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Abstract

Large Vision-Language Models (LVLMs) have001
shown strong performance across multimodal002
tasks. However, they often produce hallu-003
cinations—text that is inconsistent with vi-004
sual input, due to the limited ability to ver-005
ify information in different regions of the006
image. To address this, we propose Multi-007
Region Fusion Decoding (MRFD), a training-008
free decoding method that improves factual009
grounding by modeling inter-region consis-010
tency. MRFD identifies salient regions using011
cross-attention, generates initial responses for012
each, and computes reliability weights based on013
Jensen-Shannon Divergence (JSD) among the014
responses. These weights guide a consistency-015
aware fusion of per-region predictions, using016
region-aware prompts inspired by Chain-of-017
Thought reasoning. Experiments across multi-018
ple LVLMs and benchmarks show that MRFD019
significantly reduces hallucinations and im-020
proves response factuality without requiring021
model updates.022

1 Introduction023

Large Vision-Language Models (LVLMs) have024

emerged as powerful tools for multimodal under-025

standing, achieving significant advances in image026

captioning, visual question answering, and visual027

reasoning (Alayrac et al., 2022; Liu et al., 2023b;028

Li et al., 2023a; Zhu et al., 2023). However, these029

models frequently generate hallucinated content,030

producing textual outputs inconsistent with the031

visual input. This phenomenon poses substan-032

tial challenges for reliability and practical deploy-033

ment (Ji et al., 2023; Liu et al., 2024). Hallucina-034

tions typically manifest as misidentified objects,035

fabricated attributes, or omitted visual information,036

reducing the factual alignment between image and037

text.038

This issue is especially prominent in scenarios039

that require fine-grained understanding or inter-040

Question: Please describe the image in details.

A man is riding Bicycle along the road. Only 
one car is behind him.

The image features a white car is stopped in 
front of a bus station.

The image features a man on a bike riding
past a red car. Caption 3

Caption 2

Caption 4

Answer: The image features a white car in front of a 
bus. A man is riding a motorcycle along the road.

Select

Top K

The image features a 
man on a bike past a bus. 

A white car is driven
before a bus station.

JSD-Weighted Block

Please describe the image. Caption k

Caption 1

Figure 1: The MRFD process: leveraging multiple re-
gional responses (Captions 1-4), a JSD-Weighted Block
derives consistency weights to guide a prompted fusion
decoding, yielding a more reliable output.

pretation of visually complex scenes. Current ap- 041

proaches include training-based solutions like data 042

augmentation and fine-tuning, which improve fac- 043

tual grounding but require considerable resources 044

and often lack generalization (Rohrbach et al., 045

2018; Gunjal et al., 2024). Training-free alter- 046

natives such as chain-of-thought prompting (Wei 047

et al., 2022) and contrastive or corrective decoding 048

methods (Li et al., 2023b; Leng et al., 2024; Favero 049

et al., 2024; Woo et al., 2024; Huang et al., 2024; 050

Zhang et al., 2025a) offer flexibility, but they often 051

rely on carefully crafted prompts or fail to exploit 052

intrinsic visual information fully. 053

A key limitation shared by many of these ap- 054

proaches is their tendency to process images holis- 055

tically or to analyze regions in isolation, often with- 056

out dynamic mechanisms to assess the reliability of 057

different visual cues or to reconcile potentially con- 058

flicting interpretations from multiple perspectives. 059
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Consequently, explicit consistency-based reasoning060

across various image segments is rarely integrated061

into current decoding procedures (Feng et al., 2024;062

Zhang et al., 2021).063

Our analysis (Section 3) highlights that some064

image regions provide more trustworthy evidence065

than others. In particular, we observe that the con-066

sistency of region-level responses, which are quan-067

tified by Jensen-Shannon Divergence (JSD), corre-068

lates with their factual correctness (see Section 3.2).069

This strong correlation indicates that inter-region070

agreement is a key determinant of output quality:071

responses consistent with the consensus view from072

multiple regions are not only more factually ac-073

curate but also demonstrate higher reliability and074

lower hallucination rates.075

To this end, we propose Multi-Region Fusion076

Decoding (MRFD), a decoding strategy that aims077

to incorporate multi-perspective reasoning into the078

generation process. As illustrated in Figure 1,079

MRFD identifies several salient regions in the im-080

age based on attention mechanisms, then generates081

an initial response for each. By computing Jensen-082

Shannon Divergence (JSD) among these responses,083

the method derives a set of consistency-based re-084

liability weights. These weights are used during085

decoding to combine predictions from all regions.086

Furthermore, inspired by CoT prompting, we con-087

struct region-aware prompts by combining the orig-088

inal question with the initial analysis of each re-089

gion, preserving the localized context throughout090

the generation. The contributions of this work are:091

• We propose a training-free decoding method092

that integrates multiple region-level perspec-093

tives, weighted by inter-region consistency, to094

reduce hallucinations in LVLMs.095

• We introduce a JSD-based scoring scheme096

to quantify agreement among region-wise re-097

sponses and guide reliability-aware fusion.098

• We design a region-aware prompting strategy099

to enhance contextual grounding during gen-100

eration without modifying model parameters.101

2 Related Work102

LVLM Hallucinations and Grounding Deficien-103

cies. Large Vision-Language Models (LVLMs) fre-104

quently ’hallucinate’—generating text unsupported105

by visual input (Ji et al., 2023; Liu et al., 2024).106

This often stems from flawed visual grounding107

due to various factors such as data biases or poor 108

connections between vision and language compo- 109

nents (Han et al., 2024; Jiang et al., 2024; Shu 110

et al., 2025; Wang et al., 2023a). Although stan- 111

dard attention mechanisms (Anderson et al., 2018) 112

and region-based analyzes (Li et al., 2022; Kamath 113

et al., 2021) aim to improve grounding, LVLMs 114

still struggle to reliably combine information from 115

multiple, potentially conflicting, image regions or 116

to assess their mutual consistency. 117

Limitations in Advanced Decoding and Fusion 118

Strategies. Advanced strategies to improve LVLM 119

outputs also exhibit limitations. Chain-of-Thought 120

(CoT) prompting (Wei et al., 2022; Zhang et al., 121

2023; Lyu et al., 2023), while enhancing reason- 122

ing, may not ensure its steps visually align with 123

the image and can be sensitive to setup or resource- 124

intensive. Many training-free corrective or con- 125

trastive decoding methods (e.g., (Li et al., 2023b; 126

Leng et al., 2024; Favero et al., 2024; Woo et al., 127

2024; Huang et al., 2024; Zhang et al., 2025a; 128

Wang et al., 2024)) struggle to capture finegrained 129

local image features and risk missing valid infor- 130

mation, resulting in poor grounding capabilities. 131

Moreover, when attempting to fuse information 132

from multiple sources—a concept for which con- 133

sistency has proven beneficial in language mod- 134

eling tasks (Wang et al., 2023b; Xiong et al., 135

2023)—LVLMs face distinct challenges with vi- 136

sual regions. Common simplistic aggregation tech- 137

niques (like averaging) are often insufficient for 138

visual data, where the trustworthiness of different 139

regions can vary dramatically. A central challenge 140

thus remains: developing principled methods to ap- 141

propriately weigh and fuse evidence from diverse, 142

contextually-understood visual regions based on 143

their consistency. 144

3 Motivation 145

3.1 Global Decoding Misses Local Evidence 146

To explore whether visual grounding capability is 147

related to the hallucinations in LVLMs, we ana- 148

lyze their attention patterns during question an- 149

swering. Figure 2 shows a case where the model 150

is asked: “Is there a laptop in the image?” When 151

using the full image as input, the model outputs 152

“NO,” even though a laptop is present. The atten- 153

tion map shows that the model distributes focus 154

across unrelated regions. 155

In contrast, when the image is cropped to a 156

salient region based on high attention (the desk 157
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Q: Is there a laptop in the image?
A: No

Q: Is there a laptop in the image?
A: Yes

Figure 2: LVLM cross-attention patterns for "Is there
a laptop in the image?". (upper) Full image input re-
sults in scattered attention and potential error. (lower)
Cropped image input focused on the laptop yields con-
centrated attention and improved accuracy.

area), the model concentrates more narrowly on158

the relevant evidence and correctly answers “YES.”159

The localized input guides the model to verify only160

what matters for the query, avoiding distractions161

from the rest of the image.162

This comparison reveals a key shortcoming of163

global decoding: attention is easily diffused across164

many areas, some of which may mislead the model.165

In cluttered or ambiguous scenes, this often results166

in factual errors. Cropped regions help narrow the167

visual focus of the model, improving the quality of168

the answer by strengthening the localized founda-169

tion.170

3.2 Region Consistency Reflects Reliability171

However, not all regions—even attention-guided172

ones—are equally reliable. Some may be visu-173

ally ambiguous or contextually misleading. To174

avoid overconfident on a single (possibly mislead-175

ing) region, we adopt a self-consistency approach:176

comparing multiple region-level responses. When177

different views agree on an answer, that answer is178

more likely to be trustworthy.179

To test this, we run experiments using LLaVA-180

1.5 on 3,000 MSCOCO validation samples, an-181

notated with hallucination labels from the POPE182

benchmark. For each image-question pair, we gen-183
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Figure 3: Density distribution of JS Divergence for
correct versus hallucinated LVLM responses, indicating
lower JSD correlates with higher factual accuracy.

erate several responses from attention-guided im- 184

age patches, along with one from the full image. 185

For the output of each cropped region, we calcu- 186

late the Jensen-Shannon divergence (JSD) between 187

its response distribution and the average response 188

distribution across all regions. 189

Our results (illustrated in Figure 3) show a clear 190

distinction: JS Divergence for hallucinated answers 191

tends to concentrate around 0.06-0.07, whereas for 192

correct answers, it centers around approximately 193

0.02. This indicates that the JSD between a spe- 194

cific regional response and the average across re- 195

gions effectively reflects the level of hallucination 196

of that regional response: a lower JSD correlates 197

with fewer hallucinations. This finding resonates 198

with the principle of self-consistency (Wang et al., 199

2023b), where agreement among multiple diverse 200

outputs often signals higher quality and reliability. 201

Motivated by this, we design a decoding strategy: 202

A mechanism that aggregates evidence from multi- 203

ple regions, and checks their agreement, can help 204

improve the robustness and factual grounding of 205

model predictions. 206

4 Method 207

4.1 Overview 208

Current LVLM decoding methods often suffer from 209

hallucinations due to the lack of multi-perspective 210

consistency checking, as discussed in Section 3. 211

To address this, we propose Multi-Region Fu- 212

sion Decoding (MRFD), a training-free decoding 213

strategy that enhances answer reliability through: 214

1) Attention-Guided Region Selection: selecting 215

salient regions based on attention maps; 2) Multi- 216

Region Analysis with JSD-Based Weighting: as- 217

sessing consistency across regions using Jensen- 218

Shannon Divergence; 3) Consistency-Based Fusion 219
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Question:
Is there a bicycle in the image?

LVLM

Select Top-K regions 
in attention map

v1

v2

v3

LVLM

Logits collector



𝑡=1

𝑟𝑘

𝑙𝑜𝑔𝑖𝑡𝜃 𝑟𝑘,𝑡 𝑟𝑘,<𝑡, 𝑥, 𝑣𝑘

JSD Evaluation

Caption:
A man on a bike ride past 
a bus.
Question:
Is there a bicycle in the image?
Please answer this question.

LVLM

Yes

No

Yes

No

Yes

No

Yes

No

𝑙𝑜𝑔𝑖𝑡𝜃 𝑦 𝑦<𝑡, 𝑣0, 𝑞0

𝑙𝑜𝑔𝑖𝑡𝜃 𝑦 𝑦<𝑡, 𝑣1, 𝑞1

𝑙𝑜𝑔𝑖𝑡𝜃 𝑦 𝑦<𝑡, 𝑣2, 𝑞2
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JSD-Weight

v0
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Yes      No 



𝑖

𝑙𝑜𝑔𝑖𝑡𝜃 𝑦 𝑦<𝑡 , 𝑣𝑘 , 𝑞𝑘 ⋅ 𝑤k

Next token selection

Several buses are parked on 
the street next to each other.

A man on a bike ride past 
a bus.

A man is riding bicycle past a 
car.

A white bus is stopped at a 
bus stop.

r0

r1

r2

r3

rk Prompt

New prompt  

qk



Step 1: Attention-Guided Salient-Region Selection

Step 2: Consistency-Based Fusion Decoding

Candidate response
Multi-Region

Analysis

Crop

𝑤𝑘 =
𝑒𝑥𝑝 −𝐽𝑘/𝛾

σ𝑖=0
𝐾 𝑒𝑥𝑝 −𝐽𝑖/𝛾

𝐽𝑘 = 𝐽𝑆𝐷(𝑃𝑘 || ത𝑃 )

Yes, there is a 
bicycle……

Output

Figure 4: Overall framework of Multi-Region Fusion Decoding (MRFD): Step 1 uses attention to select and crop
salient regions (vk), generates candidate responses (rk) per region, and computes JSD-based consistency weights
(wk) for each response. Step 2 forms new inputs per region with a candidate response and the original prompt. They
are all processed in parallel, fusing per-region logits using the weights wk during parallel decoding to select the
output tokens.

Decoding: fusing predictions weighted by their mu-220

tual consistency. The full framework is illustrated221

in Figure 4.222

4.2 Attention-Guided Region Selection223

Building on the multi-perspective verification ap-224

proach motivated in Section 3, the first crucial step225

in our MRFD’s framework is to identify and isolate226

multiple informative regions from the input image227

for focused and independent analysis.228

Leveraging Cross-Attention for Region Identifi-229

cation. To identify image regions most relevant to230

the input query, we leverage the cross-attention231

mechanisms already present in LVLM architec-232

tures. Given an original image I0 and a text query233

x, we compute the attention matrix A from the234

LVLM’s cross-attention layers. Let HT ∈ Rn×d235

represent the sequence of hidden states from the236

textual input, and HV ∈ Rm×d represent those237

from the visual input, where n and m denote se-238

quence lengths and d represents the hidden dimen-239

sionality.240

The cross-attention weight matrix A ∈ Rn×m,241

capturing alignment between textual and visual242

modalities, is computed using scaled dot-product243

attention(Vaswani et al., 2017):244

A = softmax
(
(HTW

Q)(HV W
K)⊤√

dk

)
(1)245

where WQ ∈ Rd×dk and WK ∈ Rd×dk are projec- 246

tion matrices for queries and keys, and dk is their 247

dimensionality. 248

To obtain an overall map of visual focus, we 249

aggregate these attention weights across the textual 250

dimension: 251

aj =
1

n

n∑
i=1

Aij for j = 1, . . . ,m (2) 252

This produces an aggregated attention vector a ∈ 253

R1×m. Assuming the visual hidden states corre- 254

spond to a spatial grid of patches (d′ × d′ = m), 255

we reshape this vector into a 2D spatial attention 256

map: 257

Â = reshape(a, (d′, d′)) (3) 258

This spatial attention map Â visually highlights the 259

regions that the model finds most relevant to the 260

input query. By utilizing the model’s own attention 261

patterns, we can directly identify which parts of 262

the image are being primarily considered when 263

answering the query. 264

Selecting Salient Regions. Using the spatial at- 265

tention map Â, we identify the top-K most salient 266

regions R1, R2, ..., RK within the original image. 267

To ensure diversity and comprehensive coverage, 268

we employ an integral image approach to efficiently 269

search for K non-overlapping or minimally over- 270

lapping regions that maximize summed attention 271
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scores. For practical implementation, we constrain272

these regions to be rectangular bounding boxes273

with a maximum overlap (IoU) threshold between274

any two regions to ensure diversity in the selected275

perspectives.276

For each selected region Rk, we crop the original277

image to obtain a focused sub-image vk. This pro-278

cess yields a set of K+1 visual inputs: the original279

full image v0 = I0 and K cropped region images280

{v1, v2, ..., vK}. These cropped regions represent281

the most informative parts of the image with respect282

to the input query, as determined by the model’s283

own attention mechanism.284

4.3 Multi-Region Analysis with JSD-Based285

Weighting286

Having selected salient regions, we now detail their287

independent analysis and our JSD-based weighting288

mechanism. This approach is crucial for assess-289

ing inter-region consistency(Section 3.2). For each290

selected region Rk, we process the corresponding291

cropped sub-image vk through the LVLM to gener-292

ate an initial analysis:293

rk = LVLM(vk, x) (4)294

where rk represents the LVLM’s response when295

considering only the visual information from re-296

gion k. We also generate a response r0 using297

the original full image v0. The resulting set298

{r0, r1, ..., rK} provides multiple perspectives on299

the query, each grounded in different salient regions300

of the image.301

To assess the reliability of information from302

each region, we measure the consistency between303

region-specific analyses using Jensen-Shannon Di-304

vergence (JSD). The JSD provides a symmetric305

measure of similarity between probability distribu-306

tions and is defined as:307

JSD(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M)

(5)308

where P and Q are two probability distributions,309

M = 1
2(P +Q), and DKL is the Kullback-Leibler310

divergence.311

We derive a representative vocabulary distribu-312

tion Pk for each initial analysis sequence rk by313

averaging the next-token probability distributions314

computed during generation:315

Pk = softmax(
1

|rk|

|rk|∑
t=1

logitθ(y|rk,<t, x, vk))

(6)316

where |rk| is the length of rk and logitθ represents 317

the model’s output logits. This distribution Pk cap- 318

tures the overall token prediction patterns when the 319

model considers region k. We then compute the 320

average distribution across all regions: 321

P =
1

K + 1

K∑
i=0

Pi (7) 322

For each region k, we calculate its divergence from 323

this average distribution: 324

Jk = JSD(Pk||P̄ ) (8) 325

These divergence scores measure how much each 326

region’s predictions deviate from the consensus. A 327

lower Jk indicates that region k provides informa- 328

tion more consistent with other regions, suggesting 329

higher reliability. 330

Finally, we convert these divergence scores into 331

weights with temperature parameter γ: 332

wk =
exp(−Jk/γ)∑K
i=0 exp(−Ji/γ)

(9) 333

The temperature parameter γ controls the sharp- 334

ness of the weight distribution—a smaller γ creates 335

more contrast between weights, while a larger γ 336

leads to more uniform weighting. 337

4.4 JS-Weighted Integrative Fusion Decoding 338

With the consistency-based weights wk computed 339

for each visual input vk (k = 0...K), we now perform 340

the final decoding step by fusing the next-token 341

predictions in a manner that prioritizes consistent 342

visual evidence. 343

Motivated by the effectiveness of Chain-of- 344

Thought (CoT) prompting (Wei et al., 2022) in 345

structuring reasoning, we adapt its core principle to 346

enhance factual grounding within our multi-region 347

fusion framework. For each region k, we construct 348

a fixed region-aware prompt qk by concatenating 349

the original question x and the corresponding re- 350

gion’s initial analysis rk: 351

qk = Concat(x, rk) (10) 352

This prompt qk encapsulates both the global query 353

and the localized preliminary analysis derived from 354

vk. It serves as a static, enriched context for re- 355

gion k throughout the decoding process, providing 356

region-specific grounding information without re- 357

quiring dynamic prompt updates. 358
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During autoregressive decoding, at each step t′,359

the LVLM produces next-token logits ℓ(t
′)

k condi-360

tioned on the current partial output sequence y<t′ ,361

the visual input vk, and the fixed region-aware362

prompt qk:363

ℓ
(t′)
k = logitθ(y|y<t′ , vk, qk) (11)364

These logits represent the prediction from each re-365

gion’s perspective given its pre-computed analysis.366

We aggregate them using the pre-computed consis-367

tency weights wk:368

ℓ
(t′)
fused =

K∑
k=0

wk · ℓ
(t′)
k (12)369

The final probability distribution for the next370

token is obtained via softmax:371

P
(t′)
fused(y) = softmax(ℓ(t

′)
fused) (13)372

The next token ŷt′ is then selected (e.g., sampling)373

from this fused distribution, and the process repeats374

autoregressively until completion.375

5 Experiments376

5.1 Experimental Settings377

Evaluated LVLMs. We evaluate Multi-Region378

Fusion Decoding (MRFD) on two representative379

open-source LVLMs: LLaVA-1.5-7B (Liu et al.,380

2023a) and InstructBLIP-7B (Dai et al., 2023).381

These models adopt different vision-language inter-382

faces—direct projection in LLaVA-1.5 and query-383

based encoding (Q-Former (Li et al., 2023a)) in384

InstructBLIP—enabling evaluation of MRFD’s385

generality. MRFD is applied as a training-free,386

decoding-time procedure on frozen models. Archi-387

tectural details are provided in Appendix A.388

Baselines. As a basic baseline, regular decod-389

ing samples tokens from the model’s post-softmax390

output probabilities. These include contrastive391

methods such as VCD (Leng et al., 2024) and392

M3ID (Favero et al., 2024), robustness-enhancing393

methods like RITUAL (Woo et al., 2024), and ap-394

proaches employing correction or feedback, such as395

DeGF (Zhang et al., 2025b) and Woodpecker (Yin396

et al., 2023). We also include comparisons with397

other relevant methods: HALC (Chen et al., 2024),398

and OPERA (Huang et al., 2024). Performance of399

these baselines is based on our re-implementations400

using publicly available code where possible. De-401

tailed descriptions of each baseline’s methodology402

are provided in Appendix B.403

Implementation Details. Across all experiments, 404

our Multi-Region Fusion Decoding (MRFD) 405

method selects K = 3 salient regions and em- 406

ploys a temperature of γ = 0.02 for the JSD-based 407

weighting (Eq. 9). We utilize multinomial sam- 408

pling for both stages of decoding. Other detailed 409

settings are provided in Appendix C. 410

5.2 Datasets and Benchmarks 411

We evaluate MRFD on multiple benchmarks cover- 412

ing both hallucination detection and general vision- 413

language understanding. Below we briefly describe 414

the key datasets; full details and evaluation metrics 415

are provided in Appendix D. 416

POPE (Li et al., 2023c): A Yes/No QA bench- 417

mark for object existence hallucination, built from 418

MSCOCO, A-OKVQA, and GQA with various 419

negative sampling strategies. 420

CHAIR (Rohrbach et al., 2018): Measures hal- 421

lucinated object mentions in image captions via 422

CHAIRi and CHAIRs scores on MSCOCO images. 423

MME (Fu et al., 2023): We focus on the MME- 424

Hallucination subset, which tests object, count, po- 425

sition, and attribute hallucinations. 426

5.3 Results and Discussions 427

Results on POPE. In Table 1, we compare the per- 428

formance of our MRFD method against other base- 429

lines on the POPE benchmark (Li et al., 2023c) un- 430

der three different negative sampling settings (Ran- 431

dom, Popular, Adversarial), across both LLaVA- 432

1.5 and InstructBLIP. As shown, MRFD consis- 433

tently outperforms other decoding methods on both 434

LVLMs, achieving leading F1 scores across all 435

six configurations, with improvements of up to 436

2.44% in accuracy, 6.52% in precision, and 3.05% 437

in F1 score compared to the respective second- 438

best approaches. This suggests that MRFD’s 439

core strategy—identifying multiple salient regions 440

via cross-attention, assessing their response con- 441

sistency using JSD-weighting, and fusing their 442

context-enriched predictions—enables LVLMs to 443

better ground responses in relevant visual evidence, 444

thereby effectively addressing object hallucinations. 445

Moreover, while most decoding method tend to be 446

overcofident in nonexistence, the consistency verifi- 447

cation inherent in MRFD appears to promote more 448

cautious and precise responses, which is evidenced 449

by its strong precision, particularly in challenging 450

adversarial settings (e.g., 76.16 on LLaVA-1.5 and 451

74.26 on InstructBLIP), highlighting its enhanced 452
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Setting Method LLaVA-1.5 (Liu et al., 2023a) InstructBLIP (Dai et al., 2023)

Acc. ↑ Prec. ↑ F1 ↑ Acc. ↑ Prec. ↑ F1 ↑

Random

Regular 82.42 78.30 83.67 79.85 80.33 83.45
VCD (Leng et al., 2024) 84.69 80.30 85.85 84.47 83.07 84.81
M3ID (Favero et al., 2024) 85.46 81.54 86.42 85.32 83.51 85.58
RITUAL (Woo et al., 2024) 86.71 82.84 87.51 87.12 85.64 87.23
DeGF (Zhang et al., 2025b) 87.79 86.33 88.08 87.21 89.01 86.70
MRFD 88.15 88.91 88.23 88.03 88.74 88.01

Popular

Regular 76.57 71.23 79.56 75.17 70.90 77.54
VCD (Leng et al., 2024) 77.30 71.61 80.57 78.12 73.77 80.10
M3ID (Favero et al., 2024) 78.66 73.09 81.45 78.32 73.75 80.30
RITUAL (Woo et al., 2024) 79.75 74.55 82.31 78.40 73.63 80.55
DeGF (Zhang et al., 2025b) 81.94 78.33 83.31 80.37 78.84 81.24
MRFD 81.99 78.81 83.29 82.17 79.52 83.15

Adversarial

Regular 71.09 65.77 75.93 71.02 66.58 74.70
VCD (Leng et al., 2024) 71.13 65.28 76.37 73.07 68.50 76.36
M3ID (Favero et al., 2024) 72.10 66.27 76.87 72.97 67.92 76.55
RITUAL (Woo et al., 2024) 71.87 66.17 76.88 73.06 67.83 76.91
DeGF (Zhang et al., 2025b) 76.13 71.50 79.01 75.96 73.45 77.36
MRFD 77.99 76.16 79.22 77.72 74.26 79.72

Table 1: Results on POPE benchmark. Higher (↑) accuracy, precision, and F1 indicate better performance. The best
results are bolded, and the second-best are underlined.

Method LLaVA-1.5 InstructBLIP

Cs ↓ Ci ↓ Cs ↓ Ci ↓

Regular 26.2 9.4 31.2 11.1
VCD 24.4 7.9 30.0 10.1
M3ID 21.4 6.3 30.8 10.4
RITUAL 22.4 6.9 26.6 8.9
Woodpecker 24.9 7.5 31.2 10.8
HALC 21.7 7.1 24.5 8.0
DeGF 18.4 6.1 24.0 7.7

Ours (MRFD) 14.1 5.0 21.3 6.1

Table 2: Results on CHAIR benchmark for caption
generation. We limited the maximum number of new
tokens to 64. Lower (↓) CHAIRs (Cs) and CHAIRi
(Ci) indicate less hallucination. Best results are bolded,
second-best are underlined.

capability in filtering false positives and suppress-453

ing misinformation. Detailed results of POPE are454

attached in Appendix E.3.455

Results on CHAIR. We evaluate MRFD’s effec-456

tiveness in mitigating object hallucination in open-457

ended image captioning using the CHAIR bench-458

mark (Rohrbach et al., 2018), reporting CHAIRs459

(Cs) and CHAIRi (Ci) scores (lower is better) for460

LLaVA-1.5 and InstructBLIP in Table 2. MRFD461

consistently achieves state-of-the-art performance462

on both LVLMs, significantly outperforming the463

strong DeGF baseline with relative CHAIR score464

Existence Count Position Color
LlaVA-1.5

0

40

80

120

160

200

S
co

re
s

Regular

VCD

M3ID

RITUAL

DeGF

MRFD

Figure 5: Experimental results of MME on a hallucina-
tion subset with different decoding strategies.

reductions of up to 16.4% on LLaVA-1.5 and 20.8% 465

on InstructBLIP. Given that the CHAIR task for 466

image captioning necessitates comprehensive at- 467

tention to diverse local details, MRFD’s superior 468

performance underscores its advanced capability 469

for robust multi-region analysis and effective inte- 470

gration of key information from various visual seg- 471

ments, leading to more factually grounded image 472

captions. Detialed results of CHAIR are appended 473

to Appendix E.1. Some qualitative examples are 474

shown in Appendix H. 475

Results on MME-Hallucination. We evaluate 476

MRFD on the MME hallucination subset (Fu et al., 477

2023), which assesses diverse hallucination types 478

including object-level (Existence), attribute-level 479

(Count, Color), and relation-level (Position) under- 480

7



standing in LVLMs. As illustrated in Figure 5 (pre-481

senting results for both LLaVA-1.5 and Instruct-482

BLIP), our MRFD method consistently demon-483

strates strong performance, achieving leading or484

state-of-the-art results across the majority of these485

hallucination categories for both evaluated LVLMs486

when compared to regular decoding and other ad-487

vanced baselines. This robust performance across488

a spectrum of challenging hallucination types un-489

derscores that MRFD’s core mechanism—multi-490

region analysis coupled with consistency-driven491

fusion—effectively enhances fine-grained visual492

understanding and overall factual consistency. De-493

tialed results of MME-Hallucination are appended494

to Appendix E.2495

Efficiency Discussion. Despite employing multi-496

ple inference steps, MRFD maintains a competitive497

efficiency profile, particularly when compared to498

other advanced hallucination mitigation techniques499

that involve more complex iterative or feedback500

mechanisms. Details are in Appendix F.501

5.4 Ablation Study502

We conduct ablation studies to evaluate the impact503

of key components and hyperparameters in MRFD,504

using LLaVA-1.5 on the POPE-MSCOCO dataset.505

First, we assess the contributions of MRFD’s506

core designs: JSD-based Consistency Weighting507

(CW), Fusion Prompt (FP), and attention-guided508

Region Selection (RS). We test our full MRFD509

against three main variants where these compo-510

nents are individually altered: (1) MRFD w/o CW,511

applying uniform fusion weights; (2) MRFD w/o512

FP, using only the original question for regional513

decoding; and (3) MRFD w/o RS, processing only514

the global image through the subsequent pipeline515

stages. As detailed in Table 3, full MRFD achieves516

an 86.21 F1 score. Removing CW degrades F1517

performance by 2.94%, underscoring the impor-518

tance of dynamic, consistency-based weighting.519

Omitting FP reduces F1 by 3.93%, highlighting520

the value of enriched regional context. Bypassing521

RS results in the largest F1 drop of 4.07%, empha-522

sizing that robust multi-region analysis is funda-523

mental. Despite these impacts, all three ablated524

MRFD variants still outperform Regular decoding525

(81.59 F1), while the complete MRFD configura-526

tion showcases the strongest synergistic benefits.527

Second, we analyze the sensitivity to the JSD528

weighting temperature γ (Eq. 9). As depicted in529

Figure 6 (POPE COCO Precision for K = 2, 3, 4),530

Model Variants Acc. ↑ Prec. ↑ F1 Score ↑

MRFD (Full) 86.50 88.11 86.21

w/o CW 83.76 84.27 83.74
w/o FP 82.87 83.95 82.70
w/o RS 82.77 83.94 82.58
Regular 80.57 78.84 81.59

Table 3: Ablation study with different model variants
on POPE-COCO under the average of three settings .
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Figure 6: Sensitivity of POPE-COCO Precision
(LLaVA-1.5) to JSD weighting temperature γ for K =
2, 3, 4 regions, with optimal performance around γ =
0.02.

performance peaks around γ = 0.02 (K = 3 at 531

≈87.8% Prec.). Higher γ values (≥0.08) lead 532

to more uniform weights and correspondingly re- 533

duced precision, approaching unweighted fusion. 534

Conversely, very low γ values (≈0.01) cause over- 535

reliance on a few regions due to extreme weighting, 536

which can negatively impact robustness, particu- 537

larly for larger K (e.g., performance degradation 538

for K = 4). Thus, γ = 0.02 is adopted for pro- 539

viding an optimal balance. Further details are pre- 540

sented in Appendix G. 541

6 Conclusion 542

We presented Multi-Region Fusion Decoding 543

(MRFD), a training-free approach that improves 544

LVLM reliability by mimicking self-consistency 545

multi-view verification. MRFD identifies salient 546

regions via attention, estimates their reliability 547

using Jensen-Shannon Divergence (JSD), and 548

fuses region-level predictions using consistency- 549

weighted, Chain-of-Thought-inspired prompts. Ex- 550

periments show that MRFD effectively reduces hal- 551

lucinations and improves factuality across various 552

LVLMs and benchmarks, offering a simple yet ro- 553

bust decoding strategy. 554

8



Limitations555

MRFD relies on the quality and interpretability of556

attention maps produced by the underlying LVLM,557

which may vary across architectures and input con-558

ditions. The assumption that inter-region consis-559

tency indicates factual correctness holds empiri-560

cally but may not generalize to all reasoning tasks,561

especially those requiring abstract or commonsense562

inference. Additionally, while MRFD improves563

factuality in image-grounded tasks, it has not been564

evaluated in broader multimodal contexts such as565

video or dialogue-based grounding, which may in-566

volve more complex temporal or conversational567

dependencies.568

Ethics Statement569

Our work on Multi-Region Fusion Decoding570

(MRFD) aims to improve the reliability and fac-571

tual grounding of LVLMs, thereby contributing to572

more trustworthy AI systems by reducing visual573

hallucinations. We believe this has positive impli-574

cations for applications where factual accuracy is575

critical.576
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A Evaluated LVLMs831

We evaluate our proposed Multi-Region Fusion832

Decoding (MRFD) framework on three representa-833

tive open-source Large Vision-Language Models834

(VLMs): LLaVA-1.5-7B (Liu et al., 2023a), and835

InstructBLIP-7B (Dai et al., 2023). For the visual836

encoder, LLaVA-1.5 uses ViT-L-336px pre-trained837

from CLIP-L/14-336px (Radford et al., 2021). In-838

structBLIP uses ViT-g/14 pre-trained from EVA-839

CLIP (Sun et al., 2023). Qwen-VL uses Openclip840

ViT-bigG (Ilharco et al., 2021). Regarding the lan-841

guage model module, LLaVA-1.5 and InstructBLIP842

both utilize Vicuna-7B (Chiang et al., 2023).843

The vision-language interface varies across the844

evaluated models. LLaVA-1.5 directly projects845

visual features using MLP layers. InstructBLIP,846

conversely, adopts the Q-Former (Li et al., 2023a),847

which processes visual features via 32 learnable848

queries to generate a standardized input for the849

LLM. Our evaluation of MRFD encompasses these850

distinct strategies—direct MLP projection and851

query-based bottleneck (Q-Former)—to demon-852

strate its broad effectiveness in mitigating hallu-853

cinations regardless of the connection module em-854

ployed.855

B Baselines856

We compare the performance of our MRFD method857

with several recent training-free decoding ap-858

proaches designed to mitigate hallucination. These859

key baselines, along with their core methodologies,860

are described below:861

• VCD (Leng et al., 2024): This method con-862

trasts output distributions derived from an863

original visual input (v) and a distorted ver-864

sion (v′). Given a textual query and v, the865

model generates two distributions. The dis-866

torted input v′ is created using pre-defined867

distortions (e.g., a Gaussian noise mask) to v.868

These two distributions are then contrasted to869

form the final output probability. For repro-870

duction, we follow VCD’s default setting with871

α = 1 (a parameter controlling the contrast872

strength) and use 500 noise steps to generate873

v′. VCD aims to enhance visual grounding by874

reducing reliance on language priors.875

• M3ID (Favero et al., 2024): M3ID contrasts876

output distributions from original visual in-877

puts against those from pure text inputs (lack-878

ing visual information). The final probability879

distribution is a combination of the distribu- 880

tion conditioned on both vision and text, and 881

a contrastive term derived from the difference 882

between vision-conditioned and text-only con- 883

ditioned distributions, balanced by a hyperpa- 884

rameter λ. We adhere to their recommended 885

λ = 0.02. M3ID also seeks to improve visual 886

grounding by emphasizing visual information. 887

• RITUAL (Woo et al., 2024): RITUAL ap- 888

plies common image transformations (e.g., 889

crop, flip, color jitter) to the original visual 890

input v, creating a transformed version v(T ). 891

It then generates the response by utilizing in- 892

formation from both the original (v) and trans- 893

formed (v(T )) images. The final probability 894

distribution combines logits from both views, 895

with the contribution of the transformed input 896

adjusted by a balancing hyperparameter κ. We 897

follow their official implementation, setting 898

κ = 3. This approach aims to improve robust- 899

ness through consistency across augmented 900

views. 901

• DeGF (Zhang et al., 2025b): DeGF introduces 902

a self-correction mechanism using feedback 903

from text-to-image generative models. Specif- 904

ically, it first generates an image based on the 905

LVLM’s initial textual response. This gener- 906

ated image then acts as an auxiliary visual ref- 907

erence, providing self-feedback to the LVLM 908

to verify and correct its initial response, often 909

through complementary or contrastive decod- 910

ing techniques. 911

• Woodpecker (Yin et al., 2023): Wood- 912

pecker is a post-hoc correction framework de- 913

signed to mitigate hallucinations in the out- 914

puts of Multimodal Large Language Models 915

(MLLMs). It operates by first prompting the 916

MLLM itself to identify potential hallucina- 917

tions (across several predefined types like ob- 918

ject existence, attributes, etc.) in its initial re- 919

sponse. If hallucinations are detected, Wood- 920

pecker then instructs the MLLM to revise and 921

correct these identified errors. 922

• HALC (Chen et al., 2024): HALC (e.g., "Mit- 923

igating Object Hallucinations in Large Vision- 924

Language Models via Cause Analysis and 925

Post-hoc Correction") is a post-hoc method 926

that first analyzes the potential causes of ob- 927

ject hallucinations to identify objects in the re- 928
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sponse that are likely to be hallucinated. Sub-929

sequently, it instructs the LVLM to verify the930

existence of these specific, suspect objects931

within the image and make corrections if they932

are indeed confirmed as hallucinations.933

• OPERA (Huang et al., 2024): OPERA aims934

to alleviate visual relation hallucinations in935

LVLMs during decoding. It consists of two936

main components: an Over-trust Penalty (OP)937

term designed to penalize the model’s over-938

confidence on unreliable visual relations dur-939

ing token generation, and a Retrospection-940

Allocation (RA) mechanism that encourages941

the model to retrospect previously generated942

tokens and re-allocate attention to relevant943

visual regions for verification and potential944

correction.945

We report the performance of these baselines based946

on our re-implementation using their released code947

bases where available.948

C Implementation Details949

In all experiments using MRFD, we set the number950

of regions K = 3 to obtain cropped images and951

the temperature γ = 0.02 for JSD-based weight-952

ing (Eq. 9). For the decoding process, we employ953

multinomial sampling in both stages. Specifically,954

during the first step to generate the initial analyses955

rk, we use a sampling temperature of 0.7. In the956

second step to generate the final output sequence y,957

we use a lower sampling temperature of 0.1 after958

fusing the logits.959

To obtain the aggregated spatial attention map960

Â (Eq. 3), we first average the attention weights961

across all attention heads within the relevant962

layer(s). For LLaVA-1.5, we utilize the attention963

map from the final cross-attention layer. For In-964

structBLIP, which uses Q-Former, we identify the965

query token with the maximum aggregated atten-966

tion score and use its corresponding attention map.967

The spatial dimension d′ of the map Â corresponds968

to the grid size of the visual patches (m = d′ × d′),969

which is 24 × 24 for LLaVA-1.5 (ViT-L-336px)970

and 16× 16 for the ViT-g/14 used by InstructBLIP.971

To efficiently identify the top-K salient regions972

{R1, ..., RK} based on Â, we employ an integral973

image approach (Viola and Jones, 2001) to quickly974

calculate the sum of attention scores within any975

rectangular bounding box. We search for the K976

non-overlapping or minimally overlapping rectan- 977

gular regions that maximize these summed atten- 978

tion scores. To ensure diversity in the selected 979

regions, we enforce a maximum Intersection over 980

Union (IoU) of 40% between any pair of selected 981

bounding boxes Ri and Rj (i ̸= j). 982

D Datasets and Benchmarks 983

We evaluate our MRFD framework on a diverse set 984

of benchmarks targeting both hallucination detec- 985

tion and general vision-language capabilities. 986

• POPE (Li et al., 2023c): POPE (Polling- 987

based Object Probing Evaluation) is a widely 988

used benchmark for assessing object exis- 989

tence hallucination in LVLMs. It presents 990

models with Yes/No questions concerning 991

the presence of specific objects (e.g., "Is 992

there a {object} in the image?"). The bench- 993

mark data is structured into three main sub- 994

sets derived from MSCOCO (Lin et al., 995

2014), A-OKVQA (Schwenk et al., 2022), 996

and GQA (Hudson and Manning, 2019). Each 997

of these subsets is further divided based on 998

three negative sampling strategies for non- 999

existent objects: random, popular, and ad- 1000

versarial, which vary in difficulty. For eval- 1001

uation, we report standard metrics including 1002

Accuracy, Precision, Recall, and F1 score. 1003

• MME (Fu et al., 2023): MME serves as 1004

a comprehensive benchmark for evaluating 1005

overall LVLM perception and cognition. Our 1006

evaluation specifically utilizes the MME- 1007

Hallucination subset, which is designed to 1008

assess a range of common hallucination types. 1009

These are categorized into object-level assess- 1010

ments like existence and count, and attribute- 1011

level assessments such as object position and 1012

color. Questions in this subset are typically 1013

Yes/No queries. We report scores based on the 1014

official benchmark protocol, which often in- 1015

volves combined accuracy measures reflecting 1016

both question-level and image-level correct- 1017

ness. 1018

• CHAIR (Rohrbach et al., 2018): The 1019

CHAIR (Caption Hallucination Assessment 1020

with Image Relevance) benchmark quanti- 1021

fies object hallucinations within the context 1022

of open-ended image captioning. LVLMs 1023

are prompted to generate descriptive captions 1024
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for images, for which we, following prior1025

work (Lee et al., 2024), use a random selection1026

of 500 images from the MSCOCO (Lin et al.,1027

2014) validation set. The generated captions1028

are then compared against ground-truth ob-1029

jects within the image to calculate the CHAIRi1030

(instance-level) and CHAIRs (category-level)1031

scores, where lower scores indicate fewer hal-1032

lucinations.1033

CHAIRS =
captions w/ hallucinated objects

all captions
,

CHAIRI =
hallucinated objects

all mentioned objects
.

(14)

1034

• MMBench (Liu et al., 2023c): MMBench1035

evaluates a broad spectrum of multimodal ca-1036

pabilities through carefully curated multiple-1037

choice questions that span various cognitive1038

dimensions and skills. For this benchmark,1039

we adhere to the official evaluation protocol1040

and report the overall accuracy score.1041

E Detailed Results of experiments1042

E.1 Detailed Results of CHAIR1043

Detailed results of CHAIR are shown in Table 41044

and Table 5, reporting CHAIRs (Cs) and CHAIRi1045

(Ci) scores (lower is better) for LLaVA-1.5 and1046

InstructBLIP. MRFD consistently achieves state-1047

of-the-art performance on both LVLMs.1048

Method
LLaVA-1.5 InstructBLIP

Cs ↓ Ci ↓ Cs ↓ Ci ↓

Regular 55.0 16.3 57.0 17.6
VCD 54.4 16.6 60.4 17.8
M3ID 56.6 15.7 62.2 18.1
RITUAL 49.6 14.8 48.4 14.5
Woodpecker 57.6 16.7 60.8 17.6
HALC 51.0 14.8 53.8 15.7
DeGF 48.8 14.6 49.2 14.4

Ours (MRFD) 37.1 9.2 38.2 10.9

Table 4: Results on CHAIR benchmark for caption
generation. We limited the maximum number of new
tokens to 128. Lower (↓) CHAIRs (Cs) and CHAIRi
(Ci) indicate less hallucination. Best results are bolded,
second-best are underlined.

Method LLaVA-1.5 InstructBLIP

Cs ↓ Ci ↓ Cs ↓ Ci ↓

Regular 58.0 17.7 61.0 18.2
VCD 58.2 16.7 63.0 18.6
M3ID 56.8 16.1 65.8 19.9
RITUAL 51.0 15.1 50.4 15.3
DeGF 49.8 14.7 49.8 15.1

Ours (MRFD) 39.0 11.0 38.6 11.3

Table 5: Results on CHAIR benchmark for caption
generation. We limited the maximum number of new
tokens to 256. Lower (↓) CHAIRs (Cs) and CHAIRi
(Ci) indicate less hallucination. Best results are bolded,
second-best are underlined.

E.2 Detailed Results of MME 1049

In table 7 and Figure 7, we provide detailed results 1050

on the MME-Hallucination benchmark (Fu et al., 1051

2023) for both LLaVA-1.5 and InstructBLIP. The 1052

table includes scores for object-level (existence, 1053

count) and attribute-level (position, color) tasks, 1054

and averages the score across three random seeds. 1055

The best results are bolded, and the second-best are 1056

underlined. 1057
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Figure 7: Experimental results of MME with different
decoding strategies.

E.3 Detailed Results of POPE 1058

In table 6, we provide detailed results on the POPE 1059

benchmark (Li et al., 2023c) for both LLaVA-1.5 1060
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and InstructBLIP across three different settings1061

(Random, Popular, Adversarial). The table in-1062

cludes accuracy (Acc.), precision (Prec.), recall,1063

and F1 scores for each method. The best results are1064

bolded, and the second-best are underlined.1065

F Efficiency Comparison1066

MRFD’s efficiency on the CHAIR benchmark (In-1067

structBLIP, 128 max tokens, RTX 3090 GPU) is1068

presented in Table 8. Its multi-region (K = 3)1069

analysis and fusion process leads to a 2.96× la-1070

tency increase (to 10.21s) and a 1.07× peak GPU1071

memory increase compared to standard multino-1072

mial decoding. While MRFD is thus more com-1073

putationally intensive than simpler methods like1074

VCD or the post-hoc Woodpecker, it remains con-1075

siderably more efficient than complex iterative or1076

feedback-based techniques such as DeGF, OPERA,1077

and HALC. Given MRFD’s state-of-the-art hallu-1078

cination reduction (achieving the best Cs score of1079

34.6 among compared methods), it offers a com-1080

pelling balance between computational cost and1081

effectiveness.1082

Method Avg. Lat. ↓ GPU Mem. ↓ Cs ↓

Regular 3.44 s 15778 MB 55.0
VCD 6.91 s 16634 MB 54.4
OPERA 24.70 s 22706 MB 52.6
Woodpecker 10.68 s 22199 MB 57.6
HALC 22.61 s 23084 MB 51.0
DeGF 13.89 s 19119 MB 48.8

Ours (MRFD) 10.21 s 16932 MB 34.6

Table 8: Efficiency comparison on InstructBLIP. Lower
is better for all metrics.

G Detialed Ablation Study1083

G.1 Components Ablation1084

To assess the contributions of MRFD’s core1085

components—attention-guided Region Selection1086

(RS), JSD-based Consistency Weighting (CW), and1087

Fusion Prompts (FP)—we conduct ablation stud-1088

ies. Results on POPE-COCO (average all settings,1089

LLaVA-1.5) are in Table 9. The evaluated model1090

variants are:1091

(a) MRFD (Full) : Our complete method, inte-1092

grating all three components.1093

(b) w/o CW : Employs RS and FP, but uses uni-1094

form weights for fusing predictions from mul-1095

tiple regions, bypassing JSD-based consis-1096

tency weighting.1097

(c) w/o FP : Utilizes RS and CW, but omits the 1098

enriched Fusion Prompts, using only the orig- 1099

inal question for each regional decoding pass. 1100

(d) w/o RS (Global Image + FP): Bypasses 1101

attention-guided region selection, operating 1102

solely on the global image. The Fusion 1103

Prompt is constructed based on the global im- 1104

age’s initial response. In this single-view con- 1105

text, the multi-region Consistency Weighting 1106

(CW) mechanism as defined is not applicable 1107

or becomes trivial (effectively a weight of 1 1108

for the single view). 1109

(e) RS only : Leverages attention-guided regions, 1110

but with uniform fusion weights and only the 1111

original question as prompt, isolating the ben- 1112

efit of the multi-region perspective itself. 1113

(f) FP only (Global Image) : Applies the Fu- 1114

sion Prompt (derived from the global image’s 1115

initial response) directly to the global image 1116

decoding, without multi-region selection or 1117

any form of consistency weighting. 1118

(g) Global Image (Token-Level Voting) : Op- 1119

erates on the global image with the original 1120

prompt. The CW component is adapted to 1121

perform token-level voting by aggregating im- 1122

plicitly diversified predictions from the single 1123

global view, testing self-consistency benefits 1124

at the token level. 1125

(h) Regular : Standard greedy decoding using 1126

only the global image and the original ques- 1127

tion. 1128

Components
Acc. ↑ Prec. ↑ F1 ↑

CW FP RS

(a) ✓ ✓ ✓ 86.50 88.11 86.21

(b) ✓ ✓ 83.76 84.27 83.74
(c) ✓ ✓ 82.87 83.95 82.70
(d) ✓ ✓ 82.77 83.94 82.58
(e) ✓ 82.58 82.01 82.26
(f) ✓ 81.96 81.36 82.14
(g) ✓ 81.52 81.05 81.68
(h) 80.57 78.84 81.59

Table 9: Ablation study with different model variants on
POPE-COCO under the average of three settings. CW:
JSD-based Consistency Weighting, FP: Fusion Prompt,
RS: Region Selection.
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G.2 Decoding Strategies1129

To evaluate the impact of different decoding strate-1130

gies on MRFD, we conduct an ablation study using1131

the POPE-COCO benchmark under the adversarial1132

setting with LLaVA-1.5. The results are summa-1133

rized in Table 10. We compare three decoding1134

strategies: low temperature sampling, high tem-1135

perature sampling, and high temperature sampling1136

with top-p filtering. The best results are bolded.1137

The low temperature strategy is the default set-1138

ting in our experiments, which t is 0.1. The high1139

temperature strategy is set to t=0.5, which increases1140

the randomness of the sampling process. The high1141

temperature + top-p strategy combines high tem-1142

perature sampling with top-p filtering, where we1143

set p=0.7 to retain the top 70% of the probability1144

mass.1145

Decoding Acc. ↑ Prec. ↑ F1 ↑

Low temp. 82.75 85.22 82.12

High Temp. 83.04 82.29 83.23

High Temp.+Top P 82.50 81.25 82.67

Table 10: Ablation study on different decoding strate-
gies.

H Qualitative Examples1146

To provide a more intuitive understanding of1147

MRFD’s impact on mitigating hallucinations and1148

improving caption factuality, this section presents1149

qualitative examples from our experiments on the1150

CHAIR benchmark using LlaVA-1.5. We compare1151

captions generated by our Multi-Region Fusion1152

Decoding (MRFD) method against those from the1153

standard Regular baseline. These examples are se-1154

lected to highlight differences in how the methods1155

perceive and describe objects, attributes, and their1156

relationships within the visual scene. Figure 8 and1157

Figure 9 illustrate one such comparison.1158
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Dataset Setting Method LLaVA-1.5 InstructBLIP

Acc. ↑ Prec. ↑ Recall ↑ F1 ↑ Acc. ↑ Prec. ↑ Recall ↑ F1 ↑

MS-COCO

Random

Regular 83.13 81.94 85.00 83.44 83.07 83.02 83.26 83.08
VCD 87.00 86.13 88.18 87.15 86.23 88.14 83.73 85.88
M3ID 87.50 87.38 87.67 87.52 86.67 88.09 84.79 86.41
RITUAL 88.87 89.23 88.39 88.81 88.83 90.48 86.80 88.60
DeGF 89.03 91.20 86.41 88.74 88.83 93.73 82.42 87.71
Ours 89.50 92.55 85.94 89.12 88.52 93.83 82.61 87.86

Popular

Regular 81.17 78.28 86.26 82.08 77.00 73.82 83.68 78.44
VCD 83.10 79.96 88.34 83.94 80.07 77.67 84.39 80.89
M3ID 84.30 81.58 88.63 84.95 80.97 77.93 86.19 81.85
RITUAL 85.83 84.17 88.26 86.17 81.97 78.90 87.26 82.87
DeGF 86.63 87.75 84.86 86.28 82.73 84.02 80.27 82.10
Ours 87.24 86.56 88.22 87.38 83.69 85.22 81.58 83.36

Adversarial

Regular 77.43 73.31 86.26 79.26 74.60 71.26 82.46 76.45
VCD 77.17 72.18 88.40 79.47 77.20 74.29 83.19 78.49
M3ID 78.23 73.51 88.28 80.22 77.47 73.68 85.48 79.14
RITUAL 78.80 74.43 87.74 80.54 78.73 74.57 87.21 80.39
DeGF 81.63 80.59 83.33 81.94 80.30 80.90 79.33 80.11
Ours 82.75 85.22 79.25 82.12 82.49 83.14 81.51 82.32

A-OKVQA

Random

Regular 81.90 76.63 91.78 83.53 80.63 76.82 87.75 81.92
VCD 83.83 78.05 94.13 85.34 84.20 80.90 89.54 85.00
M3ID 84.67 79.25 93.94 85.97 85.43 81.77 91.20 86.23
RITUAL 85.17 79.79 94.21 86.40 87.13 83.92 91.87 87.71
DeGF 86.93 84.28 90.80 87.42 87.40 87.67 86.86 87.26
Ours 87.13 87.56 86.76 87.16 88.33 86.81 90.40 88.57

Popular

Regular 75.07 68.58 92.53 78.77 75.17 70.15 87.60 77.91
VCD 76.63 69.59 94.59 80.19 78.63 73.53 89.46 80.72
M3ID 77.80 70.98 94.07 80.91 78.80 73.38 90.39 81.00
RITUAL 78.83 71.99 94.37 81.68 78.73 72.83 91.68 81.17
DeGF 80.90 75.68 91.05 82.66 81.47 78.61 86.47 82.35
Ours 80.99 76.68 89.28 82.51 83.19 78.74 91.00 84.43

Adversarial

Regular 67.23 61.56 91.81 73.70 69.87 64.54 88.20 74.54
VCD 67.40 61.39 93.79 74.21 71.00 65.41 89.13 75.45
M3ID 68.60 62.22 94.74 75.11 70.10 64.28 90.47 75.16
RITUAL 68.57 62.26 94.27 74.99 70.27 64.15 91.89 75.55
DeGF 72.70 66.70 90.68 76.86 73.93 69.36 85.70 76.67
Ours 75.23 71.03 85.39 77.65 75.62 69.40 91.78 79.04

GQA

Random

Regular 82.23 76.32 93.47 84.03 79.67 76.05 86.62 80.99
VCD 83.23 76.73 95.38 85.05 82.83 80.16 87.26 83.56
M3ID 84.20 78.00 95.26 85.77 83.07 80.06 88.06 83.87
RITUAL 86.10 80.30 95.66 87.31 84.87 82.52 88.47 85.39
DeGF 87.40 83.51 93.20 88.09 85.40 85.64 84.61 85.12
Ours 87.81 86.62 90.32 88.41 87.24 85.57 89.69 87.58

Popular

Regular 73.47 66.83 93.20 77.84 73.33 68.72 85.67 76.26
VCD 72.37 65.27 95.60 77.58 76.13 71.10 88.07 78.68
M3ID 73.87 66.70 95.35 78.49 75.17 69.94 88.26 78.04
RITUAL 74.80 67.50 95.66 79.15 74.50 69.17 88.39 77.61
DeGF 78.10 71.56 93.25 80.98 76.90 73.89 83.20 78.27
Ours 77.72 73.17 88.24 80.00 79.62 74.61 90.15 81.65

Adversarial

Regular 68.60 62.43 93.41 74.84 68.60 63.94 85.31 73.10
VCD 68.83 62.26 95.67 75.43 71.00 65.75 87.66 75.14
M3ID 68.67 62.16 95.42 75.28 71.17 65.79 88.19 75.36
RITUAL 68.23 61.75 95.81 75.10 70.17 64.76 88.48 74.78
DeGF 74.07 67.42 93.14 78.22 73.63 70.08 80.92 75.11
Ours 76.00 72.22 84.50 77.88 75.06 70.25 87.18 77.80

Table 6: Detailed results on POPE (Li et al., 2023d) benchmark. Higher (↑) accuracy, precision, recall, and F1
indicate better performance. The best results are bolded, and the second-best are underlined.
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Model Method Object-level Attribute-level Total Score ↑
Existence ↑ Count ↑ Position ↑ Color ↑

LLaVA-1.5

Regular 173.75 121.67 117.92 149.17 562.50
VCD 186.67 125.56 128.89 139.45 580.56
M3ID 186.67 128.33 131.67 151.67 598.11
RITUAL 187.50 139.58 125.00 164.17 616.25
DeGF 186.22 148.33 130.50 170.33 635.38
Ours 190.00 148.33 128.33 173.33 640.00

InstructBLIP

Regular 155.42 72.17 72.58 115.43 415.60
VCD 154.49 81.67 59.11 112.67 407.94
M3ID 158.89 77.22 61.44 125.00 422.55
RITUAL 178.50 74.58 59.08 139.17 451.33
DeGF 184.32 82.44 56.33 150.00 473.09
Ours 188.67 89.58 62.33 152.33 492.91

Table 7: Detailed performance on the MME-Hallucination benchmark. Scores are reported as mean. Higher scores
↑ indicate better performance. For each model group LLaVA-1.5, InstructBLIP, results for "Ours" are bolded if
they are the best in that column. Other best results in a column are also bolded. Underlined values score typically
represent the second-best performing method or a notable baseline. The "Ours" rows are highlighted.
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Question: Provide a short 
description of the image.

Answer: A bunch of green 
lemons.

Question: Provide a short 
description of the image.

Answer: A bunch of green 
and yellow lemons.

Question: Provide a short 
description of the image.

Answer: A bunch of green 
and yellow lemons.

Question: Provide a short 
description of the image.

Answer: A bunch of green 
and yellow lemons.

Question: Please describe the image in details.

Answer: The image features a large assortment of 
oranges, with a prominent display prominently 
displayed in an accessible location. Surrounding the 
crate of fresh oranges, there are various other 
boxes containing even more lemons of different 
sizes and colors. 

Question: Please describe the image in details.

Answer: The image features a large pile of lemons, 
with many of them being green and yellow. The 
lemons are arranged in various positions, some 
stacked on top of each other and others sitting next 
to each other. The pile is quite large, occupying a 
significant portion of the image. The lemons are 
displayed in a way that showcases their vibrant 
colors and abundance.

Question: Provide a short 
description of the image.

Answer: The elephant is in 
the water.

Question: Provide a short 
description of the image.

Answer: The elephant is in 
the water.

Question: The elephant is in 
the water.

Answer: The elephant is in 
the water.

Question: Provide a short 
description of the image.

Answer: The elephant is in 
the water.

Question: Please describe the image in details.

Answer: The image showcases two elephants 
splashing around and playing in a lake together. The 
first elephant, on the left side of the scene, is 
partially submerged, displaying its trunk out of the 
water as it interacts with the other elephant. The 
second elephant, located on the right side, is in full 
view and appears to be playfully prodding the first 
elephant. 

Question: Please describe the image in details.

Answer: The image features two elephants in a 
body of water, possibly a lake or a river. One 
elephant is larger and appears to be an adult, while 
the other is smaller and likely a baby elephant. The 
baby elephant is resting its body on the larger 
elephant, creating a heartwarming scene.

Figure 8: Qualitative comparison of captions generated by Regular decoding (Red) and our MRFD (Green) on an
image from the CHAIR evaluation set.

18



Question: Provide a short 
description of the image.

Answer: A piece of chicken in 
a sandwich.

Question: Provide a short 
description of the image.

Answer: A side of french 
fires.

Question: Provide a short 
description of the image.

Answer: Two pieces of 
sandwich.

Question: Provide a short 
description of the image.

Answer: Sandwichs with 
two forks.

Question: Please describe the image in details.

Answer: The image shows a wooden dining table where 
a delicious combination of food and beverages is served. 
There are various sandwiches on a plate and a tray of 
chips, accompanied by cups containing drinks, possibly 
beers since two beer forks are present. In addition to the 
main dishes, the table is also set with three forks, two of 
which are positioned in similar directions and near the 
sandwiches, while three knives are placed around the 
plate and tray. 

Question: Please describe the image in details.

Answer: The image features a delicious meal 
consisting of four sandwich and a side of french 
fries. The sandwich is cut in half, revealing the meat 
and vegetables inside. The fries are scattered 
around the sandwich, with some pieces placed near 
the sandwich and others further away. In addition 
to the main dishes, the table is also set with four 
forks.

Question: Provide a short 
description of the image.

Answer: A toilet in a bathroom.

Question: Provide a short 
description of the image.

Answer: The toilet seat is 
white.

Question: Provide a short 
description of the image.

Answer: A silver handle on 
the wall.

Question: Provide a short 
description of the image.

Answer: The toilet seat is 
white.

Question: Please describe the image in details.

Answer: The scene is a public bathroom with a 
toilet mounted on the wall. A white urinal is 
attached below a podium, featuring an electronic 
device likely for display purposes. There is another 
toilet in the room, situated on the left side with the 
blanket displaying a picture on it, likely giving the 
toilet a unique appearance. 

Question: Please describe the image in details.

Answer: The image features a white toilet in a 
bathroom. The toilet is situated next to a wall, and 
there is a silver handle on the wall. The toilet is 
positioned in the lower left corner of the image. 
The bathroom appears to be clean and well-
maintained.

Figure 9: Qualitative comparison of captions generated by Regular decoding (Red) and our MRFD (Green) on an
image from the CHAIR evaluation set.
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