
Task-agnostic Continual Learning with Hybrid Probabilistic Models

Polina Kirichenko 1 Mehrdad Farajtabar 2 Dushyant Rao 2 Balaji Lakshminarayanan 3 Nir Levine 2 Ang Li 2

Huiyi Hu 2 Andrew Gordon Wilson 1 Razvan Pascanu 2

Abstract
Learning new tasks continuously without for-
getting on a constantly changing data distribu-
tion is essential for real-world problems but ex-
tremely challenging for modern deep learning. In
this work we propose HCL, a Hybrid generative-
discriminative approach to Continual Learning
for classification. We model the distribution of
each task and each class with a normalizing flow.
The flow is used to learn the data distribution,
perform classification, identify task changes, and
avoid forgetting, all leveraging the invertibility
and exact likelihood which are uniquely enabled
by the normalizing flow model. We use the gener-
ative capabilities of the flow to avoid catastrophic
forgetting through generative replay and a novel
functional regularization technique. For task iden-
tification, we use state-of-the-art anomaly detec-
tion techniques based on measuring the typical-
ity of the model’s statistics. We demonstrate the
strong performance of HCL on a range of con-
tinual learning benchmarks such as split-MNIST,
split-CIFAR, and SVHN-MNIST.

1. Introduction
For humans, it is natural to learn new skills sequentially
without forgetting the skills that were learned previously.
Deep learning models, on the other hand, suffer from catas-
trophic forgetting: when presented with a sequence of tasks,
deep neural networks can successfully learn the new tasks,
but the performance on the old tasks degrades (McCloskey &
Cohen, 1989; French, 1999; Kirkpatrick et al., 2017; Parisi
et al., 2019; Hadsell et al., 2020). Being able to learn sequen-
tially without forgetting is crucial for numerous applications
of deep learning. In real life, data often arrives as a continu-
ous stream, and the data distribution is constantly changing.

1New York University 2DeepMind 3Google Brain. Correspon-
dence to: Polina Kirichenko <pk1822@nyu.edu>, Mehrdad Fara-
jtabar <farajtabar@google.com>.

Third workshop on Invertible Neural Networks, Normalizing
Flows, and Explicit Likelihood Models (ICML 2021). Copyright
2021 by the author(s).

For example, consider a neural network that might be used
for object detection in self-driving cars. The model should
continuously adapt to different environments, e.g. weather
and lighting. While the network learns to work under new
conditions, it should also avoid forgetting. For example,
once it adapts to driving during the winter, it should still
work well in other seasons. This example illustrates the
domain-incremental continual learning setting: the distri-
bution of the inputs to the model evolves over time while
the target space stays the same. Moreover, in this scenario,
the model should be task-agnostic: it has no information
on the task boundaries, i.e., the timestamps when the input
distribution changes.

Motivated by the task-agnostic domain-incremental contin-
ual learning setting, we propose Hybrid Continual Learning
(HCL) – an approach based on simultaneous generative and
discriminative modeling of the data with normalizing flows.
Fig. 1 schematically demonstrates the framework. The
contributions of our work are as follows:

• We propose HCL, a normalizing flow-based approach
to task-agnostic continual learning.We employ two
methods to alleviate catastrophic forgetting: generative
replay and a novel functional regularization technique.
We provide an empirical comparison and theoretical
analysis of the two techniques showing that the func-
tional regularization constrains the model more than
generative replay to avoid forgetting, and generally
leads to better performance.

• We conduct experiments on a range of image classifica-
tion continual learning problems on split MNIST, split
CIFAR, SVHN-MNIST and MNIST-SVHN datasets.
HCL achieves strong performance in all settings.

• We show that HCL can successfully detect task bound-
aries and identify new as well as recurring tasks, mea-
suring the typicality of model’s statistics.

2. Background and Notation
Continual learning (CL) We assume that a continual
learning model gθ : X → Y is trained on a sequence
of τ supervised tasks: Tt1 , Tt2 , . . . , Ttτ . Each task

Task-agnostic Continual Learning with Hybrid Probabilistic Models

y = 1

y = 2

y = 3

t = 2

Normalizing
Flow

t = 1
t = 3

t = 3

t = 1

t = 2
Latent space Z Data space X

Figure 1. An illustration of the proposed Hybrid Continual Learning (HCL) framework. HCL models the distribution of each class in
each task as a latent Gaussian distribution transformed by a normalizing flow. We show the Gaussian mixtures corresponding to the two
tasks t1 and t2 in the latent space on the left, and the corresponding data distributions on the right. If a new task t = 3 appears, HCL
identifies it using the typicality of the flow’s statistics, and initializes the Gaussian mixture for a new task.

Ti = {(xij , yij)}
Ni
j=1 has the input space X i, the label space

Yi, and the corresponding data-generating distribution
pi(x, y). The number of tasks τ is not known in advance,
and while training on a task Ti the model does not have
access to the data from previous T1, . . . , Ti−1 or future
tasks Ti+1, . . . , Tτ . The objective of a CL model is
to minimize

∑M
i=1Ex,y∼pi(·,·)l(gθ(x), y) for some risk

function l(·, ·), and thus, generalize well on all tasks after
training. In this work, we focus on classification, and in
particular, the domain-incremental learning setting with
Yi = {1, . . .K} for all tasks i. For more on CL settings
see (van de Ven & Tolias, 2019) and (Hsu et al., 2018).

Task-agnostic CL In most continual learning algorithms,
it is crucial to know the task boundaries — the moments
when the training task is changed. At each iteration j of
training, we receive a tuple (x(j), y(j), t(j)) where x(j)
and y(j) is a batch of data and the corresponding labels and
t(j) is the index of the current task. In this work, we also
consider the task-agnostic setting, where the task index t(j)
is not provided and the algorithm has to infer it from data.

3. Hybrid Model for Continual Learning
3.1. Modeling the data distribution

HCL approximates the data distribution with a single nor-
malizing flow, with each class-task pair (y, t) corresponding
to a unique Gaussian in the latent space (see Fig. 1 for
illustration). More precisely, we model the joint distribution
pt(x, y) of the data x and the class label y conditioned
on a task t as pt(x, y) ≈ p̂(x, y|t) = p̂X(x|y, t)p̂(y|t),
where p̂X(x|y, t) is modeled by a normalizing flow fθ
with a base distribution p̂Z = N (µy, t, I) : p̂X(x|y, t) =
f−1θ (N (µy, t, I)) . Here µy, t is the mean of the latent
distribution corresponding to the class y and task t. We
assume that p̂(y|t) is a uniform distribution over the classes
for each task: p̂(y|t) = 1

K .

We train the model by maximum likelihood: for each mini-
batch of data (x(j), y(j), t(j)) we compute the likelihood
using the change of variable formula and take a gradient

step with respect to the parameters θ of the flow. In the
task-agnostic setting, we have no access to the task index tj
and instead infer it from data (see Section 3.2). At test-time,
HCL classifies an input x to the class ŷ using the Bayes
rule: p̂(y|x) ∝ p̂(x|y), so ŷ = arg maxy

∑τ
t=1 p̂X(x|y, t).

Notice that we do not have access to the task index at test
time, so we marginalize the predictions over all tasks t.

3.2. Task Identification

In the task-agnostic scenario, the task identity t is not
given during training and has to be inferred from the
data. The model starts with K Gaussians with means
{µy,t1}Ky=1 in the latent space corresponding to the classes
of the first task. We assume that a model first observes
batches of data B1, . . . , Bm from the task Tt1 where each
B = {(xj , yj)}bj=1. Then, at some unknown point in time
m + 1, it starts observing data batches Bm+1, Bm+2, . . .
coming from the next task Tt2 . The model has to detect the
task boundary and initialize Gaussian mixture components
in the latent space which will correspond to this new
task {N (µy,t2 , I)}Ky=1. Moreover, in our set-up some of
the tasks can be recurring. Thus, after observing tasks
Tt1 , . . . , Ttk and detecting the change point from the task
Tk, the model has to identify whether this batch of data
comes from a completely new task Ttk+1

(and add new
Gaussians for this task in the latent space) or from one of
the previous tasks Tt1 , . . . , Ttk−1

.

Similarly to prior work on anomaly detection (Nalisnick
et al., 2019c) and (Morningstar et al., 2020), we detect
task changes measuring the typicality of the HCL model’s
statistics. Following Morningstar et al. (2020), we can use
the following statistics on data batches B: log-likelihood
S1(B, t) =

∑
(xj ,yj)∈B p̂X(xj |yj , t), log-likelihood of the

latent variable S2(B, t) =
∑

(xj ,yj)∈B p̂Z(f(xj)|yj , t) and
log-determinant of the Jacobian S3(B, t) = S1(B, t) −
S2(B, t). For each task t, we keep track of the mean µtS and
the standard deviation σtS for these statistics over a window
of the last l batches of data. Then, if any statistic S(B, t) of
the current batchB and task t is not falling within the typical

Task-agnostic Continual Learning with Hybrid Probabilistic Models

set |S(B, t) − µtS | > λσtS , HCL detects a task change. In
this case, if all the statistics are in the typical set |S(B, t′)−
µS | < λσS for one of the previous tasks, we identify a
switch to the task t′; otherwise, we switch to a new task. In
practice, for most standard CL benchmarks such as split-
MNIST we only use a single statistic – HCL’s log-likelihood
which is sufficient for robust task change detection. How-
ever, for more challenging scenarios identified in Nalisnick
et al. (2019a), we use all three statistics described above.

3.3. Alleviating Catastrophic Forgetting

3.3.1. GENERATIVE REPLAY

Following Shin et al. (2017); Rao et al. (2019), we train
the model on the mix of real data from the current task and
generated data from previous tasks to combat forgetting.
For generating the replay data, we store a single snapshot
of the HCL model p̂(k)X (x|y, t) with weights θ(k) taken
at a point of the last detected task change Ttk → Ttk+1

.
We generate and replay data from old tasks using the
snapshot: xGR ∼ p̂(k)X (x|y, t), where y ∼ U{1, . . . ,K}
and t ∼ U{t1, . . . , tk}, and maximize its likelihood
LGR = log p̂X(xGR|y, t) under the current HCL model
p̂X(·). We store only a single snapshot model throughout
training as it approximates the data distribution of all tasks
up to Ttk . After detecting the task change Ttk+1

→ Ttk+2
,

we update the snapshot with new weights θ(k+1). The
resulting objective function in generative replay training
is Lll + LGR, where Lll is the log-likelihood of the data on
the current task. See Appendix D for a further discussion
of the generative replay objective. We refer to HCL with
generative replay as HCL-GR. In prior work, generative
replay has been successfully applied, predominantly using
GANs or VAEs (Shin et al., 2017; Rao et al., 2019; Lee
et al., 2020; Ye & Bors, 2020; Pomponi et al., 2020b;
Mundt et al., 2019; Achille et al., 2018).

3.3.2. FUNCTIONAL REGULARIZATION

We propose a novel functional regularization loss that en-
forces the flow to map samples from previous tasks to the
same latent representations as a snapshot model. Specif-
ically, similar to GR, we save a snapshot of the model
p̂
(k)
X (·) taken after detecting a shift from the task Ttk and

produce samples xFR ∼ p̂(k)X (x|y, t) for y ∼ U{1, . . . ,K},
t ∼ U{t1, . . . , tk}. However, instead of generative replay
loss LGR, we add the following term to the maximum like-
lihood objective LFR = ‖fθ(xFR)− fθ(k)(xFR)‖2, where
fθ is the current flow mapping and fθ(K) is the snapshot
model. We note that the L2 distance in LFR is a natural
choice given the choice of pZ(z|y, t) as a Gaussian, as Lll
also contains a linear combination of losses of the form
‖fθ(x)− µy,t‖2. The term LFR can be understood as con-

trolling the amount of change we allow for the function f ,
hence controlling the trade-off between stability and plastic-
ity. In practice, we weigh the term by α: Lll + αLFR. We
refer to the method as HCL-FR. To the best of our knowl-
edge, the loss LFR is novel: it is designed specifically for
normalizing flows and cannot be trivially extended to other
generative models. In order to apply LFR to VAEs, we
would need to apply the loss separately to the encoder and
the decoder of the model, and potentially to their compo-
sition. Recently, Titsias et al. (2019) and Pan et al. (2020)
proposed related regularization techniques for continual
learning which rely on the Gaussian Process framework.

Theoretical analysis In Appendix E.1 we study the loss
LFR theoretically and draw connections to other objectives.
In particular, the term can be interpreted as looking at
the amount of change in the function as measured by
the KL-divergence assuming the output of the flow is an
isotropic Gaussian. Under a Taylor approximation, we show
that LFR enforces the weights to move only in directions
of low curvature of the mapping f (k)θ when learning a new
task. Hence, similar to regularization-based CL methods,
this term limits movement of the weights in directions that
lead to large functional changes of the flow.

4. Experiments
In this section, we evaluate HCL on a range of image classi-
fication tasks in continual learning. In all experiments, we
consider domain-incremental learning where the number
of classes K is the same in all tasks. At test time, the task
identity is not provided to any of the considered methods.
For HCL, we report the performance both in the task-aware
(when the task identity is provided to the model during train-
ing) and task-agnostic (no task boundary knowledge during
training) settings. We use RealNVP and Glow normalizing
flow models. See Appendix A for detailed setup.

Metrics Let ai,j be the accuracy of the model on task
i after training on j tasks. We report the following
metrics: (1) final accuracy ai,τ on each task i ∈ {1, . . . τ}
at the end of the training, (2) average final accuracy
across tasks 1

d

∑d
i=1 ai,τ , (3) the average forgetting:

1
τ−1

∑τ−1
i=1 (ai,i − ai,τ), and (4) the overall accuracy:

the final accuracy on (K × τ)-way classification which
indicates how well the model identifies both the class and
the task. We run each experiment with 3 seeds and report
mean and standard deviation of the metrics.

Adam We evaluate Adam training without any extra steps
for preventing catastrophic forgetting.

Multi-Task Learning (MTL) We evaluate multitask
learning (MTL): the model is trained on each task Tti for
the same number of epochs as in CL methods, however,
when training on Tti , it has access to all previous tasks

Task-agnostic Continual Learning with Hybrid Probabilistic Models

M
T

L
E

R
H

C
L

-G
R

H
C

L
-F

R
A

da
m

H
C

L
-G

R
H

C
L

-F
R

60

70

80

90

100 Task-Aware Agnostic

Average Accuracy

30

40 Task-Aware Agnostic

Average Forgetting

M
T

L
E

R
H

C
L

-G
R

H
C

L
-F

R
A

da
m

H
C

L
-G

R
H

C
L

-F
R

0.0

0.5

1.0

M
T

L
E

R
H

C
L

-G
R

H
C

L
-F

R
A

da
m

H
C

L
-G

R
H

C
L

-F
R

60

70

80

90

100 Task-Aware Agnostic

Overall Accuracy

(b) MNIST-SVHN

M
T

L
E

R
C

U
R

L
H

C
L

-G
R

H
C

L
-F

R
A

da
m

H
C

L
-G

R
H

C
L

-F
R

60

70

80

90

100 Task-Aware Agnostic

Average Accuracy
M

T
L

E
R

C
U

R
L

H
C

L
-G

R
H

C
L

-F
R

A
da

m

H
C

L
-G

R
H

C
L

-F
R

0

10

20

30

40
Task-Aware Agnostic

Average Forgetting

M
T

L
E

R
H

C
L

-G
R

H
C

L
-F

R
A

da
m

H
C

L
-G

R
H

C
L

-F
R

60

70

80

90

100 Task-Aware Agnostic

Overall Accuracy

M
T

L
E

R
H

C
L

-G
R

H
C

L
-F

R
A

da
m

H
C

L
-G

R
H

C
L

-F
R

60

70

80

90

100 Task-Aware Agnostic

Average Accuracy

80

100
Task-Aware Agnostic

Average Forgetting

M
T

L
E

R
H

C
L

-G
R

H
C

L
-F

R
A

da
m

H
C

L
-G

R
H

C
L

-F
R

0

10

20

M
T

L
E

R
H

C
L

-G
R

H
C

L
-F

R
A

da
m

H
C

L
-G

R
H

C
L

-F
R

60

70

80

90

100 Task-Aware Agnostic

Overall Accuracy

(a) Split MNIST (c) SVHN-MNIST

Figure 2. Results on (a) Split MNIST, (b) MNIST-SVHN and (c) SVHN-MNIST image datasets. For Split MNIST, in the top panel we
show the performance of each method on each of the tasks in the end of training; for HCL we show the results in the task-agnostic setting
with dashed lines. We also show average accuracy, forgetting and overall accuracy for each of the datasets and methods. HCL provides
strong performance, especially on SVHN-MNIST where it achieves almost zero forgetting and significantly outperforms ER.

Tt1 , . . . Tti−1
. At each iteration, we sample a mini-batch (of

the same size as the current data batch) containing the data
from each of the tasks that have been observed so far.

Experience Replay (ER) We reserve a buffer with a fixed
size of 1000 samples for each task and randomly select sam-
ples to add to that buffer during training on each task. When
training on task Tk, the model randomly picks a number of
samples equal to the current task’s batch size from each of
the previous task buffers and appends to the current batch.

CURL We evaluate the state-of-the-art CURL (Rao et al.,
2019) method for continual learning which is most closely
related to HCL: CURL also incorporates a generative model
(VAE), with an expanding Gaussian mixture in latent space,
and likelihood-based task-change detection.

Split MNIST In this experiment, following prior work
we split the MNIST dataset (LeCun et al., 1998) into 5 bi-
nary classification tasks. We train for 30 epochs on each task.
We use the Glow architecture to model the data distribution.
The results are presented in Fig 2 (a) and Appendix Table 1.
HCL shows strong performance, competitive with ER. Out
of the HCL variants, HCL-FR provides a better performance
both in the task-aware and the task-agnostic settings. Both
HCL variants significantly outperform CURL. We hypoth-
esise that since it only uses a single latent Gaussian compo-
nent for each class, CURL cannot as easily capture a highly
multimodal and complex data distribution for a single class
– a requirement for domain-incremental learning where
classes may be visually very different across different tasks.
In contrast, as HCL initialises multiple latent components in
a task-agnostic fashion and draws upon a flexible flow-based
model, it is much better suited to the domain-incremental
continual learning setting. The final accuracy of the Adam
baseline on some tasks is very low: unless we take measures

to avoid forgetting, the flow typically maps the data from all
tasks to the region in the latent space corresponding to the
final task, and it may happen that e.g. the data in class 1 of
the first task will be mapped to the class 2 of the last task.

MNIST-SVHN and SVHN-MNIST We evaluate HCL
and the baselines on two more challenging problems:
MNIST-SVHN and SVHN-MNIST. Here, the tasks are
10-way classification problems on either the SVHN (Netzer
et al., 2011) or the MNIST dataset. We use the RealNVP
architecture with inputs of size 32 × 32 × 3, and upscale
the MNIST images to this resolution. We train the methods
for 90 epochs on each task. We report the results in
Fig 2 (b) and (c) and Appendix Table 2. HCL-FR and
HCL-GR show strong performance, outperforming ER and
Adam significantly, and performing on par with MTL. On
MNIST-SVHN, the model is able to almost completely
avoid forgetting.

See Appendix B for experimental results on split CIFAR-10
and split CIFAR-100 and Appendix G discussing task
identification results.

5. Discussion
In this work we proposed HCL, a hybrid model for con-
tinual learning based on normalizing flows. HCL achieves
strong performance on a range of image classification
problems and is able to automatically detect new and
recurring tasks using the typicality of flow’s statistics. We
believe that the key advantage of HCL is its simplicity and
extensibility. HCL describes the data generating process
using a tractable but flexible probabilistic model and uses
the maximum-likelihood to train the model.

Task-agnostic Continual Learning with Hybrid Probabilistic Models

References
Achille, A., Eccles, T., Matthey, L., Burgess, C., Watters, N., Ler-

chner, A., and Higgins, I. Life-long disentangled representation
learning with cross-domain latent homologies. In NeurIPS,
2018.

Aljundi, R., Kelchtermans, K., and Tuytelaars, T. Task-free contin-
ual learning. In CVPR, 2019.

Atanov, A., Volokhova, A., Ashukha, A., Sosnovik, I., and Vetrov,
D. Semi-conditional normalizing flows for semi-supervised
learning. arXiv:1905.00505, 2019.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Balaji, Y., Farajtabar, M., Yin, D., Mott, A., and Li, A. The
effectiveness of memory replay in large scale continual learning.
arXiv:2010.02418, 2020.

Behrmann, J., Grathwohl, W., Chen, R. T., Duvenaud, D., and
Jacobsen, J.-H. Invertible residual networks. In ICML, 2019.

Bulusu, S., Kailkhura, B., Li, B., Varshney, P. K., and Song, D.
Anomalous example detection in deep learning: A survey. IEEE
Access, 8:132330–132347, 2020.

Buzzega, P., Boschini, M., Porrello, A., Abati, D., and Calderara,
S. Dark experience for general continual learning: a strong,
simple baseline. arXiv preprint arXiv:2004.07211, 2020.

Chaudhry, A., Ranzato, M., Rohrbach, M., and Elhoseiny, M.
Efficient lifelong learning with A-GEM. arXiv:1812.00420,
2018.

Chaudhry, A., Gordo, A., Dokania, P. K., Torr, P., and Lopez-
Paz, D. Using hindsight to anchor past knowledge in continual
learning. arXiv:2002.08165, 2020.

Chen, R. T. Q., Behrmann, J., Duvenaud, D., and Jacobsen, J.
Residual flows for invertible generative modeling. In NeurIPS,
2019.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density estimation
using Real NVP. ICLR, 2017.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient methods
for online learning and stochastic optimization. JMLR, 2011.

Farajtabar, M., Azizan, N., Mott, A., and Li, A. Orthogonal
gradient descent for continual learning. In AISTATS, 2020.

Finzi, M., Izmailov, P., Maddox, W., Kirichenko, P., and Wilson,
A. G. Invertible convolutional networks. In Workshop on
Invertible Neural Networks and Normalizing Flows (ICML),
2019.

French, R. M. Catastrophic forgetting in connectionist networks.
Trends in cognitive sciences, 1999.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A., and Bengio, Y. Generative
adversarial networks. NeurIPS, 2014.

Grathwohl, W., Chen, R. T., Bettencourt, J., Sutskever, I., and
Duvenaud, D. Ffjord: Free-form continuous dynamics for
scalable reversible generative models. arXiv:1810.01367, 2018.

Hadsell, R., Rao, D., Rusu, A. A., and Pascanu, R. Embracing
change: Continual learning in deep neural networks. Trends in
Cognitive Sciences, 2020.

He, X., Sygnowski, J., Galashov, A., Rusu, A. A., Teh, Y. W., and
Pascanu, R. Task agnostic continual learning via meta learning.
arXiv:1906.05201, 2019.

Hsu, Y.-C., Liu, Y.-C., Ramasamy, A., and Kira, Z. Re-evaluating
continual learning scenarios: A categorization and case for
strong baselines. arXiv:1810.12488, 2018.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In ICML,
2015.

Izmailov, P., Kirichenko, P., Finzi, M., and Wilson, A. G. Semi-
supervised learning with normalizing flows. In ICML, 2020.

Jerfel, G., Grant, E., Griffiths, T. L., and Heller, K. A. Reconciling
meta-learning and continual learning with online mixtures of
tasks. In NeurIPS, 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimiza-
tion. arXiv:1412.6980, 2014.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow with
invertible 1x1 convolutions. In NeurIPS, 2018.

Kingma, D. P. and Welling, M. Auto-encoding variational Bayes.
arXiv:1312.6114, 2013.

Kingma, D. P., Mohamed, S., Jimenez Rezende, D., and Welling,
M. Semi-supervised learning with deep generative models.
NeurIPS, 2014.

Kirichenko, P., Izmailov, P., and Wilson, A. G. Why normalizing
flows fail to detect out-of-distribution data. arXiv:2006.08545,
2020.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins,
G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T., Grabska-
Barwinska, A., et al. Overcoming catastrophic forgetting in
neural networks. Proceedings of the national academy of sci-
ences, 2017.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers of
features from tiny images. 2009.

Lange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis,
A., Slabaugh, G. G., and Tuytelaars, T. Continual learning: A
comparative study on how to defy forgetting in classification
tasks. ArXiv, abs/1909.08383, 2019.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based
learning applied to document recognition. Proceedings of the
IEEE, 1998.

Lee, S., Ha, J., Zhang, D., and Kim, G. A neural dirich-
let process mixture model for task-free continual learning.
arXiv:2001.00689, 2020.

Li, X., Zhou, Y., Wu, T., Socher, R., and Xiong, C. Learn to
grow: A continual structure learning framework for overcoming
catastrophic forgetting. arXiv:1904.00310, 2019.

Lopez-Paz, D. and Ranzato, M. Gradient episodic memory for
continual learning. In NeurIPS, 2017.

McCloskey, M. and Cohen, N. J. Catastrophic interference in
connectionist networks: The sequential learning problem. In
Psychology of learning and motivation. 1989.

Mirzadeh, S.-I., Farajtabar, M., and Ghasemzadeh, H. Dropout
as an implicit gating mechanism for continual learning. In
Proceedings of the Computer Vision and Pattern Recognition
Workshops, 2020a.

Mirzadeh, S. I., Farajtabar, M., Gorur, D., Pascanu, R., and
Ghasemzadeh, H. Linear mode connectivity in multitask and
continual learning. In ICLR, 2020b.

Mirzadeh, S. I., Farajtabar, M., Pascanu, R., and Ghasemzadeh, H.
Understanding the role of training regimes in continual learning.
In NeurIPS, 2020.

Morningstar, W. R., Ham, C., Gallagher, A. G., Lakshminarayanan,
B., Alemi, A. A., and Dillon, J. V. Density of states estimation
for out-of-distribution detection. arXiv:2006.09273, 2020.

Task-agnostic Continual Learning with Hybrid Probabilistic Models

Mundt, M., Majumder, S., Pliushch, I., and Ramesh, V. Unified
probabilistic deep continual learning through generative replay
and open set recognition. arXiv:1905.12019, 2019.

Nalisnick, E., Matsukawa, A., Teh, Y. W., Gorur, D., and Laksh-
minarayanan, B. Do deep generative models know what they
don’t know? In ICLR, 2019a.

Nalisnick, E., Matsukawa, A., Teh, Y. W., Gorur, D., and Lakshmi-
narayanan, B. Hybrid models with deep and invertible features.
In ICML, 2019b.

Nalisnick, E., Matsukawa, A., Teh, Y. W., and Lakshminarayanan,
B. Detecting out-of-distribution inputs to deep generative mod-
els using typicality. arXiv:1906.02994, 2019c.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng,
A. Y. Reading digits in natural images with unsupervised feature
learning. 2011.

Oord, A. v. d., Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves,
A., and Kavukcuoglu, K. Conditional image generation with
PixelCNN decoders. arXiv preprint arXiv:1606.05328, 2016.

Pan, P., Swaroop, S., Immer, A., Eschenhagen, R., Turner, R. E.,
and Khan, M. E. Continual deep learning by functional regular-
isation of memorable past. NeurIPS, 2020.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S.,
and Lakshminarayanan, B. Normalizing flows for probabilistic
modeling and inference. arXiv:1912.02762, 2019.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter, S.
Continual lifelong learning with neural networks: A review.
Neural Networks, 2019.

Pascanu, R. and Bengio, Y. Revisiting natural gradient for deep
networks. arXiv:1301.3584, 2013.

Pomponi, J., Scardapane, S., Lomonaco, V., and Uncini, A. Ef-
ficient continual learning in neural networks with embedding
regularization. Neurocomputing, 2020a.

Pomponi, J., Scardapane, S., and Uncini, A. Pseudo-rehearsal for
continual learning with normalizing flows. arXiv:2007.02443,
2020b.

Rao, D., Visin, F., Rusu, A., Pascanu, R., Teh, Y. W., and Hadsell,
R. Continual unsupervised representation learning. In NeurIPS,
2019.

Rebuffi, S.-A., Kolesnikov, A. I., Sperl, G., and Lampert, C. H.
iCaRL: Incremental classifier and representation learning.
CVPR, 2016.

Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu, Y., and
Tesauro, G. Learning to learn without forgetting by maximizing
transfer and minimizing interference. arXiv:1810.11910, 2018.

Rios, A. and Itti, L. Closed-loop GAN for continual learning.
arXiv:1811.01146, 2018.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirk-
patrick, J., Kavukcuoglu, K., Pascanu, R., and Hadsell, R. Pro-
gressive neural networks. arXiv:1606.04671, 2016.

Saha, G., Garg, I., and Roy, K. Gradient projection memory for
continual learning. arXiv preprint arXiv:2103.09762, 2021.

Shin, H., Lee, J. K., Kim, J., and Kim, J. Continual learning with
deep generative replay. In NeurIPS, 2017.

Srivastava, R. K., Greff, K., and Schmidhuber, J. Highway net-
works. arXiv preprint arXiv:1505.00387, 2015.

Tan, M. and Le, Q. Efficientnet: Rethinking model scaling for
convolutional neural networks. In ICML, 2019.

Titsias, M. K., Schwarz, J., Matthews, A. G. d. G., Pascanu, R.,
and Teh, Y. W. Functional regularisation for continual learning
using Gaussian processes. arXiv:1901.11356, 2019.

van de Ven, G. M. and Tolias, A. S. Three scenarios for continual
learning. arXiv:1904.07734, 2019.

van de Ven, G. M., Siegelmann, H. T., and Tolias, A. S. Brain-
inspired replay for continual learning with artificial neural net-
works. Nature communications, 11(1):1–14, 2020.

Wortsman, M., Ramanujan, V., Liu, R., Kembhavi, A., Rastegari,
M., Yosinski, J., and Farhadi, A. Supermasks in superposition.
NeurIPS, 2020.

Ye, F. and Bors, A. G. Learning latent representations across mul-
tiple data domains using lifelong VAEGAN. arXiv:2007.10221,
2020.

Yin, D., Farajtabar, M., and Li, A. Sola: Continual learning with
second-order loss approximation. arXiv:2006.10974, 2020.

Yoon, J., Yang, E., Lee, J., and Hwang, S. J. Lifelong learning
with dynamically expandable networks. In ICLR, 2018.

Zeno, C., Golan, I., Hoffer, E., and Soudry, D. Task agnostic contin-
ual learning using online variational Bayes. arXiv:1803.10123,
2018.

Zhang, H., Li, A., Guo, J., and Guo, Y. Hybrid models for open
set recognition. arXiv:2003.12506, 2020.

Zhang, M., Wang, T., Lim, J. H., and Feng, J. Prototype reminding
for continual learning. arXiv:1905.09447, 2019.

Zisselman, E. and Tamar, A. Deep residual flow for out of distri-
bution detection. In CVPR, 2020.

Task-agnostic Continual Learning with Hybrid Probabilistic Models

Task-agnostic Continual Learning with Hybrid Probabilistic Models:
Supplementary Material

A. Setup and hyperparameters
A.1. HCL

Setup We use RealNVP and Glow normalizing flow models. We initialize the class-conditional latent Gaussian means
µy,t randomly when a new task is identified. Following Izmailov et al. (2020) we do not train µy,t and instead keep them
fixed. We use the Adam optimizer (Kingma & Ba, 2014) to train the parameters of the flow and a batch size of 32. For both
GR and FR, we generate the number of replay samples equal to the batch size for each of the previously observed tasks. For
task identification, we use a window of l = 100 mini-batches and the sensitivity λ in threshold for task detection is set to 5.
For more details on the hyper-parameters, please see the Appendix A.

Split MNIST For split MNIST, we use a Glow architecture (Kingma & Dhariwal, 2018), generally following Nalisnick
et al. (2019a) for the model setup. We use Highway networks (Srivastava et al., 2015) as coupling layer networks which
predicted the scale and shift of the affine transformation. Each Highway network had 3 hidden layers with 200 channels. We
use the Glow with multi-scale architecture with 2 scales and 14 coupling layers per scale, squeezing the spatial dimension in
between two scales.

For the sensitivity parameter λ, we tested values λ = 3 and λ = 5 on split MNIST dataset. For the lower value of λ the
model correctly identified the actual task shifts, however, it detected a higher number of extra task shifts. We used λ = 5 for
the rest of the experiments.

SVHN-MNIST and MNIST-SVHN We use a RealNVP (Dinh et al., 2017) model with ResNet-like coupling layer
network for SVHN-MNIST and MNIST-SVHN experiments. The ResNet networks have 8 blocks with 64 channels, and use
Layer Normalization (Ba et al., 2016) instead of Batch Normalization (Ioffe & Szegedy, 2015). RealNVP has 3 scales and
16 coupling layers in total.

CIFAR embeddings For this set of experiments discussed in Appendix B, we use RealNVP model with 1 scale with 8
coupling layers, and MLP coupling layer networks which has 3 hidden layers and 512 hidden units in each layer.

We use the weight decay 5× 10−5 on split MNIST, SVHN-MNIST and MNIST-SVHN experiments, and tune the weight
decay om the range {10−4, 10−3, 10−2} on a validation set.

For HCL-FR on split MNIST, SVHN-MNIST and MNIST-SVHN we set the weight of the regularization term of LFR
objective α = 1. For split CIFAR-10 and split CIFAR-100, we tune α on a validation set in the range {1, 5, 10, 100}.
Generally, we do not notice major difference in performance of HCL-FR and its task-agnostic version when varying α.

We compare our HCL-GR and HCL-FR to other training procedures for the same flow model: regular Adam training,
multi-task learning and experience replay. Additionally, we compare to CURL (Rao et al., 2019) which is based on a VAE
architecture.

Adam As a baseline, we train HCL model with Adam optimizer. Prior work (Mirzadeh et al., 2020; Hsu et al., 2018)
argues against using Adam for continual learning. However, it is challenging to train normalizing flows with SGD. We
experimented with Adagrad (Duchi et al., 2011) and RMSProp but did not observe a significant improvement compared to
Adam.

Experience Replay Note that we fix the size of the buffer per task throughout the experiments, resulting in varying
performance: on the SVHN-MNIST the total size of the buffer is only about 1.5% of the SVHN dataset, while on Split
CIFAR-100 by the end of training the size of the combined buffer on all tasks is 20% of the dataset.

A.2. CURL

We evaluate the state-of-the-art CURL (Rao et al., 2019) method for continual learning which is most closely related to HCL:
CURL also incorporates a generative model (VAE), with an expanding Gaussian mixture in latent space, and likelihood-based
task-change detection. However, in the original paper the method is only evaluated in class- and task-incremental learning
settings, and focuses on unsupervised learning. To provide a fair comparison, we use the supervised variant of CURL
proposed by Rao et al. (2019), in which the label is used to directly train the corresponding Gaussian component in latent

Task-agnostic Continual Learning with Hybrid Probabilistic Models

M
T

L
E

R
C

U
R

L
H

C
L

-G
R

H
C

L
-F

R
A

da
m

H
C

L
-G

R
H

C
L

-F
R

60

70

80

90

100
Task-Aware Agnostic

Average Accuracy

M
T

L
E

R
C

U
R

L
H

C
L

-G
R

H
C

L
-F

R
A

da
m

H
C

L
-G

R
H

C
L

-F
R

0

5

10

15

20

25

30
Task-Aware Agnostic

Average Forgetting

M
T

L
E

R
H

C
L

-G
R

H
C

L
-F

R
A

da
m

H
C

L
-G

R
H

C
L

-F
R

0

20

40

60

80

100 Task-Aware Agnostic

Overall Accuracy

(a) Split CIFAR-10

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

0

25

50

75

100

MTL ER CURL HCL-GR HCL-FR Adam

M
T

L
E

R
C

U
R

L
H

C
L

-G
R

H
C

L
-F

R
A

da
m

H
C

L
-G

R
H

C
L

-F
R

0

20

40

60

80 Task-Aware Agnostic

Average Accuracy

M
T

L
E

R
C

U
R

L
H

C
L

-G
R

H
C

L
-F

R
A

da
m

H
C

L
-G

R
H

C
L

-F
R

0

20

40

60

80 Task-Aware Agnostic

Average Forgetting

M
T

L
E

R
H

C
L

-G
R

H
C

L
-F

R
A

da
m

H
C

L
-G

R
H

C
L

-F
R

0

20

40

60

80 Task-Aware Agnostic

Overall Accuracy

(b) Split CIFAR-100

Figure 3. Results on Split CIFAR embedding datasets. We use embeddings extracted by an EfficientNet model (Tan & Le, 2019)
pre-trained on ImageNet. In the top panels we show the performance of each method on each of the tasks in the end of training; for
HCL we show the results in the task-agnostic setting with dashed lines. At the bottom, we show average accuracy, forgetting and overall
accuracy for each of the methods. HCL outperforms CURL and Adam and performs on par with experience replay with a large replay
buffer. HCL-FR provides better performance than HCL-GR.

space. It is important to note that while CURL is task-agnostic in the unsupervised setting, it implicitly infers the task
via labels in the supervised task- and class-incremental settings (and hence does not perform task-change detection or
unsupervised expansion). Thus, for domain-incremental learning (where the labels do not signal the introduction of a new
task), we snapshot the generative model on task change, meaning that it is not task-agnostic in this setting. Finally, since the
supervised variant of CURL utilises a single Gaussian component in latent space for each label, we cannot innately compute
the overall accuracy with respect to class labels after training on domain labels.

We train all models with the Adam optimizer, with a learning rate of 10−3. For MNIST, we use the same architecture as
in Rao et al. (2019), with a MLP encoder with layer sizes [1200, 600, 300, 150], a MLP Bernoulli decoder with layer sizes
[500, 500], and a latent space dimensionality of 32. For CIFAR10/100 features, we use 2-layer MLPs for both the encoder
and decoder (with a Gaussian likelihood for the decoder), with 512 units in each layer and a latent space dimensionality of
64.

B. Additional experimental results
Split CIFAR embeddings We consider the Split CIFAR-10 and Split CIFAR-100 datasets, where each task corresponds
to 2 classes of CIFAR-10 and 10 classes of CIFAR-100 (Krizhevsky et al., 2009) respectively. Generative models typically
struggle to generate high fidelity images when trained on CIFAR datasets due to their high variance and low resolution.
For this reason, we utilize transfer learning and, instead of using the raw pixel values, use embeddings extracted by an
EfficientNet model (Tan & Le, 2019) pre-trained on ImageNet. Normalizing flows have been shown to perform well on
classification and out-of-distribution detection tasks using the image embeddings (Izmailov et al., 2020; Kirichenko et al.,
2020; Zhang et al., 2020; Zisselman & Tamar, 2020). We report the results in Fig. 3 and Appendix Tables 3 and 4. We
train all methods for 15 epochs per task. In the Appendix Tables, we additionally report the performance in the single-pass
setting training for just one epoch per task. HCL provides strong performance, with functional regularization giving the
best results. ER provides a strong baseline, especially on CIFAR-100 due to the relatively large (20% of the dataset) size
of the replay buffer. CURL underperforms compared to the HCL variants. Since CURL is a VAE-based model, it requires
an appropriate decoder likelihood for each data type (a Gaussian distribution in the case of CIFAR embeddings), while
our flow-based HCL model directly models the distribution in the data space without extra approximations. We hypothesize
that this advantage is one of reasons for the HCL superior performance.

In Tables 1, 2, 3 and 4, we provide detailed results of the experiments. For each experiment and method with the exception
of MNIST-SVHN and SVHN-MNIST we repeat the experiments three times with different random initializations. We report
the mean and standard deviation of the results. We report the results on Split MNIST in Table 1; on SVHN-MNIST and
MNIST-SVHN in Table 2; on Split CIFAR-10 in Table 3 and on Split CIFAR-100 in Table 4. For Split CIFAR datasets we
report the results in two settings: with 15 epochs per task and with 1 epoch per task (single-pass).

Task-agnostic Continual Learning with Hybrid Probabilistic Models

Table 1. Results of the experiments on split MNIST dataset with MTL (multitask learning), Adam (regular training without alleviating
forgetting), ER (standard experience or data buffer replay with the capacity of 1000 samples per task), HCL-GR (generative replay),
HCL-FR (functional regularization). The dataset with 10 classes is split into 5 binary classification tasks, as well as task-agnostic versions
of HCL-FR and HCL-GR.

TASK # 1 2 3 4 5 ACC
AVG

FORGET
AVG

FULL
ACC

MTL 99.78 98.02 98.08 98.98 96.15 98.20 −1.32 94.44
±0.15 ±1.50 ±0.96 ±0.33 ±1.87 ±0.88 ±1.03 ±1.06

ADAM 55.59 63.66 19.96 89.41 99.16 65.56 42.57 19.66
±4.74 ±3.10 ±7.03 ±7.15 ±0.41 ±1.33 ±1.49 ±0.08

ER 95.92 94.69 94.27 98.44 96.77 96.02 3.19 92.86
±5.00 ±1.98 ±2.20 ±0.41 ±1.00 ±1.31 ±1.92 ±1.92

CURL 96.67 93.06 80.14 98.05 97.27 93.23 6.90 –
±0.64 ±1.42 ±5.70 ±0.86 ±0.41 ±1.06 ±1.47

HCL-FR 98.31 95.97 96.37 99.24 95.95 97.17 1.53 93.55
±1.03 ±0.81 ±1.06 ±0.08 ±3.04 ±0.65 ±0.91 ±1.40

HCL-GR 95.97 93.08 92.67 98.94 97.02 95.54 4.25 86.58
±3.65 ±4.17 ±2.43 ±0.66 ±1.69 ±1.21 ±1.99 ±7.37

HCL-FR (TA) 94.41 93.88 90.25 98.86 99.28 95.33 5.24 90.89
±3.42 ±0.37 ±4.11 ±0.23 ±0.23 ±0.67 ±0.95 ±0.96

HCL-GR (TA) 96.78 84.49 88.38 99.04 98.87 93.52 7.41 84.65
±0.98 ±5.57 ±4.79 ±0.53 ±0.06 ±1.84 ±2.18 ±3.46

Table 2. Results of the experiments on SVHN-MNIST and MNIST-SVHN datasets with MTL (multitask learning), Adam (regular
training without alleviating forgetting), ER (standard experience or data buffer replay with the capacity of 1000 samples per task),
HCL-GR (generative replay), HCL-FR (functional regularization), as well as task-agnostic versions of HCL-FR and HCL-GR.. Each
dataset contains two 10-way classification tasks corresponding to MNIST and SVHN.

SVHN-MIST MNIST-SVHN

TASK # 1 2 ACC
AVG

FORGET
AVG

FULL
ACC

MTL 95.96 99.18 97.57 0.01 96.86
ADAM 9.28 99.18 54.23 86.69 30.74

ER 71.14 99.45 85.295 24.83 76.00
HCL-FR 94.48 99.32 96.90 1.49 95.78
HCL-GR 94.03 99.35 96.69 1.94 95.5

HCL-FR (TA) 95.19 99.26 97.23 0.92 96.38
HCL-GR (TA) 91.76 99.50 95.63 2.87 93.84

TASK # 1 2 ACC
AVG

FORGET
AVG

FULL
ACC

MTL 99.58 95.56 97.57 -0.11 96.68
ADAM 64.16 95.82 79.99 35.31 69.23

ER 98.54 88.89 93.72 0.93 91.56
HCL-FR 99.51 95.55 97.53 -0.04 96.65
HCL-GR 99.53 95.52 97.53 -0.06 96.63

HCL-FR (TA) 99.47 94.14 96.81 0.02 95.62
HCL-GR (TA) 99.56 94.68 97.12 -0.04 96.04

C. Differences between HCL-GR and HCL-FR
Intuitively, HCL-FR imposes a stronger restriction on the model. Indeed, in order to have low values of the objective LFR,
the model fθ has to map the replay data to the same locations in the latent space as the snapshot model f (k)θ . On the other
hand, to achieve the low value of the HCL-GR objective we only need the likelihood of the replay data to be high according
to fθ. In other words, HCL-GR only restricts the locations of fθ(x) (for replayed data) to be in the high-density set of p̂Z ,
but not in any particular position (see Figure 4(a)).

We visualize the effect of both objectives on a two-dimensional two moons dataset in Figure 4. We treat the two moons as
different tasks and train the HCL model on the top moon shown in grey first. Then, we continue training on the second
moon shown in orange using either FR or GR to avoid forgetting. To build an understanding of the effect of these methods,
we only use a fixed set of four data points shown as coral squares as the replay data. We show the learned distributions after
training on the second task for HCL-GR and HCL-FR in panels (c) and (d) of Figure 4. With a limited number of replay
samples, HCL-GR struggles to avoid forgetting. The method is motivated to maximize the likelihood of the replay data,
and it overfits to the small replay buffer, forgetting the structure of the first task. HCL-FR on the other hand preserves the
structure of the first task better using the same 4 replay samples. In the panel (e) of Figure 4 we visualize the positions to
which the models map the replay data in the latent space. HCL-FR (shown with stars) maps the replay data to exactly the

Task-agnostic Continual Learning with Hybrid Probabilistic Models

Flow

Previous Task

Latent space Z Data space X
Current Task

Generated Samples
Current Task

Previous Task

Penalize

Distance

HCL-FR:
Maximize

Likelihood

HCL-GR:

(a)

Data space X Latent space Z

(b) (e)
Data space X Data space X

(c) (d)

Figure 4. Comparison of functional regularization and generative replay. (a): A visualization of HCL-FR and HCL-GR; HCL-GR
forces the model to maintain high likelihood of the replay data, while HCL-FR penalizes the distance between the locations of the latent
representations for the sampled data for the current and snapshot models. (b): Two moons dataset; data from the first and second tasks is
shown with grey and orange circles, and coral squares show the replay samples. (c): Learned distribution after training on the second task
with HCL-GR, and (d) HCL-FR. (e): Locations of images of the replay data in the latent space for the model trained on the first task
(squares), HCL-GR (triangles) and HCL-FR (stars). HCL-FR restricts the model more than GR: the locations of replay samples in the
latent space coincide for HCL-FR and the model trained on the first task. Consequently, HCL-FR preserves more information about the
structure of the first task.

same locations as the snapshot model f (1)θ trained on the first task (shown with squares). HCL-GR (shown with triangles)
simply maps the samples to the high-density region without preserving their locations.

To sum up, HCL-FR provides a stronger regularization than HCL-GR while preserving the flexibility of the model, which is
crucial for avoiding forgetting. We provide an empirical comparison of HCL-FR and HCL-GR in Section 4 where HCL-FR
shows better performance across the board. We discuss the relation between HCL-FR and HCL-GR objectives further in
Appendix E.2.

D. Alleviating forgetting
The loss LGR in HCL-GR is computed as follows:

xGR ∼ p̂(k)X (x|y, t), y ∼ U [1, . . .K], t ∼ U{t1, . . . , tk}

LGR = log pX(xGR|y, t) = logpZ (fθ(xGR)|y, t) + log

∣∣∣∣∂fθ∂x
∣∣∣∣

= −1

2
‖fθ(xGR)−µy,t‖2 + log

∣∣∣∣∂fθ∂x
∣∣∣∣+ const .

(1)

We note that up to a constant, the loss in Eq. (1) can be expressed as the KL-divergence between the distribution p̂(k)

corresponding to the snapshot model fθ(k) and the distribution p̂ corresponding to the corrent model fθ:

KL[p̂(k)||p̂] =

∫
p̂(k)(x|y, t) log

p̂(k)(x|y, t)
p̂(x|y, t)

dx ≈ 1

J

J∑
i=1

log
p̂(k)(xi|y, t)
p̂(xi|y, t)

=
1

J

J∑
i=1

log p̂(k)(xi|y, t)− log p̂(xi|y, t)︸ ︷︷ ︸
GR

 .

(2)

E. Analysis of Functional regularization
In this section, we look at the interpretation of the functional regularization and its connection to regularization based CL
methods as well as with generative replay.

Task-agnostic Continual Learning with Hybrid Probabilistic Models

E.1. Taylor expansion of the functional regularization

For simplicity let the flow model be given by

f : RM×N → RN ,

whereRM is the parameter space, andRN is the input space. Specifically we have f(θ, x) = z for the parameters θ and
input x. And by abuse of notation let f−1 be the inverse flow, namely

f−1(θ, f(θ, x)) := x.

Note that the only thing we did is to make the dependency of the flow on its parameters θ explicit.

The regularization term that we rely on has the following form

LFR =
1

J

∑
zj

[(
zj − f(θk+1, f

−1(θk, zj))
)2]

, (3)

where θk+1 and θk are the parameters of the model after and before learning the k-th task.

For legibility, let xj = f−1(θk, zj) and θk+1 = θk + ∆. We can re-write the loss as (zj − f(θk+1, xj))
2, for a given zj .

We will also drop the subscript j when not needed.

We start by taking a first order Taylor expansion around θk of f(θk+1, x):

f(θk+1, x) = f(θk + ∆, x)
≈ f(θk, x) + ∆T∇f |θk,x.

(4)

We can now re-write the regularizer as:

LFR = 1
J

∑
zj

((
zj − f(θk, xj)−∆T∇f |θk,xj

)2)
= 1

J

∑
zj

[(
zj − f(θk, f

−1(θk, zj))−∆T∇f |θk,xj
)2]

= 1
J

∑
xj

[(
∆T∇f |θk,xj

)2]
= 1

J

∑
xj

[
∆T∇f |θk,xj (∇f |θk,xj)T∆

]
= 1

J∆T
∑
xj

[
∇f |θk,xj (∇f |θk,xj)T

]
∆

= 1
J (θk+1 − θk)T

∑
xj

[
∇f |θk,xj (∇f |θk,xj)T

]
(θk+1 − θk)

(5)

From the equation above, we can see that the regularization term is minimized when ∆ spans the direction of low eigenvalues
of the matrix

∑
xj

[
∇f |θk,xj (∇f |θk,xj)T

]
. Note that the updates on the current task can only change ∆. This is similar to

methods like EWC that restricts movement in direction of high curvature according to the Fisher Information matrix on
previous tasks. In particular the Fisher metric considered that takes the same form as a an expectation over observations
xj of the outer product of gradients. In particular we can see that this form can be interpreted (see for example (Pascanu
& Bengio, 2013)) as the expected KL loss, if we consider for every xj isotropic Gaussians centered around f(θk, xj) and
f(θk+1, j) respectively. Note however that this expected KL is not the same as the KL between the distributions p(k)X and
pX .

E.2. Relationship between functional regularization and generative replay

Functional regularization (FR) and Generative replay (GR) look very similar at the first glance. For both, we take a sample
from the latent space and pass it reverse through the old flow. The difference is in FR, instead of replay, we penalize the
Euclidean distance between old and new embedding. In this subsection we characterize what this subtle but canonical
difference may imply. Let’s start with the KL distance between the old and new distribution which is indeed the loss that GR

Task-agnostic Continual Learning with Hybrid Probabilistic Models

enforces and relate it to the FR penalty term.

LGR = KL[p(k)||p] =

∫
p(k)(x|y, t) log

p(k)(x|y, t)
p(x|y, t)

dx (6)

≈ 1

J

J∑
i=1

log
p(k)(xi|y, t)
p(xi|y, t)

(7)

=
1

J

J∑
i=1

log
pZ(fθ(k)(xi)|y, t)
pZ(fθ(xi)|y, t)

+ log

∣∣∣∂fθ(k)∂x

∣∣∣∣∣∣∂fθ∂x ∣∣∣︸ ︷︷ ︸
≈0

 (8)

≈ 1

J

J∑
i=1

(
log

pZ(fθ(k)(f
−1
θk

(zi))|y, t)
pZ(fθ(f

−1
θk

(zi))|y, t)

)
(9)

=
1

J

J∑
i=1

(
log

pZ(zi|y, t)
pZ(fθ(f

−1
θk

(zi))|y, t)

)
(10)

=
1

J

J∑
i=1

(
log pZ(zi|y, t)− log pZ(fθ(f

−1
θk

(zi))|y, t)
)

(11)

=
1

J · σ2

J∑
i=1

(
‖fθ(f−1θk (zi))− µty‖2 − ‖zi − µty‖2

)
(12)

≤ 1

J · σ2

J∑
i=1

‖fθ(f−1θk (zi))− zi‖2 (13)

= LFR (14)

Note that in Eq. (8) the log of the determinant ratio is approximately assumed to be zero since the replay implicitly
discourages changes in the flow mapping. The above derivation indicates a few key points on the relation between FR and
GR:

• The FR loss provides an upper bound on the GR loss and is thus more restrictive; low FR loss implies low GR loss but
the reverse does not necessarily hold.

• Comparing the approximation of GR in Eq. (12) and FR in Eq. (13) indicates that in FR we are pushing latent
representations to the same point as they were before, while in GR the relative relocation with respect to the Gaussian
centers are being pushed to be similar. In other words, GR is roughly a mean-normalized FR.

• FR does not rescale the loss according to the log determinant. That is, it doesn’t take into account how the flow
contracts or expands. In contrast, this stretch is being well captured by GR loss.

• In return, FR experiences a more stable loss function for the sake of optimization and convergence specially when the
determinant is close to 0.

• Similarly, the sample estimate of the gradient exhibits less variance in FR compared to GR which is of practical value.

To further make sense of the relationship between FR and GR we visualize their associated loss function on a toy example,
where we are mapping from univariate Gaussian (with variance 1) to another univariate Gaussian. In particular, we can
afford to parametrize the flow as

f(θ, x) = θx, θ ∈ R+,

Task-agnostic Continual Learning with Hybrid Probabilistic Models

where θ > 0 is a positive real number. In particular, let’s assume we are regularizing to a previous version of the flow with
parameter θ(k) = γ. In this case the loss for the function regularization quickly degenerates to

LFR =
∑
z

||f(θ, f−1(γ, z)− z||2 =
∑
z

|| θ
γ
z − z||2 ≈ (θ − γ)2

In contrast the loss for generative replay will have the form

LGR ≈
1

2
|| θ
γ
z||2 − log(|θ|)

Figure 5 shows these two losses as a function of θ. Note the degeneracy of GR loss around θ = 0 and how the FR loss
becomes more tractable and well behaved by compromising the flow contraction/expansion from consideration.

Figure 5. GR loss vs. FR loss

F. Related Work
Continual Learning Following Lange et al. (2019), we review the related methods to alleviate catastrophic forgetting
in continual learning in three different but overlapping categories. Replay-based methods store and rephrase a memory
of the examples or knowledge learned so far (Rebuffi et al., 2016; Lopez-Paz & Ranzato, 2017; Shin et al., 2017; Riemer
et al., 2018; Rios & Itti, 2018; Zhang et al., 2019; Chaudhry et al., 2020; Balaji et al., 2020). Regularization-based methods
constrain the parameter updates while learning new tasks to preserve previous knowledge. They include many popular
and new methods such as EWC (Kirkpatrick et al., 2017), function-space regularization (Titsias et al., 2019); feature
regularization, and feature replay methods (Pomponi et al., 2020a; van de Ven et al., 2020; Pomponi et al., 2020b); and
orthogonality-based regularized replay methods such as OGD (Farajtabar et al., 2020), AGEM (Chaudhry et al., 2018) and
GPM (Saha et al., 2021). A few works also look at continual learning from the perspectives of the loss landscape (Yin et al.,
2020) and dynamics of optimization (Mirzadeh et al., 2020; Mirzadeh et al., 2020b). Modularity-based methods allocate
different subsets of the parameters to each task (Rusu et al., 2016; Yoon et al., 2018; Jerfel et al., 2019; Li et al., 2019;
Wortsman et al., 2020; Mirzadeh et al., 2020a).

Task-Agnostic CL Recently, several methods have been developed for the task-agnostic CL setting. Zeno et al. (2018)
and He et al. (2019) use the online variational Bayes framework to avoid the need or explicit task identities. Aljundi et al.
(2019), an early advocate of task-free CL, detect task changes as peaks in the loss values following a plateau. Jerfel et al.
(2019) infer the latent tasks within a Dirichlet process mixture model. Ye & Bors (2020) embed the information associated
with different domains into several clusters. Mundt et al. (2019) propose a method based on variational Bayesian inference
that combines a joint probabilistic encoder with a generative model and a linear classifier to distinguish unseen unknown
data from trained known tasks. Achille et al. (2018) employ a variational autoencoder with shared embeddings which detects
shifts in the data distribution and allocates spare representational capacity to new knowledge, while encouraging the learned
representations to be disentangled. Buzzega et al. (2020) combine reservoir sampling data replay and model distillation for
training models without knowing task boundaries.

Task-agnostic Continual Learning with Hybrid Probabilistic Models

The two works most closely related to HCL are CURL (Rao et al., 2019) and CN-DPMM (Lee et al., 2020). CN-DPMM
uses a Dirichlet process mixture model to detect task changes; they then use a separate modularity-based method to perform
the classification. CURL uses an end-to-end framework for detecting tasks and learning on them. However, CURL is
primarily developed for unsupervised representation learning and cannot be trivially extended to task-agnostic supervised
continual learning; in the experiments, we show that HCL achieves superior performance to a supervised version of CURL.
Both CN-DPMM and CURL use a variational auto-encoder (Kingma & Welling, 2013) to model the data distribution. HCL,
on the other hand, uses a single probabilistic hybrid model based on a normalizing flow to simultaneously learn the data
distribution, detect task changes and perform classification.

Out-of-Distribution Detection In HCL, in the task agnostic setting we need to detect data coming from new tasks, which
can be viewed as out-of-distribution (OOD) detection (see e.g. Bulusu et al., 2020, for a recent survey). In particular, HCL
detects task changes by measuring the typicality of the model’s statistics, which is similar to recently proposed state-of-the-art
OOD detection methods by Nalisnick et al. (2019c) and Morningstar et al. (2020). In some of our experiments, we apply
HCL to embeddings extracted by a deep neural network; Zhang et al. (2020) develop a related method for OOD detection,
where a flow-based generative model approximates the density of intermediate representations of the data. Kirichenko et al.
(2020) also show that normalizing flows can detect OOD image data more successfully if applied to embeddings.

Hybrid Models HCL is a hybrid generative-discriminative model that simultaneously learns to generate realistic samples
of the data and solve the discriminative classification problem. Architecturally, HCL is most closely related to the semi-
supervised flow-based models of Izmailov et al. (2020) and Atanov et al. (2019). These works do not consider continual
learning, and focus on a very different problem setting. Nalisnick et al. (2019b) and Kingma et al. (2014) provide another
two examples of hybrid models for semi-supervised learning. Zhang et al. (2020) develop a hybrid model for OOD detection.

Normalizing flows Normalizing flows are flexible deep generative models with tractable likelihood based on invertible
neural networks. Flows model the data distribution pX as a transformation p̂X = f−1θ (p̂Z), where p̂Z is a fixed density in
the latent space (typically a Gaussian), and fθ : X → Z is an invertible neural network with parameters θ that maps input
space X to the latent space Z of the same dimension. We can then compute the density p̂X exactly using the change of
variable formula: p̂X(x) = p̂Z(fθ(x)) ·

∣∣∣∂fθ∂x ∣∣∣, where
∣∣∣∂fθ∂x ∣∣∣ is the determinant of the Jacobian of fθ at x. The architecture

of the flow networks is designed to ensure cheap computation of the inverse f−1 and the Jacobian
∣∣∣∂fθ∂x ∣∣∣. In HCL, we

use RealNVP (Dinh et al., 2017) and Glow (Kingma & Dhariwal, 2018) flow architectures due to their simplicity and
strong performance. Other flow architectures include invertible Residual Networks (Behrmann et al., 2019), residual flows
(Chen et al., 2019), FFJORD (Grathwohl et al., 2018), invertible CNNs (Finzi et al., 2019) and others. For a more detailed
discussion of normalizing flows, please see the recent survey by Papamakarios et al. (2019).

Normalizing flows have a number of key advantages over other deep generative models that are essential for HCL. First,
unlike Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), flows provide a tractable likelihood that can be
used for task identification together with other model statistics (Section 3.2). Second, likelihood-based models can be used
for both generation and classification, unlike GANs. Moreover, flows can produce samples of higher fidelity than Variational
Autoencoders (VAEs) (Kingma & Welling, 2013) and much faster than auto-regressive models (Oord et al., 2016), which is
important for alleviating catastrophic forgetting (Section 3.3). Further we demonstrate that our proposed HCL outperforms
CURL (Rao et al., 2019), a VAE-based CL approach.

G. Task identification
Can flows detect task changes? Nalisnick et al. (2019a) show that deep generative models sometimes fail to detect
out-of-distribution data using likelihood, e.g. when trained on FashionMNIST dataset, both normalizing flows and VAEs
assign higher likelihood to out-of-distribution MNIST data. However, they consider unsupervised OOD detection, while in
our case there is label information available and for each task HCL is modeling the class-conditional distribution pt(x|y).
Intuitively, the model will not be able to classify unknown task samples correctly when the data distribution shifts, so
the task-conditional likelihood p̂(B|t) = p̂(y|x, t)p̂(x|t) of the batch B which comes from a new task t′ should be low.
Moreover, motivated by recent advances in OOD detection with generative models (Nalisnick et al., 2019c; Morningstar
et al., 2020), we propose to detect task changes using two-sided test on HCL’s multiple statistics and demonstrate that HCL
is able to correctly identify task change not only in standard CL benchmarks, but also in FashionMNIST-MNIST continual
learning problem, which is a more challenging scenario as identified in Nalisnick et al. (2019a). Note that prior works in
continual learning which are based on a VAE model (Rao et al. (2019) and Lee et al. (2020)) rely on VAE’s likelihood to

Task-agnostic Continual Learning with Hybrid Probabilistic Models

determine task change points which may not be reliable in challenging settings (Nalisnick et al., 2019a).

The proposed task detection based on measuring typicality of model’s statistics demonstrated strong performance in all
benchmarks experiments, detecting all existing task changes. In some cases (one of the 3 runs of HCL-FR on CIFAR-10 and
CIFAR-100, and HCL-GR on split MNIST) the model identified an extra task change which did not actually happen. In
these cases, the model uses multiple clusters in the latent space for modeling the same class in the same task. In practice,
it did not significantly hurt the final accuracy. For the runs where spurious task changes were detected, we adjusted the
computation of the overall accuracy metric by accordingly re-labelling the tasks identities. For example, if during training
on T1 the model identifies an extra task change and then identifies the real task change to T2, we consider all clusters added
during training on T1 to belong to task 1 and the clusters added at identified task change to T2 to belong to task 2.

Robustness In addition to standard CL benchmark tasks, we test HCL on FashionMNIST-MNIST and MNIST-
FashionMNIST domain-incremental learning classification. Although this dataset pair was identified as a failure mode for
OOD detection by Nalisnick et al. (2019a), HCL’s task detection correctly identified task changes in all runs.

Task recurrence Next, we test the ability of HCL to not only detect the task boundaries but also infer the task identities
in the presence of recurring tasks. In particular, we consider the Split CIFAR-10 embeddings dataset with the following
sequence of tasks: [T1, T2, T3, T1, T4] where Ti is the binary classification task between the original classes 2i − 2 and
2i− 1. The task T1 appears twice in the sequence, and the model has to identify it as an existing rather than a new task. Both
HCL-FR and HCL-GR were able to successfully identify the recurring task, achieving 95.06± 0.25% and 91.27± 0.82%
final average accuracy respectively.

Task-agnostic Continual Learning with Hybrid Probabilistic Models

Table 3. Results of the experiments on split CIFAR-10 embeddings dataset extracted using EfficientNet model pretrained on ImageNet.
The dataset with 10 classes is split into 5 binary classification tasks. The methods used are MTL (multitask learning) setting, Adam
(regular training without alleviating forgetting), ER (standard data buffer replay with the capacity of 1000 samples per task), CURL
(Rao et al., 2019), HCL-GR (generative replay), HCL-FR (functional regularization), as well as task-agnostic versions of HCL-FR and
HCL-GR.

15 EPOCHS PER TASK

TASK # 1 2 3 4 5 ACC
AVG

FORGET
AVG

FULL
ACC

MTL 98.87 95.90 97.48 97.40 98.82 97.69 0.75 93.61
±0.08 ±0.29 ±0.12 ±0.25 ±0.13 ±0.05 ±0.14 ±0.14

ADAM 90.73 58.97 54.90 81.70 99.25 77.11 27.38 19.85
±1.05 ±4.88 ±3.82 ±3.76 ±0.04 ±1.33 ±1.63 ±0.01

ER 95.75 90.60 94.62 98.57 99.20 95.75 3.78 88.27
±0.43 ±1.06 ±0.28 ±0.15 ±0.11 ±0.35 ±0.46 ±0.52

CURL 88.59 73.48 84.46 95.98 97.65 88.03 12.05 –
±3.85 ±6.00 ±2.82 ±0.64 ±0.41 ±2.15 ±2.79

HCL-FR 96.95 93.22 94.58 98.50 98.97 96.44 2.47 90.12
±0.44 ±0.59 ±0.19 ±0.08 ±0.19 ±0.05 ±0.09 ±0.35

HCL-GR 93.98 85.43 93.28 98.63 99.20 94.11 5.86 80.10
±0.27 ±0.25 ±0.92 ±0.16 ±0.08 ±0.21 ±0.24 ±1.21

HCL-FR (TA) 96.63 92.18 94.70 98.73 98.98 96.25 2.86 89.44
±0.33 ±1.33 ±0.19 ±0.25 ±0.10 ±0.17 ±0.28 ±0.80

HCL-GR (TA) 95.47 84.88 92.40 98.32 99.23 94.06 6.05 80.29
±0.73 ±1.08 ±0.16 ±0.22 ±0.05 ±0.25 ±0.35 ±0.81

SINGLE-PASS (1 EPOCH PER TASK)

TASK # 1 2 3 4 5 ACC
AVG

FORGET
AVG

FULL
ACC

MTL 98.92 96.67 97.25 97.20 98.18 97.64 −0.05 93.69
±0.10 ±0.17 ±0.00 ±0.23 ±0.26 ±0.05 ±0.13 ±0.09

ADAM 92.22 53.35 62.53 78.92 99.13 77.23 26.87 19.83
±1.20 ±0.53 ±3.52 ±6.34 ±0.15 ±1.27 ±1.54 ±0.03

ER 98.32 94.08 97.12 97.73 98.55 97.16 1.32 91.85
±0.12 ±0.71 ±0.14 ±0.08 ±0.11 ±0.09 ±0.17 ±0.03

CURL 95.54 80.97 80.55 94.61 96.25 89.58 8.25 –
±1.16 ±4.83 ±7.16 ±1.99 ±0.41 ±0.92 ±1.10

HCL-FR 95.27 88.03 93.35 98.28 98.92 94.77 4.68 85.94
±0.46 ±0.40 ±0.73 ±0.31 ±0.06 ±0.09 ±0.13 ±0.01

HCL-GR 93.68 85.82 93.28 98.52 99.10 94.08 5.73 82.85
±0.55 ±0.27 ±0.41 ±0.17 ±0.04 ±0.08 ±0.06 ±0.40

HCL-FR (TA) 95.35 87.12 93.40 98.27 98.90 94.61 4.85 85.72
±0.16 ±0.81 ±0.32 ±0.16 ±0.08 ±0.24 ±0.32 ±0.37

HCL-GR (TA) 93.37 82.28 92.33 98.23 99.17 93.08 7.05 79.93
±0.27 ±1.94 ±0.65 ±0.17 ±0.18 ±0.54 ±0.56 ±0.84

Task-agnostic Continual Learning with Hybrid Probabilistic Models

Table 4. Results of the experiments on split CIFAR-100 embeddings dataset extracted using EfficientNet model pretrained on ImageNet.
The dataset with 100 classes is split into ten 10-way classification tasks. The methods used are MTL (multitask learning) setting, Adam
(regular training without alleviating forgetting), ER (standard data buffer replay with the capacity of 1000 samples per task), CURL
(Rao et al., 2019), HCL-GR (generative replay), HCL-FR (functional regularization), as well as task-agnostic versions of HCL-FR and
HCL-GR.

15 EPOCHS PER TASK

TASK # 1 2 3 4 5 6 7 8 9 10 ACC
AVG

FORGET
AVG

FULL
ACC

MTL 78.77 73.30 76.53 72.33 76.87 73.63 77.63 78.73 83.53 71.87 76.32 9.37 74.11
±0.39 ±1.27 ±1.30 ±0.25 ±0.78 ±2.36 ±1.60 ±0.12 ±0.80 ±0.97 ±0.52 ±0.34 ±0.55

ADAM 7.77 1.00 4.63 3.80 3.33 10.83 17.60 5.07 17.10 96.83 16.80 86.49 9.84
±0.25 ±0.29 ±0.60 ±1.26 ±1.15 ±0.46 ±1.34 ±0.05 ±0.80 ±0.25 ±0.27 ±0.33 ±0.04

ER 65.70 63.57 68.83 62.97 71.93 71.73 75.20 76.40 86.20 69.37 71.19 17.74 68.46
±1.23 ±1.60 ±0.78 ±1.32 ±0.76 ±0.24 ±0.71 ±1.08 ±0.57 ±1.72 ±0.22 ±0.32 ±0.27

CURL 11.62 3.34 4.34 4.26 6.72 18.76 22.28 31.66 55.44 82.68 24.11 65.24 –
±2.31 ±1.07 ±2.01 ±2.02 ±3.23 ±1.25 ±2.41 ±2.02 ±1.19 ±0.52 ±0.72 ±0.68

HCL-FR 54.27 51.00 59.10 50.30 56.10 57.10 67.67 68.33 81.20 93.47 63.85 31.89 60.58
±1.68 ±1.87 ±1.85 ±1.82 ±0.29 ±1.08 ±2.05 ±0.87 ±0.75 ±0.21 ±0.80 ±0.99 ±0.78

HCL-GR 44.53 41.43 56.57 47.53 52.00 53.87 68.93 68.10 82.93 94.67 61.06 36.10 57.39
±1.18 ±1.75 ±0.25 ±0.59 ±1.77 ±1.24 ±1.60 ±0.43 ±0.24 ±0.19 ±0.43 ±0.56 ±0.60

HCL-FR (TA) 55.03 51.13 55.33 48.17 56.50 56.53 67.87 65.97 80.17 93.93 63.06 32.52 59.66
±0.57 ±1.89 ±4.23 ±0.63 ±1.56 ±1.02 ±0.66 ±2.59 ±1.36 ±0.33 ±0.64 ±0.88 ±0.70

HCL-GR (TA) 42.10 35.17 50.37 40.77 46.13 45.83 61.87 59.33 78.47 95.30 55.53 42.46 51.64
±0.75 ±2.32 ±0.86 ±0.88 ±0.63 ±1.01 ±0.87 ±0.48 ±0.68 ±0.22 ±0.23 ±0.25 ±0.14

SINGLE-PASS (1 EPOCH PER TASK)

TASK # 1 2 3 4 5 6 7 8 9 10 ACC
AVG

FORGET
AVG

FULL
ACC

MTL 86.23 81.43 83.77 79.80 78.53 72.87 73.47 63.13 60.80 35.93 71.60 −12.18 68.80
±0.19 ±0.54 ±0.73 ±0.36 ±0.37 ±1.64 ±0.54 ±1.54 ±0.70 ±2.52 ±0.38 ±0.13 ±0.52

ADAM 8.47 1.13 5.03 2.30 2.90 9.83 19.07 12.00 22.33 95.87 17.89 83.64 11.29
±1.15 ±0.42 ±0.37 ±0.65 ±0.45 ±0.66 ±0.52 ±1.28 ±2.18 ±0.17 ±0.18 ±0.28 ±0.31

ER 78.23 76.77 80.40 80.10 80.63 74.03 72.07 62.87 58.27 17.97 68.13 −27.10 65.13
±0.79 ±1.22 ±0.42 ±0.45 ±0.26 ±1.17 ±0.12 ±1.22 ±1.70 ±0.76 ±0.36 ±0.25 ±0.25

CURL 12.82 4.94 9.88 9.38 11.52 14.44 22.44 15.64 24.38 59.98 18.54 44.00 –
±4.73 ±1.73 ±2.95 ±2.89 ±2.67 ±4.05 ±3.18 ±1.87 ±6.32 ±9.29 ±1.54 ±2.66

HCL-FR 50.30 13.80 48.37 38.63 37.90 39.77 51.47 53.33 73.77 94.03 50.14 43.31 45.76
±1.16 ±2.27 ±1.05 ±0.57 ±2.14 ±0.25 ±5.70 ±2.26 ±0.31 ±0.76 ±0.41 ±0.17 ±0.34

HCL-GR 56.10 42.67 58.93 39.63 41.53 36.13 45.83 46.00 51.40 90.87 50.91 40.40 46.10
±1.22 ±0.94 ±1.84 ±1.68 ±2.49 ±1.60 ±4.90 ±2.25 ±6.68 ±1.40 ±0.82 ±0.85 ±0.99

HCL-FR (TA) 49.50 16.27 48.73 37.73 38.87 37.80 51.77 50.53 75.07 93.63 49.99 43.04 45.64
±2.40 ±2.23 ±2.19 ±1.14 ±1.90 ±3.19 ±1.65 ±2.09 ±1.61 ±0.25 ±0.86 ±0.58 ±0.97

HCL-GR (TA) 35.20 30.20 41.17 27.30 35.57 33.13 43.70 45.23 68.03 95.50 45.50 52.08 40.87
±0.91 ±1.99 ±1.92 ±5.62 ±1.14 ±2.83 ±0.43 ±1.27 ±1.00 ±0.43 ±0.46 ±0.57 ±0.57

