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ABSTRACT

Graph Neural Networks (GNNs) excel in modeling graph structures across di-
verse domains, such as community analysis and recommendation systems. As
the need for GNN interpretability grows, there is an increasing demand for ro-
bust baselines and comprehensive graph datasets, especially within the realm of
Heterogeneous Information Networks (HIN). To address this, we introduce Syn-
HING, a framework for Synthetic Heterogeneous Information Network Genera-
tion designed to advance graph learning and explanation. After identifying key
motifs in a target HIN, SynHING systematically employs a bottom-up generation
process with intra-cluster and inter-cluster merge modules. This process, along
with post-pruning techniques, ensures that the synthetic HIN accurately mirrors
the structural and statistical properties of the original graph. The effectiveness of
SynHING is validated using four datasets - IMDB, Recipe, ACM, and DBLP -
spanning three distinct application categories, demonstrating both its generality
and practicality. Furthermore, SynHING provides ground-truth motifs for evalu-
ating GNN explainer models, establishing a new benchmark for explainable, syn-
thetic HIN generation. This contributes significantly to advancing interpretable
machine learning in complex network environments.

1 INTRODUCTION

In recent years, Graph Neural Networks (GNNs) have shown impressive performance in various
graph analysis tasks such as community analysis (Shchur & Günnemann, 2019), chemical bond
analysis (Stokes et al., 2020), and recommendation systems (Cui et al., 2020). These tasks include
node and edge classification, link prediction, and clustering (Chami et al., 2022). Heterogeneous
Information Networks (HINs) consist of multiple types of nodes and edges that contain various in-
formation, providing a natural representation of real-world data. The development of Heterogeneous
Graph Neural Networks (HGNN) has been sparked by HINs. These networks can be classified into
different types of models, including meta-path-based models like HAN (Wang et al., 2019) and
MAGNN (Fu et al., 2020), transformer-based GNN models (Yun et al., 2020; Hu et al., 2020b), as
well as SimpleHGN (Lv et al., 2021) which uses projection layers to map information to a shared
feature space and aggregates information using an edge-type attention mechanism. Additionally,
TreeXGNN (Hong et al., 2023) combines a tree-based feature extractor with the HGNN model to
enhance performance. However, due to the lack of public HIN datasets, most existing HGNNs are
trained and evaluated on only a few known public datasets such as IMDB 1, ACM (Wang et al.,
2019), and DBLP 2, leading to potential bias. The scarcity of public HIN datasets compared to other
machine learning domains poses significant challenges for HGNNs, potentially causing overfitting
and hindering effective generalization (Palowitch et al., 2022).

Due to the scarcity of HIN datasets, it is even more difficult to study trustworthy and interpretable
models. As trust, transparency, and privacy become essential for machine learning models, it is im-
portant to reveal the decision-making process and knowledge hidden behind models. Most existing
GNN models lack transparency, making them difficult to be trusted and limiting their applicability in

1https://www.kaggle.com/datasets/karrrimba/movie-metadatacsv
2http://web.cs.ucla.edu/˜yzsun/data/
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decision-critical scenarios. GNN explainer models were proposed to disclose the black box. Never-
theless, there is no objective way to evaluate the performances of GNN explainers as there exists no
suitable dataset in public domains that provides the data, objective, and corresponding ground-truth
explanations at the same time.

Synthetic homogeneous graph datasets have been introduced (Ying et al., 2019), attempting to al-
leviate the lack of explainable datasets. These datasets are created by randomly attaching specially
designed structured network motifs to artificial graphs (Albert & Barabási, 2002). These motifs are
then utilized as ground-truth explanations. There have been very few attempts to generalize syn-
thetic graph generation to HINs. This generalization is non-trivial for two reasons: Firstly, the basic
artificially structured motifs, such as houses and grids (Ying et al., 2019), common in the synthesis of
homogeneous graphs, are inadequate for HINs. These simplistic motifs often fail to capture the com-
plexity and diversity of real-world heterogeneous graphs, resulting in a poor representation of the
intricate structures found in actual HIN environments. Secondly, methods designed for generating
homogeneous synthetic graphs cannot be directly applied to heterogeneous information networks
(HINs) due to their unique structural constraints. Traditional approaches, which often involve ran-
domly connecting nodes to form edges, may result in illegitimate connections within HINs. Such
connections can violate the semantic rules inherent to HINs, where edges must align with the types
of nodes they connect to represent accurate and meaningful relationships. Moreover, these methods
randomly add edges, merely increasing node degrees without considering the global structure of
the graph. This randomization disrupts the alignment of node degree and structural patterns with
real-world HINs. Additionally, as highlighted by Li et al. (2023a), the scarcity of heterogeneous
datasets with ground-truth explanations further complicates the development of explanation models
for HINs. Researchers often resort to indirect evaluation methods, which may not effectively capture
the true performance of these models.

In light of the above concerns, we introduce Synthetic Heterogeneous Information Network Gen-
eration (SynHING), a novel framework that constructs synthetic HINs for graph learning and ex-
planation by referencing existing real graphs. SynHING methodically generates major motifs es-
sential for explanations and employs our newly developed Intra-/Inter-cluster Merge method. This
method facilitates the merging of multiple subgraph groups to systematically create synthetic HINs
of any specified size. Additionally, we introduce the concept of exclusion that allows us to flexi-
bly adjust the complexity of node prediction tasks within these synthetic graphs while maintaining
structural similarity to the reference graph. This feature enhances the utility of SynHING in practi-
cal applications. The synthetic graphs generated by SynHING provide interpretable insights, aiding
significantly in the explanation tasks associated with HINs. SynHING has been validated using
four datasets: IMDB, Recipe, ACM, and DBLP, which cover three distinct application categories,
demonstrating its generality and practicality. Furthermore, theoretical complexity analysis has been
conducted to showcase its scalability. 3

2 RELATED WORK

2.1 SYNTHETIC GRAPH GENERATION

Artificially synthesized data has a long history of development (Kingma & Welling, 2013; Bowyer
et al., 2011; Dong et al., 2018; Frid-Adar et al., 2018; Karras et al., 2019; Xu et al., 2019; Figueira
& Vaz, 2022). With the growth of Graph Neural Networks (GNN), there has been a renewed interest
in synthetic graph generation algorithms. Early on, Snijders & Nowicki (1997) introduced a method
to generate graph edges based on node clusters. More contemporary approaches, such as those
described by Dwivedi et al. (2020), extract subgraphs from real-world graphs to test GNNs’ ability
to identify specific substructures within Stochastic Block Model (SBM) graphs. The concept of
SBM, particularly popular for generating clusters that maintain strong intra-node correlations, has
been adapted into various forms, including unsupervised (Tsitsulin et al., 2020) and semi-supervised
models (Rozemberczki et al., 2021). Further extending SBM’s utility, GraphWorld (Palowitch et al.,
2022) leverages the Degree-Corrected Stochastic Block Model (DC-SBM) (Abbe, 2017) to create
diverse graph datasets using multiple parameters. Yet, these works mainly focus on homogeneous

3Open-source code will be released upon acceptance.
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graphs, and most synthetic graph generation methods do not provide the ability for interpretation,
lack ground-truth explanations, and cannot be directly extended to HINs.

2.2 EXPLAINER FOR GRAPH NEURAL NETWORKS

Developing trustworthy machine learning models is now a widely acknowledged goal within the
community. Explainability methods for Graph Neural Networks (GNNs) have seen considerable
development, especially for node and graph classification tasks (Ying et al., 2019; Luo et al., 2020;
Yuan et al., 2021; Lin et al., 2022). These methods generally fall into two categories: inherent inter-
pretable models and post-hoc explainability approaches (Yuan et al., 2020). Inherent interpretable
models, such as ProtGNN (Dai & Wang, 2021), integrate explanations directly within the model,
using mechanisms like top-K similarity to identify influential subgraphs for their predictions. In
contrast, post-hoc explainability methods focus on identifying crucial subgraphs (Luo et al., 2020;
Yuan et al., 2021) and key features (Ying et al., 2019), approximating the behavior of black-box
models by elucidating the connections between inputs and outputs. While most data validating
these explainer models are derived from homogeneous graphs with simplistic motifs (Ying et al.,
2019), such as houses and grids, these often lack the diversity and complexity of real-world graphs.
Some researchers are studying heterogeneous GNN explanations (Li et al., 2023b; Lv et al., 2023),
but the lack of HINs with explanation ground truths poses challenges. Consequently, generating
appropriate heterogeneous graph datasets for validation is emerging as a crucial research area.

2.3 DATASETS WITH GROUND-TRUTH EXPLANATIONS

The conventional evaluation of graph explanatory methods often relies on molecular datasets or
synthetic community node classification datasets. These datasets are favored because they offer
ground-truth explanations. For instance, MUTAG is a molecular dataset containing graphs labeled
according to their mutagenic effect (Debnath et al., 1991). Synthetic datasets, as introduced by Ying
et al. (2019), are node classification datasets created by randomly attaching structured network mo-
tifs to base graphs. These motifs are designed with specific structures such as houses, cycles, and
grids. The base graphs are generated either through BA methods or as a balanced binary tree. How-
ever, these datasets are homogeneous and do not transition well to heterogeneous graph contexts.
In contrast, our approach involves extracting relevant motifs directly from actual HINs to serve as
the basis for ground-truth explanations and employing a systematic bottom-up method to guarantee
inherent semantic rules of HINs when generating HIN datasets.

3 PROPOSED METHOD: SYNHING

3.1 PRELIMINARIES

HINs, also called heterogeneous graphs, consist of multiple node and edge types, which can be
defined as a graph G = (V, E ,Φ,Ψ), where V and E is the set of nodes and edges, respectively.
Each node v ∈ V has a type Φ(v) ∈ Tv , and each edge e ∈ E has a type Ψ(e) ∈ Te. The node
feature matrix is denoted by Fϕ ∈ R|Vϕ|×dϕ , where Vϕ is the set of node with node type ϕ, i.e.
Vϕ = { v ∈ V | Φ(v) = ϕ }, and dϕ is the feature dimension of the node type ϕ. Target nodes of
the graph G, denoted by Vϕ0 , are associated with labels collected as Y ∈ Y |Vϕ0 |, where ϕ0 ∈ Tv
denotes the target node type.

3.2 OVERVIEW OF SYNHING

Figure 1: Synthetic HIN Generation Flow
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Figure 2: SynHING

In this study, we proposed SynHING, a novel synthetic HIN generation framework. We aim to
generate an arbitrary size synthetic heterogeneous graph G̃ with the explanation ground truths, which
closely mimics the property of the given real-world graph Ĝ through a bottom-up generation process,
which is demonstrated in Fig. 1. Firstly, we generate the major motifs and derive base subgraphs
from them with proper node degree distributions. Secondly, we introduce two merge modules to
handle partial graphs; Intra-Cluster Merge aims to merge subgraphs within a cluster, and Inter-
Cluster Merge is used to merge clusters with different labels. Finally, the synthetic HIN will be
generated after feature generation and post-pruning. SynHING framework consists of six modules,
as shown in Fig. 2: (1) Major Motif Generation, (2) Base Subgraph Generation, (3) Intra-Cluster
Merge, (4) Inter-Cluster Merge, (5) Node Feature Generation, and (6) Post-Pruning. The details of
the proposed methods will be introduced in the following sections.

3.3 MAJOR MOTIF GENERATION (MMG)

To generate major motifs for ground-truth explanations, we identify meta-paths within the refer-
enced graph that originate and terminate with target nodes, with all intermediate nodes. The major
motif is derived by designating two target nodes as anchors and connecting them through all possible
meta-paths within a specified number of hops (Wang et al., 2019; Fu et al., 2020). The maximum
number of hops can be set manually or based on the number of layers in the GNN models, reflect-
ing that GNN computation graphs are represented by n-hop subgraphs, where n matches the model
layers. As depicted in Fig. 2, the MMG module utilizes three one-hop paths to form a major motif
as an example.

Further investigation revealed that these derived motifs are common patterns found using the
graphlet searching method (Milo et al., 2002) in real-world graphs. We conducted experiments
on the IMDB dataset, identifying one of the most common graphlets, G20 (Milo et al., 2002), which
features multiple minor nodes acting as bridges between two target nodes. A similar pattern is noted
in Megnn (Chang et al., 2022). We define these robust graph patterns as the major motif, providing
essential ground truths for explanations. In addition, the motif can also be defined by the user and
customized for diverse explanation tasks.

3.4 BASE SUBGRAPH GENERATION (BSG)

Based on the major motifs previously generated, we further develop base subgraphs. In this base
subgraph generation process, we introduce randomness into the major motifs and augment them
with several non-target nodes, designated as minor nodes, attached to target nodes within each motif.
This addition aims to create diverse subgraphs with noise, which are not part of the ground truths
for explanations but mimic the real-world reference graph.

These minor nodes fulfill two primary functions. Firstly, they help match the degree distributions of
the target nodes in the subgraphs to those observed in the referenced real-world distribution, denoted
as Pϕ(k), where k is the number of connections to nodes of type ϕ. Secondly, the minor nodes serve
as crucial junction points for subsequent merging processes.

Once minor nodes are added, each pair of target nodes within a motif is assigned identical labels,
defining this entity as a base subgraph. This is denoted as a tuple (Si, yi), where Si = (Vi, Ei)
represents the structure of the i-th subgraph, and yi ∈ Y is the label of the associated target nodes.
The generated subgraphs are then collected into sets Ky for each label y ∈ Y .

4
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3.5 MERGE TO GENERATE HINS

Conventional methods for constructing graphs often involve adding edges between nodes or sub-
graphs to create a connected homogeneous graph. However, this approach carries the risk of in-
advertently forming illegal connections despite careful node selection to prevent them. It is also
challenging to maintain statistical properties, such as node degree distributions relative to different
node types, when connecting nodes.

To overcome these challenges, we propose a novel Merge operation that combines two nodes into
one, which will connect back to the initial neighbors of the two nodes. This method elegantly
adheres to existing constraints and preserves the degree distributions of the target nodes within the
generated subgraphs, ensuring an accurate representation of the target real-world graph. The general
merge function operates as follows: Given a graph G = (V, E) and two nodes v1, v2 ∈ V . If we
merge v1 and v2 into v1 in G, then the process is defined by

(V ′, E ′) = Merge(v1, v2;G) (1)
= (V \ { v2 } , E ∪ { (v1, u) | u ∈ N(v2), u ̸= v1 } \ { (v2, u) | u ∈ N(v2) }) , (2)

where N(v) represents the neighbors of the node v. The Merge operation connects the neighbors of
node v2 to node v1 while simultaneously removing the merged node v2 and its original edges to its
neighbors. We use Merge(P;G) to denote merging multiple pairs in P ⊆ V × V in G (note that
the order in P does not matter). Similarly, Merge(P;G1 ⊕G2 ⊕ . . . ) signifies the merging of pairs
across multiple graphs G1, G2, . . . , where ⊕ denotes the graph disjoint union operator. Next, we
generate a complete synthetic HIN from bottom to top with Intra-/Inter-Cluster Merges.

3.5.1 INTRA-CLUSTER MERGE (INTRA-CM)

Intra-CM is designed to merge the subgraphs with identical labels one by one to form a cluster
denoted by Cy = (Vy, Ey), which can mirror the ”Superstar” phenomenon often observed in com-
munity networks (Albert & Barabási, 2002; Abbe, 2017). In social networks, early adopters often
become central nodes or ”Superstars” due to the sequential nature of network growth. As new mem-
bers join, they tend to connect with already well-established individuals. Early joiners accumulate
more connections over time, benefiting from the principle of preferential attachment, where new
links are more likely to form with highly connected members. This process leads to a few early
adopters amassing a disproportionate number of connections, thereby becoming key influencers or
opinion leaders within the network.

In brief, for each label y, we denote Ky as the set of base subgraphs of the same label generated
earlier in the BSG step. These base subgraphs are sequentially merged into the cluster Cy . The entire
Intra-CM process is conducted |Y| times to produce all clusters {Cy | y ∈ Y } for all labels. Note
that we form each cluster independently. Since different node types need to be handled carefully in
HINs, Intra-CM is conducted separately for each node type, denoted by ϕ. Specifically, the initial
subgraph S0 is chosen from Ky to be the original cluster C0

y . At each iterations i, we select a
subgraph Si = (Vi, Ei) from the remaining Ky \ {S0, ..., Si−1 } and merge Ci−1

y and Si to generate
Ci

y . For each minor node type ϕ ̸= ϕ0, we initially determine the number of Merge operations to be
performed, denoted as nϕ

intra. The number nϕ
intra is sampled from a binomial distribution, i.e.

nϕ
intra ∼ B(n = |Vϕ

i |, p = pϕ), (3)

where pϕ is the Intra-CM probability for the minor node type ϕ. A higher Intra-CM probability
leads to more nodes being merged during this step, resulting in a tighter connection graph within the
cluster, which means increased exclusion between clusters. To merge nodes within Si and Cy , we
need to identify the sampling space of the node pairs:

Mϕ
intra = { { vy, vi } | vy ∈ Vϕ

y , vi ∈ Vϕ
i } . (4)

Subsequently, nϕ
intra pairs are then sampled uniformly from Mϕ

intrainto Pϕ ⊆ Mϕ
intra without replace-

ment.The Merge operation is performed on the sampled pairs of all minor node types to merge the
Si into the cluster:

Ci
y = Merge

 ⋃
ϕ∈Tv,ϕ ̸=ϕ0

Pϕ; Ci−1
y ⊕ Si

 , (5)

5
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Figure 3: Intra-Cluster and Inter-Cluster Merges

where
⋃

denotes the union over all minor node types. After the above Intra-CM, we can generate
multiple clusters with all labels, shown in Fig. 3a.

3.5.2 INTER-CLUSTER MERGE (INTER-CM)

Inter-CM aims to merge clusters with different labels. Unlike intra-clusters, the ”Superstar” phe-
nomenon should not occur in inter-clusters because clusters would not appear sequentially to form
the whole graph. Hence, we should concurrently merge all clusters rather than sequentially merge
subgraphs, as in Intra-CM. In short, the proposed Inter-CM merges node pairs from different clusters
to form the complete graph structure G̃, using clusters {Cy | y ∈ Y } produced by Intra-CM.

Analogous to Intra-CM, all merges need to be conducted separately for each node type ϕ. For each
node type phi, the initial step in Inter-CM involves identifying potential pairs Mϕ

inter to be merged,
formally defined as follows:

Mϕ
inter =

{
{ v1, v2 } | v1 ∈ Vϕ

y1
, v2 ∈ Vϕ

y2
, { y1, y2 } ⊆ Y, y1 ̸= y2

}
, (6)

where Vϕ
y1
,Vϕ

y2
are nodes in type ϕ of two different clusters Cy1

, Cy2
, respectively. The number of

pairs nϕ
inter is sampled from a binomial distribution:

nϕ
inter ∼ B

n =
∑
y∈Y

|Vϕ
y |, k = qϕ

 , (7)

where qϕ is the Inter-Cluster merge probability. A higher value of qϕ results in more nodes from
different clusters being merged, leading to a graph with lower exclusion of clusters. The nϕ

inter pairs
are sampled uniformly from Mϕ

inter to form the set of node pairs that we intend to merge Pϕ. The
clusters are merged based on Pϕ and form a complete graph G̃:

G̃ = Merge

 ⋃
ϕ∈T ′

v

Pϕ;
⊕
y∈Y

Cy

 , (8)

where
⊕

denotes the graph disjoint union over all labels y ∈ Y . If the generated graph G̃ is
intended to be multi-label, T ′

v = Tv , i.e., all node types, including target node type ϕ0, are allowed
to be merged. Conversely, in the case of single-label, merging target nodes is not permitted, i.e.,
T ′
v = Tv \ {ϕ0 }. After the above Inter-CM, we can generate a complete heterogeneous graph

structure with multiple labels, as shown in Fig. 3b.

3.6 NODE FEATURE GENERATION (NFG)

For NFG, we sample node features from within-cluster multivariate normal distributions, following
previous studies(Palowitch et al., 2022; Tsitsulin et al., 2022). The node features in the same cluster
will be sampled from a shared prior multivariate normal distribution N (µy, α), where µy represents
the feature center sampled from another normal distribution µy ∼ N (0, β). Here, α/β serves as
a hyperparameter, representing the ratio of feature center distance to cluster covariance. It can be
interpreted as a signal-to-noise ratio (SNR). For the multi-label nodes, we generate node features
based on a joint probability distribution that combines multiple independent probability distribution
functions. Afterward, we draw samples from this combined distribution to determine the features of
the nodes. In this work, we generated node features for target nodes because minor node features are

6
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often unavailable in the real-world heterogeneous graphs and are commonly preprocessed by either
constants, node IDs, or propagated features (Lv et al., 2021). Therefore, we follow this common
setting, using node ID or node type information as node features for minor nodes to approximate
these real-world datasets.

3.7 POST-PRUNING (P-P)

P-P is an optional yet critical process applied to synthetic graphs to ensure they adhere to constraints
observed in raw data. For instance, in the IMDB dataset, each movie is linked to no more than
three actors, reflecting inherent limits within the original dataset. During P-P, we first establish the
upper limits of node degrees and scan the HIN node-by-node to remove excess edges until the node
degrees conform to the upper limit constraints. Importantly, we prioritize the retention of edges that
form part of the major motif, thereby preserving the integrity of the explanation ground truths.

3.8 COMPLEXITY OF SYNHING

To explore SynHING’s scalability, we conducted a complexity analysis. The process of MMG and
BSG are both independent. Therefore, the time complexity of MMG and BSG is O(N). The
complexity of Intra-CM is O(N |Vi| + N |Ei|) or O(N), as |Vi| and |Ei| are the number nodes
and edges in the base subgraph, which are constant w.r.t. N . The processes involved in Inter-
CM are similar to Intra-CM; the complexity is also O(N). Therefore, the overall time complexity
of SynHING is determined by the number of motifs N with a time complexity of O(N), which
showcases the scalability of SynHING. More details can be found in the Appendix A.1.

4 EXPERIMENTAL SETTINGS

4.1 DATASETS AND HGNNS

To assess the SynHING framework, we generate synthetic graphs using four well-established HIN
node classification datasets: IMDB 1, Recipe (Majumder et al., 2019), ACM (Wang et al., 2019),
and DBLP 2. Fig. 4a presents the graph schema for these four heterogeneous datasets that illustrate
the permissible edge types within each graph.

To identify major motifs, we designate two target nodes as anchors and connect them using all
feasible meta-paths, limited by a specified number of hops. Specifically, we utilize two hops for the
IMDB, Recipe, and ACM datasets and four hops for the DBLP dataset to align with their respective
graph schemas, as depicted in Fig. 8. We further study the minor node degree of the approximate
reference graph and real graph. More details can be found in the Appendix A.7.

(a) Graph Schema

(b) Major Motifs

Figure 4: Graph Schema and Major Motifs of the Four Heterogeneous Graph Datasets

We utilize the transductive learning approach for node classification tasks and randomly select 24%
of the target nodes for training, 6% for validation, and 70% for testing (Wang et al., 2019; Lv et al.,
2021; Hong et al., 2023). We used three well-known HGNNs, HGT (Hu et al., 2020b), SimpleHGN
(Lv et al., 2021), and TreeXGNN (Hong et al., 2023), as our encoders to validate the synthetic HINs.
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(a) Macro-F1(%) (b) Fidelity

(c) p = 0.7, q = 0.4 (d) p = 0.7, q = 0.1 (e) p = 0.4, q = 0.1

Figure 5: Visualization of Synthetic IMDB in Different Intra-/Inter-Cluster Probabilities. Dark blue
represents minor nodes, and other colors indicate target nodes on different labels.

4.2 EVALUATION METRICS

We repeated all experiments five times and evaluated performance using average Micro-F1 and
Macro-F1 for node prediction (Wang et al., 2019; Lv et al., 2021; Hong et al., 2023) and Fidelity for
interpretation evaluation (Yuan et al., 2021; Li et al., 2022). See more details in the Appendix A.3.

5 RESULTS AND DISCUSSION

5.1 CLUSTER EXCLUSION CAN BE ADJUSTED FLEXIBLY TO AFFECT MODEL
PERFORMANCE

Intra-CM probability p and Inter-CM probability q determine the degree of cluster exclusion of the
synthetic HINs. The higher p and the lower q increases cluster exclusion, which produces a purer
and better-organized graph structure. Due to the flexibility of our proposed framework, this degree
of exclusion can be flexibly adjusted. To evaluate how such an adjustment alters model performance,
we benchmark the performance of the HGT on the synthetic IMDB (Syn-IMDB) with different p, q
with p > q. As illustrated in Fig. 5a, the HGT model performs better in terms of Macro-F1 as
the p increases, as Syn-IMDB has more tightly connected clusters or a higher cluster exclusion.
Conversely, a decrease in q introduces more noise, leading to a lower cluster exclusion and worse
performance. We also visualize the synthetic IMDB graphs with three settings, shown in Fig. 5c, 5d,
5e. The above results demonstrated that we can use p and q to control the exclusion of clusters within
the generating synthetic HIN and benchmark the ability of HGNN graph learning. This allows us to
control graph generation with high flexibility. Similar trends can also be observed for SimpleHGN
and TreeXGNN; details can be found in Fig. 9 in the Appendix.

5.2 MAJOR MOTIFS ACHIEVE LOW FIDELITY

Fig. 5b illustrates the variations in fidelity for HGT across different degrees of cluster exclusion. The
megatrend is similar to HGT’s Macro-F1 score, with the purer (higher degree of cluster exclusions)
synthetic HINs fidelity score being better (lower). Notably, the fidelity remains stable regardless of
changes in the Intra-CM probability p. While higher Intra-CM probabilities may introduce addi-
tional information beyond the major motifs, the fidelity of the model does not undergo significant
changes, shown in Fig. 6a. This finding confirms that the major motif designed indeed serves as
the primary cause for accurate predictions of GNN models. Fig. 6b clearly shows that the fidelity
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(a) Intra-Cluster Probability (b) Inter-Cluster Probability (c) SNR of Node Features

Figure 6: Fidelity of Major Motifs under Different SynHING Parameter Settings

Table 1: Ablation studies of SynHING: We replace the critical modules of SynHING with random
functions to verify the importance. The Random-motifs turn off the MMG module. The Random-
Merge entails randomly merging nodes without conducting Intra-/Inter-CM.

SynIMDB Random-Motifs Random-Merge
Macro-F1 (%) Micro-F1 (%) Macro-F1 (%) Micro-F1 (%) Macro-F1 (%) Micro-F1 (%)

HAN 82.37 ± 0.45 82.42 ± 0.52 77.21 ± 0.69 77.20 ± 0.81 37.31 ± 5.57 41.47 ± 4.40
HGT 87.86 ± 0.30 87.88 ± 0.31 80.99 ± 0.55 80.97 ± 0.58 68.52 ± 3.74 69.11 ± 3.24

SimpleHGN 87.60 ± 0.49 87.66 ± 0.49 83.04 ± 0.48 83.02 ± 0.48 72.77 ± 6.33 72.88 ± 6.30
TreeXGNN 87.68 ± 0.35 87.70 ± 0.36 81.77 ± 1.14 81.73 ± 1.15 68.92 ± 6.57 69.07 ± 6.56

decreases as the Inter-CM probability q decreases while maintaining a fixed Intra-CM probability
p. This decrease can be attributed to the increase in the exclusion of clusters, which causes models
to primarily learn from the corresponding major motifs without interference from non-informative
nodes and edges. Fig. 6c illustrates the relationship between fidelity and the SNR of node features.
As the SNR increases, the amount of information associated with all node features also increases.
Consequently, when the graph structure and major motif design remain unchanged, the models in-
corporate more node feature information, thereby improving fidelity. The above experimental results
can confirm that the design of major motifs can indeed represent the most crucial graph patterns and
can serve as effective ground-truth explanations.

5.3 ABLATION STUDIES OF SYNHING

To evaluate the impact of each module in the SynHING framework, we performed ablation studies
by removing critical modules one at a time on the IMDB dataset. More specifically, the Random-
Motifs study turns off the MMG module and randomly generated motifs. The Random-Merge study
entails randomly merging nodes without conducting Intra-Cluster and Inter-Cluster Merges. Table
1 shows that compared to the original SynIMDB, the performance of Random-Motifs decreases
significantly on all HGNNs, HAN, HGT, SimpleHGN, and TreeXGNN (-5.16%, -6.87%, -4.56%,
and -5.91% in Macro-F1, respectively). This drop highlights the importance of the MMG mod-
ule. Furthermore, the performance of Random-Merge declines even further (-45.06%, -19.34%,
-14.83%, and -18.76% in Macro-F1 for HAN, HGT, SimpleHGN, and TreeXGNN, respectively),
revealing consistent trends across these HGNNs, demonstrating the effectiveness of the proposed
Merge method for generating synthetic HINs.

5.4 HOW SIMILAR IS THE SYNTHETIC GRAPH TO THE ACTUAL GRAPH?

To answer this question, we assess high-level similarity by pretraining on the synthetic graph and
finetuning on the responding actual graph, inspired by the fact that without careful selection of pre-
training tasks, the transfer of knowledge between diverse semantics can lead to negative transfer (Hu
et al., 2020a; Rosenstein et al., 2005). Specifically, we evaluate similarity from two perspectives:
(i) If the synthetic and reference graphs are similar, we expect to see a positive transfer. (ii) If we
maliciously destroy the structure and features of the synthetic graphs, a negative transfer would
occur, which could decrease performance. See more implementation details in Appendix A.8.

For the positive transfer experiment, we compare the performance of finetuning the model pre-
trained on the synthetic graph with and without pertaining. The results, shown in Table 2, demon-
strated pretraining on synthetic HINs significantly improved performance in the four datasets. In
the IMDB dataset, we increased Macro-F1 by up to 3% with HGT and 2% with SimpleHGN. On
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IMDB, Recipe, and ACM, the standard deviation was significantly reduced, enhancing the model’s
stability and slightly increasing the performance. The consistent trends across two HGNNs on four
datasets demonstrate solid positive transfer effectiveness.

Table 2: Performance comparison of HGT and SimpleHGN: With and without pretraining on syn-
thetic HINs and fine-tuning on real-world graphs. We use boldface to highlight performance im-
provements.

HGT SimpleHGN
Dataset Pretrained on Macro-F1 Micro-F1 Macro-F1 Micro-F1

IMDB - 63.00 ± 1.19 67.20 ± 0.57 63.53 ± 1.36 67.36 ± 0.57
Syn-IMDB 66.10 ± 0.21 68.03 ± 0.53 65.52 ± 0.50 68.45 ± 0.53

Recipe - 57.26 ± 1.84 56.98 ± 2.02 60.29 ± 1.31 60.15 ± 1.41
Syn-Recipe 57.82 ± 0.46 57.83 ± 0.64 60.40 ± 0.22 60.21 ± 0.23

ACM - 91.12 ± 0.76 91.00 ± 0.76 93.42 ± 0.44 93.35 ± 0.45
Syn-ACM 92.55 ± 0.20 92.54 ± 0.21 94.16 ± 0.43 94.11 ± 0.44

DBLP - 93.01 ± 0.23 93.49 ± 0.25 94.01 ± 0.24 94.46 ± 0.22
Syn-DBLP 93.88 ± 0.25 94.35 ± 0.23 94.27 ± 0.58 94.73 ± 0.56

For the negative transfer experiment, malicious graphs are created by: (i) Node shuffling involves
row-wise shuffling the adjacency matrix A corresponding to the graph, breaking the homophily of
the synthetic graph. (ii) Feature shuffling involves row-wise shuffling the feature matrix F . Table 3
shows that malicious synthetic graphs obviously cause negative transfer. In most cases, the feature
shuffling has a greater impact. It is speculated that the mismatch between the node features and
the labels causes more damage to the overall message passing. Noted, when the users focus on
explainable ground truths, the generated synthetic graphs do not need to resemble the reference
graphs. SynHING can freely generate brand-new HINs through user-defined major motifs.

Table 3: Performance comparison of HGT: Pretraining on node shuffled and feature shuffled syn-
thetic HINs and finetuning on real HINs. We use boldface to highlight the lowest score and an
underline to indicate the second-lowest.

Pretrain on SynHING Macro-F1 Micro-F1

IMDB
w/o Shuffled 66.10 ± 0.21 68.03 ± 0.53

Node Shuffled 64.54 ± 0.58 67.44 ± 0.59
Feature Shuffled 62.06 ± 1.28 63.96 ± 0.79

Recipe
w/o Shuffled 57.82 ± 0.46 57.83 ± 0.64

Node Shuffled 47.87 ± 0.83 47.66 ± 0.88
Feature Shuffled 55.46 ± 1.09 55.55 ± 1.11

ACM
w/o Shuffled 92.55 ± 0.20 92.54 ± 0.21

Node Shuffled 90.45 ± 0.49 90.45 ± 0.48
Feature Shuffled 89.02 ± 1.54 89.09 ± 1.46

DBLP
w/o Shuffled 93.88 ± 0.25 94.35 ± 0.23

Node Shuffled 93.56 ± 0.32 94.06 ± 0.30
Feature Shuffled 93.25 ± 0.29 93.75 ± 0.30

We also applied a statistical method, Comparing Degree Distribution (CDD) (Darabi et al., 2023),
measuring the structure similarity between real and synthetic HINs. The results indicate that Syn-
HING effectively regulates the generation of synthetic HINs. See more details in Appendix A.7.

6 CONCLUSION

We present SynHING, a novel method for generating synthetic HINs, leveraging the real-world
HINs as references, systematically generating the major motifs for explanations, and using Intra-
/Inter-Cluster Merges to merge multiple groups of base subgraphs to generate synthetic HINs of any
specified sizes. SynHING has been validated using four datasets covering three distinct application
categories, demonstrating its generality and practicality. we address the scarcity of heterogeneous
graph datasets and overcome the need for such datasets in the domain of GNN explanations. To the
best of our knowledge, our work introduces the first framework for generating synthetic heteroge-
neous graphs with ground-truth explanations. Additionally, we design a comprehensive framework
for generating diverse synthetic HINs that can be flexibly adjusted and provide a solid foundation
for future research on heterogeneous GNN explanations.
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Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews of
modern physics, 74(1):47, 2002.

Kevin W. Bowyer, Nitesh V. Chawla, Lawrence O. Hall, and W. Philip Kegelmeyer. SMOTE: syn-
thetic minority over-sampling technique. CoRR, abs/1106.1813, 2011. URL http://arxiv.
org/abs/1106.1813.

Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin Murphy. Machine learn-
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A APPENDIX

A.1 SYNHING’S COMPLEXITY AND SCALABILITY

In this section, we theoretically analyze the complexity of the SynHING framework module by
module to demonstrate its scalability. Let N represent the motif number, determining the scale of
the generated graph. We demonstrate that the total time complexity for SynHING is O(N). For
simplicity, we omit node type in the analysis for both Intra-CM and Inter-CM, as nodes merge only
with those of the same type, making the complexity linear to the number of types. The generations
of the motif (MMG) and the base subgraph (BSG) can be parallelized, and execution time is linear
to the number of items. Therefore, the time complexity of MMG and BSG is O(N).

The complexity of Intra-CM is analyzed step-by-step as follows:

(i) Eq.(3), we determine nintra, the number pairs to be sampled.
(ii) Eq.(4), we sample nintra nodes from Vy and Vi, and pairing them as Pintra.

(iii) Merge process eq.(5).
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Table 4: Statistics of three heterogeneous graph datasets

#Nodes #Node Types #Edges #Edge Types
Target Node

#Classes
Type #Features

IMDB 19,933 4 80,682 6 Movie 3,489 5
Recipe 53,428 3 1,049,048 4 Recipe 1 5
ACM 10,967 4 551,970 8 Paper 1,902 3
DBLP 27,303 4 296,492 6 Author 340 4

(iv) We offset the ”incoming” subgraph Si by the maximum IDs of Cy (graph disjoint union).
(v) Drop the selected nodes in Vi.

(vi) Reindex the edges in Ei based on the mapping determined by Pintra.

The complexity (i), (ii), and (v) are O(|Vi|). The complexity of steps (iv) is O(|Vi| + |Ei|). The
complexity of step (vi) is O(|Ei|). One iteration complexity is O(|Vi|+|Ei|). There will be (N−|Y|)
iterations, making the total complexity O(N |Vi|+N |Ei|) or O(N), as |Vi| and |Ei| are the number
nodes and edges in the base subgraph, which are constant w.r.t. N .

Following a similar process, the complexity of Inter-CM is analyzed:

(i) Eq.(6) and Eq.(7), we identify all
(|Y|

2

)
combinations of clusters and determine the number

of pairs that need to be merged for each combination.
(ii) After the pair number has been determined, we derive the node number that needs to be

merged for each cluster. We randomly select nodes from each cluster based on this number
without replacement. (iii) Merge process eq.(8).

(iii) We offset all the clusters Cy . (the graph disjoint union in eq.(8)).
(iv) Drop one of the nodes in each pair in Pinter in Vy for each cluster.
(v) Reindex the edges in Ey for each cluster based on the mapping determined by Pinter.

The complexity of (iv), (v), and (vi) are O(
∑

y∈Y(|Vy|+ |Ey|)), O(
∑

y∈Y |Vy|), and O(
∑

Y |Ey|).
Since

∑
y∈Y |Vy| ≤ N |Vi|,

∑
y∈Y |Ey| ≤ N |Ei|. The complexity of Inter-CM is O(N |Vi| +

N |Ei|) = O(N).

Overall, SynHING can generate large-scale HINs in a reasonable timeframe, with the graph scale
determined by motif number N and complexity of O(N).

A.2 DATASETS AND HGNNS

To evaluate the SynHING framework, we generate synthetic graphs based on four well-known HIN
node classification datasets: IMDB 1, Recipe (Majumder et al., 2019), ACM (Wang et al., 2019),
and DBLP 2. The IMDB dataset is a collection of movie data that requires predicting the various
genres associated with each movie and following the common setting as previous papers (Lv et al.,
2021; Hong et al., 2023). The Recipe dataset is gathered from Food.com and includes food recipes
and user-recipe interactions. We excluded recipes with fewer than three steps, those with fewer than
four or more than 20 ingredients, and users with fewer than four reviews. We select recipes as the
target node and identify techniques used in recipes as labels. Then, we choose five techniques to
create the recipe graph. On the other hand, ACM and DBLP are citation networks with different
goals. ACM aims to predict paper labels, while DBLP focuses on predicting author labels. Fig. 7
illustrates the graph schema of the four heterogeneous graph datasets.

Table 4 presents the statistics of the four datasets, including the number of node and edge types, the
number of nodes and edges, the number of target node features, and the number of classes.

A.3 EVALUATION METRICS

We use Micro-F1 and Macro-F1 as evaluation metrics for node classification and fidelity for ex-
planation evaluation. Micro-F1 scoring assesses a model’s predictions across all samples, with a
tendency to emphasize the majority category. In contrast, Macro-F1 scoring equally weights each

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 7: Graph schema of the four heterogeneous graph datasets

category, promoting a balanced evaluation of data across different categories. Therefore, we mainly
use Macro-F1 as the major evaluation metric (Wang et al., 2019; Lv et al., 2021; Hong et al., 2023).

Fidelity is a metric commonly used to evaluate the performance of the explanation model (Yuan
et al., 2021; Li et al., 2022). It measures how closely related the explanations are to the model’s
predictions. If the critical information is included in the explanation subgraph, the classification
model prediction probability should be close to the original prediction, resulting in low fidelity. We
use fidelity as the evaluation metric to support that the major motifs can be excellent explanations of
ground truths. The following are the details of the fidelity score:

Fidelity =
1

N

N∑
i=1

1

L

L∑
l=1

∥∥∥f(Gi)yl
− f(Ĝi)yl

∥∥∥ , (9)

where f(Gi)yl
and f(Ĝi)yl

denote the prediction probability of yl of the original graph Gi and
major motifs Ĝi (explanation subgraph), respectively. We denote N as the total number of target
node samples and L as the number of node labels.

A.4 BENCHMARK HETEROGENEOUS GRAPH NEURAL NETWORKS

We used three different concept HGNN models to validate the synthetic graphs. Model parameters
follow paper recommendations. The following briefly introduces the models: (1) HGT (Hu et al.,
2020b) adopts a transformer-based design for handling different node and edge types without man-
ually defining the meta-path for the HGNN model. (2) SimpleHGN (Lv et al., 2021) introduces the
attention mechanism, projects different node-type features to the shared feature space, and then uses
GAT as the HGNN backbone. (3) TreeXGNN (Hong et al., 2023) leverages the decision tree-based
model XGBoost to enhance the node feature extraction, assisting the HGNN model in getting more
prosperous and meaningful information.

As the SynHING framework is modulized and can be highly customized according to the character-
istics of the reference datasets, we conduct a series of experiments to examine the influence of dif-
ferent tunable parameters on the synthetic HINs. In order to evaluate the performance of SynHING,
we utilize the transductive learning approach for node classification tasks and randomly select 24%
of the target nodes for training, 6% for validation, and 70% for testing (Wang et al., 2019; Lv et al.,
2021; Hong et al., 2023). We repeated all experiments five times and evaluated performance using
average Micro-F1 and Macro-F1 for node prediction and fidelity for interpretation evaluation.

A.5 SYNTHETIC HINS WITH GROUND-TRUTH EXPLANATIONS

Figure 8: Major Motifs of the Four Heterogeneous Graph Datasets

We evaluate SynHING using three HGNNs on four synthetic HINs (with Syn- in front) based on
their corresponding real-world graphs, shown in Table 5. HGNNs achieve better performance on
Macro-F1 and Micro-F1 scores for learning and inferencing on synthetic graphs compared to real
graphs. These improvements can be attributed to the designated major motifs in synthetic graphs,
shown in Fig. 8, which provide ground-truth explanations for assessing explainability methods and
result in synthetic graphs containing purer information for graph learning. We mimic the graph
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Table 5: Performance comparison of three HGNNs on real and synthetic HINs

IMDB Recipe ACM DBLP
Macro-F1 (%) Micro-F1 (%) Macro-F1 (%) Micro-F1 (%) Macro-F1 (%) Micro-F1 (%) Macro-F1 (%) Micro-F1 (%)

HGT 63.00 ± 1.19 67.20 ± 0.57 57.26 ± 1.84 56.98 ± 2.02 91.12 ± 0.76 91.00 ± 0.76 93.01 ± 0.23 93.49 ± 0.25
SimpleHGN 63.53 ± 1.36 67.36 ± 0.57 60.29 ± 1.31 60.15 ± 1.41 93.42 ± 0.44 93.35 ± 0.45 94.01 ± 0.24 94.46 ± 0.22
TreeXGNN 65.59 ± 0.89 69.28 ± 0.64 59.99 ± 0.94 59.97 ± 0.96 94.32 ± 0.54 94.29 ± 0.54 94.94 ± 0.63 95.24 ± 0.59

SynIMDB SynRecipe SynACM SynDBLP
Macro-F1 (%) Micro-F1 (%) Macro-F1 (%) Micro-F1 (%) Macro-F1 (%) Micro-F1 (%) Macro-F1 (%) Micro-F1 (%)

HGT 87.86 ± 0.30 87.88 ± 0.31 87.95 ± 1.90 87.95 ± 1.88 99.45 ± 0.30 99.46 ± 0.30 97.97 ± 0.75 97.99 ± 0.74
SimpleHGN 87.60 ± 0.49 87.66 ± 0.49 87.82 ± 0.23 87.83 ± 0.23 99.41 ± 0.37 99.41 ± 0.37 98.48 ± 0.41 98.48 ± 0.41
TreeXGNN 87.68 ± 0.35 87.70 ± 0.36 86.68 ± 0.37 86.72 ± 0.36 99.12 ± 0.67 99.12 ± 0.66 99.18 ± 0.18 99.18 ± 0.18

(a) Macro-F1(%) using SimpleHGN (b) Fidelity using SimpleHGN

(c) Macro-F1 using TreeXGNN(%) (d) Fidelity using TreeXGNN

Figure 9: Macro-F1 and Fidelity of Synthetic IMDB in Different Intra-/Inter-Cluster Probabilities
across Different HGNNs

properties of the reference graph and identify the parameters for generating the synthetic graph.
This selection ensures that the resulting synthetic graphs closely approximate the graph structure
of the referenced graphs. In addition, the degree of exclusion in SynHING can be customized for
different motifs and datasets, which will be discussed in the next subsection.

A.6 MORE EXPERIMENTAL RESULTS

Fig. 10a illustrates the performance changes of HGT, Simple-HGN, and TreeXGNN at different
SNRs of the features. It shows that as the SNR increases, the disparity between node features in
different groups widens, and it is easier to discriminate different clusters only based on their fea-
tures. Consequently, when the classification model makes predictions, it can leverage this additional
information in the nodes, leading to improved performance in classification tasks.

We also explored the impact of adjusting the number of major motifs shown in Fig. 10b, which
directly affects the number of target nodes and the size of the synthetic graph dataset. It is important
to note that since we kept the hyperparameter settings of the classification model consistent with the
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(a) Macro-F1 w.r.t. SNR (b) Macro-F1 w.r.t. #Motifs (c) Fidelity w.r.t. #Motifs

Figure 10: Macro-F1 and Fidelity of Synthetic IMDB in Different SNR and Number of Motifs

original values, rather than fine-tuning them for each synthetic graph dataset, reducing the dataset
size to half caused the model to become overfitted, resulting in a decline in performance.

The fidelity results of HGT, Simple-HGN, and TreeXGNN for varying numbers of major motifs are
shown in Fig. 10c. When adjusting the number of motifs, which corresponds to the size of the graph,
the fidelity performance remains stable.

A.7 APPROXIMATING REFERENCED GRAPH

Users can customize the synthetic graph for various scenarios using the parameters of SynHING,
including the number of major motifs N , the number of clusters |Y|, the Intra-CM probabilities
pϕ, the Inter-CM probabilities qϕ, and the signal-to-noise ratio (SNR) of features α/β. For example,
adjusting Intra-CM probability pϕ and Inter-CM probability qϕ results in changes in the exclusion
of clusters and difficulty of the synthetic graph. However, these parameters can also be directly de-
termined by the referenced graph Ĝ. Although some statistical properties and network schema have
been used for generating graphs, it’s further demonstrated that the synthetic graph can approximate
the referenced graph more closely by adjusting these parameters. The number of major motifs N

can be set as half of the number of target nodes in Ĝ, i.e. N = 1
2 |V̂

ϕ0 |, since each motif contains
exactly 2 target nodes. The number of clusters can be determined by the number of labels |Ŷ| in Ĝ.
The SNR of features α/β can adjust the difficulty of the task on G̃, or users can determine the means
and variances of clusters of features by maximum likelihood estimation.

The Intra-/Inter-CM probabilities pϕ, qϕ for minor node type ϕ ̸= ϕ0 control the exclusion of clus-
ters, the degree distributions of source nodes, and their counts in the resulting graph G̃. For instance,
in Fig. 11, we observe the node degree distributions for minor node types in both real-world IMDB
and SynIMDB, with p = 0.7 and q = 0.3. In contrast, Fig. 12 compares these distributions with
SynIMDB using different probabilities: p = 0.9, q = 0.8, and p = 0.2, q = 0.1. As depicted,
improper selection of p and q can lead to notable deviations in the degree distribution of minor node
types.

Figure 11: Degree Distributions of Minor Node Types in IMDB and SynIMDB

We further applied a statistical-based method, Comparing Degree Distribution (CDD) (Darabi et al.,
2023), to measure the structure similarity between real and synthetic graphs. The CDD value ranges
between 0 and 1, with 1 indicating that the distribution of the two structures is exactly the same.
We applied the settings as Fig. 11 and Fig. 12 for structure similarity analysis. Table 6 indicates
that the generated SynIMDB can be controlled by the Intra-CM/Inter-CM ratio that influences the
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Figure 12: Comparison of Degree Distribution Deviations in SynIMDB with Varying Intra-/Inter-
CM Probabilities

similarity with real IMDB. When p=0.7 and q=0.3, Macro-CDD and Micro-CDD are 0.8545 and
0.8279, respectively, which is the most similar to the real IMDB compared to the other two settings.
This result highlights the effectiveness of SynHING in regulating the generation of synthetic HINs.

Table 6: Comparing Degree Distribution (CDD) between IMDB and SynIMDB with Varying Intra-
/Inter-CM Probabilities

Intra-CM (p), Inter-CM (q) Macro-CDD Micro-CDD
p=0.7, q=0.3 0.8545 0.8279
p=0.9, q=0.8 0.7636 0.7612
p=0.2, q=0.1 0.7597 0.7354

A.8 PRETRAINING AND FINETUNING

In this study, we employ synthetic graphs for pretraining. Models are pretrained based on the recom-
mended settings from their respective original papers, with early stopping applied after 30 epochs
without validation set improvement. For finetuning, the weights of the HGNN backbone, exclud-
ing the adapter layer that maps the heterogeneous features into shared space, are inherited from the
pre-trained model. We note that the weights of the backbone and adapter are trained using different
learning rates, as the results are sensitive to the learning rate. For instance, while finetuning from
pretrained weights, a lower learning rate for the backbone and a higher learning rate for the adapter
generally yield better results, whereas a higher learning rate for the backbone and a lower learning
rate for the adapter generally leads to better performance when learning from scratch. Consequently,
we conduct a grid search for learning rates in both scenarios, as presented in Tables 2 and 3. For the
learning rate of the backbone, we try values of { 10−3, 10−4 }. For that of the adapter, we try values
of { 1, 5 } × { 10−2, 10−3, 10−4 }.

A.9 IMPLEMENTED ON HGNN EXPLAINER

For our initial testing, we utilized synthetic ACM and DBLP datasets and inputted them into the
xPath framework (Li et al., 2023b). The synthetic IMDB dataset we generated is a multiple-choice
dataset. Since xPath does not support this, we skipped it for now. We utilized xPath’s default
parameters, including the HGNN encoder and explainer. We followed the instructions in xPath,
which involved two main steps: (1) Training the HGNN and (2) Generating explanations.

We used HGT as our backbone prediction model. During the training stage, it can effectively
converge and achieve solid performance (Macro-F1=99.42%, Micro-F1=99.43%) and (Macro-
F1=80.06%, Micro-F1=80.81%) on SynACM and SynDBLP, respectively. During the explanation
stage, xPath can successfully generate an explanations subgraph with decent accuracy fidelity and
probability fidelity, Facc and Fprob (Yuan et al., 2020): Facc=0.15665, Fprob=0.15297 on SynACM
and Facc=0.16935, Fprob=0.08701 on SynDBLP, both presenting quite reasonable scores. The
above preliminary results show that our generated synthetic datasets can indeed be used to evaluate
HGNN explanation algorithms. This warrants a more complete further exploration in future work.
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A.10 COMPUTING RESOURCES

In our experiments, GNN learning utilized an NVIDIA RTX 3060, with fitting a GNN on a heteroge-
neous information network (HIN) taking under an hour. Graph generation algorithms were executed
on a CPU, with each graph requiring less than an hour to generate.
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