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ABSTRACT

Out-of-distribution (OOD) generalization is a favorable yet challenging property
for deep neural networks. The core challenges lie in the limited availability of
source domains that help models learn an invariant representation from the spuri-
ous features. Various domain augmentation have been proposed but largely rely
on interpolating existing domains and frequently face difficulties in creating truly
“novel” domains. Humans, on the other hand, is capable of extrapolating novel
domains, thus, an intriguing question arises: How can neural networks extrap-
olate truly “novel” domains and achieve OOD generalization?
We introduce a novel approach to domain extrapolation that leverages reasoning
ability and the extensive knowledge encapsulated within large language models
(LLMs) to synthesize entirely new domains. Starting with the class of interest,
we query the LLMs to extract relevant knowledge for these novel domains. We
then bridge the gap between the text-centric knowledge derived from LLMs and
the pixel input space of the model using text-to-image generation techniques. By
augmenting the training set of domain generalization datasets with high-fidelity,
photo-realistic images of these new domains, we achieve significant improvements
over all existing methods, as demonstrated in both single and multi-domain gen-
eralization across various benchmarks.
With the ability to extrapolate any domains for any class, our method has the po-
tential to learn a generalized model for any task without any data. To illustrate,
we put forth a much more difficult setting termed, data-free domain general-
ization, that aims to learn a generalized model in the absence of any collected
data. Our empirical findings support the above argument and our methods exhibit
commendable performance in this setting, approximating the supervised with syn-
thetic data only and even surpassing the supervised setting by approximately 1-2%
on datasets such as VLCS.

1 INTRODUCTION

Deep neural networks have demonstrated remarkable achievements in various fields and applications
He et al. (2015); Devlin et al. (2018); Chen et al. (2021); Dosovitskiy et al. (2021); Li et al. (2021),
yet their effectiveness heavily depends on the assumption that the training and testing environments
are subject to independent and identically distributions Ben-David et al. (2010); Blanchard et al.
(2011). Out-of-distribution (OOD) generalization aims to learn model from some training distri-
bution that can generalize well to unseen testing domains, usually with distribution or label shifts
Liu et al. (2021). A typical scenario is domain generalization (DG) where multiple source domains
are available and these available source domains aid the training of generalizable models that learn
invariant features and discard spurious ones. However, a significant challenge arises: the availabil-
ity of these source domains often becomes a limiting factor, hindering the success of current OOD
approaches in more challenging scenarios Qiao et al. (2020); Wang et al. (2021); Xu et al. (2020);
Wang et al. (2022), which can be attributed to the difficulty and high expenses to collect, not just,
data but data in diverse domains with annotations, which is sometimes impossible in critical areas
such as healthcare or extreme conditions (e.g. deep sea or space). Motivated by these challenges,
domain augmentation is straightforward and multiple methods have been proposed to generate novel
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domains and images through mixup Yan et al. (2020), mixing of statistics Zhou et al. (2021), uncer-
tainty modeling Li et al. (2022b); Zhou & Konukoglu (2023) and convex combination Albuquerque
et al. (2019). However, these methods generally interpolate the existing training domains to generate
novel domains that still fall within the convex hall of available domains Albuquerque et al. (2019).
Consequently, the constrained number of source domains hampers the expressiveness of these meth-
ods, continuing to act as a performance bottleneck. On the other hand, Humans harness the innate
ability of the human brain to create novel domains as illustrated in Shu et al. (2023); Radford et al.
(2021) where a pre-defined set of novel domains and styles are utilized. However, this also requires
human labor which fails to scale to larger sizes. Naturally, an intriguing question arises: How can
neural networks extrapolate truly “novel” domains and achieve OOD generalization?
Large language models (LLMs) Brown et al. (2020) have been shown to encapsulate a vast wealth
of knowledge and simulate human cognitive processes. Thus, a pertinent question emerges: Can one
harness the power of LLMs to produce novel domains and relevant knowledge, thereby replacing
the human in the above training process? Stemming from this primary query, we investigate how
we can extract knowledge of a specific task and produce novel domains from LLMs. A subsequent
research question is: How can we leverage this text-centric knowledge from LLMs to instruct an
image system that processes pixel input? State-of-the-art text-to-image generation models such as
Imagen Saharia et al. (2022), Stable Diffusion Rombach et al. (2022b) and GLIDE Nichol et al.
(2021) exhibit promosing capability to synthesize photo-realistic images positioning them as the
optimal conduit between textual and visual realms. Finally, we seek to answer to what extent the
synthesized images based on knowledge can serve as Out-of-distribution learners that can generalize
to unseen testing domains. Following these problems, we are the first study to design a new paradigm
that leverages the knowledge of LLMs to extrapolate novel domains for training better generalizable
and sample-efficient models. With the ability to extrapolate any domains for any class, our method
has the potential to learn a generalized model for any task without any existing data.

In addition, we present data-free domain generalization. Data-free generalization endeavors to
enable a model across unseen testing domains based solely on task specifications (for example, dis-
tinguishing between dog and cat classes) without the need for gathering or utilizing any pre-existing
datasets. In the era of large foundation models, data-free domain generalization is formulated as
OOD problem with inaccessible meta distribution and domain distribution (detailed in Section 2.1)
– essentially, devoid of any real-world data. This scenario presents a significantly more complex
challenge than that encountered in multi-domain or single-domain generalization efforts. Moreover,
it holds pragmatic significance in democratizing machine learning, by urging the community to de-
velop methodologies that are viable under stringent resource constraints. Such an initiative paves
the way for wider access to and application of, machine learning. Our method not only addresses
the challenge of data scarcity in DG problems but also underscores the potential of synthetic data in
overcoming traditional barriers to machine learning implementation.

Extensive experiments on single, multi-domain and data-free evaluations demonstrate the effective-
ness of our proposed method. In both single and multi-domain configurations, we demonstrate
that synthetic data in the extrapolated novel domains markedly outperforms baseline results across
various datasets. On the more challenging data-free setting, our proposed method exhibits near-
supervised performance in this setting, even surpassing the supervised baseline by approximately 1-
2% on VLCS. Data synthesized via the knowledge from LLMs excels compared to the synthetic data
directly generated from text-to-image generation models. This demonstrates the ability of LLMs to
effectively extrapolate like humans and integrate this prior knowledge into the model.

We also underscore the scalability of our approach by highlighting that as the number of domains
escalates, the performance correspondingly improves. Intriguingly, this trend diverges from the
outcomes observed when augmenting with synthetic data directly produced by text-to-image models
reported in Azizi et al. (2023); He et al. (2022). This further demonstrates the pivotal role of the
knowledge derived from LLMs in mitigating overfitting to synthetic data.

The remainder of this paper is organized as follows: In Section 2, we will first motivate our method
from the perspective of the theoretical error bound for out-of-distribution (OOD) generalization.
Then we will detail our method design and specifications. Section 3 introduces the data-free gen-
eralization and its potential usage in the era of large foundation models. Section 4 describes our
experiment design, results and the implications of our findings. Section 5 introduces related work.
Section 6 concludes our paper and potential limitation of our work.
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2 METHOD

We motivate our method from the perspective of the theoretical error bound for OOD generalization.
We will first provide the notation for the theoretical framework. Then we motivate our research
problem from the OOD generalization error bound, i.e. limited number of source domains leading
to a larger error bound. Then we propose a proxy method that approximates the meta-distribution
with a proxy distribution. We give a new error bound on this method. Lastly, we propose one
realization of our method by using LLMs to approximate the meta-distribution and text-to-image
generation models to bridge the text-centric knowledge with the input pixel space.

2.1 THEORETICAL BOUND

Notation. Let X denote the observation space and Y = {1,�1} the output space. Denote PXY as
the joint probability of the joint space of X ⇥ Y and assume a meta distribution µ and n domains
P (1)
XY , · · · , P

(i)
XY , P

(n)
XY are i.i.d realizations from µ. A decision function is a function f 2 F : X !

Y predicts ŷi = f(xi). We denote l : Y ⇥ Y ! R+ a loss function and define the generalization
error of a decision function as

Lµ(f) = EPXY ⇠µE(x,y)⇠PXY
[l(f(x), y)] (1)

Since we have no access to µ and all the realizations P (1)
XY , · · · , P

(i)
XY , P

(n)
XY but sampled images

from these realizations, we can derive an empirical error:

L̂µ(f) =
nX

i=1

mX

j=1

l(f(xij , yij) (2)

where (xij , yij) ⇠ P (j)
XY denotes the ith sample drawn from P (j)

XY . It’s easy to see that when
n ! 1,m ! 1, L̂µ(f) converges to Lµ(f), which gives the intuitive sense that increasing m and
n gives us better-approximated solutions. This motivates us to increase n and m, i.e.increasing the
number of domains and training images per domain, which is difficult due to the inaccessible µ and
P (1)
XY , · · · , P

(i)
XY , P

(n)
XY . Prior arts have proposed various methods to generate novel domains but the

majority falls in the interpolation of existing domains, failing to effectively increase n. How can to
approach this problem? We can approximate µ by new distribution µ0 sufficiently close to µ that
can be sampled.

Definition 1 We define the distance between the two distributions as

D(µ, µ0) = sup
f2F

|Lµ0
(f)� Lµ(f)|

With the following assumption,

Assumption 1 We assume the distance D(µ, µ0)  ✏.

we can derive a bound through the approximated µ0.

Theorem 1 With confidence at least 1� 2� and for all f 2 F , we have

Lµ(f)  L̂µ0
(f) + 2Rmn(F) + 2Rn(F) + 3

r
ln(2/�)

2mn
+ 3

r
ln(2/�)

n
+ ✏

Proof in Appendix A. By replacing µ with µ0, we now have control over L̂µ0
(f), m and n as we can

sample as many domains and images from µ0 as possible. This is obtained at the cost of ✏, which we
assume to be small.

Remark 1 We also note that as n and m increase, the upper bound of the generalization error

decreases, which gives us better generalization errors.

With sufficiently large n and m, the decrease part of the generalization error will cancel out the cost
of ✏, leading to a lower generalization error.
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Task
Description: classify image to 

different classes
Classes: dog, cat, car, chair 

and person 

Generalized Model Text-to-Image 
Diffusion Model

Prompt
[Role]
[Task description]
[Steps]
[Output Format]

Step 1: Generate Novel Domains

Airport, Steampunk, minimalism
… …

Step 2: Get Diffusion Prompts

Dog - street: A dog sitting on the 
streets with houses behind it
.…

Test
&

Deploy
Caption 1 Caption 2 Caption n

…
Frozen

train

…

Figure 1: Overall pipeline of our paradigm: Extrapolation of novel domains via the knowledge of

LLMs, a novel learning paradigm where knowledge from LLMs assists the training of generalizable
models via text-to-image models in a completely data-free fashion.

2.2 DOMAIN EXTRAPOLATION WITH LLMS

Given the aforementioned theoretical bound, our objective is to approximate µ with µ0. Humans,
as evidenced in Shu et al. (2023); Radford et al. (2021), usually can efficiently extrapolate novel
domains (by imagination), which is a good approximation of µ. Nonetheless, human intervention is
expensive and not scalable to arbitrary datasets. Conversely, LLMs not only embody a vast expanse
of knowledge Petroni et al. (2019) and exhibit comparable reasoning capabilities Qiao et al. (2023),
but they also present the benefit of being amenable to extensive sampling. To this end, we propose
to query LLMs, in place of human, to extrapolate novel domains.

After sampling from meta distribution µ0, we need to further sample from the domain distribution
to generate images in this particular novel domain. As discussed in Section 1, this leads to a gap
between the text-based knowledge output by the LLMs and the input pixel space of vision systems.
Text-to-image generation models (e.g. stable diffusion Rombach et al. (2022a)) exhibit the great
capability to output photo-realistic images through inputting texts positioning them as the optimal
bridge between textual and visual realms. The synthetic images of extrapolated novel domains are
used to augment the original dataset or train the models solely in a data-free fashion. An overall
illustration of our paradigm can be seen in Figure 1.

Extracting Knowledge from LLMs. The objective is to approximate µ via LLMs as close as pos-
sible. This introduces a constraint whereby the generated novel domains must reside within the
high-density regions of distribution µ. To ensure adherence to this criterion, we purposefully in-
struct the LLMs to conceive the most plausible and reasonable domains where a particular class
would realistically exist. To better guide LLMs to understand the instruction and generate the re-
quired response accordingly, we craft system prompts that include role description ([Role]) and task
description ([Task Description]), as illustrated by the example in Figure 2. Numerous strategies exist
to solicit knowledge and novel domains from LLMs.

Dataset-wise query. The most direct approach entails querying the LLMs with comprehensive
dataset information (i.e. all of the class names) and instructing the model to produce n novel do-
mains. However, as the marginal distribution for each class might exhibit minimal overlap (worse
when the number of classes grows), it becomes considerably intricate to sample novel domains that
are both plausible and likely for all classes.

Class-wise query. Thus, we propose to query the LLMs for novel domains of specific classes. For
each class in the task, we query the LLMs for knowledge and n novel domain information specific
to that class. We repeat the process one class after another until all of the classes are iterated. We
provide a example prompt in Figure 2.

Bridging text and pixel with text-to-image generation models. After obtaining a number of the
most plausible and reasonable domains of a specific class, we transform the text-centric knowledge
from LLMs to pixel space by text-to-image generation models. This process is exactly the real-
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Prompt Structure

[Role]
You are an expert on the given class and 
object. You have knowledge of its attribute, 
shapes, appearance. {or expert in using
diffusion model}

[Task description]
{ask the model to give domains, environment,
styles or generate diffusion prompts}

[Steps]
{“CoT” prompting to guide LLM step by step
for better quality and diversity.}

[Output Format]
{Output format instructions}

Diffusion Prompter

System Prompt Dog - Airport: In the airport's pet 
relief area, a fluffy white poodle 
enjoys a game of fetch with its 
owner, surrounded by travelers
and their luggage.

Cat – Classroom: A curious tabby 
cat perches on a classroom desk, 
its inquisitive eyes fixed on a 
textbook as if trying to decipher 
the mysteries of math.
… …

[Role]
{diffusion expert}

[Task description]
{ask the model to write
prompts for diffusion model}

[Steps]
{guide LLM step by step}

[Output Format]
{Output format instructions}

Knowledge Provider

System Prompt
Home: wooden dining table, 
high-back chairs

Office: spacious cabin, leather 
executive chair

Park: greenery, wooden bench 
chair

Cafe: sidewalk, cafe tables, 
metal chairs
… …

Step 1: Construct Novel Domains from LLM 

Step 2: Construct Prompts for Diffusion

[Role]
{domain knowledge expert}

[Task description]
{ask the model to give
domains}

[Steps]
{guide LLM step by step}

[Output Format]
{Output format instructions}

Figure 2: Knowledge extraction pipeline. We first employ various SOTA prompting methods: e.g. ”Chain
of Thought Wei et al. (2022)” (CoT) prompting, role prompting to extract domains from LLM (Step 1) and
automatically generate prompt for a Text-to-Image model. (Step 2)

ization of sampling X from P (i)
X where P (i)

X is the ith domain generated by µ0 (i.e. the LLM).
Numerous strategies exist to prompt text-to-image generation models conditioned on class and do-
main information.

Template prompt. The most immediate strategy involves employing templates as prompts (e.g.,
”an image of [CLASS NAME] in the domain of [DOMAIN NAME]”). However, the limitation lies
in its lack of diversity: utilizing the identical prompt to produce multiple images results in images
bearing resemblance to one another.

LLM generated prompt. Thus, we propose to query the LLMs for prompts conditioned on the class
name and domain information acquired in the previous step. As illustrated in Figure 2, we craft
system prompts that specifically tailor the LLM to generate prompts for text-to-image generation
models and generate multiple prompts for each of the novel domains of each class.

3 DATA-FREE DOMAIN GENERALIZATION

We present Data-free Generalization, a new formation of generalization in the era of large foundation
models. Given a task with detailed description and requirements (e.g. the classes to be classified and
the definition of each class), Data-free Generalization endeavors to learn a model that can generalize
to this specific task and fulfill the requirement without collecting any data or utilizing any existing
datasets. Formally, this problem is formulated as follows. Task description and requirements spec-
ify the decision function f 2 F : X ! Y and the meta distribution µ. The problem then turns to
minimizing Equation 3, as detailed in Section 2.1. The difference is that now the meta distribution
µ cannot be sampled and thus we have no access to any training domains P (1)

XY , · · · , P
(i)
XY , P

(n)
XY or

images that are sampled from these domains. However, in the era of large foundation models, the
meta distribution µ can be approximated by LLMs while the domain distribution can be approxi-
mated by image generation models. Consequently, we can provide a guarantee on the learning with
Theorem 1. We provide one such method in Section 2.

Data-free generalization can not only serve a more difficult setting to push the limits of current
OOD methods but also holds pragmatic significance in democratizing machine learning. It does so
by mitigating or potentially eliminating the necessity for data collection and annotation within the
machine learning pipeline, which facilitates a broader access to and application of machine learning
technologies, particularly for entities facing resource constraints. Envision a modest-sized enterprise
incapable of investing in the training of large foundational models, nor possessing the necessary time
and funding to collect and label an extensive dataset for particular tasks. This situation aligns with
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the concept of Data-free Generalization, characterized by the availability of only task specifications
in the absence of accessible data. Our methodology offers an ideal resolution for such organizations.
Initially, they can leverage LLMs’ APIs for a limited number of queries to derive extrapolated do-
mains and scenarios. Following this, they may engage text-to-image models for data synthesis. This
synthetic data can then be utilized to either develop new models or enhance existing ones, thereby
circumventing the limitations posed by resource constraints.

4 EXPERIMENTS

The objective of our experiments is to (i) demonstrate that knowledge from LLMs successfully ex-
trapolates novel domains and leads to performance benefits grounded by theoretical bounds. (ii)
Investigate the most efficient and effective approach for extracting knowledge and sampling from
text-to-image models. (iii) Analyze to what extent the synthetic images generated condition on
LLMs’ knowledge can serve as good out-of-distribution learners that lead to generalization on un-
seen testing domains.

4.1 EXPERIMENT SETUP

Setup. OOD Generalization is evaluated on DomainBed Gulrajani & Lopez-Paz (2020) with four
datasets, i.e. PACS, VLCS, OfficeHome and DomainNet and we follow them on the the train-
validate-test split of each dataset to perform the hyperparameter search. For comprehensive eval-
uation, we experiment on both multi- and single-domain generalization protocols. In addition, we
propose the data-free domain generalization to evaluate training generalizable models in a data-free
fashion with only task information.

Baseline. We set two baselines for our experiments, namely empirical risk minimization (ERM)
and ERM with exponential moving average (ERM + EMA). ERM with EMA is demonstrated to be
more stable and effective than ERM Arpit et al. (2022). It is thus adopted to perform ablation study
and analysis.

Implementation. We remove the dropout and follow the rest of the implementation as in Gulrajani
& Lopez-Paz (2020) since dropout is reported to harm some of the DG methods Huang et al. (2022),
e.g. RSC Huang et al. (2020). We adopt GPT-4 to extract novel domain knowledge and leverage
Stable Diffusion 2 Rombach et al. (2021) as the text-to-image generation model. We use one A100
GPU to generate synthetic images. All experiments of training ResNet50 and CLIP ViT-B16 model
can be run on 1 RTX3090 GPU.

4.2 MAIN RESULTS

Leave-one-out evaluation. Leave-one-out Evaluation leaves one domain as the testing domain and
uses the rest as training domains. For our method, all of the synthetic images are treated as an addi-
tional domain to the source domains. As per Table 1, augmenting with the novel domain synthetic
images leads to a consistent improvement (as large as 5.2%) over the ERM and ERM + EMA base-
lines. On average, we achieve a 2.9% and 2.4% improvement over ERM and ERM + EMA baselines
respectively. Our method also achieved a significant improvement (1.2% on average) over the CLIP
fine-tuned baseline. This improvement is remarkable, given the already high performance of the
CLIP model. In addition to the CLIP baseline, we also compare with SOTA methods that adopts
CLIP as the backbone. It’s noteworthy that DCLIP Menon & Vondrick (2022) and WaffileCLIP
Roth et al. (2023) also utilize the knowledge of LLMs to boost performance. Among these SOTAs,
our method still achieves the best Averaged result, bypassing the second best by more than 1%.

Single Domain Generalization. Single-domain generalization Evaluation leverages a single do-
main for training and subsequently assesses the outcomes on the remaining domains. This scenario
presents a greater challenge when juxtaposed with the Leave-one-out setting due to the model’s ex-
clusive exposure to just one domain during its training phase. Such a setting accentuates the issue
of restricted availability of source domains. Considering our methodology does not impose assump-
tions on either the source domains or the model, but instead extrapolates novel domains via LLMs
to augment the training set, it is optimally more suited for this specific context. Empirical evidence
underscores its exceptional efficacy and with merely one source domain of real images, our results
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Table 1: Leave-one-out Evaluation on DomainBed. CLIP adopts ViT-B16 as the backbone. † denotes repro-
duced results. MixStyle result is taken from Cha et al. (2021b)

Algorithm VLCS PACS OfficeHome DomainNet Avg
ERM Vapnik (1998) 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 40.9 ± 0.1 67.6
IRM Arjovsky et al. (2019) 78.5 ± 0.5 83.5 ± 0.8 64.3 ± 2.2 33.9 ± 2.8 65.1
GroupDRO Sagawa et al. (2019) 76.7 ± 0.6 84.4 ± 0.8 66.0 ± 0.7 33.3 ± 0.2 65.1
MLDG Li et al. (2018a) 77.2 ± 0.4 84.9 ± 1.0 66.8 ± 0.6 41.2 ± 0.1 67.5
CORAL Sun & Saenko (2016) 78.8 ± 0.6 86.2 ± 0.3 68.7 ± 0.3 41.5 ± 0.1 68.8
Mixup Yan et al. (2020) 78.1 ± 0.3 86.8 ± 0.3 68.0 ± 0.2 39.6 ± 0.1 68.1
MMD Li et al. (2018b) 77.9 ± 0.1 87.2 ± 0.1 66.2 ± 0.3 23.5 ± 9.4 63.7
RSC Huang et al. (2020) 77.8 ± 0.6 86.2 ± 0.5 66.5 ± 0.6 38.9 ± 0.6 67.4
VREx Krueger et al. (2021) 78.1 ± 0.2 87.2 ± 0.6 65.7 ± 0.3 30.1 ± 3.7 65.3
SWAD Cha et al. (2021b) 79.1 ± 0.4 88.1 ± 0.4 70.6 ± 0.3 46.5 ± 0.2 66.9
MIRO Cha et al. (2022) 79.0 ± 0.2 85.4 ± 0.4 70.5 ± 0.4 44.3 ± 0.2 65.9
MixStyle Zhou et al. (2021) 77.9 85.2 60.4 34.0 64.4
RISE Huang et al. (2023) 81.7 89.4 71.6 - -
EoA Arpit et al. (2022) 79.1 88.6 72.5 47.4 71.9
StyleNeophile Kang et al. (2022) - 89.1 65.9 44.6 -
XDED Lee et al. (2022) 74.8 83.8 65.0 - -
ERM † Vapnik (1998) 77.2 ± 1.0 84.4 ± 0.8 64.8 ± 0.4 43.6 ± 0.1 67.5
+ ours 78.5 ± 0.4 88.0 ± 0.3 70.0 ± 0.1 45.2 ± 0.1 70.4
� + 1.3 + 3.6 + 5.2 + 1.6 + 2.9
ERM + EMA 78.8 ± 0.6 87.8 ± 0.3 70.5 ± 0.1 46.0 ± 0.1 70.8
+ ours 80.2 ± 0.3 90.3 ± 0.4 74.6 ± 0.2 47.5 ± 0.3 73.2
� + 1.4 + 2.5 + 4.1 + 1.5 + 2.4
CLIP Zero-shot 80.1 96.2 83.0 58.5 79.5
CLIP Finetune 82.4 ± 0.1 95.3 ± 0.2 84.8 ± 0.1 59.9 ± 0.1 80.6
PromptStyler Cho et al. (2023) 82.9 97.2 83.6 59.4 80.8
DCLIP Menon & Vondrick (2022) 81.2 96.6 82.6 57.3 79.4
WaffleCLIP Roth et al. (2023) 83.1 96.4 82.3 59.1 80.2
+ concepts 81.8 96.4 83.8 60.1 80.5
+ ours 82.7 ± 0.3 96.5 ± 0.3 86.5 ± 0.2 61.3 ± 0.0 81.8
� + 0.3 + 1.2 + 1.7 + 1.4 + 1.2

Table 2: Single-domain Evaluation on DomainBed. CLIP adopts ViT-B16 as the backbone.

Algorithm VLCS PACS OfficeHome Avg
ASA Fan et al. (2021) - 67.0 - -
Pro-RandConv Choi et al. (2023) - 67.0 - -
CPerb Zhao et al. (2023) - 73.3 - -
RSC Huang et al. (2020) 59.2 ± 0.7 60.9 ± 1.7 46.9 ± 1.7 55.7
ERM (Multi-domain) 77.2 ± 1.0 84.4 ± 0.8 64.8 ± 0.4 75.5
ERM Vapnik (1998) 59.2 ± 0.8 64.6 ± 0.6 51.5 ± 0.3 58.4
+ ours 76.3 ± 0.2 83.9 ± 0.9 64.7 ± 0.2 75.0
� + 17.1 + 19.3 + 13.2 + 16.5
ERM + EMA (Multi-domain) 78.8 ± 0.6 87.8 ± 0.3 70.5 ± 0.1 79.0
ERM + EMA 64.2 ± 0.7 67.9 ± 1.1 58.2 ± 0.1 62.7
+ ours 78.0 ± 0.1 87.6 ± 0.6 69.4 ± 0.3 78.3
� +13.1 +21.7 +12.0 +15.6

closely mirror, and at times even surpass, those obtained in a multi-domain configuration, as per
Table 2. Specifically, we achieve the highest of 78.0%, 87.6%, 69.4% on the three datasets, outper-
forming the ERM with multiple source domains by margins of 0.8%, 3.2% and 4.6% respectively.
Compared to baselines, our method achieves a remarkable improvement of over 10% across all
datasets and baselines. This evidences that our methodology substantially mitigates the challenges
associated with restricted source domains, rendering it particularly optimal and effective in scenarios
where source domains are unavailable, such as single-domain generalization.

Comparison with augmentation-based DG methods. We compared with SOTA augmentation
methods in Table 4 including MixStyle Zhou et al. (2021), DSU Li et al. (2022b), AutoAug Cubuk
et al. (2018) and RandAug Cubuk et al. (2020), where our method demonstrates an improvement of
more than 2% on average.
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Algorithm VLCS PACS OfficeHome DomainNet Avg
ERM

Multi-domain 77.2 ± 1.0 84.4 ± 0.8 64.8 ± 0.4 43.6 ± 0.1 67.5
Single-domain 59.2 ± 0.8 64.6 ± 0.6 51.5 ± 0.3 - -
Data-free (ours) 73.9 ± 0.3 82.5 ± 0.9 62.1 ± 0.1 25.9 ± 0.2 61.1

ERM + EMA

Multi-domain 78.8 ± 0.6 87.8 ± 0.3 70.5 ± 0.1 46.0 ± 0.1 70.8
Single-domain 64.2 ± 0.7 67.9 ± 1.1 58.2 ± 0.1 - -
Data-free (ours) 79.9 ± 0.6 86.9 ± 0.1 67.4 ± 0.2 30.3 ± 0.1 66.1

Table 3: Data-free generalization on DomainBed.

Algorithm VLCS PACS Avg
MixStyle Zhou et al. (2021) 78.7 ± 0.1 87.7 ± 0.1 83.2
DSU Li et al. (2022b) 77.7 ± 0.0 87.6 ± 0.2 82.7
AutoAug Cubuk et al. (2018) 78.6 ± 0.3 88.6 ± 0.1 83.6
RandAug Cubuk et al. (2020) 79.1 ± 0.0 87.5 ± 0.3 83.3

ERM + EMA 78.8± 0.6 87.8 ± 0.3 83.3
+larger batch-size 78.1 ± 0.1 87.4 ± 0.1 82.7
+ class-template 79.3 ± 0.1 88.0 ± 0.3 83.7
+ class-prompt 79.3 ± 0.0 88.5 ± 0.2 83.9
+ ours 80.2 ± 0.3 90.3 ± 0.4 85.3

Table 4: Comparison with two baselines and current
SOTA augmentation-based DG methods. All models
are equipped with EMA for fair comparison.

4.3 DATA-FREE GENERALIZATION.

Data-free Generalization Evaluation serves as a more difficult setting to evaluate our proposed meth-
ods. Data-free Generalization aims to generalize to unseen testing domains with only knowledge of
the task, i.e. the classes and definition of each class are available and no available data of any
kind. To simulate Data-free Generalization with existing benchmarks, we use all the domains in
existing DG datasets as testing domains. To evaluate our method, we directly train models on the
synthetic images generated conditioned on novel domain knowledge. Then the model is tested on
all the available real images of the domains for evaluation. Results are illustrated in Table 3 where
we achieve the highest performance of 79.9%, 86.9%, 67.4% with only less than 1% gap between
its multi-domain counterparts and largely surpasses single-domain counterparts. Notably, data-free
ERM + EMA presents an accuracy of 79.9% on VLCS outperforming the multi-domain supervised
counterparts by more than 1%. With the knowledge injected and novel domain extrapolated, this
empirical result illustrates the promise of achieving generalization in a completely data-free fashion
free of laborious data collection and annotation.

4.4 ABLATION STUDY AND ANALYSIS

To fully understand the performance of our method, we perform an ablation study by first pro-
viding three baselines building upon ERM + EMA with minor modifications. First, we provide
larger batchsize baseline, which is used to ablate the influence of larger batch sizes incurred by the
additional augmentation data. Then, we provide class template baseline, which prompts the text-to-
images generation model to generate synthetic images with the template ”An image of [CLASS]”.
Then we will provide a third baseline, termed class prompt that will prompt LLMs to give a
diffusion-style prompt (without explicitly instructing it to extrapolate novel domains) and use the
generated prompts to query text-to-image models for synthetic data. Comparison is shown in Table
4. We can see that a larger batch size in fact has a negative effect while both template and prompt
baseline underperform our method. This ablates the influence brought by text-to-image models and
further underscores the importance of LLMs’ knowledge regarding the novel domain.

Comparison between different knowledge extraction. We provide three approaches to extract
knowledge regarding the novel domains of particular classes. Comparison can be seen in (b) of
Figure 4, where we show that, overall, class-wise combined with LLM-generated prompt leads to
better performance than class-wise query only and data-wise query. This is because class-wise query
provides more plausible and reasonable novel domains given some class and LLM-generated prompt
further extracts knowledge regarding this novel domain and increases diversity in generation.

Scaling to larger synthetic dataset. It has been widely reported that data generated by genera-
tion models negatively impacts the model, especially when the number of synthetic images grows
at scale He et al. (2022); Azizi et al. (2023). To this end, we investigate whether the performance
increases scales with more synthetic data from more extrapolated novel domains. We perform scal-
ing by prompting LLMs to extrapolate more novel domains and generate 64 image per domain. We
can see in Figure 3 that with more domains (larger n in Section 2.1), performance keeps increasing,
which is consistent with our theoretical framework. We also make a comparison with class-template
and class-prompt baselines and scale the two baselines by increasing the synthetic images to the cor-
responding size. However, these two methods both suffer from performance saturation and degrada-
tion when synthetic data increases, which is consistent with previous studies He et al. (2022); Azizi
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et al. (2023). This demonstrated that our method can scale better to larger sizes of synthetic data
and underscore the importance of new knowledge injected by LLMs that benefits generalization.

variance measure on PACS

LLMs extrapolation 89.87 ± 0.4
text-to-image generation 89.72 ± 0.2

model training 90.3 ± 0.4

Table 5: Variance analysis over the three mod-
ules to measure how stable our method per-
forms.
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Figure 3: Scaling the training dataset by adding
more novel domains. Each novel domain con-
sists of 64 images. To facilitate fair comparison,
we scale the class template method by the same
amount of images.
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Figure 4: (a) Effectiveness of CLIP filtering. (b)
Comparison between different knowledge ex-
traction methods.

Variance Analysis. We aim to measure how stable our method is by decomposing the variance into
three parts, i.e. LLMs extrapolation, text-to-image generation and final model training. We repeat
each experiment three times and report the average and standard deviation in Table 5. For instance,
to conduct variance anlysis on text-to-image generation, we use the same set of novel domains gen-
erated by LLMs, can generate synthetic datasets with the same text-to-image model three times. As
per the table, we can see that all three parts contribute to a relatively small variance, suggesting that
our method is stable.

Additional CLIP filtering. Text-to-image generation models are essentially noisy and might gen-
erate images of distortion or without the main class of interest. We experiment with CLIP filtering
before the training process. As shown in (a) of Figure 4, we can observe an increase with additional
filtering techniques by 1 %. To further illustrate the effectiveness of filtering, we visualize some
filtered failure cases in Appendix C.

Different LLMs. To make sure that our method does not reply on specific LLMs, i.e. ChatGPT-4,
we conduct experiments with LLMs from different families, e.g Llama and Mixtral in table .

LLM A C P S Avg

GPT-4 94.4 ± 0.2 85.0 ± 0.5 98.5 ± 0.1 83.3 ± 1.7 90.3
Llama-13B 92.6 ± 0.5 83.2 ± 0.5 98.2 ± 0.1 80.9 ± 0.7 88.7
Llama-70B 93.0 ± 0.4 83.6 ± 0.4 98.5 ± 0.2 81.9 ± 0.4 89.3

Mixtral-8x7B 92.4 ± 0.0 84.6 ± 0.3 98.8 ± 0.0 81.1 ± 0.6 89.2

Table 6: Performance with different LLMs.

Visualization. We provide visualization to validate that our method do extrapolate novel domains
and generate the desired class. We demonstrate generated images from three different novel domains
of the PACS dataset in the last four columns of Figure 5 and compare them with the real images in
the PACS dataset (first two columns). We can see that the generated novel domains are by no means
an interpolation of the real domains and are different from the existing training domains by a large
margin. This illustrates that our method takes one step further toward ”truly” extrapolation of novel
domains without human labor. We provide more visualization in the Appendix.
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art painting cartoon cityscapes expressionist steampunk renaissance

dog

horse

person

house

Figure 5: Examples of synthetic images conditioned on novel domain knowledge from LLM. The
first two columns (i.e. art painting and cartoon) are selected from PACS datasets while the rest four
columns are images generated based on the novel domains (i.e. cityscapes, etc) provided by LLMs.

5 RELATED WORK

Domain Generalization. Various approaches have been proposed to solve this problem, such as
domain alignment Li et al. (2018b;c), meta-learning Li et al. (2018a); Balaji et al. (2018), ensemble
learning Cha et al. (2021a); Arpit et al. (2022) and augmentation-based Zhou & Konukoglu (2023);
Zhou et al. (2021); Li et al. (2022b); Xu et al. (2020); Zhou et al. (2020); Albuquerque et al. (2019).
Augmentation-based methods are closely related to this work, both with the intention of generating
more source domains to approximate the expected generalization error. However, these methods
resort to interpolation of existing domains and fail to extrapolate the ”truly” novel domains. For
instance, MixStyle Zhou et al. (2021) mixes the statistics of two samples by linear interpolation.
More recently, with the advent of vision-language models such as CLIP Radford et al. (2021) and
Stable Diffusion Rombach et al. (2021), researchers propose to utilize Stable Diffusion to identify
and cure shortcuts Wu et al. (2023) or CLIP to generate novel domain augmentation Vidit et al.
(2023). However, they all require some form of human labor to pre-define a set of domains or styles,
which makes them laborious and not scalable. Our work aims to solve this problem and achieve
genuine domain extrapolation.

Language scaffolded vision aims to develop better and more robust vision systems with the help of
language. Our method also falls within this category. Clipood Shu et al. (2023) proposes to fine-tune
a CLIP model to adapt the downstream DG tasks by a text similarity aware loss. Min et al. (2022)
utilize an RNN as an explanation network enforcing the model to self-explain, thereby increasing the
robustness. Yang et al. (2023) utilize language models to produce a comprehensive set of bottleneck
features and leverage CLIP to classify. With the help from LLMs, Yang et al. (2023) has pushed
the performance of the bottleneck network to SOTA. Despite many works proposed, this research,
to the best of our knowledge, is the first endeavor to investigate the potential of a Large Language
Model (LLM) in facilitating the training of a robust and generalizable vision model.

6 CONCLUSION

The limited availability of domains has been a prevailing problem in Domain Generalization. In this
work, we propose the first data-free learning paradigm that leverages the knowledge and reasoning
of LLMs to extrapolate novel domains. By bridging the text-centric knowledge and pixel input
space by sampling from text-to-image generation models, we are able to train generalizable models
with task information only. Extensive experiments have demonstrated that our method achieves
significant improvements over baselines and the state-of-the-art by a significant margin. We also
demonstrate a promising learning paradigm where LLMs’ knowledge combined with text-to-image
generation models are sufficient to train a generalizable model to any task.
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