Dense Associative Memory with
Epanechnikov Energy

Benjamin Hoover Zhaoyang Shi Krishnakumar Balasubramanian
IBM Research Harvard UC Davis
Georgia Tech
Dmitry Krotov Parikshit Ram
IBM Research IBM Research
Abstract

We propose a novel energy function for Dense Associative Memory (DenseAM)
networks, the log-sum-ReLU (LSR), inspired by optimal kernel density estima-
tion. Unlike the common log-sum-exponential (LSE) function, LSR is based on
the Epanechnikov kernel and enables exact memory retrieval with exponential ca-
pacity without requiring exponential separation functions. Moreover, it introduces
abundant additional emergent local minima while preserving perfect pattern re-
covery — a characteristic previously unseen in DenseAM literature. Empirical
results show that LSR energy has significantly more local minima (memories)
that have comparable log-likelihood to LSE-based models. Analysis of LSR’s
emergent memories on image datasets reveals a degree of creativity and novelty,
hinting at this method’s potential for both large-scale memory storage and gener-
ative tasks.

1 Associative Memories and Energy Landscapes

Energy-based Associative Memory networks or AMs are models parameterized with M “memories”
in d dimensions, E = {¢, € R%, u € [M]}. A popular class of models from this family can be
described by an energy function defined on the state vector x € X C R¢:

M
E/B(X§E) =-Q ZF(BS (g(X),{H)) ) 1

where g : R¢ — R? is a vector operation (such as binarization, (layer) normalization), S : RY x
R? — R is a similarity function (e.g., dot-product, negative Euclidean distance), 3 > 0 denotes
the inverse temperature, F' : R — R is a rapidly growing separation function (power, exponential)
and @ is a monotonic scaling function (logarithm, linear) [1, 2, 3]. With g as the sign-function,
€, €{-1,+1}% S(x,x') = (x,x’) and F as the quadratic function, and @ as a linear function, we
recover the classical Hopfield model [4]. The output of an associative memory (AM) corresponds
to one of the local minima of its energy function. A memory &, is said to be retrieved if x ~ §,,
corresponds to such a local minimum, with exact retrieval occurring when x = §,,. The memory
capacity of the AM is defined as the maximum number M™ of correctly retrieved memories. For
classical AMs, the capacity scales as M* = O(d). With the introduction of power-law separation
functions — that is, F'(z) = aP for p > 2 — modern Dense Associative Memories (DenseAMs)
achieve a significantly higher capacity of M* = O(dP) [1, 5].

The use of an exponential separation function combined with a logarithmic scaling function —
F(z) = exp(z) and Q(z) = logx — leads to the widely studied log-sum-exp (LSE) energy func-
tion [6, 7, 8], yielding exponential memory capacity M* ~ exp(d) [9]. Hierarchical organization
of memories has also been explored in Krotov [10] and Hoover et al. [11]. Given that the gradient
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Figure 1: LSR energy can create more memories than there are stored patterns under critical regimes
of 3. Left: 1D LSR vs LSE energy landscape. Note that LSE is never capable of having more local
minima than the number of stored patterns. Right: 2D LSR energy landscape, where increasing 3
creates novel local minima where basins intersect. Unsupported regions are shaded gray.

of the LSE energy corresponds to a softmax over all stored patterns, recent works have proposed
sparsified variants to improve scalability. In particular, Hu et al. [12] and dos Santos et al. [13]
consider sparsified softmax-based gradients, effectively projecting the full gradient onto a reduced
support.! Alternatively, Wu et al. [14] propose learning new representations for the memories to
increase capacity, while continuing to use the LSE energy in the transformed representation space.

In this work, we consider the following motivating question: can we achieve simultaneous perfect
memorization and generalization in associative memory models? While the exponential separation
function enables DenseAMs to achieve high memory capacity, capacity alone is not the only desider-
atum. In standard supervised learning, it was long believed that exactly interpolating or memorizing
the training data — achieving zero training loss — would harm generalization. However, recent
advances, particularly in deep learning, have challenged this belief: models that perfectly fit the
training data can still generalize well. Although this phenomenon gained prominence with deep
networks, it has earlier roots in kernel methods and boosting [15, 16, 17].

An analogous question arises in the context of associative memory (AM) models. Traditionally,
AMs focus on storing a fixed set of patterns. But from a broader machine learning perspective, the
goal extends beyond memorization to include the generation of new, meaningful patterns. Prior work
using LSE-type energy functions has shown that generating such novel patterns typically requires
sacrificing perfect recall of the original patterns. This trade-off highlights a core tension between
memorization and generalization. To address this, we explore alternative separation functions that
can preserve exact memorization while enabling the emergence of new patterns — pushing toward
models that truly unify memory and generalization.

Our approach is also motivated by the well-established connection between the energy and prob-
ability density function. An energy function E : R? — R induces a probability density function
p: RY = R with p(x) = exp[—E(x)]/ [, exp[—E(z)]dz. Conversely, given a density p, we
have an energy E(x) o< — log p(x), the negative log-likelihood. Minimizing the energy corresponds
to maximizing the log-likelihood (with respect to the corresponding density). Based on this con-
nection, with Q(-) = log(-), the exp[—Es(x; E)] = >_, F(B5(x,€,)) in eq. (1) (assuming g is
identity) is the corresponding (unnormalized) density at x. Assuming that the memories §,, ~ p are
sampled from an unknown ground truth density p, the exp|—FE3(x; )] is an unnormalized kernel
density estimate or KDE of p at x with the kernel F' and bandwidth 1/ [18]. Thus, the LSE energy
with F(z) = exp(z) and S(x,x’) = —1/2||x —x’||? corresponds to the KDE of p with the Gaussian
kernel.

KDE is well studied in nonparametric statistics [18, 19], and various forms of kernels have been
explored. The quality of the estimates are well characterized in terms of properties on the kernels;
we will elaborate on this in the sequel. While the Gaussian kernel is extremely popular for KDE
(much like LSE in AM literature), there are various other kernels which have better estimation
abilities than the Gaussian kernel. Among the commonly used kernels, the Epanechnikov kernel

'Sparsified softmax-based gradients can be interpreted as specific projections of the original gradient.



has the most favorable estimation quality (see section 2). In our notation, this corresponds to a
kernel F'(z) = max(1 + z,0) = ReLU (1 + z), a shifted ReLU operation (again with S(x,x’) =
—1/2||x — x’||?). This results in a novel energy function that we name log-sum-ReLU or LSR (see
eq. (3)). Surprisingly, we show that this energy function is capable of both exactly memorizing all
M original patterns (with M ~ exp(d)) and simultaneously generating new, meaningful emergent
memories (see Definition 2). This defies the conventional tradeoff seen in prior AM models — where
improving generalization (ability to create emergent local minima) typically requires compromising
exact memorization — and reveals that precise memory storage and creative pattern generation are
not inherently at odds with one another. To summarize, we make the following contributions in this
work:

* Novel ReLU-based energy function with exponential memory capacity. We propose a LSR
energy function for DenseAM using the popular ReLLU activation, built upon the connection be-
tween energy functions and densities. In Theorems 1 and 2 respectively, we demonstrate exact
retrieval and exponential memory capacity of LSR energy, without the use of exp(-) separation
function.

* Simultaneous memorization and emergence. We show that this LSR energy has a unique prop-
erty of simultaneously being able to exactly retrieve all original memories (training data points)
while also creating many emergent memories (additional local minima). The total number of
memories of LSR can exceed the number of stored patterns, a property absent with LSE (see
Proposition 1). When applied to images, LSR can generate novel and seemingly creative memo-
ries that are not present in the training dataset.

2 Kernel Density Estimation and the Choice of Kernels

We now provide a brief overview of Kernel Density Estimation (KDE) considering the univari-
ate setting for simplicity; similar conclusions also hold in higher dimensions. Given a sam-
ple 2 = {{, € R,u € [M]} drawn from an unknown density f, the KDE is defined as

fu(€) = (Mh)™1 Zﬁil K (g;f“ ) , where K (-) is the kernel function and h > 0 is the bandwidth

parameter. The kernel function is assumed to satisfy: (i) symmetry (i.e., K(—z) = K(z), for all
x € R), (ii) positivity (i.e., K(x) > 0, for all z € R) and (iii) normalization (i.e., [ K(x)dx = 1).
Note that for the purpose of KDE, the scale of the kernel function is not unique. That is, for a given
K(-), we can define K(-) = b~'K(-/b), for some b > 0. Then, one obtains the same KDE by
rescaling the choice of h. Hence, the shape of the kernel function plays a more important role in
determining the choice of the kernel. We now introduce two parameters associated with the kernel,
pr = [, 2*K(z)dx and og = [, K?*(x)dx that correspond to the scale and regularity of the
kernel. We will discuss below how the generalization error of KDE depends on the aforementioned
parameters.

The generalization error of fh (€) is measured by the Mean Integrated Squared Error (MISE),
given by MISE(h) = E [ Je( fn(€) — f({))Qdf}. Assuming that the ground-truth density

f(&) is twice continuously differentiable, a second-order Taylor expansion gives the leading
terms of the MISE(h), which decomposes into squared bias and variance terms: MISE(h) ~

%h‘* f5 |7 (&)|2de + £#-; see Wand and Jones [18, Section 2.5] for details. This result shows

that reducing h decreases bias but increases variance, while increasing i smooths the estimate but
introduces bias, highlighting the bias-variance trade-off. The optimal mean-square is obtained by
minimizing MISE(h) with respect to h. We thus obtain the optimal choice of h and the optimal
generalization accuracy as

1/5 o " ng 4/5
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respectively. From this, we see that the choice of the kernel K in the KDE, controls the generaliza-
tion error via the term /0.

Thus, a natural question is to find the choice of kernel K (-) that results in the minimum MISE(h,.).
As discussed above, the scale of the kernel function is non-unique. Hence, the problem boils down
to minimizing o i (which is regularity parameter of the kernel, determining the shape), subjected to
wr = 1 (without loss of generality), over the class of normalized, symmetric, and positive kernels.



This problem is well-studied (see, for example, [20], [21], Wand and Jones [18, Section 2.7]), and,
as it turns out, the Epanechnikov kernel Kepan(z) = max{1 — 2% ,0} = ReLU (1 — z?) achieves
the optimal generalization error. The quantity, Eff(K) := ok /ok,,,, is hence referred to as the
efficiency of any kernel with respect to the Epanechnikov kernel. A description of choices for kernel
functions and their efficiency relative to the Epanechnikov kernel is provided in Appendix C.

The number of modes of the KDE has also been examined in the literature, mostly when the target
is unimodal. Assuming that the target is unimodal, a direct consequence of Mammen [22, Theorem
1] on the number of modes of the KDE when d = 1 (also see Geshkovski et al. [23, Theorem 1.1])
is that the number of modes of KDE with a Gaussian kernel with bandwidth % is ©(1/v/h); see
Geshkovski et al. [23, Section 1.2] for extensions to dimension d > 1.

3 A New Energy Function with Emergent Memory Capabilities

So far, we have seen the relationship between the LSE energy and the KDE, i.e., exp[—Ej3(x; E)]
is an unnormalized kernel density estimate with the Gaussian kernel and the bandwidth 1/, and
the optimality of using the Epanechnikov kernel in KDE. Given these observations, we will explore
the use of the corresponding shifted-ReL.U separation function ReLU (1 + z) in the energy function
instead of the widely used exponentiation. Before we state the precise energy functions, we compare
and contrast the shapes of these separation functions F'(3x) in fig. 2 for varying values of the inverse
temperature /3. Note that, as the /3 increases, both these separation functions decay faster. However,
as expected, the shifted-ReLU separation linearly decays and then zeroes out.

Recall that LSE ENERGY is given by E5*(x;E) = —4 log 224:1 exp(—2 ||x — €,]|%). Based
on the discussion on separation functions, our proposed LSR ENERGY (which we also refer to as
Epanechnikov energy) is given by

M
EFR(x;B) = —%log (e+ZReLU (1 - § ||X_§u||2>>, (3)
p=1
where ||-|| describes the Euclidean norm and £ is an inverse temperature.
The factor € > 0 in the LSR energy is a small non- FIBx) =exp(Bx)  F(Bx)=RelU +Bx)
negative constant, where an € > 0 ensures that every < Yy
point in the space has finite (albeit extremely large g 05
O(log(1/e€))) energy for all values of 8. Indeed, o |
with € = 0, defining S, £ {x € X : [|x —&,| < e 22 o -4 -2 0
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of the ReLU separation function. Regions of infi- F(3z) = ReLU (1 + Bz) (LSR) with z =
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matches the finite support of the density estimate on S(x,x’) = —1/2||x — x'[|2.

with the Epanechnikov kernel. Based on the intro-
duced LSR energy, we next highlight the following favourable properties; see appendix E for the
proofs and technical details.

Theorem 1. Let v = miny, ,eqar],uzv 1€ — & || be the minimum Euclidean distance between any
two memories. Let S,,(A) = {x € X : ||x — £,|| < A} be a basin around the 11" memory for some
basin radius A € (0,7). Then, with 3 = 2/(r — A)?, for any p € [M] and any input x € S,,(A),
the output of the DenseAM via LSR energy gradient descent is exactly §,,, implying that all memories
€., 1 € [M] are retrievable. Furthermore, if the learning rate of the energy gradient descent is set
appropriately, then for any (1 € [M] and any x € S,,(A), the memory is exactly retrieved with a
single energy gradient descent step (single step retrieval).

The above result states that, given a set of memories, and an appropriately selected (3, there is a
distinct basin of attraction S, (A) around each memory &,,, and any input x from within that basin
exactly retrieves the memory as the output of the DenseAM.

Remark 1. For a finite but appropriately large 3, the LSR energy gradient VEéSR (&u; B) at any
memory §,, is exactly zero, implying exact retrieval of the memory. The LSE energy gradient
VE[%SE (&u; B) is only approximately zero, and the retrieved point is approximately equal to an



original memory [7, Theorem 3]. However, if B = oo then the LSE energy gradient is exactly zero
at the memory.

The striking phenomenon that we observe with LSR energy is that the DenseAM can simultaneously
create local energy minima around the original memories as well as additional local minima around
points that are not part of the set of original memories; see fig. 1. We formalize this concept below
through the notion of global emergence.

Definition 1 (Novel local minima). Consider a DenseAM parameterized with M memories E =
{&1,...,6m}, €, € X, and equipped with an energy function Eg(x; Z) at any state x € X for a
specific inverse temperature 3 > 0. For some € > 0, we define M as the (possibly empty) set of
novel local minima & € X such that V€ € M.,

(a) € is a local energy minimum with VEg(€; ) = 0 and V2E5(£~; E) >0,

(b) é is novel with respect to the original memories, that is, min, e[ Hé —&,

>e.

Definition 2 (Global emergence). For the DenseAM in Definition 1 and for some € > 0, let M.
be the (possibly empty) set of novel local minima. For some 3 C (0, 00), we claim that this system
exhibits c-global emergence if (i) each original memory §,,, u € [M] is a local energy minimum
with VEg(€,;2) = 0 and V2E3(€,,; E) = 0 (positive definite), and (ii) the set M. is non-empty.
We term M. as the set of s-globally emergent memories.

The notion of e-global emergence specifically refers to those new patterns that arise after all original
memories have been exactly stored. Definition 2 characterizes emergence as a property of the global
energy function at a specific inverse temperature, requiring simultaneous exact recovery of all orig-
inal memories and the presence of at least one novel local minimum (parameterized with €). It is
instructive to start by understanding the above definition for DenseAMs equipped with LSE energy.
According to Ramsauer et al. [7], any point x* such that V EES(x*; E) = 0 is defined via the soft-

max corresponding to the transformer attention as follows: x* = 23/1:1 softmax(3(x*) " €,)€,., and

the softmax can be highly peaked if all {£, ﬂ/le are well separated and x* is near a stored pattern

&, If no stored pattern §,, is well separated from the others, then x* is close to a global fixed point,
which is the arithmetic mean of all the stored patterns. Based on this, we can make the following
observations:

» Case I: All LSE memories are novel. With a large enough but finite 3, there is a minimum close
to each of the original memories. However, each of these local minima will be considered novel
local minima as these are distinct from the original memories, thus condition (ii) in Definition 2
will be satisfied. However, then the condition (i) in Definition 2 would not be satisfied.

e Case II: No LSE memories are novel. If we do consider the case § = oo, then the original
memories would exactly be the local energy minima, and condition (i) will be satisfied. But then
the set of novel local minima M. for a strictly positive € would be empty, violating condition (ii).

* Case III: Novel LSE memories form only when basins merge. For a moderate 5, LSE can form
novel local minima by merging the basins of attractions of the original memories, thereby giving
us a non-empty M. and satisfying condition (ii) in Definition 2. However, condition (i) will be
violated as the memories whose basins are merged would no longer be local minima.

Thus, we can make this more formal in the following:

Proposition 1. Assume {£,,} ﬂ/[:l are i.i.d. from any density fully supported on X. Note that they are
linearly independent with probability 1, as otherwise they lie in a lower dimensional space. Then,
for any B > 0, the LSE energy, EéSE (+), does not satisfy the e-global emergence in Definition 2.

One can argue that global emergence as in Definition 2 is too restrictive; we also want to characterize
an individual local minimum as “emergent”, or not. Thus we present a relaxed local notion of
emergence in the following, noting that LSE does not satisfy this weaker form of emergence either:
Definition 3 (Locally emergent memory). Consider the DenseAM in Definition 1 with a non-empty
set of novel local minima M. for a e > 0. For any € € M., let S(é) C E be the minimal non-
empty subset of 2 such that, for each §,, € S (é), é is no longer a local minimum of the energy
E(-,E\ {&.}) that excludes the memory. Then we define € € M., as a e-locally emergent

memory if there is some original memory §,, € S(&) which still is a local minimum of the energy



Eg(-; E). If every original memory §,, € S(E) is a local minimum of Eg(-; 2), we call £eM.a
e-local strongly emergent memory.

While Definition 2 discusses emergence at a global energy level, Definition 3 characterizes emer-
gence locally for each of the novel local minima. This distinction is important as we see emergence
as a general property of the energy function that can be driven by a subset of the memories. Defini-
tion 2 requires all original memories to be retrievable, while in Definition 3 we allow for emergence
due to the interaction of stored patterns in a system even if not all original memories are retrievable,
so long as a critical subset of the original memories are. Global emergence implies the existence of
at least one local strongly emergent memory; every globally emergent memory is a local strongly
emergent one. However, the existence of a local strongly emergent memory does not imply global
emergence. As with global emergence, we can see that a DenseAM with LSE energy does not also
have locally emergent memories. First note that, for a finite 3, all local minima are novel local

minima, and the minimal set S(&) for a novel local minimum £ is the whole set = given the infinite
support of the exponential function, with none of them being a local minimum. For 5 = oo, the set
of novel local minima M. is empty. So in both cases, the required conditions are not satisfied and
there are no locally emergent memories with LSE energy.

Note that these novel local minima are different from the well-studied spurious memories or parasitic
memories [24, 25]. In classical AMs, spurious memories start appearing when the AM is packed
with memories beyond its memory capacity. In contrast, the appearance of emergence (novel local
minima) does not seem to be related to whether the DenseAM is over or under capacity — as
we show in fig. 1, a locally emergent memory can appear even with just 2 stored patterns of any
dimension. Spin-glass states [26] do not occur in either the LSE or LSR energy due to our use of
Euclidean similarity over the dot product in both energies.

The next result provides explicit characterization of the form of novel memories in LSR energy.
s

Proposition 2. Consider the LSR energy in eq. (3). For any x € interior(X), letting B(x)
{p € [M] : ||lx—E&ull < \/2/B}, there is a local minima of the LSR energy which is given by
1

B 2=neB(x) &n

Note that when |B(x)| = 1, the local minima in Proposition 2 is exactly the stored memory
{€,})L,. With |[B(x)| > 1, it is not equal to any of the original memories {£,,u € [M]}

(with probability 1). The region {x € X : |B(x)| > 1} C X is precisely characterized as
(Unern1Su) \ (UueqapSu(A)) where S, is the region of finite energy around the 1™ memory
and S, (A) (defined in Theorem 1) is the distinct attracting basin for the p" memory. The follow-
ing theorem shows that this LSR based DenseAM is capable of simultaneously retrieving all (up
to exponentially many) memories while also creating many novel local minima, and quantifies this
phenomenon precisely.

Theorem 2. Consider a DenseAM parameterized with M memories & = {&1, ..., &} sampled
uniformly from X with vol(X) = V < oo and the LSR energy EgSR(~; Z) defined in eq. (3). For
each novel local minimum x* = ﬁ ZMEB(X*) &, given in Proposition 2, define Dy ax(x*) 1=
max,, [|x* — &l
Suinl”) o= i (5= I = 6017) ) = guin (I - 617 - 3)
min (= min - —Su ; Ymin = min - Qv R
neB(x+) \ B ! vEB(x") B

Then, for all > 0 such that maxy« Omin (X*) > 0 and ming- Ymin (x*) > 0, there exists an € :=
miny- <\/D2 (x*) + min{dmin (X*), Ymin (x*) } — Dmax(x*)) > 0 such that EF*®(-) satisfies

max

the e-global emergence condition (Definition 2) with high probability, as:

(a) With probability at least § € (0,1), and M = © (v/1—dexp(ad)) for a positive o, all
memories are retrievable as per Theorem [ with the value of the minimum pairwise distance
ro= ming ey e 1§ — &Il > (Va/V)~Ye=2% and per-memory basin radius A €
(0, (Vg/V)~Vde=22) with a B < 2/((Va/V) "V de2> — A)2, where Vy is the volume of the
unit ball in RY.

(b) For each novel local minimum X*, there exists a radius

rt= \/D?nax(X*) + min{dmin (X*), Ymin (x*)} — Dmax(x*) > 0, C))




such that Sy~ (r*) = {x € X : ||x — x*|| < r*} forms a basin around the novel memory x*,
and for any x € Sy~ (r*), the output of the DenseAM via energy gradient descent is exactly x*,
implying the novel memories are retrievable.

Furthermore, with probability at least 1 — M 2, the number of -globally emergent memories is

d d

Va (2\? eV (B\?
0 M—(=] 1 — (= . 5
(exp( 14 (5) Og<Vd (2> ))) ®
In particular, for fixed § > 0 and d, the bound grows with M whenever 8 > 0 satisfies |B(x)| €
(1, M due to Proposition 2. Here, for any x € X, alarge (8 leads to a small | B(x)|, and | B(x)| > 1
<

is the required condition for a novel local minima; a small 3 leads to a large | B(x)|, and | B(x)]
M stands for the case B(x) at most covers the entire domain X.

The above result demonstrates that with the LSR energy, it is possible to exactly memorize all
original patterns (with high probability) and still generate new patterns — what we term emergent
memories (Definition 2). This behavior is surprising in the same way interpolating models in deep
learning generalize unexpectedly well: both challenge the classical bias-variance intuition [15, 16].
While LSE-based models also produce novel memories, they typically do so at the expense of perfect
recall of the original patterns. In Proposition 1 we show that LSE based DenseAMs do not have the
global emergence property. This distinction highlights a key contribution of our work: new memory
creation need not come at the cost of perfect memorization.

Next, we provide an exact order (i.e., upper and lower bounds) of the number of emergent memories
under a grid design assumption.

Proposition 3. If {£, ﬁ/le SJorm a grid over X of equal size with Vol(X) =V < oo, the number of
emergent memories is of order © ((Ml/d —Al/d 4 1)d), where A = © (MV_1 (S/ﬂ)%) and for
B > 0 such thatr1 < \ < M.

Note that we showed an explicit form of the emergent memories X* = % 2 peB(x+) &us Where

B(x*) = {,u CxF =Ll < \/2/5} C {1,...,M}. equation 5 in Theorem 2 is stated under
the uniform sampling regime, and Proposition 3 is stated under a fixed grid setting. In general,
the number of emergent memories varies according to the specific geometry of the stored patterns
{€,}],. i.e., whether such a subset of {1, ..., M} can be realized by a ball { |x — €&, < \/2/5}.
This can grow much faster than a linear order of M, and is naively bounded by 2*7.
4 Experiments

4.1 Quantifying the scaling of emergent memories

How many local minima do we see in practice as we: (a) vary the number of stored patterns, (b)
change the dimensionality of those patterns, and (c) vary the inverse temperature 5?7 We observe
that, at critical values of 3, we can create orders of magnitude more emergent memories than stored
patterns. These results are shown in fig. 3 (left).

To quantify the number of local minima induced by the LSR energy, we uniformly sample M pat-
terns from the d-dimensional unit hypercube to serve as memories Z. We enumerate all possible
local minima of the LSR energy by computing the centroid £ = K|~ uex &u for every pos-

sible subset of stored patterns K C [M] (there are 2 possible subsets if we allow for singleton
sets). For each subset, we first check that its centroid is supported (i.e., that EIB‘SR(&“;C; E) < ooat
¢ = 0), and then declare that i is a local minimum of the LSR energy if HVE};SR(EK; =) ‘ < 6 for

small 6 > 0. 3 values are varied across the “interesting” regime between fully overlapping support
regions (a single local minimum in the unit hypercube) to fully disjoint support regions around each
memory. See experimental details in appendix D.2.

Certain values of (8 yield particularly interesting behavior. For example, we observe that LSR can
create orders of magnitude more emergent memories under ranges of 5 where: (i) a majority (>60%)
of stored patterns are also recoverable, and (ii) around 20 percent of the unit hypercube is still
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Figure 3: (Left) Analyzing local minima in LSR energy reveals a number of novel memories several
orders of magnitude larger than M, the number of stored patterns, at critical values of 5 (note that
the y-axes are logscale). These emergent memories occur even while still preserving the stored
patterns as memories. Smaller values of 3 have a larger region of support on the unit hypercube.
(Right) Given samples from some known true density function (in this case, a k = 10 mixture of 8-
dim Gaussians with means drawn uniformly from the unit hypercube and ¢ = 0.1), memories from
LSR energy have a log-likelihood comparable to, and occasionally slightly higher than, LSE under
the true density function. Note that LSR achieves comparable log-likelihood while having more
unique samples than LSE, even when both are seeded with the same N = 500 queries. Regions of
[ where LSR outperforms LSE on a metric are specified by the orange regions. Error bars indicate
the standard error across 5 different seeds for sampling stored patterns and initial queries.

supported. Note that in each experiment there are choices of /3 such that the LSR energy does not
exhibit global emergence (Definition 2, i.e., at low 5 where novel memories are forming but not all
stored patterns are yet retrievable). However, in these regions local emergence (Definition 3) of the
novel memories still holds (see fig. 1 for intuition).

4.2 Generative quality of emergent memories

LSR memories are certainly more diverse than those of LSE, but do they represent more “meaning-
ful” samples from a true, underlying density function p(x) (as measured by their log-likelihood)?
The experimental setup is as follows: Let p(x) be a mixture of & Gaussians whose means
pi ~ U([0,1]¢) for i € [k] are uniformly sampled from the d-dimensional unit hypercube with
scalar (¢ = 0.1) covariances such that p(x) = 1 Zle N(x | pi,0%1,). We sample M points
{&1,...,&m}, & ~ p(x) to serve as the stored patterns = used to parameterize both the LSE
and LSR energies from eq. (3). Define a thin support boundary induced by pattern §,, to be

suppl€,;0] = {x : 2871 =6 < ||x —&,|* < 287!} for some small § > 0. Then, for ini-

tial points xglo), n € [N] sampled from the support boundary around each stored pattern,” LSE
memories can be found using gradient descent

xiy) = x{{7V — aVEFSH ({7 E), (6)

until convergence to a memory x;,. We use algorithm 1 to efficiently find the LSR memory corre-
sponding to each initial point. Thus we have N “samples” (memories) from both LSE and LSR on
which we compare three metrics of interest in fig. 3 (right):

1. Average Log-Likelihood. Do LSR memories xj g have higher log p(xf g ) than LSE memories?
2. Number of Unique Samples. Does high log p(x] g ) occur alongside many emergent memories?

>We use the same initial points to seed the dynamics of both E™® and E™E. See appendix D.3 for details.
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Figure 4: LSR’s emergent memories appear as novel, creative generations when the energy is applied
to a semantically meaningful latent space. (Left) 24 randomly-selected MNIST images are encoded
into 10-dim VAE latents and stored into an LSR- and LSE-energy using a carefully chosen 3 (see
algorithm 2). Gray boxes indicate which stored patterns were not preserved at the chosen 3. (Right)
40 TinyImagenet [27] images are encoded into 256-dim latents using a pretrained VAE [28] and
stored into an LSR- and LSE-energy using a carefully chosen 5. Note that in this TinyImagenet
example the LSR energy is, by definition, globally emergent since all stored patterns are recoverable,
while the MNIST example is not. See experiment details in appendix D.4.

J

3. Number of Original Memories Recoverable. Does high log p(x} g ) occur when alongside high
numbers of preserved memories? How does this trend compare with LSE memory performance?

The results tell a consistent story. Despite LSE energy being a more natural choice to model the
underlying Mixture of Gaussians’ density p(x) (LSE has a Gaussian kernel that makes it ideal for
the modeling task), LSR can match LSE in log-likelihood while simultaneously generating more
diverse samples and preserving the stored patterns. See appendix D.3 for more experimental results
and extended discussion.

4.3 Emergent memories in latent space

What do emergent memories look like when LSR is applied to real-world datasets? To study this
behavior, we use a VAE to encode MNIST and Tinylmagenet [27] images into latent vectors that
serve as the stored patterns for LSR and LSE energies (see fig. 4). Using a carefully chosen 3, we
compute all memories (both preserved and novel) for each energy. The emergent memories of LSR
in principle are simply the centroids of small subsets of the stored patterns, yet when decoded they
appear as plausible and creative generations.

With the same 3 value, LSR generates an order of magnitude more total memories than LSE. While
this choice of 3 is somewhat arbitrary and could be tuned separately for each energy, LSE would
only ever be able to retrieve up to M memories (where M is the total number of stored patterns).
See full experiment details in appendix D.4.

Emergent memories are mechanistically simple: they are simply the centroids of small subsets of the
stored patterns. The semantic novelty of the emergent memories in Figure 4 occur because the latent
space is structured to be semantically meaningful, where averaging two or more stored patterns



produces seemingly novel semantics. We conduct a similar experiment in appendix D.5 where we
ablate the VAE to show what emergent memories look like in pixel space.

5 Discussion

Emergent memories are a powerful tool for creating novel samples, but the “meaningfulness” of
these samples is a nuanced question that depends heavily on the specific application domain and
task requirements. For example, in Figure 3 (right) we show that the LSR energy approximates an
unknown p.d.f. better than LSE’s energy while simultaneously generating diverse samples. This
represents a desirable behavior of emergence, since high log-likelihood samples from the LSE en-
ergy are quite homogeneous, causing 500 initial queries to converge to the same ~10 memories.
In this density estimation context, the emergent memories serve a clear functional purpose: they
capture meaningful interpolations within the data distribution that improve generalization.

However, consider the novel memories from Tiny Imagenet in Figure 4. Though visually plausi-
ble, many of the emergent generations appear blurry and would be considered “undesirable” from
the perspective of a high-fidelity image generation model. We discuss the limitations of emergent
memories further in appendix A.

We note that there are potential parallels between emergent memories and “hallucinations” as ob-
served in LLMs. We discuss the philosophical similarities between emergent memories and hallu-
cinations in appendix B.1. It is also interesting to note that the LSR Energy presented in this work
can have a feasible biological implementation using bipartite neurons. See further discussion in
appendix B.2.

Finally, we reiterate that there are many choices for alternative kernels, and not just the Epanech-
nikov kernel. We discover that many kernels with compact support are capable of producing emer-
gent memories and even manifolds, and the energy landscapes they produce can look quite different
from each other. To this end, we show the “basin merging” behavior across different kernels in 1D
in Figure 6 and we include an extended discussion on these other kernels in appendix C.

6 Conclusion

Our work introduces the LSR energy function which achieves the surprising combination of exact
memorization of exponentially many patterns and the emergence of new, meaningful memories,
thereby providing a powerful alternative to traditional AM formulations. The properties of the LSR
energy define a novel class of emergent memories in Dense Associative Memory systems — a phe-
nomenon not observed in any previous AM formulations. Unlike conventional models (e.g., LSE-
based energies) where generalization (formation of local minima different from training data) typi-
cally comes at the cost of perfect memorization, LSR demonstrates that these objectives can coexist
harmoniously in a single energy function. We additionally demonstrated that the diverse memories
created by LSR achieve log-likelihood comparable to LSE when sampling from a true density func-
tion, while generating an order of magnitude more unique memories. Finally, we showed that when
applied to latent representations of real-world image datasets, LSR’s emergent memories represent
plausible and creative generations.
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A Limitations

To enable both emergence and exact memorization, the LSR energy studied in this work comes with
certain limitations. Unlike the LSE energy whose gradient remains nonzero regardless of the query’s
distance from the stored patterns, the gradient of LSR energy vanishes exactly outside the support
of the stored pattern. This makes gradient-based retrieval ineffective when the query lies far from
any memorized pattern (though one can easily introduce a query-dependent temperature parameter
B(x) that dynamically adjusts to ensure the query lies within at least one basin of attraction). Alter-
natively, one can create a “hybrid” energy function that combines the LSE and LSR energies, taking
advantage of LSE’s non-zero gradient everywhere outside LSR’s support around the stored patterns.
Such temperature-tuned DenseAMs and hybrid energies are of independent interest and we leave
their systematic study to future work.

Additionally, we want to emphasize that LSR can only create emergent memories precisely at the
centroid of overlapping basins between stored patterns. This makes it possible to quickly and exactly
retrieve memories (see Algorithm 3), but it also means that the “creativity” of this model is limited
to a predictable subset of the convex hull of the stored patterns. The apparent novelty and creativity
of Figure 4 is strongly aided by the semantic structure contained the VAEs’ latent space.

B Extended Discussion
B.1 On the relationship between emergent memories and hallucination

In everyday use of LLMs, we call it a hallucination when the model confidently produces an in-
correct fact, especially when we know the model is capable of producing the correct fact in other
settings. To formalize this idea into the context of emergent memories, we must imagine a setting
where the model has an explicit energy function and a known set of stored “facts.”

This is the setting of Associative Memory as studied in this work, where the outputs of our model
are always energy minima (memories). A “hallucination” can occur when two or more stored facts
interfere, leading the system to settle into an emergent minimum that looks meaningful (i.e., it lies
near the “factual manifold” that generated our stored patterns) but does not correspond to any true,
stored fact. Emergent memories are precisely these “interference minima” when they coexist with
the original stored patterns. By definition, they are not stored facts, yet they can resemble meaningful
combinations of them — making them the memory-system analog of hallucinations.

B.2 On a biological implementation of emergent memories

Dense AMs permit a standard mapping onto “biological” networks by introducing auxiliary hidden
neurons following the method of [8]. Thus, the feature neurons in both LSE and LSR models
can be augmented with auxiliary hidden neurons, resulting in a model with only pair-wise neuron
interactions and bipartite connectivity between feature and hidden layers. This augmented model is
more biological compared to the model considered in the main paper. The proposed model defined
by the energy eq. (3) and the corresponding update rule eq. (7) can be obtained by integrating out
these auxiliary hidden neurons, which means LSR energy will still have the same emergent behavior.
The augmented model will still have some un-biological aspects because of the weight symmetry
between forward and backward projections, which is necessary to ensure that the network has a
global energy function.

C On Kernels

We show different kernels that are typically used for KDE and their efficiency relative to the
Epanechnikov kernel in fig. 5. See the explanation on optimal kernel density estimation in section 2
for more details.

Though our main submission focuses on the Epanechnikov kernel, we find that the phenomenon of
emergence (Definitions 2 and 3) is not limited to the Epanechnikov kernel. We state our findings for
other popular kernels below and graphically in Figure 6. In summary, all compact support kernels are
capable of producing emergent memories except for the TriWeight kernel (meanwhile, the uniform
kernel is impractical for associative memory). Details below:
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Figure 5: Different kernels used in KDE with their expression and KDE efficiency relative to the
Epanechnikov kernel (higher is better, see text for details). The center of each kernel is marked with
a red x. To highlight the shape of the kernel, we have removed any scaling in the kernel expression.
Note that all above kernels except Gaussian have finite support. The Epanechnikov kernel has the
highest efficiency (100%). While the Gaussian kernel is extremely popular, and it is more efficient
(95.1%) than the Uniform kernel (92.9%), there are various other kernels with better efficiency.

1. Triangle kernel — The triangle kernel exhibits very interesting emergence behavior. A perfectly
flat energy manifold is formed where two or more basins overlap. If the energy of this manifold
is lower than the energy of the stored patterns, the stored patterns “merge” and are no longer
retrievable. If the energy of the manifold is higher, both original patterns are preserved and we
observe a local emergent manifold of memory.

2. Uniform kernel — A uniform kernel produces an energy landscape that is impractical for asso-
ciative memory because the gradient is zero everywhere except at the discontinuities. Emergent
minima exist according to Definition 3 and have exclusively lower energy than the stored patterns.

3. Triweight kernel — We were not able to find emergence at any temperature with the triweight
kernel, despite its compact support. Indeed, looking at the 5 = 0.19 row of Figure 6, we see that
the transition of two basins merging results in a single, almost flat minimum. This phenomenon
of compact support without emergence (or perhaps, emergence that is limited to an extremely
narrow range of J that we were not able to find) requires further investigation.

4. Quartic kernel — The quartic kernel produces smoother energy landscapes than the Epanech-
nikov does, and emergence appears within a very narrow range of 5. Unlike the Epanechnikov
kernel, overlapping basins do not guarantee emergent minima, and the emergent minimum is
unlikely to have lower energy than the stored patterns.

5. Tricube kernel — The tricube kernel behaves like the Quartic kernel, but emergent memories
are likely to have lower energy than the stored patterns. The Tricube kernel has an interesting
property where local minima flatten right before basins merge. The resulting energy landscape is
smoother than that of the Epanechnikov kernel.

6. Cosine kernel — The cosine kernel looks remarkably like the Epanechnikov kernel, and its emer-
gence properties are almost identical to that of LSR. However, it appears that Cosine-emergent
memories have slightly higher energy than their Epanechnikov counterpart.

D Experimental Details
D.1 Reproducibility & Technical Resources

The codebase is published in a GitHub repository and contains necessary instructions to setup the
environment and to recreate all results, down to the same seed used for training and sampling.
Experiments use both PyTorch [29] and JAX [30]. Each experiment was run on a system with
access to 8xA40 GPUs each with 40GB of memory. The log-likelihood experimental sweep in
appendix D.3 took ~12 hours using an optimized scheduler across 45 available CPU cores (memory
turned out to be the bottle neck and the CPUs had access to much more RAM than the GPU).
Searching for all novel minima at different S and M in appendix D.2 took ~48 hours using an
optimized scheduler across all 8 GPUs. Training the VAE in appendix D.4 took < 30 min on a
single GPU; enumerating all local minima using the efficient algorithm 2 and algorithm 3 took < 15
min.

D.2 Details: Quantifying Novel Minima

In this experiment we tested across a geometrically spaced range of 8 € [2d 7!, 27‘,;%], where ryin =
ming,», ||, — &, is the minimum pairwise distance between any two stored patterns in the current
subset L C [M]. At the largest 3, the support regions of the stored patterns are disjoint and the
only memories are the M stored patterns themselves; this configuration has a very small support
region (shown as the shaded green curve in fig. 3, which is computed by monte carlo sampling 1e6
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Figure 6: Comparing emergence across different choices of kernel in the Dense AM energy function.
Emergent memories are highlighted in red, where manifolds are shown as a flat line and single
points as larger dots. Interestingly, all compact kernels exhibit some form of emergence except the
TriWeight kernel.

points on the unit hypercube and computing the fraction of energies that are finite at e = 0) as a
fraction of the unit hypercube. At the smallest tested 3, only a single energy minimum is induced
at the centroid of all stored patterns with a region of support covering the whole unit hypercube. At
the largest tested f3, all original memories are recoverable and there are no spurious memories.

D.3 Details: Generative quality of memories

D.3.1 Additional experiments

We ran the same experiment in section 4.2 under varying dimensions d = [8, 16] and number of
mixtures k = [5, 10], averaging the results of each run across 5 different random seeds. The results
for each of these experiments is shown below in figs. 7 and 8, where fig. 8 (left) is the same as
reported in fig. 3 (right) in the main paper.

D.3.2 Aligning 3’s across random seeds

We used the same setup for choosing an interesting range of 3 as we did in appendix D.2. However,
over random seeds the value for 7, can vary since it is dependent on the random choice of stored
patterns. This makes it difficult to plot error bars over an individual 3 across seeds. To fix this, we
use the fact that each experiment has the same number of geometrically spaced 3’s that start from
the same [,y and compute statistics averaged across the 3’s that share an index. The z-axis then
represents the 3 value for each index averaged over seeds.

D.3.3 Determining the uniqueness of minima

To sample the LSE minima, 500 initial points are uniformly sampled from the support boundary
around each memory and gradient descent eq. (6) is performed for 13000 steps at a cosine-decayed
learning rate « from 0.01 — 0.0001. However, even after this descent process, there are variations
in the retrieved memories due to discrete step size « and floating point precision requiring us to be
careful when deciding if two samples are distinct. Generally, memory retrieval is said to converge
when ||VxE(x)|| < € for some small ¢ > 0, or when the number of iterations 7" exceeds some
threshold at small . Because we know the 3 of the LSE energy, by the properties of the Gaussian
kernel we know that two basins merge when their means are within two standard deviations of each
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Figure 7: Comparing d = 8 and d = 16 for £k = 5 mixture of gaussians at number of stored patterns
M = 10 and M = 100. Error bars are computed by averaging the results of 5 different random
seeds. Regions of S where LSR outperforms LSE on a particular metric (on average) are shaded
orange.
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Figure 8: Comparing d = 8 and d = 16 for k = 10 mixture of gaussians at number of stored
patterns M = 10 and M = 100. Error bars are computed by averaging the results of 5 different
random seeds. Regions of 8 where LSR outperforms LSE on a particular metric (on average) are
shaded orange.

other. Thus, we can say that two distinct samples are generated by the same memory if they are

. . l
within 73 of each other.

When counting the uniqueness of the samples from the LSR energy, we perform the following trick
to exactly compute the fixed points of the dynamics. We first compute our “best guess” for the
fixed point by performing standard gradient descent according to eq. (6) for 1" steps, at which point
z := x(T) is close (but not exactly equal) to the fixed point x*. We then pass z to algorithm 1 to
compute the fixed point exactly. With a good initial guess z, algorithm 1 converges after a single
iteration.
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Algorithm 1: Fixed Point Computation for the LSR Memory Retrieval

M
/U':l 1)

Input: Initial guess z, stored patterns {£,, }
Output: Fixed point z*
Initialize previous point Zprey < z + 00
while z,,,,, # z do

Zprey < Z

Compute supports near z S(z) < {£,, : ||z — &u|| < \/%}
Update to mean of support centroids z <— m Z@ €S(2) &

inverse temperature (3

end
return z

Finally, we choose to sample points near the support boundary of each stored pattern because this
maximizes the probability that we will end up in a spurious minimum. The size of spurious basins
in high dimension can be very small, and the probability of landing in them decreases rapidly with
increasing [ (see the region of support plot in fig. 3).

D.4 Details: Qualitative reconstructions

The experiments in fig. 4 are conducted in two steps. First, we design an energy for each dataset.
Then, we discover all memories for each system.

Designing the energy The DenseAM energies studied in this work are described by a matrix of
stored patterns 2 and an inverse temperature hparam /3.

Choosing E. For MNIST, E is obtained as follows: 24 random images from the MNIST training
set are normalized to be [0, 1], rasterized into a 784-dim vector, and projected into a 10-dim latent
space of a 8-VAE trained according to the methods laid out below. These latents become our stored
patterns Eynist € [0, 1]24% 768 that we use to parameterize both the LSR energy and the LSE energy.
The procedure for TinyImagenet [27] is similar. We randomly select 40 images from the dataset,
each of shape (C,H, W)= (3, 64, 64). These samples are passed through a small pretrained VAE
called TAESD [28] to produce latents that are of shape (4, 8, 8) which are then rasterized into
vectors of shape (256,). Thus, our stored pattern matrix for TinyImagenet iS Etinyimgnet € R40%256

Choosing f Tuning (3 for the LSR energy is challenging. When /3 is too small, each stored pattern
interacts with all other stored patterns to induce one minimum at the centroid and several minima far
from the data distribution; when [ is too large, each stored pattern will interact with no other stored
patterns and will induce only a single minimum at itself. Neither of these regimes are interesting.
For large ranges of 3 between these limits, the combinatorial search space of possible memories
is computationally prohibitive. For this reason, we use a binary search algorithm to choose a
that, on average, causes each stored pattern to interact with approximately 4 other stored patterns
(in the 10-dim MNIST case) and 2 other stored patterns in the 256-dim TinyImagenet case. This 3
encourages the LSR energy to exhibit emergence where it is computationally feasible to enumerate
all memories, and we use it for both the LSR and LSE energy experiments. In pseudocode, the
search algorithm is given by algorithm 2

Training the B-VAE for MNIST. MNIST images are encoded by a S-VAE [31, 32] with a latent
dimension of 10. The VAE takes as input the 784-dim rasterized MNIST images. The VAE’s
encoder and decoder are two layer MLPs configured with LeakyReLLU and BatchNorm activations,
with a hidden dimension size of 512. Training proceeded for 50 epochs using a learning rate of le-3,
the Adam optimizer, and a minibatch size of 128. The 3 of the S-VAE (distinct from the inverse
temperature /3 used by the LSR energy) is set to 4.

Discovering all memories Once we have chosen a 3 that results in a feasible number of basin inter-
actions K (where the combinatorial search space is tractable), all memories for LSR are discovered
by filtering the set of “memory candidates” — the set of centroids formed by at overlapping basins
around each stored patterns — to those whose energy gradient is zero. This method is explicitly de-
scribed in algorithm 3, which iterates through each stored patterns £, and only searches for emergent
memories formed by near-enough stored patterns.
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Algorithm 2: Binary Search over [ to achieve desired memory interactions

Input: Desired avg. interactions per pattern K, stored patterns {&,, } ff[:l, max iterations 7yax
Qutput: Optimal 5* achieving number of basin interactions K

Compute

Distance matrix D,,,, < {||§, — &1}

Binary bounds (7min, "max) < (0.5min(D), 4 max(D))

Initial basin radius r < mean(7yin, Tmax)

end

Niter < 0

repeat

Compute avg. number of interacting basins per memory

K’ < mean, (Zflu:l 1Dy, < QT])
Update binary search conditions
rmin < rif K/ < K
Pmax — 1T if K/ > K
7 < mean(Tmin, "max )
Niter <= Miter + 1
until K/ = K or njer > Npax
B* +2/r?
return 3*

Algorithm 3: Discover local minima of the LSR energy at a specific /.

Input: Stored patterns {£,,} ﬁ/[:l, inverse temperature 3, gradient norm threshold § near 0

Qutput: Set of LSR memories X'*.
Compute
Distance matrix D,,,, < {||{, — &1}

Basin radius r < /2/3

end
nitialize set of local minima X* < ()
or i € [M] do
Compute set of interacting neighbors X, < {&, : D, < 2r}
Compute the set of all non-empty subsets C < {S C X, : size(S) > 0}
for S € Cdo

Compute centroid of neighbors Xg <— mean(.S)

Compute Xg neighbors T's < {&, : [|§, — Xg|| < r}

if ||VELSR()_(S)H <0& ELSR(XS) < oo then

Update set of local minima X* < X* U {Xg}

end

end

by

end
return X’

All LSE memories are discovered via gradient descent. We initialize queries x,, = &, and perform
gradient descent according to eq. (6) until convergence (for this experiment, we iterated for 20k steps
at small step-size o = 0.002). The retrieved fixed points are the complete set of LSE memories.

D.5 Additional experiment: Pixel-space emergence

When the stored patterns live in a semantically structured latent space, as is done in fig. 4, the energy
landscape inherits the structure such that centroids of subsets of stored patterns appear semantically
novel. However, the latent space visually obscures the mechanistic simplicity of emergent memories.
Thus, we repeat the experiment in pixel space to reinforce how emergent memories work.

We store 8 randomly selected MNIST images as rasterized pixels (normalized between 0 and 1)
into the LSR energy. The resulting emergent minima and stored patterns are shown in Figure 9,
where the 3 is chosen to balance the number of emergent minima and the retrievability of the stored
patterns (global emergence Definition 2).
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D.6 Additional experiment: Scaling number of stored patterns

The LSR energy function is simple and its properties hold across any scale of stored patterns. To
show this, we store all 60,000 MNIST training images into the LSR energy and select a /3 for which
~50% of the stored patterns are still retrievable. We select a “seed” image at random and randomly
select 15 images from all images whose basins interact with the seed image at the chosen /3. This
example is shown in Figure 10.

E Proofs
E.1 Proof of Theorem 1

Forany x € X, let B(x) = {pu € [M] : ||x — £u||2 < 2/8}. Then the gradient of the LSR energy
in eq. (3) is given by

M X — 1 ||x — 2<2
PP - S (x = &) 1] Ix - &ul* < 2] o)

et [S ey (1- 5k - &)
B Y uenio (X — &) 8)
e+ [Soepon ReLU (1= 2 [x— & P)]

With 8 = 2/(r — A)?, B(x) = {u € [M] : |x—&.l| < (r — A)}. Forany x € S,(A),
B(x) = {u}. Thus the LSR energy gradient simplifies to

(x—¢&.)

vx € S,(A), VxE"R(x) = ;
¢+ ReLU (1 — B x— 5#||2)

9

which is exactly zero at x = §,,, thus giving us the retrieval of the p" memory via energy gradient
descent.

Furthermore, again for x € S, (A) with a energy gradient descent learning rate set to 1 < € +
ReLU (1 —B/2||x — €u||2)’ the update is exactly nVxEMR(x) = (x — &,). Thus a single step

gradient descent update to x with x — nVxE"R(x) = x — (x — £,,) = £, results in the retrieval of
the 1" memory.

E.2 Proof of Proposition 2

Proof. (Proposition 2.)

For any x € X, given the definition of B(x), recall that the gradient of the LSR energy is given in
eq. (7). This gradient is zero when

1
= 1Beg] & v

nEB(x)
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Figure 9: Emergent memories are centroids of subsets of stored patterns, shown clearly when 8
stored images are visualized in pixel space alongside their induced emergent memories. Stored pat-
terns (bottom, indexed A-H) merge to form emergent memories (top, labeled by the stored patterns
that merged to form the emergent memory). (3 is chosen such that the number of emergent memories
is approximately the same as the number of stored patterns.
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Seed image Nearby emergent memories

EXENERE
77774471 4

Figure 10: Sampling emergent memories near a seed image when all 60k MNIST training images
are stored into the LSR energy. Left: Random seed image, which is a preserved memory. Right:
16 randomly sampled emergent memories formed by the seed image’s interactions with other stored
patterns (at 3 = 0.11). Because the seed image interacts with the basins of ~7.3k other stored
patterns, these emergent memories represent a tiny sample of the total emergent memories near the
seed image.

the geometric mean of the memories corresponding to the set B(x). Moreover, by standard algebraic
computations, we have

|B(x*)]
e+ | 3M . ReLU (1 _ g 5+ — $u||2)}

viELSR(X*) = Id =0

E.3 Proof of Theorem 2

Note that once we prove properties (a) and (b), the e-global emergence in Definition 2 follows
immediately.

We first focus on (a). Note that for any fixed x € X and ¢ > 0, vol(B(x,e) N X)) is at most
vol(B(x,¢)) = Vae?, where Vj is the volume of the unit ball in R?. Thus, we obtain: for any pair
(&u, &) with 1 # v, we have:

Pr(lg, — &l < €] < LW“ —

Then, we have:

i _ < M2V, V—1gd.
Pr [KEUHSMH@ & < s} < M2VyV-le (10)

Now, we let ¢ = (V;/V)~/4e=2 for a positive a.. Thus, with probability at least 1 — M?Ze~22¢,
the minimum pairwise Euclidean distance 7 = minj << |[|€, — & || > (Va/V)~1/9e=2%. Then,
with

2

2
0<P= AR = (Va/V) Vie 22 AR

we are able to retrieve any memory &, with an x € S, (A), for A € (0, (Vy/V)~'/4e~2%). More-
over, the size of M is given by the success probability:

§=1— M2 204,
This gives
M =0 (VI—de).

Next, we focus on (b). Recall the gradient is given by
ZueB(x) (x— &)

VixELsr(X) = . [ZMEB(X) ReLU (1 - gllx - &LHQ)} |
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where it is determined by the set

560 = {u: Ix-& <3}

Let Sx+(A) = {x : |[x — x*|| < A} be a basin around an emergent memory x*. Note that by
Cauchy-Schwarz inequality, the change within the basin of the squared distance to any &, is at most

[l = &l = 1" = £l < 2llx" — &[] A + A

We now for activated memories p € B(x*) let

suin(x) = min (5= 1x =g l) > 0.

This is the margin to the boundary of activation. Moreover, for inactivated memories v ¢ B(x*), let
2
* . * 2
Ymin(X*) = min x* =& |° — ) > 0.
o) =, i (I - el 3

This is the margin to being activated. Given {& u}ﬁ4=1 has a density, the probability of either of them
being exact zero is zero.

Finally, we determine the radius A. To ensure that for any x € Sx+(A), VxELsr(x) =
VxELsr(x*), it suffices to make sure B(x) = B(x*) for any x € Sx-(A). To this end, we can pick
A such that

2D max(X™)A 4+ A? < Min{min(X*), Ymin(X*)}, Where Diax(x*) = max ||x* — &, ||.
m

This gives

A< \/DmaX (x*) + min{dmin (X*), Ymin (X*) } — Dmax(x") =: 1™,

To prove the final claim, without loss of generality, we consider the case when X' = [0, 1]¢ with
V = 1. Since {£,}\L, are i.i.d. uniform, 1 {ﬁu {||x -, < \/%H are i.i.d. indicators over

w=1....,M,by the concentration of sub-Gaussian random variables [33, Proposition 2.5], we
have: with probability at least 1 — M 1,

A= |B(x)|

€ MVd —5\/MVd logM MVd +5\/MVd logM . 3n

This implies A = © <M Va (E) ) Note that according to Proposition 2, for each |B(x)| €

(1, M1, there is a corresponding new emergent memory as the average of all stored patterns over
i € B(x). Then, the number of new emergent memories is bounded as

Qp,Lsr < (%),where A=06 <MVd (;) 2) )

By Stirling’s formula, we have:

Thus, it holds that

log Qp,Lsr < Alog <ef\\/‘[) -0 <MVd <;)2 log <‘Z <§)2>> |

This implies
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E.4 Proof of Proposition 3

Without loss of generality, we consider the case when X = [0,1]¢ with V = 1. Now, we
divide [0,1]? into an equally spaced grid of size M, i.e., we divide each dimension [0, 1] into
[mM =Y (m + 1)M Y9 form =0,...,M — 1. Under our grid setting, {€,,} ), lie in such a

grid of equal size.
2
B = le—€ull < /5 -

Suppose the ball in definition of B(x) contains X of those equally spaced stored patterns such that
A = |B(x)| = X € (1, M]. We want to put a hypercube in the grid such that it contains exact A out
of M equally spaced stored patterns in the grid. Here, for simplicity, it is up to a constant depending
on d if we think of the ball as a hypercube in R¢ containing the points in the grid in this case. Hence,
in each dimension 1 < i < d, we put an interval containing of order A\*/¢ points in the grid inside
the entire interval containing of order M /¢ points in the grid. It thus gives the number of choice
for each dimension 1 < ¢ < d as:

Now, note that

Ml/d _ )\l/d -1

Hence, counting all choices over d dimensions, we obtain the number of such B(x) as
(Ml/d U _ 1>d

Moreover, due to the equal spacing of the grid, we have:

o (u(3))

Hence, combining all bounds above, we obtain: the number of emergent memories under uniform

sampling is of order
(C] ((Ml/d _ AVl 4 1)d> ,

where ) satisfies equation 12 and 1 < A < M.

E.5 Proof of Proposition 1

Recall the LSE energy:
BB (x logZe Slx—€,ul*

Thus, the gradient is

3
o= ZlIx—¢,
M- Slx—€ull
Z#:le 2 !

Vx ELSE *X_Zpu £,u7 pu ) =

p=1

Suppose &, for some v is the zero of this gradient, it yields that

(1—-p,(8))¢ = Zpu(fu)g
wAv

This is a contradiction of the assumption that {€,,}2L , are linearly independent.
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Answer: [Yes]

Justification: The abstract and introduction make claims that are clearly backed by theorems and

experiments in the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
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» The paper should point out any strong assumptions and how robust the results are to viola-
tions of these assumptions (e.g., independence assumptions, noiseless settings, model well-
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thetic data, Tinylmagenet). It will have no societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation strate-
gies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release

of data or models that have a high risk for misuse (e.g., pretrained language models, image

generators, or scraped datasets)?

Answer: [NA|

Justification: There is no risk of misuse of the contributions of this paper.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.
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* We recognize that providing effective safeguards is challenging, and many papers do not re-
quire this, but we encourage authors to take this into account and make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the

paper, properly credited and are the license and terms of use explicitly mentioned and properly

respected?

Answer: [Yes]

Justification: All code and data is properly credited and the licenses properly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the de-
rived asset (if it has changed) should be provided.

» If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation

provided alongside the assets?

Answer: [NA]

Justification: No new assets are introduced in the paper.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their submis-
sions via structured templates. This includes details about training, license, limitations, etc.

» The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper

include the full text of instructions given to participants and screenshots, if applicable, as well as

details about compensation (if any)?

Answer: [NA|

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

* According to the Neur[PS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals

(or an equivalent approval/review based on the requirements of your country or institution) were

obtained?

Answer: [NA|

Justification: The paper does not involve research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and lo-

cations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for

their institution.

For initial submissions, do not include any information that would break anonymity (if appli-

cable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-

standard component of the core methods in this research? Note that if the LLM is used only

for writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not involve LLMs as any important, original, or non-standard com-

ponents.

Guidelines:

* The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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