ′

sP
′γ′ + c′ ≤ 1

4

L2
xγ

′ + 8ϕ′
vβvzρ

′ + ϕ′
sβ

′
sz(ρ

′)2 + ϕ′
zc

′γ′ ≤ ϕ′
z

µG

8
ρ′

L2
xγ

′ + 8ϕ′
zL

′′
x(γ

′)2 + ϕ′
sβ

′
sv(ρ

′)2 + ϕ′
vc

′γ′ ≤ ϕ′
v

µG

16
ρ′

5ϕ′
zL

′
z(ρ

′)2 + 5ϕ′
vL

′
v(ρ

′)2 + LΦL′
x(γ

′)2 + ϕ′
sc

′γ′ ≤ ϕ′
s

Γ′

2
.

As previously, we take ϕ′
s = 1 and we denote ϕ′

z = ϕ′′
z
ρ′

γ′ with ϕ′′
z = 1

32βzx

and ϕ′
z = ϕ′′

z
ρ′

γ′ with

ϕ′′
v = min

(
1

32βvx

, ϕ′′
z

µG

128βvz

)
, the equations become

c′ ≤ µΦ

P ′γ′ + c′ ≤ 1

8

L2
x(γ

′)2 + β′
sz(ρ

′)2γ′ + ϕ′′
zc

′ρ′γ′ ≤ ϕ′′
z

µG

16
(ρ′)2

L2
x(γ

′)2 + 8ϕ′′
zL

′′
xρ

′(γ′)2 + β′
sv(ρ

′)2γ′ + ϕ′′
vc

′ρ′γ′ ≤ ϕ′′
v

µG

16
(ρ′)2

5ϕ′′
zL

′
z(ρ

′)3 + 5ϕ′′
vL

′
v(ρ

′)3 + LhL′
x(γ

′)3 + c′(γ′)2 ≤ Γ′

2
γ′ .

Since c′ ≤ 1
16 and γ′ ≤ 1

16P ′ , the second equation is verified. With γ′ ≤ min
(√

ϕ′′
z µG

48L2
x
ρ′,

ϕ′′
z µG

48βsv

)
and c′ ≤ µGρ′

48γ′ the third is verified. The conditions γ′ ≤ min
(√

ϕ′′
vµG

64L2
x
ρ′,
√

ϕ′′
vµG

512ϕ′′
zL

′′
xρ

′ ,
ϕ′′
vµG

64β′
sv

)
and

c′ ≤ µGρ′

64γ′ ensure that the forth is verified. With γ′ ≤
√

Γ′

8LΦL′
x

and c′ ≤ Γ′

8γ′ , the fifth is simplified
in

5ϕ′′
zL

′
z(ρ

′)3 + 5ϕ′′
vL

′
v(ρ

′)3 ≤ Γ′

4
γ′ .
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Let us denote γ′ = ξρ′. To verify this equation and the previous bounds on γ′ and c′, we need

γ′ ≤ min

(√
ϕ′′
zµG

48L2
x

,

√
ϕ′′
vµG

64L2
x

,

√
L′
z

2L′
xβzx

,

√
L′
v

2L′
xβzx

)
︸ ︷︷ ︸

K1

ρ′ ,

γ′ ≤ min

(√
µG

64βzxL′′
x

,

√
µG

128βvxL′′
x

,

√
βvz

4L′′
xβvx

)
︸ ︷︷ ︸

K2

√
ρ′ ,

γ′ ≤
√

ϕ′′
vµG

512ϕ′′
zL

′′
x︸ ︷︷ ︸

K3

1√
ρ′

,

γ′ ≤ min

(
1

4LΦ
,

L2
x

2LΦL′′
x

,
ϕ′′
zµG

48βsv
,
ϕ′′
vµG

64β′
sv

,
1

16P ′ ,

√
Γ′

8LhL′
x

)
︸ ︷︷ ︸

K4

γ′ ≥ 20(ϕ′′
zL

′
z + ϕ′′

vL
′
v)

20︸ ︷︷ ︸
K5

(ρ′)3 ,

c′ ≤ min

(
µΦ,

1

16
,

1

16P ′

)
︸ ︷︷ ︸

K6

,

c′ ≤ µG

64︸︷︷︸
K7

1

ξ
,

c′ ≤ Γ′

8︸︷︷︸
K8

1

γ′ .

So, ξ, ρ′ and c′ must verify

ξ ≤ min

(
K1,

K7

c′

)
︸ ︷︷ ︸

K′
1

,

ξ ≤ K2(ρ
′)−

1
2 ,

ξ ≤ K3(ρ
′)−

3
2 ,

ξ ≤ min

(
K4,

K8

c′

)
︸ ︷︷ ︸

K′
4

(ρ′)−1

ξ ≥ K5(ρ
′)2 ,

c′ ≤ min

(
µΦ,

1

16
,

1

16P ′

)
︸ ︷︷ ︸

K6

,

which is possible if

ρ′ ≤ min

√K ′
1

K5
,

(
K2

K5

) 2
5

,

(
K3

K5

) 2
7

,

(
K ′

4

K5

) 1
3

 .

26



Under review as a conference paper at ICLR 2024

So let us take c′ = min
(
µΦ,

1
16 ,

1
16P ′

)
= min

(
µΦ,

1
16P ′

)
,

ρ′ = min

√K ′
1

K5
,

(
K2

K5

) 2
5

,

(
K3

K5

) 2
7

,

(
K ′

4

K5

) 1
3

,
µG

64L2
z

,
βzx

2βzx
,

µG

128(L2
v + L′′

v)
,

βvz

8(L2
v + L′′

v)
,
βvx

2βvx


and

ξ = min(K1,K2(ρ
′)−

1
2 ,K3(ρ

′)−
3
2 ,K4(ρ

′)−1) .

We have
Lt+1 ≤ (1− c′)Lt

therefore, unrolling yields
Φt − Φ∗ ≤ Lt ≤ (1− c′γ′)tL0,

■
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