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Abstract

Diffusion models have established themselves as state-of-the-art generative models
across various data modalities, including images and videos, due to their ability to
accurately approximate complex data distributions. Unlike traditional generative
approaches such as VAEs and GANs, diffusion models employ a progressive de-
noising process that transforms noise into meaningful data over multiple iterative
steps. This gradual approach enhances their expressiveness and generation quality.
Not only that, diffusion models have also been shown to extract meaningful repre-
sentations from data while learning to generate samples. Despite their success, the
application of diffusion models to graph-structured data remains relatively unex-
plored, primarily due to the discrete nature of graphs, which necessitates discrete
diffusion processes distinct from the continuous methods used in other domains. In
this work, we leverage the representational capabilities of diffusion models to learn
meaningful embeddings for graph data. By training a discrete diffusion model
within an autoencoder framework, we enable both effective autoencoding and
representation learning tailored to the unique characteristics of graph-structured
data. We extract the representation from the combination of the encoder’s output
and the decoder’s first time step hidden embedding. Our approach demonstrates the
potential of discrete diffusion models to be used for graph representation learning.
The code can be found at https://github.com/DanielMitiku/Graph-Representation-
Learning-with-Diffusion-Generative-Models

1 Introduction

Representation learning is a central paradigm in modern machine learning, aiming to transform raw
data into informative and compact representations that capture the underlying structure of the domain.
Such representations enable a broad range of downstream tasks, including classification, clustering,
and generation, by providing features that are more amenable to statistical modeling than the raw
inputs [Bengio et al., 2013]. Advances in deep learning have driven rapid progress in different areas:
variational autoencoders extract latent codes from images [Kingma and Welling, 2014, Rezende
et al., 2014], transformer-based models learn contextualized embeddings of text [Vaswani et al.,
2017], and other areas such as robotics [Tereda et al., 2024]. In the context of graphs, different forms
of Graph Neural Networks (GNNs) produce representations of nodes, edges, and entire graphs that
preserve structural and feature information [Hamilton et al., 2017]. These methods have established
representation learning as a unifying principle across domains such as computer vision, natural
language processing, multimodal data, and graph analysis [Bengio, 2009, Wesego and Rooshenas,
2024a, Hinton and Salakhutdinov, 2006].

Graphs are powerful structures for modeling relationships between entities, and they are widely used
in domains such as social networks, biological networks, transportation systems, and knowledge
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graphs [Xia et al., 2021]. In these domains, graphs represent complex systems, where nodes
typically correspond to entities, and edges represent relationships or interactions between them. The
ability to analyze and extract insights from graph-structured data is critical for applications such as
recommendation systems, drug discovery, fraud detection, social network analysis [Ying et al., 2018,
Velickovic et al., 2018], and others. Graph representation learning has therefore become essential,
aiming to map graph-structured data into low-dimensional vector embeddings that preserve both
structure and features. These embeddings facilitate efficient analysis and downstream tasks such
as node classification, link prediction, and graph classification Kipf and Welling [2017]. Despite
significant progress, challenges remain in graph representation learning. Graphs often exhibit
highly complex structures, with varying node degrees, long-range dependencies, and hierarchical
relationships that are difficult to compress into low-dimensional embeddings [Kipf and Welling,
2017]. Furthermore, real-world graphs are frequently heterogeneous, containing multiple types of
nodes, edges, and attributes that must be modeled within a unified framework [Zhang et al., 2019].
Dynamic graphs introduce an additional challenge, where evolving structures require methods that
can adapt representations to capture temporal changes [Qin et al., 2023].

Parallel to these developments, recent advances in deep generative models, particularly diffusion
models, have opened new directions for representation learning [Preechakul et al., 2022]. Diffusion
models have achieved remarkable success in high-quality sample generation across domains such
as image, audio, and video synthesis [Ho et al., 2020, Tang et al., 2023, Wesego and Rooshenas,
2024b], and are beginning to be explored in the context of graphs [Vignac et al., 2023]. Their
iterative denoising process naturally learns hierarchical and expressive latent structures, suggesting
that diffusion models can provide powerful graph representations. However, the use of diffusion
models for graph representation learning remains at an early stage, with several open challenges.

In this work, we investigate discrete diffusion autoencoders for graph representation learning. Dis-
crete diffusion models are particularly well-suited for graph data, where node and edge features
are often categorical or discrete in nature. By leveraging their generative capabilities, we aim to
enhance the quality and expressiveness of graph embeddings, while enabling unsupervised learning
in settings where labeled data is scarce or costly. We evaluate our framework on benchmark datasets,
including the Protein and IMDB-B dataset from TUDatasets Morris et al. [2020], and demonstrate
its effectiveness in downstream tasks. The application of diffusion models to graph learning holds
significant promise Yang et al. [2023]. Beyond improved embeddings, their generative nature allows
the synthesis of novel graphs, which is especially valuable in applications such as molecular graph
generation and drug discovery Jin et al. [2018]. The central hypothesis is that the strong generative
capacity of diffusion models requires learning compressed, informative representations that can serve
as robust graph embeddings, as proven in other modalities.

To achieve this, we make use of diffusion autoencoders, which extend a standard diffusion model into
an autoencoder framework, where an encoder network learns representations and a diffusion decoder
reconstructs the input data conditioned on the output of the encoder [Preechakul et al., 2022]. Discrete
diffusion autoencoders, in particular, are tailored for discrete data, making them especially suitable
for graphs Austin et al. [2023], and in this paper, we explore their potential for graph representation
learning. Figure 1 shows the overall framework that is used to get the embeddings after training. Our
contributions are summarized as follows:

• Framework. We introduce a discrete diffusion graph autoencoder (DDGAE) for graph-
structured data. Our model leverages discrete diffusion processes to progressively denoise
graph inputs, enabling the capture of complex structural patterns and dependencies.

• Representation learning. We show how discrete diffusion models can improve the quality
of graph representations by transforming the discrete nature of graph structures into a latent
embedding. By integrating diffusion models with an autoencoder architecture, DDGAE
learns compact, expressive graph embeddings. The final representation combines the encoder
output with the embeddings of the diffusion decoder, enhancing representational richness.
Unlike standard diffusion models that rely on repetitive sampling, our approach requires
only a single-step sampling from the diffusion decoder during inference, while naturally
supporting unsupervised learning and reducing reliance on labeled data.

• Empirical validation. We conduct extensive experiments on different graph benchmark
datasets from TUDatasets, demonstrating that DDGAE achieves superior performance in
downstream graph classification tasks compared to strong baselines.
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Figure 1: Discrete Diffusion Graph AutoEncoder (DDGAE) embedding extraction: The trained
encoder extracts features, which are concatenated with the intermediate output of the trained diffusion
decoder as the final embedding z that will be used for different downstream tasks.

2 Related Works

2.1 Diffusion Models

Diffusion models have emerged as powerful generative models, achieving strong performance across
domains including image synthesis, molecule generation, and representation learning [Ho et al.,
2020, Vignac et al., 2023, Yang et al., 2023, Wesego and Rooshenas, 2024a]. These models operate
by progressively adding noise to data in the forward diffusion process and learning to reverse
this process. This iterative framework enables the generation of high-quality samples that closely
resemble the target data distribution. Denoising Diffusion Probabilistic Models (DDPMs) introduced
the foundational framework for diffusion-based generation, demonstrating their ability to produce
realistic images through iterative denoising [Ho et al., 2020]. Improved DDPMs further enhanced
this framework by optimizing noise schedules, learning the variance, and refining architectural
designs [Dhariwal and Nichol, 2021]. Other notable advancements include Stable Diffusion, which
integrates text conditioning with diffusion models in the latent space to generate high-resolution,
text-guided images [Rombach et al., 2021].

2.2 Discrete Diffusion Models for Graphs

Discrete diffusion models extend diffusion principles to discrete data, making them suitable for
domains such as text, categorical attributes, and graphs. Unlike continuous diffusion models, which
operate in a continuous state space, discrete diffusion models handle data in a way that respects
the inherent discreteness of the input [Austin et al., 2023, Hoogeboom et al., 2021]. When applied
to graphs, these models leverage diffusion processes to capture the complex relationships and
hierarchical structures inherent in graph-structured data. Since graphs are inherently discrete, most
diffusion models for graphs operate directly in the discrete space [Vignac et al., 2023, Chen et al.,
2023]. DiGress, a discrete denoising diffusion model, generates graphs with categorical node and
edge attributes, demonstrating strong effectiveness in handling graph-structured data [Vignac et al.,
2023]. Wang et al. [2024] further expanded DiGress by training it on graphs from multiple domains to
improve generalization. EDGE [Chen et al., 2023] is another discrete diffusion model that generates
adjacency matrices conditioned on degree distributions. By using an absorbing distribution of empty
graphs as the terminal state, EDGE reduces the number of diffusion steps, effectively addressing
graph sparsity. Together, these approaches highlight the growing potential of discrete diffusion
models for structured data generation.

2.3 Graph Representation Learning

Graph representation learning has been a central research area, focusing on transforming graph-
structured data into low-dimensional embeddings that preserve structural and semantic information.
Several approaches have been proposed to tackle the challenges of learning meaningful graph
representations, including contrastive, generative, and autoencoder-based methods. GraphCL (Graph
Contrastive Learning) introduced a self-supervised framework that leverages graph augmentations to
maximize agreement between representations of the same graph under different transformations [You
et al., 2021b]. GraphMAE (Graph Masked Autoencoder) adapts masked autoencoding, widely used
in NLP, to graphs by masking portions of the input and training the model to reconstruct them, thereby
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learning structural patterns [Hou et al., 2022]. GraphVAE (Graph Variational Autoencoder) is a
generative framework that models the probabilistic distribution of graph data; it learns latent variables
representing graph structures and attributes to compress and reconstruct graphs [Kipf and Welling,
2016]. More recently, Yang et al. [2023] applied diffusion models to graph representation learning by
extracting outputs from intermediate layers and injecting directional noise.

In this study, we propose a Discrete Diffusion Graph Autoencoder (DDGAE) for graph representa-
tion learning. Specifically, we use discrete diffusion models as decoders over adjacency matrices and
a GCN encoder to extract latent representations z. Training is performed solely through the discrete
diffusion process in the decoder, with gradients propagated back to the encoder. To enrich the learned
representations, we combine the encoder output with intermediate embeddings from the diffusion
decoder to form the final representation z.

3 Methodology

This section describes the methodology of our Discrete Diffusion Graph Autoencoder (DDGAE)
for graph-structured data. We first review the general discrete diffusion framework and then detail its
application within our graph autoencoder.

3.1 Discrete Diffusion Framework

Discrete diffusion models define a Markov chain of T diffusion steps that progressively corrupt the
input data into noise. Let x0 denote the original data and xT denote the fully noised state. The
forward process is governed by transition probabilities q(xt|xt−1), designed so that the distribution
of xt approaches a tractable noise distribution as t increases. A generative model pθ(xt−1|xt) is then
trained to reverse this process, iteratively denoising from xT to reconstruct the original data x0.

The marginal probability of the data is defined as pθ(x0) :=
∫
pθ(x0:T )dx1:T , where the joint

distribution over the diffusion trajectory is pθ(x0:T ) := pθ(xT )
∏T

t=1 pθ(xt−1|xt), and the forward
process is q(x1:T |x0) :=

∏T
t=1 q(xt|xt−1). Training maximizes the evidence lower bound (ELBO)

of the log-likelihood [Austin et al., 2023]:

E[− log pθ(x0)] ≤ Eq

[
− log

pθ(x0:T )

q(x1:T |x0)

]
. (1)

This can be expressed as a sum of KL divergences over diffusion steps:

LV B =Eq(x0)

[
DKL[q(xT |x0)||pθ(xT )]︸ ︷︷ ︸

LT

]
+

T∑
t=2

Eq(xt|x0)

[
DKL[q(xt−1|xt,x0)||pθ(xt−1|xt)]︸ ︷︷ ︸

Lt−1

]
− Eq(x1|x0)

[
log pθ(x0|x1)︸ ︷︷ ︸

L0

]
.

(2)

Here, LT contains no trainable parameters and is zero by design. The final training objective is a
linear combination of the ELBO and a term directly predicting x0, controlled by a hyperparameter λ
[Austin et al., 2023]:

Lλ = LV B + λEq(x0)Eq(xt|x0) [− log p̃θ(x0|xt)] . (3)

3.2 Discrete Diffusion Graph Autoencoder

We apply the discrete diffusion framework to graph-structured data. The input graph is denoted
G(X,A), where X contains node features and A is the adjacency matrix. An encoder network
Eϕ(G) maps the input graph to a latent representation zenc. While any graph neural network can be
used, we adopt a GCN to capture both structural and feature information effectively.

The decoder is a discrete diffusion model operating on the adjacency matrix A, conditioned on the
encoder representation zenc. During training, the adjacency matrix undergoes a forward diffusion
process, producing a noisy version At according to a predefined schedule that transforms A into an
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absorbing state of zeros. The decoder, pθ(At−1|At, zenc), iteratively reconstructs A from the noisy
state, step-by-step, conditioned on zenc. The reconstructed adjacency matrix is denoted Â.

The final graph representation z is obtained by concatenating the encoder embedding zenc with an
intermediate embedding from the UNet-based diffusion decoder. After training, a single pass through
the model suffices. First, we obtain zenc forwarding the data through the encoder; this is passed to
the decoder along with A0 to obtain the intermediate embedding, which is concatenated with zenc to
produce the final embedding z used for downstream tasks.

4 Experiments

This section outlines the experimental setup of our proposed model and the baselines. We compare
our model against relevant baselines on a graph classification task using the PROTEINS and IMDB-
BINARY datasets.

4.1 Dataset

The PROTEINS dataset comprises 1113 graphs representing proteins, each classified as either an
enzyme (class 1) or non-enzyme (class 0). The graphs have an average of 39 nodes, with each node
representing an amino acid and edges representing interactions between them. The IMDB-BINARY
dataset consists of 1000 ego-networks extracted from the Internet Movie Database (IMDB), where
each graph represents the collaboration network of actors in a movie. The graphs are classified into
two categories based on the genre of the movie. Nodes correspond to actors, and edges indicate co-
appearances in the same movie. Each graph has an average of 19 nodes and 193 edges. These datasets
provide a suitable benchmark for evaluating our model’s ability to learn meaningful representations
from graph-structured data [Morris et al., 2020].

4.2 Baselines

We compare our discrete diffusion graph autoencoder (DDGAE) against multiple baseline models
used in [Yang et al., 2023], including Infograph [Sun et al., 2019], GraphCL [You et al., 2021b],
JOAO [You et al., 2021a], GCC [Qiu et al., 2020], MVGRL [Hassani and Khasahmadi, 2020],
2020), GraphMAE [Hou et al., 2022], and DDM [Yang et al., 2023]. From supervised learning
methods, the comparisons include GIN [Xu et al., 2018].

4.3 Model Architecture and Training

Our model utilizes a Graph Convolutional Network (GCN) encoder to extract the latent representation
zenc from the input graph’s features and adjacency matrix. The node embeddings from the GCN
are aggregated using mean pooling to obtain a graph-level embedding. The decoder employs a
UNET architecture, commonly used in diffusion models [Preechakul et al., 2022], to reconstruct the
adjacency matrix from the latent representation and noise. A diffusion timestep of 32 was used for
the discrete diffusion process, and a latent size of 64 + 64 = 128 dimensions is used across our model.
The models are trained on a single Nvidia GPU T4. The training takes approximately 1 hour for each
dataset.

4.4 Evaluation

To evaluate the quality of the learned graph representations, we adopt the procedure by Yang et al.
[2023] where we first extract the representations from the models and train an SVM classifier using
10-fold cross-validation on the extracted representations z. We use classification accuracy as an
evaluation metric on how good the learned representations are across the different models. This
evaluation scheme allows us to directly assess the effectiveness of the learned representations in
capturing discriminative information for graph classification from the graph properties.
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4.5 Results

Table 1 presents the main results reporting the accuracy of the models trained on the representations
learned by each model. The baselines used are similar to Yang et al. [2023], and we evaluated our
model similarly to have a fair comparison.

Table 1: Results of supervised (top 2) and unsupervised representation learning for graph classification
datasets

Dataset IMDB-B PROTEINS

GIN 75.1±5.1 76.2±2.8

Infograph 73.03±0.87 74.44±0.31
GraphCL 71.14±0.44 74.39±0.45
JOAO 70.21±3.08 74.55±0.41
GCC 72 -
MVGRL 74.20±0.70 -
GraphMAE 75.52±0.66 75.30±0.39
DDM 76.40±0.22 75.47±0.50

DDGAE 76.90±0.03 76.28±0.05

Our DDGAE model achieves the highest test accuracy on both datasets, demonstrating the superiority
of the learned representations compared to the baseline models. This result highlights the effectiveness
of our approach in capturing the complex structural information within graph data, leading to more
discriminative and informative representations, opening a new research path towards using discrete
diffusion autoencoder models for graph representation learning.

5 Conclusion and Discussion

In this paper, we introduce a discrete diffusion graph autoencoder model (DDGAE) for learning
representations of graph-structured data. Our approach leverages the power of discrete diffusion
models to capture the complex dependencies within the graph nodes and edges. By combining this
generative framework with an encoder network, we learn a latent representation that effectively
captures the underlying structure of the graph data. This representation can be used for various
downstream tasks, such as graph generation, classification, and other use cases.

Despite the promising results, our approach has some limitations. First, the computational cost of
training diffusion-based decoders on large graphs can be significant. Second, our current model
primarily focuses on static graphs with categorical node and edge features, and does not directly
handle dynamic graphs. For future work, we plan to extend DDGAE to address these limitations
by exploring more efficient diffusion schedules, incorporating heterogeneous and temporal graph
data, and evaluating the model across a wider variety of datasets and tasks. Additionally, we aim
to investigate the integration of contrastive or self-supervised objectives to further enhance the
quality of learned representations. Overall, we believe that discrete diffusion autoencoders offer
a promising new direction for graph representation learning, and our work lays the foundation for
further exploration in this area.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our claims match the results of our experiments

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitation discussed in the conclusion section

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our equations are based on previous papers, prrofs can be found on those
papers.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Information is available to reproduce the results, plus see attached code
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Attached code has everything to reproduce the results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, described in the experiment section; other details can be found in the
attached code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Experiment has standard deviation for the different k-fold values. Couldn’t
retrain the models again due to computational resources, but have attached the code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, please look at the experiment section

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We respect and follow the Neurips Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Not required for our work

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Not required for our work

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Datasets used are cited correctly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets introduced
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not used in our work
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not required for our work
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Doesn’t involve LLMs
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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