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Abstract

Causal discovery methods are powerful tools for uncovering the structure of re-
lationships among variables, yet they face significant challenges in scalability
and interpretability, especially in high-dimensional settings. In many domains,
researchers are not only interested in causal links between individual variables, but
also in relationships among sets or clusters of variables. Learning causal structure
at the cluster level can both reveal higher-order relationships of interest and im-
prove scalability. In this work, we introduce an approach for causal discovery over
clusters in Markov causal systems. We propose a new graphical model that encodes
knowledge of relationships between user-defined clusters while fully representing
independencies and dependencies over clusters, faithful to a given distribution.
We then define and characterize a graphical equivalence class of these models
that share cluster-level independence information. Lastly, we present a sound and
complete algorithm for causal discovery to represent learnable causal relationships
between clusters of variables.

1 Introduction

Causal discovery, where observational data are used to uncover causal relationships between variables,
is a task of interest in many domains [13, 19]. The goal in causal discovery is to use data to learn as
much information as possible about the underlying causal diagram, a graph that illustrates assumptions
about the presence and direction of causal and confounding relationships between variables in a
system. One approach to causal discovery has been through constraint-based methods, where
independence information, combined with logic regarding graphical properties, are used to determine
structural properties of the graph, and constraints on possible causal diagrams that could correspond
with the dataset [22, 13, 18]. Among constraint-based algorithms, PC is a foundational algorithm for
Markovian systems, where causal sufficiency, or the absence of latent confounding, is assumed [19]
and there are several extensions of this algorithm [15, 17]. FCI is the comparable algorithm for non-
Markovian settings where unobserved confounding is permitted [26, 20] and of which there are also
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Figure 1: DAGs (b) and (e) in the classes represented by C-DAGs(a) and (d), respectively. (c): an
attempted graphical equivalence class for (a) after applying a collider search test given a distribution
from G1. (f): an attempted graphical equivalence class for GC2 after applying a modified collider
search test requiring X ⊥̸⊥Y|Z, and applying an orientation rule, given a distribution from G2.

several extensions [7, 14]. Typically, the data constraints are insufficient for uniquely identifying a
causal diagram. Instead, the graphical object of interest, and the output of causal discovery algorithms,
is an equivalence class of causal diagrams that fully encodes the data constraints.

In both Markovian and non-Markovian systems, however, existing algorithms are often computation-
ally prohibitive with many variables and prone to errors in practice [8]. One approach to improve
scalability in high-dimensional settings is to group variables into clusters and infer relationships
between these clusters. In the context of diagrams constructed from knowledge used for identification
of causal effects, Cluster Directed Acyclic Graphs (C-DAGs) [1] are introduced as causal diagrams
defined over clusters, allowing the visual representation of a high-dimensional system to be simplified
and the requisite knowledge for graph specification lessened. In a C-DAG, nodes are clusters of vari-
ables, and an edge exists if a variable in one cluster causally influences a variable in another. C-DAGs
are assumed to be constructed based on partial knowledge of causal and confounding relationships
between variables across clusters, oblivious to variable-level relationships within clusters.

In this work, we address causal discovery over clusters of variables. We assume that the underlying
causal model is a Markov DAG over individual variables V = {V1, ...Vn} with no latent variables.
Given a predefined partition of V into clusters C = {C1, . . . ,Ck}, we aim to learn causal rela-
tionships between these clusters based on observed conditional (in)dependencies between clusters
encoded in the distribution P (C) = P (C1, . . . ,Ck) without access to variable-level relationships.

One might attempt to simply treat each cluster as a multivariate random variable and apply existing
causal discovery algorithms like PC [18]. However, consider the DAG G1 and its corresponding
C-DAG GC1

in Figure 1(b) and 1(a), respectively. Assuming a probability distribution faithful to G1,
PC will correctly construct the skeleton X−Z−Y, but observing the independence X⊥⊥Y will lead
to the collider structure PC1

in Figure 1(c), clearly misrepresenting the true causal directions. In fact,
we have both X⊥⊥Y and X⊥⊥Y|Z according to G1. No DAG structures over clusters X− Z−Y
can simultaneously capture both independencies. This implies the need for a new graphical object to
represent (in)dependence information between clusters. Suppose we revise our collider test to only
assign a collider to a triplet ⟨X,Z,Y⟩ when X⊥⊥Y and X ⊥̸⊥Y|Z. Consider G2 and its C-DAG
GC2 in Figure 1(e), and 1(d), respectively. In this context, our modified collider test allows correct
determination of the collider structure X→ Z← Y (and no other colliders). Applying the standard
orientation rule that for triplet X→ Z−W, Z−W should be oriented as Z→W to reflect that
⟨X,Z,W⟩, not yet oriented, must be a non-collider again results in a misdirected edge.

These somewhat surprising results illustrate the complexities of representing causal and independence
relationships over clusters and show that naively applying existing algorithms like PC over clusters
can lead to incorrect orientations. PC over individual variables learns a Markov equivalence class
of causal diagrams with the same conditional (in)dependencies [19, 20, 9, 22], represented as a
completed partially directed acyclic graph (CPDAG) [6, 9, 2]. Analogously, for clusters, the goal is
to recover a Markov equivalence class reflecting the same (in)dependencies between clusters.

Summary of Contributions Our contributions are as follows:

1. In section 2, we define a new graphical object, αC-DAG (Definition 7), that, in addition
to causal relations, explicitly represents all (in)dependence information over clusters. We
define a new criterion for d-separation in αC-DAGs (Definition 8) which we show is sound
and complete for extracting conditional (in)dependencies over clusters (Theorem 1).

2. In section 3, we define Cluster Completed Partially Directed Acyclic Graphs, or αC-
CPDAGs, to represent a Markov equivalence class of αC-DAGs (Definition 10). We
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introduce a learning algorithm for sound and complete causal discovery over clusters to
learn an αC-CPDAG by testing conditional (in)dependencies over clusters (Algorithm 1).

1.1 Related work and Preliminaries

In the literature, clusters are mainly used as an intermediate step in learning a graphical equivalence
class over variables. Typically, clusters of nodes sharing some properties are learned, then structures
within or between these clusters are learned, and ultimately integrated into a graph over variables
representing a class of DAGs [21, 12, 4, 5, 25]. Prior approaches that learn structures over clusters
either group variables heuristically based on structural similarity [10], assume clusters with strict
internal structural constraints [3, 16], including where structures such as those in Figure 1 are
disallowed [11, 24], or consider only two clusters [23]. In contrast, we consider a user-defined
partition of variables and learn a structure representing a cluster-level equivalence class.

Notation. A single variable is denoted by a (non-boldface) uppercase letter X and its realized value
by a small letter x. A boldfaced uppercase letter X denotes a set (or a cluster) of variables. We
use kinship relations, defined via edges in the graph. We denote by Pa(X)G, Ch(X)G, An(X)G,
and De(X)G, the sets of parents, children, ancestors, and descendants in graph G, respectively. A
triplet ⟨Vi, Vk, Vj⟩ is active if 1) Vk is a collider and Vk or any of its descendants are in Z or 2) Vk

is a non-collider and is not in Z. A path p is said to be active given (or conditioned on) Z if every
triplet on p is active relative to Z. Otherwise, p is said to be inactive. Given a graph G, X and Y are
d-separated by Z if every path between X and Y is inactive given Z. We denote this d-separation
by (X ⊥⊥Y | Z)G. Learned Equivalence Classes. A completed partially directed acyclic graph
(CPDAG) G can have either directed (→) or undirected (−) edges. Directed edges are common for
all members of the Markov equivalence class represented by the CPDAG whereas undirected edges
are variant. A triplet of vertices ⟨X,Y, Z⟩ is unshielded if X and Z are not adjacent to each other.
If X and Z are adjacent to one another, the triplet is said to be shielded. In a consecutive triplet
⟨X,Z, Y ⟩, Z is a definite collider if edges from X and Y are into it (X → Z ← Y ). Z is a definite
non-collider if at least one edge is out of it (X ← Z − Y , X −Z → Y ) or both edges are undirected
and the triplet is unshieleded (X − Z − Y ). Otherwise, Z has a non-definite status. Cluster DAG or
C-DAG (Markov)[1] Given a DAG G(V,E) and a partition C = {C1, . . . ,Ck} of V, construct a
graph GC(C,EC) over C with a set of edges EC defined as follows: An edge Ci → Cj is in EC if
exists some Vi ∈ Ci and Vj ∈ Cj such that Vi ∈ Pa(Vj) in G. If GC(C,EC) contains no cycles,
then we say that C is an admissible partition of V. We then call GC a cluster DAG, or C-DAG,
compatible with G. The definition of d-separation over C-DAGs extends from that over variables and
is elaborated on in Appendix A and [1].

2 αC-DAGs: a new graphical object for encoding causal relationships and
(in)dependencies over clusters

2.1 Representing (in)dependence information over clusters

In DAGs, marginal and conditional (in)dependencies align consistently with structural edges and
arrowhead orientations between variables. As d-separation rules familiarly show, for an unshielded
triplet X,Z, Y , a collider structure exists if and only if X⊥⊥Y and X ⊥̸⊥Y |Z. A non-collider structure
exists if and only if X ⊥̸⊥ Y and X ⊥⊥ Y |Z. It is only possible for X ⊥̸⊥ Y and X ⊥̸⊥ Y |Z if the triplet
is shielded. The last combination of independence information, X ⊥⊥ Y and X ⊥⊥ Y |Z such that X
and Y are adjacent as well as Z and Y , never occurs. With C-DAGs, ambiguity is introduced and the
correspondence between graphical structure and independence information changes. Consider G1

and G2 in Figure 2(a), which are both colliders over the clusters ⟨X,Z,Y⟩, but are each associated
with distinct independence information. G3 and G4 illustrate analogous behavior for non-colliders,
whether a chain or fork. Therefore, neither collider nor non-collider structures over clusters can be
singularly associated with specific independencies or dependencies, unlike with variables. Fortunately,
the converse is true: certain independence tests can singularly inform structure, and we can leverage
this property for learning over clusters in some cases. However, a new representation is needed to
ensure complete representation of independence information for structural inference.
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(a) Example DAGs representing non-colliders and colliders
with possible independence information for clusters.
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Figure 2: Graphical Structures and Representations of Independence Information.

2.2 A novel representation of independence information

We introduce a new semantic representation called “independence arcs” to graphically encode known
independence information. These arcs explicitly convey independence information between variables,
decoupled from ancestral relationships. We note that while the terms of “edges” and “arcs” are
often used interchangeably to refer to the connections between nodes in a graph, we use the term
“independence arc” to refer to a novel symbolic representation of an arc drawn between two edges of
a cluster graph. The form and representation of the arc conveys information about the conditional
and marginal (in)dependencies of the triplet of which these two edges are a part. This is in contrast to
what we consistently refer to as edges, meaning the connections between nodes in a graph.

Figure 2(b) shows the three new independence arc markings and their meanings, defined formally
in Definition 2. A break in the independence arc indicates a marginally inactive triplet, while an
arc without any break represents a marginally active triplet. A dashed arc indicates a conditionally
inactive triplet, while a solid line indicates a conditionally active triplet. Under this new representation,
edges preserve their semantics with regards to conveying parent-child relationships between nodes,
and independence information of a triplet is determined exclusively through the independence arc.

Independence arcs annotate both unshielded triplets, ⟨Ci,Ck,Cj⟩, where Ck is adjacent to both Ci

and Cj , and Ci and Cj are not adjacent, and shielded triplets, ⟨C′
i,C

′
k,C

′
j⟩, where C′

k is adjacent to
both C′

i and C′
j , and C′

i and C′
j are adjacent. To determine the arc for a shielded triplet, we introduce

the concept of a manipulated shielded triplet where one edge of the triplet is removed so that the
triplet can become unshielded, and the arc describes the behavior of this induced unshielded triplet.
Definition 1 (Manipulation of a shielded triplet). Given a shielded triplet over clusters ⟨Ci,Ck,Cj⟩,
its manipulation involves removing the edge between Ci and Cj , corresponding to removal of any
edges between variables in these clusters. After manipulation, the shielded triplet becomes unshielded
and this manipulated unshielded triplet is referenced as ⟨Ci,Ck,Cj⟩−CiCj .

Example 1: Consider Figure 3. Triplet ⟨A,B,E⟩ in GC1
is shielded. To manipulate the triplet,

the edge A → E is removed, corresponding to removing the edge A1 → E2 in G1. This manipu-
lated unshielded triplet in GC1

is referred to as ⟨A,B,E⟩−AE. The complete process for adding
independence arcs to a graph is described below in Definition 2.
Definition 2 (Independence Arcs). Consider a graph GC over clusters C = ⟨C0, ...,Cn⟩. For any
unshielded triplet ⟨Ci,Ck,Cj⟩ (or manipulated unshielded triplet ⟨Ci,Ck,Cj⟩−CiCj ), let S equal
a (possibly empty) set of clusters S ⊂ (C \ {Ci,Cj}) such that Ci ⊥⊥Cj |S, if such a set exists. For
a triplet ⟨Ci,Ck,Cj⟩, an independence arc, ACi,Ck,Cj

∈ A, can be drawn from some point on the
edge between Ci and Ck to some point on the edge between Cj and Ck in the following way:

1. A marginally-connecting independence arc of - - - - is drawn if and only if Ck ∈ S.
Consequently, Ci ⊥̸⊥Cj |S \Ck and Ci ⊥⊥Cj |S.

2. A conditionally-connecting independence arc of —∥— is drawn if and only if Ck /∈ S and
Ci ⊥̸⊥Cj |S ∪Ck.

3. A never-connecting independence arc of - -∥- - is drawn if and only if Ck /∈ S and
Ci ⊥⊥Cj |S ∪Ck.
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Figure 3: G1 is an ADMG in the class of GC1
, a C-DAG (with Independence Arcs). Independence

arcs encode (in)dependencies between clusters, for example that A⊥⊥D and A ⊥̸⊥D|C. GC2
is a

C-DAG (with Independence Arcs and Separation Marks, or αC-DAG) and G2 is a compatible DAG.
Shielded triplets are annotated according to the behavior of their respective manipulated triplets.

Example 2: Consider DAG G1 in Figure 3. Unshielded triplets ⟨A,B,C⟩, ⟨E,B,C⟩, and ⟨C,D,E⟩,
are marked with a marginally-connecting arc, as are manipulated unshielded triplets ⟨E,A,B⟩−EB

and ⟨A,B,E⟩−AE. A conditionally-connecting arc is drawn for ⟨B,C,D⟩. Never-connecting arcs
are added to triplets ⟨A,E,D⟩ and ⟨B,E,D⟩, and manipulated unshielded triplet ⟨A,E,B⟩−AB.
Lemma 1. In a Markov C-DAG with independence arcs, a conditionally-connecting independence
arc always implies a collider structure.

While a collider structure X→ Z← Y in a C-DAG does not necessarily imply that X⊥⊥Y and X⊥̸⊥
Y|Z, lemma 1 notes that the converse is true. Independence arcs allow for d-separations to be read in a
new way, unrelated to edge connections. For an isolated triplet with clusters ⟨Ci,Ck,Cj⟩, the triplet
is active (d-connecting) relative to the (possibly empty) set of cluster vertices Z if a) ⟨Ci,Ck,Cj⟩ is
marked with a marginally-connecting independence arc and Ck /∈ Z or b) ⟨Ci,Ck,Cj⟩ is marked
with a conditionally-connecting independence arc and Ck ∈ Z. Otherwise, ⟨Ci,Ck,Cj⟩ is d-
separated relative to Z. In a larger graph, we introduce the notion of arc trajectories, or the sequence
of independence arcs corresponding to a path between two variables. Arc trajectories can be analyzed
to determine if two variables are connected or not.
Definition 3 (Arc Trajectory). Given a graph GC , for some path over clusters ⟨C1,C2,C3, ...,Cn⟩,
the arc trajectory refers to the sequence of independence arcs for each triplet along the path, a =
⟨AC1,C2,C3 , ...,ACn−2,Cn−1,Cn⟩.
Example 3: Consider the example in Figure 3. To determine if A and D are d-separated (A⊥⊥D)
in GC1

, we first identify all simple paths between A and D, of which there are three: A → B →
C ← D, A → B → E → D, and A → E → D. The arc trajectory corresponding to the first
path is ⟨AA,B,C,AB,C,D⟩, consisting of a marginally-connecting arc and a conditionally-connecting
arc. Because there is no conditioning set in the query, only AA,B,C indicates an active triplet
but not AB,C,D, and therefore A and D are not connected along this path. For the second path,
the arc trajectory is ⟨AA,B,E,AB,E,D⟩. AA,B,E is a marginally-connecting arc, but AB,E,D is a
never-connecting arc, so A and D are not connected by this path either. The last path has the arc
trajectory ⟨AA,E,D⟩, and its only independence arc is never-connecting. Therefore, we can conclude
that A⊥⊥D. By a similar analysis, we can conclude that A ⊥̸⊥D|C.

With some simple examples, we illustrate that determining d-separations by independence arcs can
sometimes be more complex. Consider Figure 3. From G2, the following independence information
is clear: X ⊥̸⊥W and AX,Z,W is a marginally-connecting arc, Z ⊥̸⊥ Y|W, and AZ,W,Y is a
conditionally-connecting arc. Then the arc trajectory in GC2 from X to Y might lead us to believe
that X ⊥̸⊥Y|W, but this is not true. Independence arcs indicate information with regards to a triplet
of clusters, but alone, may misrepresent d-separation for paths over clusters. We enrich independence
arcs with a new semantic representation to denote unexpected independencies. We introduce a new
symbol, ⊘C, which we call a “separation mark.” This mark annotates an independence arc of a triplet
to indicate a cluster (specified by the subscript of the separation mark) further along on a path that, by
independence arcs, would appear to have a d-connection to the variables in the triplet, but is actually
separated. This notion is formalized in definition 5. First, we define a supporting concept below.
Definition 4 (Analogous Paths). Given a C-DAG GC and a compatible ADMG G, we define a
simple path in G over variables, p = ⟨V1, V2, V3, ..., Vm⟩ to be considered analogous to a path in
GC over clusters pC = ⟨C1,C2,C3, ...,Cn⟩ (and pC analogous to p) if and only if the following
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hold: 1) for every variable Vi on p, Vi is in some cluster Ci on pC, 2) for every cluster Cj on pC,
there exists some variable Vj ∈ Cj where Vj is on p, and 3) for any variable Vn ∈ Cn, there does
not exist any variable that appears after Vn on p that is in a cluster before Cn on pC.

In Fig. 3, the path over variables pv = ⟨A1, B1, C1, D1⟩ in G1 is an analogous path for the path over
clusters pc = ⟨A,B,C,D⟩ in GC1 , but the path over variables p′v = ⟨A1, B1, E1, E2, E3, D1⟩ is
not analogous to pc, since E is not on pc but ∃Ve ∈ E on p′v and ∄Vc ∈ C on p′v , but C is on pc.

Definition 5 (Separation Marks). Let G be an ADMG, and let GC denote a possible C-DAG for G.
Consider a path pC in GC over clusters ⟨C1,C2,C3, ...,Cn⟩ and its corresponding arc trajectory
a = ⟨AC1,C2,C3

, ...ACn−2,Cn−1,Cn
⟩ such that:

1. there is no arc ACi,Ci+1,Ci+2 ∈ a that is a never-connecting arc,
2. there is no d-connecting path p in G over variables relative to clusters Z, analogous to pC,
3. there exists a d-connecting path p′ in G over variables relative to some set of clusters Z′ that is

analogous to the path in GC, p′C = ⟨C1, ...,Cn−1⟩, and
4. there exists a d-connecting path p′′ in G over variables relative to some set Z′′ of clusters that is

analogous to the path in GC, p
′′

C = ⟨C2, ...,Cn⟩.
Then, a separation mark, ⊘C1

is placed on the arc ACn−2,Cn−1,Cn
, and a separation mark, ⊘Cn

is
placed on the arc AC1,C2,C3

.

Example 4: In Figure 3, we identify where a separation mark is needed by traversing paths of length
greater than 3 in GC2

and compare to the paths over variables in G2. For example, traversing the path
⟨X,Z,W,Y⟩ in GC2

and comparing to G2, we see that there is no path between any variable in X
and a variable in Y. We place a separation mark with the subscript Y, as in⊘Y, on the independence
arc of AX,Z,W. This indicates that when traversing a path starting at X where AX,Z,W is in the arc
trajectory associated with the path, Y is separated from X (in addition to any nodes past Y on the
path). We place a mirroring separation mark, ⊘X, along arc trajectory AZ,W,Y to reflect the reverse.
GC2 in Figure 3 shows the C-DAG with independence arcs and separation marks. Further discussion
on separation marks can be found in Appendix C.

Separation marks indicate separations on paths masked by the clusters and independence arcs.
Connections may also be masked if conditioning on a descendant of a collider within a cluster, where
the descendant is in a different cluster from the collider. We introduce a new connection mark, which,
like separation marks, annotates independence arcs. Specifically, a connection mark, ⊕Cx in an
independence arc ACi,Ck,Cj denotes that the triplet ⟨Ci,Ck,Cj⟩ is activated by conditioning on
Cx due to some variable Vx ∈ Cx being a descendant of some collider variable Vk ∈ Ck.

Definition 6 (Connection Marks). Let G be an ADMG and let GC denote a possible C-DAG for G
with independence arcs. Consider a triplet over clusters in GC, ⟨Ci,Ck,Cj⟩, and its corresponding
independence arc, ACi,Ck,Cj

. If ACi,Ck,Cj
is a never-connecting or conditionally-connecting

independence arc, and there exists a path p in G over variables through the triplet ⟨Vi, ..., Vk, ...Vj⟩
such that Vi ∈ Ci, Vk ∈ Ck, and Vj ∈ Cj then ∀V ′

k ∈ Ck and on p, where V ′
k is a collider, let D be

the set of clusters that are children of Ck and which include descendants of all colliders along the
path, (D =

⋃
{Cd : Vd ∈ Cd} where Vd /∈ {Ci,Ck,Cj} and Vd ∈ Ch(Vk)). Then the connection

mark ⊕D is added to ACi,Ck,Cj
.

Example 5: Consider again Figure 3. Collider Y2 in the triplet ⟨Y1, Y2, Y3⟩ in G2 is not discernible
in triplet ⟨W,Y,R⟩ in GC2

, which is marked by a never-connecting independence arc. However,
conditioning on Q renders R and W dependent. The connection mark ⊕Q is placed along arc
AW,Y,R, as shown. Further discussion on connection marks can be found in Appendix C.

2.3 αC-DAG Definition and Properties

With the introduction of the new symbolic representations of independence arcs, separation marks,
and connection marks we can fully define a new graphical model for C-DAGs with independence arcs,
which we call αC-DAGs, for short. The “α" prefix will be used to indicate graphical representations
making use of the new semantics of independence arcs, separation marks and connection marks.

Definition 7 (αC-DAG (C-DAG with Independence Arcs)). Given a DAG G(V,E) and a partition
C = {C1, . . . ,Cn} of V, construct a graph GC(C,EC,A) over C.

• An edge Ci → Cj is in EC if exists some Vi ∈ Ci and Vj ∈ Cj such that Vi ∈ Pa(Vj) in G;
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• The set of independence arcs A is defined over all triplets ⟨Ci,Ck,Cj⟩, by Definition 2.
• For each arc trajectory in GC, separation marks are added according to Definition 5.
• For each path in GC, connection marks are added according to Definition 6.

If for all pairs of clusters Ci,Cj where there exists an edge Ci → Cj , there is no directed path
Cj → ...→ Ci, then we say that C is an admissible partition of V. We then call GC a cluster DAG
with independence arcs, or an αC-DAG, compatible with G.

As with the definition of C-DAGs, αC-DAGs assume acyclicity over clusters. Specifically, we
disallow what we define as apparent directed cycles (or just apparent cycles), where edges over
clusters give the appearance of a cycle such that for some pair of clusters {Ci,Cj} there exists an
edge Ci → Cj and a directed path Cj → ...→ Ci. While Definition 7 takes as input a DAG, we
also note that construction of an αC-DAG could alternatively take as input a C-DAG and a probability
distribution P (C) where P (C) is faithful to the true data-generating process. Knowledge would
inform edge directions and P (C) would inform independence arcs, separation marks and connections
marks; the αC-DAG is still an object constructed from knowledge, rather than one that is learned.

D-separation over αC-DAGs can be determined according to the criteria below. In the theorem that
follows, we show these d-separation rules are sound and complete in αC-DAGs.

Definition 8 (d-separation over αC-DAGs.). A path pC in an αC-DAG, GC, is said to be d-
separated (or blocked) by a set of clusters Z ⊂ C if and only if its corresponding arc trajectory a
contains an independence arc ACi,Ck,Cj that is:

1. a marginally-connecting independence arc and (a) Ck is in Z or (b) there exists a separation
mark ⊘Cx

on ACi,Ck,Cj
where Cx is on pC.

2. a conditionally-connecting independence arc and (a) Ck is not in Z nor is any true descen-
dant Cd of Ck (with directed and connecting path Ck → ...→ Cd) in Z, (b) there exists a
separation mark on ACi,Ck,Cj

⊘Cx
where Cx is on pC, or, (c) for any connection mark

⊕Cx
on ACi,Ck,Cj

, Cx is not in Z.
3. a never-connecting independence arc and for connection mark⊕Cx

onACi,Ck,Cj
, Cx /∈ Z.

Theorem 1. [Soundness and completeness of d-separation in αC-DAGs.] In an αC-DAG GC, let
{X,Z,Y} ∈ C. X and Y are d-separated by Z in GC, if and only if for any DAG, G, compatible
with GC, X and Y are d-separated by Z in G. (X⊥⊥Y | Z)GC

⇐⇒ (X⊥⊥Y | Z)G.

This d-separation definition informs how (in)dependencies can be read over clusters in an αC-
DAG. The novel graph of an αC-DAG represents knowledge of both connections between and
(in)dependence information over clusters. In the next section, we build on the α-CDAG semantics
introduced here to define a new graphical objec foundational for learning over clusters.

3 αC-CPDAGs and learning
3.1 Equivalence classes of αC-DAGs

As with other causal discovery algorithms, our approach to learning over clusters will result in a
graphical equivalence class of compatible models, specifically an equivalence class of αC-DAGs. This
equivalence class will represent the class of graphs, over clusters, that share the same independence
structure induced, and the associated graphical object is analogous to a CPDAG, which uniquely
represents a Markov equivalence class over variables. We define this novel graph as a cluster CPDAG,
or αC-CPDAG. In this section, we define the relationship of this object to αC-DAGs and describe
how αC-CPDAGs can be learned from an observational distribution.

Two DAGs, G1 and G2 with the same vertices are Markov equivalent if for any three disjoint sets of
vertices X,Z,Y, X and Y are d-separated by Z in G1 if and only if X and Y are d-separated by Z
in G2. We extend a similar notion for clusters and αC-DAGs in Definition 9. From the definition of
d-separation for αC-DAGs, we know that such separations are discernible from independence arcs,
separation marks and connection marks alone, which leads to the theorem following the definition. In
αC-CPDAGs, it may not always be possible to determine the independence arcs associated with each
manipulated unshielded triplet within a shielded triplet. In this case, it is possible for any arc to exist,
and all corresponding graphs are included in the equivalence class represented by the αC-CPDAG.
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Figure 4: G1 and G2 are DAGs in the class of the αC-DAGs GC1
and GC2

, respectively. GC1
and

GC2
are in the Markov equivalence class of αC-CPDAG, PC. In PC, R0 is applied to ⟨X,R,Y⟩,

and then R1 is applied to ⟨X,R,Q⟩. Lastly, R5 is applied to ⟨X,Z,Y⟩ with descendant W.

Definition 9 (Cluster Markov Equivalence). Two αC-DAGs, GC1 and GC2 (with the same partition
C over the same variables V) are cluster Markov equivalent if for any three disjoint sets of clusters
X,Z,Y, X and Y are d-separated by Z in GC1

iff X and Y are d-separated by Z in GC2
.

Theorem 2. Two αC-DAGs, GC1
and GC2

(with the same partition C over the same set of variables
V) are cluster Markov equivalent if and only if they share the same: 1) adjacencies, 2) independence
arcs, 3) separation marks and 4) connection marks.

Figure 4 illustrates example DAGs and αC-DAGs in the same cluster Markov equivalence
class. Markov equivalent αC-DAGs share some unshielded colliders, namely those marked by
a conditionally-connecting arc. This characterization of equivalent αC-DAGs leads to the definition
of the cluster CPDAGs (αC-CPDAGs). As with a partially directed acyclic graph, an αC-CPDAG
may contain both directed and undirected edges and does not contain any directed cycles. As with
αC-DAGs, an αC-CPDAG is defined over a user-defined partition of clusters C over the variables V.
Definition 10 (αCluster CPDAG). Let [GC] be the Markov equivalence class of an arbitrary αC-
DAG, GC. The cluster completed partially directed acyclic graph (αC-CPDAG) for [GC], denoted P ,
is defined such that:

1. P has the same adjacencies as GC (and therefore any member of [GC]).
2. A directed edge is in P iff shared by all αC-DAGs in [GC]; otherwise the edge is undirected
3. An independence arc is in P iff shared by all αC-DAGs in [GC]; otherwise there is no arc.
4. P has the same separation and connection marks as GC (and any member of [GC]).

3.2 A Constraint-Based Learning Algorithm for αC-CPDAGs

Given definitions of the relationships between an αC-DAG and a DAG, and an αC-CPDAG and an
αC-DAG, we can develop an approach for the reverse process of constructing an αC-CPDAG from
(in)dependencies in an observational dataset. Algorithm 1, Causal Learning Over Clusters (CLOC),
defines this procedure. CLOC assumes that an available distribution P (C) (or data representing it) is
faithful to the true αC-DAG and that partition C is admissible. Figure 4 illustrates an αC-CPDAG
learned by the algorithm.
Definition 11 (Faithfulness for αC-DAGs). Given an αC-DAG GC and probability distribution
over the clusters P (C) that is generated by an SCM consistent with any causal diagram compatible
with GC, we say that P (C) is faithful to GC if (X⊥⊥Y|Z)P (c) ⇒ (X⊥⊥Y|Z)P (GC).

CLOC has three phases. In the first, edges between pairs of nodes, X and Y, are removed from
a complete graph with undirected edges if there exists some separating set of clusters S such that
(X⊥⊥Y|S). Independence arcs are added and colliders are determined from conditionally-connecting
arcs (Lemma 1). In the second phase, separation marks, and connection marks are added. In the
final phase, five orientation rules are evaluated until none apply. Rules 1, 3 and 4 extend from PC,
leveraging independence arcs to determine where the logic is sound. Rule 2 extends precisely, and
Rule 5 is our contribution. This algorithm gives us an αC-CPDAG, which represents the cluster
Markov equivalence class of αC-DAGs compatible with the distribution P (C). We review the rules
below with proofs in Appendix B. After, we demonstrate that the orientation rules and the learning
algorithm are sound and complete for learning causal relations between clusters. Note that in the
orientation rules, asterisks indicate either an arrowhead or tail is possible.
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R0: If X− Z−Y and AX,Z,Y is conditionally-connecting, then orient the triplet as X→ Z← Y

R1: If X→ Z−Y, X and Y are not adjacent, and AX,Z,Y is marginally-connecting, then orient
the triplet as X→ Z→ Y.
R2: If X→ Z→ Y and X−Y, then orient X−Y as X→ Y.

Algorithm 1: CLOC: Algorithm for Learning an αC-CPDAG
Input: Admissible partition C = {C1, ...,Cn}, P (C)
Output: αC-CPDAG, P

1. Determine skeleton, separation sets, independence arcs, and identifiable colliders by Algorithm 2.
2. Add the separation and connection marks by Algorithm 3.
3. Apply the five orientation rules until none apply.

Algorithm 2: CLOC: Adjacencies and Independence Arcs

Input: Partition C = {C1, ...,Cn}
Output: αC-CPDAG, P

1 Form complete graph P over C with undirected edges.
2 for X,Y ∈ C do
3 for S ⊆ C \ {X,Y} do
4 if P (y | s,x) = P (y | s) then
5 SepSet← S, SepFlag← True, break

6 if SepFlag = True then
7 Remove the edge between X,Y in P

8 for every unshielded triplet ⟨X,Z,Y⟩ in P do
9 if Z /∈ SepSet(X,Y) and

X ⊥̸⊥Y | Z ∪ SepSet(X,Y) then
10 Mark ⟨X,Z,Y⟩ in P with a

conditionally-connecting arc, and orient as
X→ Z← Y

11 else if Z ∈ SepSet(X,Y) then
12 Mark ⟨X,Z,Y⟩ in P with a

marginally-connecting arc

13 else
14 Mark ⟨X,Z,Y⟩ in P with a never-connecting

arc

15 for every shielded triplet ⟨X,Z,Y⟩ in P with Y
adjacent to some W and X not adjacent to W do

16 if AZ,Y,W is conditionally-connecting and
AX,Y,W is not then

17 if Y /∈ SepSet(X,W) and
X ⊥̸⊥W | Y ∪ SepSet(X,Y) then

18 Mark ⟨X,Z,Y⟩−XY in P with a
marginally-connecting arc

19 else
20 Mark ⟨X,Z,Y⟩−XY in P with a

never-connecting arc

21 else if AZ,Y,W is marginally-connecting and
AX,Y,W is not then

22 if Y /∈ SepSet(X,W) and
X ⊥̸⊥W | Y ∪ SepSet(X,Y) then

23 Mark ⟨X,Z,Y⟩−XY in P with a
conditionally-connecting arc, and orient
X→ Z← Y

24 else if {B,C} ∈ SepSet(X,W) then
25 Mark ⟨X,Z,Y⟩−XY in P with a

marginally-connecting arc

26 else
27 Mark ⟨X,Z,Y⟩−XY in P with a

never-connecting arc

Algorithm 3: CLOC: Separation and Connection Marks
Input: Admissible partition C = {C1, ...,Cn}, P (C)
Output: αC-CPDAG, P

1 for each path p = ⟨C0, ...,Cn⟩ ∈ P do
2 if length(p) ≥ 4 and arc trajectory a for p is only

marginal/conditionally-connecting arcs (with no
marks ⊘Ca where Ca ∈ p) then

3 Let K←
⋃
{Cz | ACx,Cz ,Cy ∈

a is conditionally-connecting}
4 if C0 ⊥⊥Cn | K ∪ (SepSet(C0,Cn) \ p)

then
5 For shortest subpath

p′ = ⟨Ci, ...,Cj⟩ ⊆ p s.t.
length(p′) ≥ 4 and
Ci ⊥⊥Cj | K ∪ (SepSet(C0,Cn) \ p)

6 Add ⊘Cj to ACi,Ci+1,Ci+2

7 Add ⊘Ci to ACj−2,Cj−1,Cj

8 for each triplet ⟨X,Z,Y⟩ in P do
9 if AX,Z,Y is a conditionally or never connecting

arc and ∃ some W such that Z−W, X and W
are not adjacent, Y and W are not adjacent
then

10 Let WZ ← {W | Z−W exists in P}
11 Let S be the power set of WZ \ ∅
12 for each subset D ∈ S do
13 if X ⊥̸⊥Y | D ∪ SepSet(X,Y) then
14 Add ⊕D to AX,Z,Y

9



(a) (b) (c)

Figure 5: Plots comparing the (a) Structural Hamming Distance, (b) runtime, and (c) number of
conditional-independence tests for CLOC (blue) compared to the PC-then-cluster approach (orange).

R3: If X→ Z← Y, X−W−Y, X and Y are not adjacent, W−Z, and AX,W,Y is marginally-
connecting, then orient W − Z as W→ Z.
R4: If X → Z → Y, X −W − Y, X and Y are not adjacent, W ∗−∗ Z, and AX,W,Y is
marginally-connecting, then orient W −Y as W→ Y.
R5: If X ∗−∗Z ∗−∗Y, Z−W, X and W are not adjacent, Y and W are not adjacent, and AX,Z,Y

is never-connecting or conditionally-connecting with connection mark ⊕D such that W ∈ D, then
orient Z−W as Z→W.
Theorem 3. [Soundness and Completeness of Orientation Rules and CLOC] The five orientation
rules and the procedure of CLOC are sound and complete.

4 Experiments

We show performance of CLOC in comparison to a ‘PC-then-Cluster’ approach, where PC over
the entire set of variables is run with variables then grouped by the partition, yielding a graph over
clusters. We generate random C-DAGs (3, 5, 6, 7, 8 clusters), and random DAGs (4, 8, 32, 64, 128,
256 variables) compatible with the C-DAGs. A Gaussian distribution (1000, 3000, 10000, 30000
samples) faithful to the DAG is drawn, over which PC-then-Cluster and CLOC are run. Runtime,
conditional independence test counts, and structural hamming distances between the resulting graphs
of each method and the true C-DAG are shown in Figure 5. Design details, implementation code, and
additional results are included in Appendix D. PC requires exponentially more independence tests
relative to CLOC. Runtime is also improved for CLOC. More efficient multivariate independence
tests can lead to greater runtime improvements for CLOC. The structural hamming distances of the
graphs generated by PC and CLOC differ in expected ways (see discussion in Appendix D).

5 Conclusions

In this work, we address the need for causal discovery over clusters in Markov causal systems.
We introduce αC-DAGs, which capture both causal directions and (in)dependence information
over clusters, setting the stage for introduction of αC-CPDAGs, an equivalence class of αC-DAGs
and the graphical object representing the class of cluster graphs with shared (in)dependencies and
orientations. We then propose a sound and complete algorithm, CLOC, to learn this new graphical
equivalence class from data, capturing much of the information that could be learned from variables,
with fewer independence tests and faster runtime. Limitations of the approach include assumptions
of causal sufficiency and faithfulness which may not apply for all applications. Users are required
to have knowledge of a partition of variables into clusters that does not induce a cycle, which is
non-negligible, while feasible for many applications including in clinical and biological domains,
where partitions often arise naturally and may correspond to laboratory panels, gene sets, microbiome
groups, neuroanatomical regions, or demographic blocks. While tests over clusters may have lower
statistical power or be slower than those over individual variables, this can be effectively mitigated by
advances in multivariate testing (e.g., Mantel Test), and modern machine learning-based methods that
reliably assess independence between multivariate distributions. The foundational work introduced
here sets the stage for improved scalability and makes possible causal discovery for sets of variables.
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A Additional Background

A.1 d-Separation in C-DAGs

The definition of d-Separation in C-DAGs, introduced in [1], is provided below.

Definition 12 (D-Separation in C-DAGs). A path p in a C-DAG GC is said to be d-separated (or
blocked) by a set of clusters Z ⊂ C if and only if p contains a triplet

1. Ci ∗−∗Cm → Cj such that the non-collider cluster Cm is in Z, or
2. Ci∗→ Cm ←∗Cj such that the collider cluster Cm and its descendants are not in Z.

A set of clusters Z is said to d-separate two sets of clusters X,Y ⊂ C, denoted by (X⊥⊥Y | Z)GC
,

if and only if Z blocks every path from a cluster in X to a cluster in Y.

This definition, in the context of a triplet ⟨Ci,Cm,Cj⟩ reflects that Ci and Cj are d-separated by
Cm if and only if all paths over variable through the clusters of the triplet are d-separated by the set
of variables in cluster Cm.

B Proofs

Lemma 1. In a Markov C-DAG with independence arcs, a conditionally-connecting independence
arc always implies a collider structure.

Proof. Consider an unshielded triplet ⟨Ci,Ck,Cj⟩ such that ACi,Ck,Cj
is a conditionally-

connecting independence arc. This implies that Ci ⊥⊥ Cj |S \ Ck;Ci ⊥̸⊥ Cj |Ck ∪ S where S
is a separating set for Ci and Cj . Then there must exist some path, p = Vi, ..., Vk, ...Vj where
Vi ∈ Ci, Vk ∈ Ck, and Vj ∈ Cj , such that every non-endpoint node is a collider. In Markovian
cases, this can only occur if there is only one non-endpoint. Therefore, Vk must be the only non-
endpoint node on p such that Vk is a collider. Moreover, due to the admissibility of the partition, it
follows that no additional variable in Ck can act as a cause of any variable in Ci or Cj . Therefore,
langleCi,Ck,Cj⟩ must follow a collider structure.

Theorem 1. [Soundness and completeness of d-separation in αC-DAGs.] In an αC-DAG GC, let
{X,Z,Y} ∈ C. X and Y are d-separated by Z in GC, if and only if for any DAG, G, compatible
with GC, X and Y are d-separated by Z in G. (X⊥⊥Y | Z)GC

⇐⇒ (X⊥⊥Y | Z)G.

13



Proof. First we prove the soundness of d-separation by showing that if X and Y are d-separated by
Z in GC, then, in any DAG, G, compatible with GC, X and Y are d-separated by Z in G. We show
by contradiction. Assume X and Y are d-separated by Z in GC but in some compatible DAG, G,
there exists a path p between a variable X ∈ X and Y ∈ Y that is active when the set of variables
contained in cluster Z are conditioned on. By the preservation of paths and adjacencies, no connection
is destroyed through clustering, so p in G is contained in a path pC of GC between clusters X and Y.
Since X and Y are d-separated by Z in GC, pC is blocked, and X and Y are not adjacent. Therefore,
by definition 8, there is at least one triplet of clusters in pC that indicates a block on the path. Let this
triplet be ⟨Ci,Cm,Cj⟩, and let its associated independence arc be ACi,Cm,Cj

where Cm is distinct
from X and Y. Consider the subpath pij of p contained in the triplet ⟨Ci,Cm,Cj⟩ in pC. Since p is
active by assumption, every subpath of p is active, including pij . The triplet ⟨Ci,Cm,Cj⟩ indicates
a block on the path either if 1) ACi,Cm,Cj

is a never connecting arc with no connection marks ⊕Cd

such that Cd ∈ Z, 2) if ACi,Cm,Cj
is a marginally-connecting arc where Cm ∈ Z, 3) if ACi,Cm,Cj

is a conditionally-connecting arc such that Cm /∈ Z and with no connection mark ⊕Cd
such that

Cd /∈ Z or 4) if there is a separation mark ⊘Cx on ACi,Cm,Cj such that Cx is on pC. In case 1, pij
cannot be a connecting path or a collider path so pij would be inactive. In case 2, pij cannot be a
collider path, and since Cm ∈ Z, pij cannot be active. In case 3, pij cannot be a connecting path and
since Cm /∈ Z and for any connection mark ⊕Cd

, Cd /∈ Z, pij cannot be active. In case 4, definition
5 states that if ACi,Cm,Cj

is a marginally-connecting arc such that Cm /∈ Z, or if ACi,Cm,Cj
is

a conditionally-connecting arc such that Cm ∈ Z, then pij may be active, but since ACi,Cm,Cj
is

marked with a separation mark ⊘Cx
, there must exist some sub-path pix of p from some Vi ∈ Ci

to some Vx ∈ Cx such that Cx is on pC that is inactive. Therefore, p must be inactive, there is a
contradiction, and we conclude that if X and Y are d-separated by Z in GC, then, in any DAG, G,
compatible with GC, X and Y are d-separated by Z in G.

Then, we prove the completeness of d-separation by showing that if X and Y are d-separated by
Z in a DAG G, then X and Y are d-separated by Z in a compatible αC-DAG GC. We prove by
contradiction. Assume all paths from some X ∈ X to some Y ∈ Y are blocked by Z in some
DAG G, but X and Y are not d-separated by Z in GC, i.e. (X ⊥̸⊥ Y|Z)GC

. If all paths from
any X ∈ X to any Y ∈ Y are inactive by Z, then by preservation of paths and adjacencies, X
and Y are not adjacent in GC. No connections are destroyed through clustering so any p in G is
contained in a path pC of GC between clusters X and Y. Because X ⊥̸⊥Y|Z in GC, by Definition 8,
there must exist some path pC such that 1) for any triplet ⟨Ci,Cm,Cj⟩ on pC, the independence
arc ACi,Cm,Cj marking it must not be marked by a separation mark ⊘Ck

where Ck is on pC, 2)
for all marginally-connecting arcs Cm /∈ Z, 3) for all conditionally connecting arcs Cm ∈ Z, or
ACi,Cm,Cj

is marked with a connection mark ⊕Cd
and Cd or a true descendant is in Z, 4) for all

never-connecting arcs,ACi,Cm,Cj
is marked by a connection mark⊕Cd

and Cd or a true descendant
is in Z.

For all paths p from some X ∈ X to some Y ∈ Y in G to be blocked, there must exist at least one
triplet, ⟨Vi, Vm, Vj⟩, contained either within 1 cluster (i.e. ⟨Vi, Vm, Vj⟩ ∈ Cm) or between 2 (i.e.
⟨Vi, Vm⟩ ∈ Cm, Vj ∈ Cj or Vi ∈ Ci, ⟨Vm, Vj⟩ ∈ Cm) or 3 clusters (i.e. Vi ∈ Ci, Vm ∈ Cm, Vj ∈
Cj) on pC, that is blocked.

1. If the blocked triplet is a non-collider, Vi ← Vm → Vj or Vi → Vm → Vj , then Vm must
be in Z, which implies that Cm ∈ Z. As there could be multiple paths through a cluster, the
triplet over clusters, ⟨Ci,Cm,Cj⟩ could still be marked by any independence arc.
(a) If ACi,Cm,Cj

is a marginally-connecting arc or never-connecting arc, since Cm ∈ Z,
there is a contradiction with the implications of (X ⊥̸⊥Y|Z)GC

.
(b) If ACi,Cm,Cj

is a conditionally-connecting arc, then then there must exist a different
path, p′, over variables through the triplet from some some V ′

i ∈ Ci to V ′
j ∈ Cj

through Cm that is a collider path. Because Cm ∈ Z, either there is no X ∈ X or
Y ∈ Y on p′ or there must be another triplet, Vq, Vr, Vw, on p′ that is blocked.

2. If the triplet is a collider, Vi → Vm ← Vj , then Vm nor any of its descendants, Vd can be in
Z, implying that Cm /∈ Z and Cd /∈ Z where Vd ∈ Cd and ACi,Cm,Cj

is marked with the
connection mark ⊕Cd

.
(a) If ACi,Cm,Cj

is a marginally-connecting arc, then there must exist a different path, p′,
over variables through the triplet from some some V ′

i ∈ Ci to V ′
j ∈ Cj through Cm
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that is a connecting path. Because Cm /∈ Z, either there is no X ∈ X or Y ∈ Y on p′

or there must be another triplet, Vq, Vr, Vw, on p′ that is blocked.
(b) If ACi,Cm,Cj

is a conditionally-connecting arc or a never-connecting arc, because
Cm /∈ Z, and there is a connection mark ⊕Cd

, Cd /∈ Z, there is a contradiction with
the implications of (X ⊥̸⊥Y|Z)GC

.

For any path p′ with a blocked triplet ⟨Vq, Vr, Vw⟩, either one of the conditions above leading to a
contradiction (case 1a or 2b) applies, or there is a contradiction because a separation mark must exist
along the path pC. By definition 5, the separation mark would be required because by assumption, all
paths between any X ∈ X and Y ∈ Y are blocked by Z in G, so it is not possible for there to be
a d-connecting path relative to Z in G analogous to pC in GC . However, p is a d-connecting path
relative to Z analogous to p′C = ⟨Ci, ...,Cr⟩ and p′ is a d-connecting path relative to Z analogous to
p′′C = ⟨Cm, ...,Cw⟩, so by definition 5, the criteria is met and a separation must be placed.

If X and Y are d-separated by Z in G, it is also possible that there is no path from any X ∈ X
to any Y ∈ Y, and Z would equal the empty set. In this case, by preservation of adjacencies, for
any triplet ⟨Ci,Cm,Cj⟩ along pC, there must be some Vi ∈ Ci adjacent to some Vm ∈ Cm, and
some V ′

m ∈ Cm adjacent to some Vj ∈ Cj . Then, there must exist some such triplet where Vm

is not adjacent to V ′
m. If for all Vm and V ′

m in Cm, Vm and V ′
m are not adjacent, then ACi,Cm,Cj

must be marked with a never-connecting arc in GC with no connection mark, and there would be a
contradiction with the implications of (X ⊥̸⊥Y|Z)GC

. Otherwise, because X and Y are d-separated
by Z in G, there must exist some connecting subpaths of pC, Ci, ...,Cn and Ci+1, ...,Cn + 1 such
that Ci ⊥⊥Cn+1, which, by definition 5, necessitates a separation mark and then there would be a
contradiction with the implications of (X ⊥̸⊥Y|Z)GC

.

Theorem 2. Two αC-DAGs, GC1 and GC2 (with the same partition C over the same set of variables
V) are cluster Markov equivalent if and only if they share the same: 1) adjacencies, 2) independence
arcs, 3) separation marks and 4) connection marks.

Proof. The proof follows directly from the definitions of cluster Markov equivalence, and d-separation
for αC-DAGs. Because d-separation is determined solely by the independence arcs, separation marks,
and connection marks in a graph for a series of adjacent clusters, two αC-DAGs with the same
adjacencies, independence arcs, separation marks, and connection marks will necessarily lead to the
same d-separations between clusters and will therefore be cluster Markov equivalent.

Theorem 3. [Soundness and Completeness of Orientation Rules and CLOC] The five orientation
rules and the procedure of CLOC are sound and complete.

First we prove the completeness of the arc assignment procedure, the soundness of the collider search
and each of the five orientation rules. We then establish orientation completeness by showing that,
whenever no more rules can be applied, there exist two Markov-equivalent αC-DAGs that differ in
orientation of any undirected edge. The proof for the soundness and completeness of CLOC follows.
First, we introduce two remarks complementing lemma 1, and an additional associated lemma.

Remark 1. In a Markov C-DAG with independence arcs, a marginally-connecting independence arc
always implies a non-collider structure.

Proof. We prove by contradiction. Consider an unshielded triplet ⟨Ci,Ck,Cj⟩ such that ACi,Ck,Cj

is a marginally-connecting independence arc. We show that orienting the triple as Ci → Ck ← Cj

necessarily leads to a contradiction. By definition of a marginally-connecting independence arc, we
have Ci ⊥̸⊥Cj |S \Ck;Ci⊥⊥Cj |S∪Ck, where S is a separating set for Ci and Cj . Assume that the
structure over clusters forms a collider, Ci → Ck ← Cj . There are two possible cases: either there
is no path at all between Ci and Cj through Ck, or such a path exists. If no such path exists, then the
dependence implied by the marginally-connecting independence arc ACi,Ck,Cj

cannot hold, leading
to a contradiction. If there exists a path p between Ci and Cj through Ck, then, since Ci is assumed
to point to Ck, there must be a pair of nodes Vi ∈ Ci and Vk ∈ Ck on p such that Vi → Vk. By the
admissibility of the partition, an edge of the form Vi ← Vk is not allowed. To preserve the marginal
dependence implied by the marginally-connecting independence arc ACi,Ck,Cj , every subsequent
edge between Vk, Vk+1 ∈ Ck along the path p must be of the form Vk → Vk+1. Otherwise, a collider
would be introduced, rendering the path inactive and violating the assumed marginal dependence,
leading to a contradiction. Now, because Ck ← Cj , there must also exist some Vj ∈ Cj and some
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V ′
k ∈ Ck such that V ′

k ← Vj where V ′
k is on p. Because of the assumption of the admissibility of the

partition, there can be no edge V ′k → Vj . Then there must exist a collider and there is a contradiction.
Therefore, the triplet ⟨Ci,Ck,Cj⟩ must be a non-collider.

Remark 2. In a Markov C-DAG with independence arcs, a never-connecting independence arc could
imply either a collider or a non-collider structure.

Proof. Consider a triplet ⟨Ci,Ck,Cj⟩ such that ACi,Ck,Cj
is a never-connecting independence arc.

This implies that Ci⊥⊥Cj |S\Ck;Ci⊥⊥Cj |S∪Ck, where S is a separating set for Ci and Cj . Then
either there is no path from any Vi ∈ Ci to some Vj ∈ Cj through Ck, or every such path p must
include at least 4 nodes, p = Vi, ..., Vk1 , Vk2 , ..., Vj where Vi ∈ Ci, Vk1 , Vk2 ,∈ Ck, and Vj ∈ Cj ,
such that there is at least one collider triplet and at least one non-collider triplet on p. Consider the
latter case. Let p be a path of exactly 4 nodes ⟨Vi, Vk1 , Vk2 , Vj⟩ such that Vi ∈ Ci, Vk1 , Vk2 ,∈ Ck

and Vj ∈ Cj . Either Vk1 is a collider node and Vk2 is a non-collider node or Vk1 is a non-collider
node and Vk2

is a collider node. In the first case, Vi → Vk1
← Vk2

→ Vj or Vi → Vk1
← Vk2

← Vj .
In the second case, Vi → Vk1

→ Vk2
← Vj or Vi ← Vk1

→ Vk2
← Vj . Then ⟨Ci,Ck,Cj⟩ may be

either a collider or a non-collider. Adding any additional node, Vki+1, to p either creates an additional
collider or an additional non-collider, but still allows for collider and non-collider structures over
clusters. Now consider where there is no path from any Vi ∈ Ci to some Vj ∈ Cj through Ck. Then
the direction of any edge Vi − Vk or V ′

k − Vj can be variant such that ⟨Ci,Ck,Cj⟩ may be either a
collider or a non-collider.

Lemma 2. For a distribution P (C) over clusters C = ⟨C1, ...,Cn⟩ such that for every triplet
⟨Ci,Ck,Cj⟩, ACi,Ck,Cj is not a never-connecting independence arc, the orientation rules reduces
to Meek’s rules [9] and the PC algorithm [19].

Proof. The proof follows from noting that modifications to Rules 1 and 3 require independence arcs
aligning with the independence information typically associated with colliders and non-colliders
over variables, and from lemma 1, and remarks 1, and 2. The absence of never-connecting arcs
ensure triplets exhibit expected behavior with regards to structure and observed independencies and
dependencies. When there are no never-connecting arcs, Rule 5 reduces to Rule 1, as all triplets
marked with conditionally-connecting arcs must be a collider, and any descendant of that collider is
part of a non-collider triplet, so will be oriented by Rule 1. When there are no never-connecting arcs
and there is no background knowledge, Rule 4 never applies, following from Meek, 1995 [9].

The procedure in Algorithm 2 for assigning independence arcs is sound and complete. The procedure
for assigning independence arcs to unshielded triplets follows directly from the definitions of the
arcs. We show that the procedure for identifying arcs for manipulated unshielded triplets is sound
and complete, below.

Proof. Consider a shielded triplet ⟨X,Z,Y⟩ and manipulated unshielded triplet ⟨X,Z,Y⟩−XY. In
isolation, no independence arc can be assigned to ⟨X,Z,Y⟩−XY as the information flow through the
manipulated unshielded triplet cannot be isolated from edge X−Y. Therefore, to determine an arc
for a manipulated unshielded triplet, at least one more node must be connected to the corresponding
shielded triplet. Call this node W such that W is adjacent to Y, Y −W and W is not adjacent
to X. With this structure, there are two paths between X and W. Let p1 = ⟨X,Y,W⟩ and
let p2 = ⟨X,Z,Y,W⟩. If independence arcs AX,Y,W and AZ,Y,W exist, we show that the
independence arc for ⟨X,Z,Y⟩−XY can be determined if and only if AZ,Y,W is conditionally-
connecting and AX,Y,W is not, or if AZ,Y,W is marginally-connecting and AX,Y,W is not.

If AZ,Y,W is conditionally-connecting and AX,Y,W is not, then Z→ Y and W → Y by lemma
1, and AX,Y,W is either marginally-connecting or never-connecting. If AX,Y,W is marginally-
connecting or never-connecting, then p1 is blocked conditional on Y. On p2, triplet ⟨Z,Y,W⟩ is
active when conditioning on Y. Then, if X ⊥̸⊥W|Y, AX,Z,Y must be marginally-connecting. If
X⊥⊥W|Y, AX,Z,Y must be never-connecting, because if AX,Z,Y were conditionally-connecting,
then Y → Z and there would be a contradiction.

If AZ,Y,W is marginally-connecting and AX,Y,W is not, then AX,Y,W is either conditionally-
connecting or never-connecting. If AX,Y,W is conditionally-connecting or never-connecting, then
p1 is blocked with no conditioning set. On p2, triplet ⟨Z,Y,W is active with no conditioning
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set. Then, if X ⊥̸⊥W, AX,Z,Y must be marginally-connecting. If X ⊥̸⊥W|Z, AX,Z,Y must be
conditionally-connecting, and if X⊥⊥W|Z, AX,Z,Y must be never-connecting,

Therefore the independence arc for ⟨X,Z,Y⟩−XY can be determined if AZ,Y,W is conditionally-
connecting and AX,Y,W is not, or if AZ,Y,W is marginally-connecting and AX,Y,W is not. We
now show that when these criteria do not hold, it impossible to determine the independence arc for
⟨X,Z,Y⟩−XY. If AZ,Y,W is never-connecting, then, whether AX,Z,Y is marginally-connecting,
conditionally-connecting, or never-connecting, p2 will always be inactive. Therefore AZ,Y,W cannot
be determined. If AZ,Y,W and AX,Y,W are conditionally-connecting, then to isolate p2, Y should
not be conditioned on so that p1 is inactive, but then p2 will also be blocked. IfAZ,Y,W andAX,Y,W

are marginally-connecting, then to isolate p2, Y needs to be conditioned on to block p1, but then
p2 will also be blocked. whether AX,Z,Y is marginally-connecting, conditionally-connecting, or
never-connecting, p2 will always be inactive. Therefore AZ,Y,W cannot be determined.

R0: If X− Z−Y and AX,Z,Y is conditionally-connecting, then orient the triplet as X→ Z← Y

Proof. The proof of soundness follows directly from lemma 1.

R1: If X→ Z−Y, X and Y are not adjacent, and AX,Z,Y is marginally-connecting, then orient
the triplet as X→ Z→ Y.

Proof. The proof for soundness follows directly from Remark 1.

R2: If X→ Z→ Y and X−Y, then orient X−Y as X→ Y.

Proof. The soundness of the rule comes from observing that if X← Y, a cycle would be induced,
violating the admissible partition criteria of αC-DAGs.

R3: If X→ Z← Y, X−W−Y, X and Y are not adjacent, W−Z, and AX,W,Y is marginally-
connecting, then orient W − Z as W→ Z.

Proof. The soundness of the rule comes from observing that if W← Z, then by two applications of
rule 2, Y →W, X→W, and then there would be a collider at W. Since AX,W,Y is marginally
connecting, there is a contradiction by remark 1.

R4: If X → Z → Y, X −W − Y, X and Y are not adjacent, W ∗−∗ Z, and AX,W,Y is
marginally-connecting, then orient W −Y as W→ Y.

Proof. The soundness of the rule comes from observing that if W ← Y, then to avoid a cycle, it
must be that X→W. Then, however, there would be a collider at W, but AX,W,Y is marginally
connecting, so there is a contradiction.

R5: If X ∗−∗Z ∗−∗Y, Z−W, X and W are not adjacent, Y and W are not adjacent, and AX,Z,Y

is never-connecting or conditionally-connecting with connection mark ⊕D such that W ∈ D, then
orient Z−W as Z→W.

Proof. The soundness of the rule comes from the definition of a connection mark, ⊕D, where any
cluster W ∈ D must be a descendant of a collider, such that Z→W.

Next we prove orientation completeness for Rules 1-5.
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Lemma 3. Rules 1-5 collectively are complete in the sense that all orientations determined from
successive application are valid and result in all possible orientations.

Proof. In the case that there are no never-connecting arcs, by lemma 2 the rules are complete
following Meek 1995 [9]. If there is one or more never-connecting arc, the orientation rules of CLOC
result in fewer orientations, as never-connecting arcs always imply ambiguous orientations by remark
2. For any edge between Ci and Cj left undirected by successive applications of Rules 1-5, either
the edge is part of a triplet marked with a marginally connecting or conditionally connecting arcs, or
it is part of a triplet marked with a never-connecting arc. In the former case, by lemma 2 the cluster
Markov equivalence class includes at least one model with Ci → Cj and at least one with Ci ← Cj .
In the latter case, by remark 2, there exists at least one model in the cluster Markov equivalence class
with Ci → Cj and at least one with Ci ← Cj .

Because CLOC and the orientation rules only make use of cluster level independence and dependence
information, all marginal and conditional independencies for a given triplet are already evaluated. For
a given triplet Ci,Ck,Cj , by theorem 1, Ci and Cj can only be dependent if 1) they are adjacent, 2)
they are not adjacent and ACi,Ck,Cj is marginally connecting, 3) they are not adjacent, ACi,Ck,Cj is
conditionally connecting, and Ck is in the conditioning set, or 4) they are not adjacent, ACi,Ck,Cj is
never connecting, and there exists some descendant of a variable-level collider within Ck in cluster
Cw where Cw is in the conditioning set. Cases 1, 2, and 3 are covered by the skeleton and collider
search phases. Rule 5 captures conditional dependencies created by case 4, such that orientations
for a non-oriented triplet can be made to reflect the dependence. As orientations of Rule 5 follow
a non-standard pattern relative to Rules 1-3, we can consider information determined by Rule 5
to be a form of background knowledge introduced to the graph. Then, with Rule 4, and given the
admissibility assumption of the partition, the proof for completeness extends directly from Meek
1995, where the PC algorithm with background knowledge is proved to be complete in that any
subsequent orientations that can be determined following Rule 5 must be valid and complete.

Finally, we prove Theorem 3 by showing that CLOC does return an αC-CPDAG.

Proof. An αC-CPDAG must reflect the cluster Markov equivalence class of αC-DAGs for a given
partition. This means that all cluster level independencies and dependencies must be represented,
all directed edges are non-variant and all undirected edges are variant. The proof for non-variant
directed edges and variant undirected edges follows from lemma 3. To represent all independencies
and dependencies, we must ensure that all adjacencies, independence arcs, separation marks, and
connection marks are determined. The proof for valid adjacencies follows directly from the proof for
skeleton construction of Spirtes et. al 1993 [19]. The procedure for determining independence arcs
follows from definition 2, where for each triplet, searches for variables in or not in the separating
set for any given pair of variables X and Y allows for determination of the appropriate arc. The
procedure for determining separation marks follows from definition 5, where independence tests
are performed to identify where the closest pair of clusters, appearing to be dependent, are in fact
independent. Lastly, the procedure for determining connection marks follows from definition 6,
where independence tests are performed to determine if any combination of possible descendants
render two variables dependents such that the set of clusters are necessarily descendants. Therefore,
by theorem 2, the αC-CPDAG completely represents a cluster Markov equivalence class.

Remark 3. CLOC is complete with background knowledge.

Proof. The proof follows directly from the completeness of CLOC including the orientation rule
(Rule 4) for background knowledge.

C Further discussion on αC-DAG semantics

C.1 On separation marks, connection marks, and graph interpretation

In this section, we extend the discussion on the interpretation and semantics of αC-DAGs.

We first further explore separation marks and connection marks. We note that separation marks
can be placed on any independence arc that signifies a connection: marginally-connecting arcs, or
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conditionally-connecting arcs. Separation marks can not be placed on never-connecting arcs, as
there is no connection for the separation mark to dispute. When a separation mark is found on
a marginally-connecting arc, a marginal connection is disputed. When a separation mark is on a
conditionally-connecting arc, the connection, conditional on the center node of the triplet marked by
the independence arc, is disputed. Since paths can be traversed in two directions, and independence
statements can be read in two ways (X⊥⊥Y,Y ⊥⊥X), separation marks come in pairs.

Connection marks are read in a way distinct from separation marks. The subscript of a connection
mark indicates the directly connected nodes or sets of nodes that, when conditioned on, create a
connecting triplet where there otherwise is not one. Any true descendants of the nodes in the subscript
of the connection mark are understood to also create the connection, where a true descendant is
identified by a true connecting path over clusters (see d-separation criteria, Def. 8). Connection marks
can only be placed along never-connecting independence arcs. This is because a marginally active
triplet can not have a new connection created due to conditioning on a descendant of a collider because
the triplet is already active. If the center node of the triplet marked by a marginally-connecting
independence arc is conditioned on, any descendant of a collider that is conditioned on would still
fail to create a new connection as the independence arc necessitates there are non-colliders along
any path the collider may appear on, which would be conditioned on, so the path would be blocked.
As conditionally-connecting arcs require a collider, any true descendant will create a connection,
following expected behavior, so there is no need to explicitly denote a connection mark. Lastly, we
note that the subscript of a connection mark can be a set of sets of clusters. Each set of cluster denotes
one way that the triplet can be made active, and it is noted that a path through a cluster with multiple
colliders on it would need multiple descendants (possibly in different clusters) to be conditioned on
for the triplet over clusters to be active.

There are certain graph semantics and attributes that require new interpretation for αC-DAGs. In
particular, we can create a more refined class of descendants and ancestors, informed by connections
through the clusters. In C-DAGs, similarly as in DAGs and other graphs, a directed path from some
node C0 to Cn is a sequence of distinct vertices ⟨C0, ...,Cn⟩ such that for 0 ≤ i ≤ n − 1, Ci

is a parent of Ci+1 in GC. In αC-DAGs, applying this same definition yields what we define as
an apparent directed path, since even with the described pattern of edges, it is possible to have
independence arcs and separation marks that describe a break or block which contradicts the notion
of a directed path. By contrast a true directed path in an αC-DAG from some node C0 to Cn is
defined as a sequence of distinct vertices ⟨C0, ...,Cn⟩ such that for 0 ≤ i ≤ n− 1, Ci is a parent of
Ci+1 in GC and where every arc on the corresponding arc trajectory is a marginally-connecting arc
with no separation marks. Then, CA is called a true ancestor of CB and CB a true descendant
of CA if CA = CB or there is a true directed path from CA to CB . We contrast these terms with
what we call apparent ancestors and apparent descendants where there may only be an apparent
directed path from CA to CB . In αC-DAGs, we use the notation AnGC

(CB) and DeGC
(CA) to

refer to the sets of true ancestors of CB and true descendants of CA in GC, respectively.

C.2 On relaxing the assumption of acyclicity

In our definition of αC-DAGs (and by extension for αC-CPDAGs), we require that there is no
apparent cycle over clusters, that is where for some pair of clusters Ci,Cj , where there exists an
edge Ci → Cj , there is no directed path Cj → ....→ Ci. We believe this is a reasonable assumption
in the context of clusters as the user intentionally defines the partition over variables, likely because
these variables represent together some semantically meaningful entity or are otherwise similar in
some ways, such that knowledge of a potential cycle is available. However, we also note that in
some cases, such an assumption may not be feasible, and it is easy to construct an example where
the underlying graph over variables is acyclic, but a certain partition over the variables creates an
apparent cycle. In such a case, αC-DAGs have the representational capacity to differentiate between
a true cycle and an apparent cycle, as is clear by the discussion above differentiating between true
and apparent ancestors and descendants. Specifically, if the assumption of acyclicity over clusters is
relaxed (assuming an acyclic distribution over variables), then where there is an edge Ci → Cj and
some directed path Cj → ....→ Ci, there will necessarily exist some independence arc or separation
mark along the path Cj → ....→ Ci that denotes that Cj is not a true ancestor of Ci, and therefore
there is no true cycle. In this context, properties such as d-separation extend soundly for αC-DAGs.
However, the relaxation of the assumption of no apparent cycles over clusters does have implications
in the context of structure learning. In particular, rules that leverage this assumption of acyclicity are
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Figure 6: (a) is a DAG and (b) is the CPDAG that comes from G1. Following the procedure in
definition 13, (c) is the clustered CPDAG that comes from P . This object reflects orientations that
are determined from tests on P (V). By contrast, (d) is the αC-CPDAG that corresponds to G1.
All edges are undirected as X ⊥̸⊥Y;X⊥⊥Y|Z and the edges cannot be oriented as, by Remark 1,
the cluster level dependencies and independencies align with the representations of X→ Z→ Y,
X← Z→ Y, and X← Z← Y.
no longer valid, such as Rule 2 and Rule 4. Rule 3 depends upon the validity of Rule 2 and therefore
also becomes invalid. An area of future work is to determine sound extension of or different rules
that allow for sound and complete learning over clusters when the acyclicity assumption is relaxed.
In Appendix D we show analysis on the number of wrongly-oriented edges when CLOC is run on a
cyclic partition.

C.3 On the special case of clusters of size 1

We note that when all clusters include at most 1 variable, CLOC reduces to PC, following Lemma 2.
Independence arcs, separation marks, and connection marks all become redundant. When clusters
have more than 1 variable, and there are no never-connecting arcs, the orientation rules also reduce to
PC, however the graphical object still requires separation and connection marks to fully represent
conditional independences and dependences. When clusters have at most 1 variable, this is no longer
the case. For any triplet ⟨Ci,Ck,Cj⟩ such that Ck is of size n = 1 (i.e. there is only one variable in
the cluster), the alignment of the edge orientations and marginal and conditional independencies and
dependencies will be aligned as the case is for variables. For a simplified representation in αC-DAGs
and αC-CPDAG, independence arcs and connection marks could be removed for these triplets. The
interpretation of this object is that wherever there is an omitted independence arc, the behavior for
the triplet is as anticipated. If there exists another triplet in the graph ⟨Cr,Cq,Cw⟩ such that Cq

is not of size n = 1, it is possible a separation mark is required for ⟨Ci,Ck,Cj⟩, in which case
the independence arc, with the appropriate separation mark, would be required. If all clusters in an
αC-DAG or αC-CPDAG include at most 1 variable, then the simplified representation holds for all
triplets and the result would be a DAG or CPDAG respectively.

D Experimental details and additional results

D.1 Experimental Setup

All experiments were run on a machine with CPU: Intel i9 Chip, 32 GB of RAM, and macOS
operating system. A single core was used for the experiments. Algorithms are implemented in Python
and implementation of CLOC and experiments are available at: https://github.com/TaraAnand/CLOC

In our simulations, we compare two approaches to developing a clustered graphical equivalence
class. The first approach consists of applying PC to the distribution over variables, P (V), and then
imposing clusters. The clustering procedure is shown below.
Definition 13 (Clustered CPDAG.). Given a CPDAG, P over variables V, and a partition C =
{C1, ...,Cn} of V, construct a graph PC over C as follows.

• An edge Ci → Cj is in PC if there exists some Vi ∈ Ci and some Vj ∈ Cj such that
Vi ∈ Pa(Vj) in P

• An edge Ci −Cj is in PC if for all Vi ∈ Ci that are adjacent to some Vj ∈ Cj , there is an
undirected edge between Vi and Vj , i.e. Vi − Vj .

We note that the graphical object created by the procedure above, which we refer to as a clustered
CPDAG, determined by the PC-then-Cluster approach, is distinct from an αC-CPDAG. In particular,
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Figure 7: Green: comparison of CLOC output, estimated from a simulated Gaussian dataset, compared
to the oracle for the corresponding data-generating process. Orange: comparison of the PC-then-
Cluster approach output, estimated from a simulated Gaussian dataset, compared to the oracle for the
corresponding data-generating process. Blue: Comparison of the oracle solutions by CLOC and the
PC-then-Cluster approach.

edges that may in fact be variant in a cluster Markov equivalence class may become oriented in the
clustered CPDAG, due to some feature of the distribution over variables. For example, in Figure 6,
the distribution over variables, P (V) allows the collider over ⟨Z2, Z3, Y1⟩ to be learned, allowing for
an orientation between Y and Z to be possible for the clustered CPDAG. Subsequent applications
of Rule 1 of the PC algorithm allows for orientation of the edge Z1 → X1, so that an orientation
between X and Z is possible. By contrast, the αC-CPDAG is learned from the distribution P (C)
where cluster-level independence tests reveal X ⊥̸⊥Y;X⊥⊥Y|Z. The cluster Markov equivalence
class for this information includes graphs with the orientations X → Z → Y, X ← Z → Y, and
X← Z← Y, so no orientations in the αC-CPDAG can be made.

For the experiments in the main body of the paper, we compare the methods of CLOC and the
PC-cluster approach, as there is no other comparable method outputting an equivalence class over
clusters. For the latter method, we use the built-in implementation of PC in the python package
causal-learn [27]. The output is a CPDAG, which is then clustered by the procedure described in
definition 13 using the defined partition over variables into clusters. In our implementation of CLOC
the multi-variate conditional independence test used iterates over pair-wise tests of variable level
independence tests with early stopping when a dependence is determined implying dependence over
clusters.

D.2 Additional results

We show additional experimental results in Figure 7. In comparing oracle (ground truth) results by the
PC-then-cluster approach with CLOC, we can note information that is lost by using only cluster-level
information rather than variable-level information. As is illustrated in Figure 6, orientations beyond
those representing the cluster Markov equivalence class are possible when the (variable-level) Markov
equivalence class is learned by leveraging P (V). In Figure 7 The blue line shows how much of this
sort of information, translating to orientations aligning with P (V), is lost when only P (C) is used.
We expect this number to be non-zero. This tradeoff in orientation capacity can be weighed against
improvements in required number of conditional independence tests and runtime, as demonstrated in
the main body.

The green and orange lines compare, for each method of CLOC and the PC-then-cluster approach,
the structural hamming distance between a graph estimated from a data sample as compared to the
ground truth equivalence class. We note that we see similar structural hamming distances for CLOC
compared to the PC-then-Cluster approach, which reflects similar robustness of our proposed method
to noise in data samples, despite larger conditioning sets.
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Figure 8: Average number of misoriented edges for graphs with 5, 6, 7, and 8 clusters with inadmissi-
ble (cyclic) partitions across 100 runs.

We also run analyses to show the impact of violations to the assumption about an acyclic partition.
Specifically, for random graphs with acyclic partitions, corresponding to αC-DAGs, we generate a
different partition over the graph that induces a cycle. Using the parent-child relationships of the
true DAG, we assess how many wrong orientations (where an edge that is oriented contradicts the
true direction) are determined by running CLOC with the inadmissible partition. We show results
averaged over 100 simulations each for cyclic partitions of 5, 6, 7, and 8 clusters. The results are
shown in Figure 8.

E Complexity Analysis

The skeleton construction requires, for each pair of clusters (X,Y), searching for conditional
independence given subsets of their neighboring clusters. The number of possible conditioning
sets grows combinatorially with degree d, the maximum degree of any cluster, so there are O(2d)
possible subsets to check per pair. For a graph with n clusters and

(
n
2

)
= O(n2) pairs, there are

a total of O(n22d) tests. Independence arcs are then determined for each triplet ⟨X,Z,Y⟩. The
number of unshielded triplets for which an additional test is needed is bounded by O(nd2). The
number of shielded triplets for which an additional test is needed is bounded by O(nd3), as four
nodes are involved in these tests. The search for separation marks, we should note, is not necessary for
determining graphical orientations. However, to create a complete αC-CPDAG on which subsequent
analyses can be done, separation marks are necessary. Assuming a longest path length L, the search is
bounded by O(ndL). Connection marks’ search can also be expensive and the marks are informative
for edge orientations. In practice, the size of the conditioning set W can be bounded to save costs. In
the worst case, each triplet is evaluated for all subsets of neighbors of Z, yielding O(nd22d). The
last algorithmic component of evaluating the orientation rules until none apply requires searching
over all triplets, bounded by O(nd2). In total, the complexity is bounded by O(n2d(n+ d2)). Where
clusters are created such that inter-cluster density is relatively sparse and intra-cluster density is high,
CLOC will show the greatest complexity benefits relative to PC.
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2. Limitations
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• The proofs can either appear in the main paper or the supplemental material, but if
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4. Experimental result reproducibility
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of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
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details are provided in the appendix.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
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appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
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to reproduce that algorithm.
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the architecture clearly and fully.
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either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
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authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
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• The answer NA means that paper does not include experiments requiring code.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All such specifics are provided in the Experiments section and the appendix.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Error bars are provided in relevant plots in Experiments section and appendix,
with approrpiate discussions.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: These details are in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conforms.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The positivie societla impact is discussed throughout the paper. We believe
there is no negative societal impact of the work as it does not pose any surveillance, privacy,
security risks etc.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The research does not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All relevant work is cited throughout the paper.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• If assets are released, the license, copyright information, and terms of use in the
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has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets are released.
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14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects research was conducted.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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