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Abstract
Machine unlearning aims to selectively remove
specific knowledge from a trained model. Ex-
isting approaches, such as Task Arithmetic, fine-
tune the model on the forget set to create a task
vector (i.e., a direction in weight space) for sub-
traction from the original model’s weight. How-
ever, their effectiveness is highly sensitive to hy-
perparameter selection, requiring extensive vali-
dation to identify the optimal vector from many
fine-tuned candidates. In this paper, we propose
a novel method that utilizes all fine-tuned mod-
els trained with varying hyperparameters instead
of a single selection. Specifically, we aggre-
gate the computed task vectors by retaining only
the elements with consistent shared signs. The
merged task vector is then negated to induce un-
learning on the original model. Evaluations on
zero-shot and standard image recognition tasks
across twelve datasets and four backbone architec-
tures show that our approach outperforms state-of-
the-art methods while requiring similar or fewer
computational resources. Code is available at
https://github.com/naver-ai/negmerge.

1. Introduction
The Right to be Forgotten regulation (Hoofnagle et al., 2019)
allows individuals to request the deletion of their personal
data. However, applying this concept to machine learning
models is challenging because the training process deeply
embeds the data into the model’s parameters, making it
difficult to remove its influence. The most straightforward
solution is to remove the data from the training set and
retrain the model from scratch, which requires enormous
computational resources. As a result, ensuring that mod-
els selectively forget specific learned patterns becomes a
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challenging task. Machine unlearning (Koh & Liang, 2017;
Golatkar et al., 2020; Thudi et al., 2022) offers a solution
by enabling models to erase specific knowledge without the
need for full retraining.

Despite promising results, many existing methods struggle
to remove only the target knowledge while preserving the
rest. This challenge arises because fine-tuning, in its effort
to erase knowledge from the forget set (i.e., the data to be
forgotten), often disrupts the knowledge preserved in the
retain set (i.e., the remaining data) (Chen et al., 2023; Fan
et al., 2023). A known method robust to this issue is Task
Arithmetic (Ilharco et al., 2022a), which avoids directly
fine-tuning the original model. It calculates a task vector
by determining the parameter-wise difference between the
original model and a separately fine-tuned model on the for-
get set. The task vector is then subtracted from the original
model. This process, referred to as forgetting by negation,
has demonstrated strong unlearning performance while pre-
serving the model’s knowledge.

However, our findings reveal that achieving effective un-
learning performance with this method requires careful hy-
perparameter selection through a validation process. This
process is both time-consuming and computationally expen-
sive, as it involves evaluating multiple fine-tuned models
trained with different hyperparameters. Moreover, we argue
that selecting only a single model, as in existing methods (Il-
harco et al., 2022a; Ortiz-Jimenez et al., 2024), does not
guarantee optimal performance. To address this, we propose
leveraging all candidate models to effectively utilize the
information they contain, rather than selecting just one and
discarding the rest.

In this paper, we present NegMerge, a novel method that
enhances the process of forgetting by negation. Our ap-
proach computes a final task vector by merging task vectors
derived from multiple fine-tuned models. During this merg-
ing process, we preserve elements with consistent signs
across the task vectors and mask out elements with inconsis-
tent signs, setting them to zero. The subsequent steps align
with the standard forgetting by negation process, where the
final task vector is subtracted from the original model to
induce forgetting (Ilharco et al., 2022a). Our method is
inspired by model merging techniques (Wortsman et al.,
2022; Yang et al., 2023; Jang et al., 2024), which utilize
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multiple fine-tuned models produced during the validation
process. Building on this concept, we adapt it to the context
of machine unlearning.

We demonstrate the effectiveness of our method in two ex-
perimental settings. The first setting aims to make a classifi-
cation model with zero-shot recognition capabilities, such
as CLIP (Radford et al., 2021), unable to recognize specific
knowledge. The second setting focuses on removing knowl-
edge associated with a specific subset of the training data
in a standard image classification model (Chen et al., 2023;
Fan et al., 2023). We validate our method on ViT (Dosovit-
skiy et al., 2021), ResNet (He et al., 2016), VGG (Simonyan,
2014), and Swin-T (Liu et al., 2021) architectures across a
total of 12 datasets. Our approach achieves new state-of-the-
art performance while utilizing computational resources that
are comparable to or fewer than those of existing methods.

2. Related work
Machine Unlearning for Image Classification. Exist-
ing methods have been applied mainly to two tasks. The
first focuses on reducing zero-shot recognition performance
for specific knowledge in vision-language models, such as
CLIP (Ilharco et al., 2022a; Ortiz-Jimenez et al., 2024). The
second involves unlearning knowledge tied to a subset of the
training data in standard image classification models (Chen
et al., 2023; Fan et al., 2023). These two tasks have tradi-
tionally been treated as separate research areas.

In the first task, the negation method proposed in Task Arith-
metic (Ilharco et al., 2022a) is applied for unlearning. More
recently, a linear negation method based on the Neural Tan-
gent Kernel (Jacot et al., 2018; Ortiz-Jimenez et al., 2024)
has been introduced. This method enables arithmetic in the
linear space by fine-tuning the model in the tangent space.
Both approaches depend on a single fine-tuned model to
calculate task vectors, selecting the single best model from
numerous fine-tuned models derived during the validation
process.

Machine unlearning for a standard image classifier usually
involves fine-tuning the original model. Fine-tuning (War-
necke et al., 2021) and ℓ1-sparse (Jia et al., 2023) aim to
overfit the model only on the retain set to erase the knowl-
edge of the forget set. Influence (Koh & Liang, 2017) and
SalUn (Fan et al., 2023) utilize both the retain and forget
sets to selectively degrade performance on the forget set
while maintaining it on the retain set.

In many cases, the size of the forget set is significantly
smaller than that of the retain set. In such scenarios, ma-
chine unlearning methods that require the retain set can be
inefficient. This challenge has driven the development of
approaches that perform unlearning using only the forget set.
Existing methods (Golatkar et al., 2020; Chen et al., 2023)

attempt to induce forgetting by relabeling the forget set
to different classes and fine-tuning the model accordingly.
However, they often suffer from catastrophic forgetting, as
the retain set is not used during fine-tuning, leading to the
loss of its knowledge.

We propose a novel approach based on Task Arithmetic (Il-
harco et al., 2022a) that leverages multiple fine-tuned mod-
els to tackle the aforementioned challenges. By incorpo-
rating insights from these models, our method computes
a more effective task vector, enhancing unlearning perfor-
mance while preserving retain set knowledge. Notably, our
approach requires only the forget set and is effective in both
image classification tasks.

Model Merging. Model Soups (Wortsman et al., 2022) ad-
dresses the inefficiency of discarding many models during
the validation process, where only a single best model is se-
lected. They argue that merging the weights of all generated
models can improve generalization performance without ad-
ditional computational overhead. Task Arithmetic (Ilharco
et al., 2022a) introduces task vectors, showing that desired
knowledge can be effectively added to or removed from
models through simple arithmetic operations with these vec-
tors. AdaMerging (Yang et al., 2023) autonomously learns
model merging coefficients at the task or layer level and per-
forms this process without relying on the original training
data. TIES-Merging (Yadav et al., 2024) incorporates a trim-
ming stage that retains only elements with large magnitudes
during the merging process and resolves sign conflicts be-
tween elements through a voting mechanism, merging only
elements corresponding to the selected sign. MagMax (Mar-
czak et al., 2024) selects and merges only the elements
with the largest magnitude from the task vectors. Several
approaches further improve merging methods by localiz-
ing task-relevant parameters. Skill Localization (Panigrahi
et al., 2023) selects parameters with the largest changes
during fine-tuning, Localize-and-Stitch (He et al., 2024) re-
tains the top-k% parameters based on magnitude, and TALL
Mask (Wang et al., 2024) masks out parameters with small
magnitudes.

Our proposed technique merges task vectors by selecting
only elements with the same sign while masking the re-
maining elements with zero. This approach has not been
explored in existing methods, and our evaluation shows that
it is highly effective in machine unlearning.

3. Method
3.1. Background

Task Arithmetic involves defining a task vector τt, by sub-
tracting the parameters of a pre-trained model θpre from
those of a fine-tuned model θtft for a specific target task t:
τt = θtft − θpre. For handling multiple tasks simultane-
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Figure 1. Hyperparameter Sensitivity in Negation Methods.
Each point in (a) represents the accuracy on the forget and re-
tain sets, with the error rate (calculated as 1 − accuracy) used
for the forget set to improve visibility. Green points indicate re-
sults from models fine-tuned with various hyperparameter settings,
while points in other colors show results from different methods.
Ours breaks the trade-off between unlearning and retaining perfor-
mance. Panel (b) presents the accuracy distribution on the forget
set across different hyperparameter choices, which vary by up to
15 percentage points. Both (a) and (b) are based on the CLIP
ViT-B/32 model, where (a) focuses on the Cars dataset, and (b)
includes experiments across eight datasets.

ously, task vectors from individual tasks can be combined
as τ =

∑
t τt. This combined vector enables the model to

be adjusted in a desired direction by modifying the original
model’s weights. The updated model weights are computed
as: θnew = θpre ± λτ , where λ is a scaling hyperparameter
that controls the magnitude of adjustment.

A key application of Task Arithmetic (Ilharco et al., 2022a)
is to make a model forget certain capabilities. This can be
achieved through the negation of a task vector from the orig-
inal weight, which decreases performance on a target task.
For example, Task Arithmetic can be applied to unlearn-
ing in models such as CLIP (Radford et al., 2021), which
is known for its strong zero-shot recognition capabilities.
Task Arithmetic demonstrated that a task vector derived
from a CLIP model fine-tuned on a specific dataset (e.g.,
Cars) can reduce the model’s accuracy on that dataset while
maintaining its overall accuracy on a general dataset (e.g.,
ImageNet). While Task Arithmetic has shown promise in
machine unlearning, limited research has explored how to
compute a task vector specifically optimized for unlearning.
Our research aims to address this gap.

Motivation. Through our pilot study, we identified two
major challenges in obtaining effective task vectors for un-
learning. First, it is challenging to balance reducing accu-
racy on the forget set while maintaining accuracy on the
retain set. As shown in Figure 1 (a), hyperparameter sets

that preserve retain set performance tend to exhibit poor
unlearning performance, and vice versa. To address this, we
propose a method that leverages multiple models to combine
their strengths, which a single model alone cannot achieve.
Figure 1 (a) shows that our method overcomes this trade-
off. In contrast, existing merging methods such as Uniform
Merge and Greedy Merge (Wortsman et al., 2022), TIES-
Merging (Yadav et al., 2024), and MagMax (Marczak et al.,
2024) struggle with this trade-off, highlighting the need for
a merging strategy designed for unlearning. The full results
for all eight datasets are provided in Figure B1.

Second, unlearning performance is highly sensitive to the hy-
perparameter settings used during fine-tuning. As shown in
Figure 1 (b), accuracy on the forget set can vary by up to 15
percentage points depending on the hyperparameters. This
sensitivity not only affects performance stability but also
makes the tuning process time-consuming and computation-
ally expensive, as it requires additional tuning of the scaling
hyperparameter λ for each fine-tuned model. However, our
method mitigates the sensitivity by merging all fine-tuned
models obtained from diverse hyperparameter configura-
tions. This strategy is inspired by Model Soups (Wortsman
et al., 2022), which shows that averaging the weights of inde-
pendently fine-tuned models can improve performance and
robustness. The key idea is that different hyperparameter
choices introduce independent variations, and merging helps
cancel out noise from any single run. As a result, Figure 1
(a) shows that our method achieves stronger unlearning per-
formance, while significantly reducing the time needed for
scaling hyperparameter tuning by merging models derived
during validation. Discussions of the computational costs
are described in Section 3.3.

3.2. The Proposed Method: NegMerge

We propose a method to achieve effective unlearning by
integrating task vectors, given that multiple models are fine-
tuned on the forget set under various training configurations.
A detailed description of each step is provided below, and
Figure 2 illustrates the overview of our method.

Step 1) Calculating Diverse Task Vectors. As previ-
ously mentioned, machine unlearning based on Task Arith-
metic (Ilharco et al., 2022a) is highly sensitive to hyperpa-
rameters, making it essential to identify optimal hyperparam-
eters through validation. In standard validation processes,
various training configurations are employed, such as ad-
justing hyperparameters like the learning rate or applying
additional data augmentation techniques, to derive multiple
models. Our study emulates such validation procedures to
construct a model pool, which is then utilized to calculate
diverse task vectors. Importantly, we restrict the number
of models to the typical range used in hyperparameter vali-
dation (10 to 30 models), ensuring that the use of multiple
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Figure 2. Illustration of the proposed method. NegMerge enhances Task Arithmetic by computing an improved task vector. Specifically,
1) task vectors derived from multiple fine-tuned models trained with different hyperparameters are utilized. 2) We compute the improved
task vector by merging (⊕) only the elements that retain a consistent sign across task vectors while masking elements with differing signs
to zero. 3) This refined task vector is used for negation from the original model. The color intensity in the cells reflects the magnitude of
the task vector elements; darker blue represents larger positive values, lighter blue indicates smaller positives, while darker red represents
larger negative values, and lighter red indicates smaller negatives.

models does not introduce additional computational over-
head. Detailed information on this approach is provided in
Section 4.1.

Step 2) Identifying Task Vector Elements for Forget Set.
After deriving task vectors from the fine-tuned models, we
analyze them to determine which elements correspond to
the forget set. We conjecture that elements that consistently
show the same sign across task vectors are attributed to the
forget set, as each model is trained to align with this set,
regardless of the training configurations. On the other hand,
components that exhibit inconsistent signs are considered
less related to the forget set, as their variations are more
likely a result of different training configurations rather than
supervision from the forget set. Our conjecture regarding
sign conflicts is supported by the unlearning performance
reported in Table 3 and qualitative results in Figure 3.

Step 3) Final Task Vector for Negation. We compute the
final task vector using the following formulation:

τmerged =
1

n

n∑
k=1

(τk ⊙ 1sign-consistent) , (1)

where n is the number of task vectors, ⊙ denotes the
Hadamard product (element-wise multiplication), and the
vector 1sign-consistent acts like a filter, containing 1 for ele-
ments where the signs of the corresponding components
across all task vectors τk are the same and 0 where the signs
differ1. As a result, only the components with consistent

1This operation is based on sign unanimity and could be ad-

signs across all task vectors contribute to the final task vec-
tor, while those with differing signs are excluded by being
set to zero. We then perform unlearning by negating this
final task vector to the original model (Ilharco et al., 2022a).
Theoretical analysis is provided in Appendix E.

3.3. Analysis on Computational Cost

We analyze the computational cost from four perspectives:
inference time complexity, merge time, storage, and runtime
memory. All compared methods, including Task Arith-
metic (Ilharco et al., 2022a), share the same model pool,
ensuring no additional computational overhead from using
multiple models. To simulate a realistic validation process,
we vary the number of fine-tuned models (n) between 10 and
30. As shown in Table 4, our method consistently demon-
strates robustness to the number of fine-tuned models.

Inference Time Complexity. The standard setup for task
vector negation-based methods (Ilharco et al., 2022a; Ortiz-
Jimenez et al., 2024) involves performing inference with
m different scaling coefficients λ for each of the n fine-
tuned models. Specifically, this process requires m = 20
inferences per model in prior works (Ilharco et al., 2022a;
Ortiz-Jimenez et al., 2024), resulting in a significant compu-
tational cost of O(mn). In contrast, our method performs
inference only m times on a single merged task vector, re-
ducing the computational cost to O(m). While Task Arith-

justed with additional hyperparameters to allow partial consensus;
however, we opt for a simpler approach.

4



NegMerge: Sign-Consensual Weight Merging for Machine Unlearning

metic employs a single model during its final stage, achiev-
ing optimal performance with this approach entails greater
computational demands compared to our method. This
demonstrates the computational advantages of our approach
over competing methods.

Merge Time. Our method requires checking the sign of
elements across task vectors, making it slower than sim-
pler approaches such as MagMax (Marczak et al., 2024),
which identifies only the maximum values, or Uniform
Merge (Wortsman et al., 2022), which averages task vectors.
However, it is much faster than methods that rely on more
complex operations, such as TIES-Merging (Yadav et al.,
2024) or Greedy Merge (Wortsman et al., 2022). Detailed
comparisons are provided in Table 1.

Storage. Our approach might initially seem storage-
intensive, as it involves storing all fine-tuned models for
merging. However, this is not the case in practice. Rather
than saving every fine-tuned model, we dynamically update
a mask, 1sign-consistent, based on the sign consensus of each
element when a new model is trained. This eliminates the
need to store all fine-tuned models. Consequently, the pro-
posed technique achieves more effective unlearning while
maintaining the same storage requirements as traditional
single-model-based methods. By contrast, methods like
TIES-Merging cannot utilize such a mechanism, further
underscoring the advantages of our approach.

Runtime Memory. Our method provides a clear advantage
in runtime memory efficiency. As demonstrated in Table 4, a
large proportion of the weights in the task vector are zeroed
out during the merging process, with only 5–10% of the total
weight elements remaining active. This significant sparsity
enables lightweight memory management techniques, like
weight lookup tables, which store only the active weights
and further reduce runtime memory consumption. As a
result, our method achieves superior efficiency compared to
baseline approaches.

4. Experiments
4.1. Experimental Setups

Two Unlearning Scenarios. We examine two distinct un-
learning scenarios. The first involves a vision-language
model, such as CLIP (Radford et al., 2021), being made to
forget the knowledge associated with a specific dataset. The
second scenario focuses on a standard image classification
network trained with cross-entropy loss, where the model
is instructed to forget knowledge of particular data points
within its training set. The specific implementation details
for each scenario are provided in Appendix A.

Datasets and Backbones. In the CLIP scenario, we follow
the training and evaluation protocols from the Task Arith-

metic paper (Ilharco et al., 2022a). We assess unlearning
performance on eight datasets: SUN397 (Xiao et al., 2016),
Cars (Krause et al., 2013), RESISC45 (Cheng et al., 2017),
EuroSAT (Helber et al., 2019), SVHN (Yuval, 2011), GT-
SRB (Stallkamp et al., 2011), MNIST (LeCun, 1998), and
DTD (Cimpoi et al., 2014), while using ImageNet (Deng
et al., 2009) as the retain set to evaluate retaining perfor-
mance. All experiments are conducted using pre-trained
CLIP ViT-{B/32, B/16, L/14} models (Radford et al., 2021).
In the standard classifier scenario, we evaluate unlearning
performance on CIFAR-10 (Krizhevsky et al., 2009), CUB-
200-2011 (Wah et al., 2011), and Tiny ImageNet (Le &
Yang, 2015) using ResNet-18 (He et al., 2016), VGG-16 (Si-
monyan, 2014), and Swin-T (Liu et al., 2021) models.

Baselines and Metrics. For the CLIP scenario, we com-
pare our method with five existing methods: Task Arith-
metic (Ilharco et al., 2022a), Uniform Merge and Greedy
Merge (Wortsman et al., 2022), TIES-Merging (Yadav et al.,
2024), and MagMax (Marczak et al., 2024). For Greedy
Merge, we rank models by their loss on the retain set and
merge them in a direction that minimizes this loss. We eval-
uate performance by measuring accuracies on the forget set
Df and the retain set Dr. In the standard classifier scenario,
we follow SalUn (Fan et al., 2023) to compare our method
against eight unlearning techniques: Fine-tuning (Warnecke
et al., 2021), Random Labeling (Golatkar et al., 2020), Gra-
dient Ascent (Thudi et al., 2022), Influence Unlearning (Koh
& Liang, 2017), ℓ1-sparse (Jia et al., 2023), Boundary Shrink
and Expand (Chen et al., 2023), and SalUn. In addition, we
include merging-based baselines Task Arithmetic, Uniform
Merge, TIES-Merging, and MagMax. Greedy Merge is in-
feasible for comparison in this scenario when using only the
forget set. The objective is to match the unlearned model’s
performance to that of a fully retrained model. We use the
accuracies of the retain set Dr, forget set Df , and test set
Dtest to evaluate performance. To assess privacy protec-
tion, we employ the Membership Inference Attack (MIA)
metric (Carlini et al., 2022), following the MIA-Efficacy
metric from (Fan et al., 2023; Jia et al., 2023). Higher MIA-
Efficacy implies more unlearning, as it measures how much
less information the model retains about the forget data.

4.2. Experimental Results

CLIP Unlearning Scenario. Table 1 presents the evalua-
tion results across three CLIP models (ViT-B/32, ViT-B/16,
and ViT-L/14). Note that the retain set (Dr) accuracies for
all methods remain around 60%, as we follow Task Arith-
metic (Ilharco et al., 2022a) to ensure the model retains
at least 95% of the pre-trained model’s original accuracy
(66.66%) on the validation set. This allows for a direct
comparison of forget set accuracies.

Our method achieves the best reduction in accuracy on the

5



NegMerge: Sign-Consensual Weight Merging for Machine Unlearning

Table 1. Unlearning Performance on CLIP ViT Models. Results are shown for CLIP ViT-{B/32, B/16, L/14}, reporting average
accuracy (%) on the eight datasets we wish to forget (Cars, DTD, EuroSAT, GTSRB, MNIST, RESISC45, SUN397, and SVHN), and the
general dataset to retain (ImageNet). ∗ indicates that the numbers are borrowed from the original papers. † denotes the best performance
achieved through hyperparameter search. ‡ combines models in descending order of losses. Time denotes the merging time, measured in
seconds, taken to merge 30 models on the Cars dataset using CLIP ViT-B/32, which is averaged over three runs. NegMerge consistently
achieves the lowest forget set accuracy across all backbones, indicating strong unlearning performance.

Method ViT-B/32 ViT-B/16 ViT-L/14 Time (sec)

Acc Df (↓) Acc Dr Acc Df (↓) Acc Dr Acc Df (↓) Acc Dr

Pre-trained 48.13 63.33 55.49 68.32 65.19 75.54 -

Task Arithmetic
Paper number∗ 24.00 60.90 21.30 65.40 19.00 72.90 -
Single Best Model† 23.63 60.60 20.64 64.04 19.17 72.09 -
Uniform Merge 22.50 60.55 21.51 64.60 18.10 71.91 12±0.1

Greedy Merge‡ 23.31 60.75 21.34 64.54 17.71 71.99 607±2.6

TIES-Merging 26.21 61.08 23.78 64.72 22.70 72.41 128±10.1

MagMax 25.24 60.95 24.45 64.78 21.71 72.55 24±1.8

NegMerge (ours) 20.76 60.36 19.24 64.54 17.32 72.08 37±1.2

Linear Task Arithmetic
Paper number∗ 10.90 60.80 11.30 64.80 - - -
Single Best Model† 8.88 60.16 6.92 64.62 - - -
Uniform Merge 9.12 60.47 6.84 65.26 - - 19±2.3

Greedy Merge‡ 8.73 60.27 6.80 64.72 - - 1696±35.3

TIES-Merging 10.66 60.38 8.44 65.12 - - 378±8.0

MagMax 11.33 60.67 8.65 65.17 - - 164±2.4

NegMerge (ours) 8.03 60.58 6.60 65.40 - - 194±1.6

forget set Df across all backbones, which demonstrates its
generalizability regardless of model size. Specifically, for
CLIP ViT-B/32, our method reduces the forget set (Df ) ac-
curacy to 20.76%, outperforming Task Arithmetic (23.63%),
Uniform Merge (22.50%), and Greedy Merge (23.31%).
Our method maintains strong performance across different
model variants. For CLIP ViT-B/16, it reduces forget set ac-
curacy to 19.24%, outperforming Task Arithmetic (20.64%).
Similarly, for CLIP ViT-L/14, our approach achieves the
best forget set performance, lowering accuracy to 17.32%.
In contrast, MagMax and TIES-Merging exhibit weaker
unlearning performance.

Regarding merging time, our method requires slightly more
time than Uniform Merge and MagMax but offers signif-
icantly better effectiveness. Furthermore, while Greedy
Merge (Wortsman et al., 2022) and TIES-Merging (Yadav
et al., 2024) are considerably slower, our method outper-
forms them by a large margin in accuracy.

To provide a more comprehensive evaluation of our method,
we employ Linear Task Arithmetic, where Neural Tangent
Kernel (NTK) (Jacot et al., 2018; Ortiz-Jimenez et al., 2024)
is applied to the standard Task Arithmetic (Ilharco et al.,
2022a). The experimental results are presented in the lower
part of Table 1, where we conduct evaluations using the
CLIP ViT-B/32 and ViT-B/16 backbones. Due to computa-
tional resource constraints, we are unable to include results

for ViT-L/14. Our method achieves the best unlearning per-
formance, while the second-best method, Greedy Merge,
requires significantly more time for merging (1696.5 and
194.2, respectively).

Full results for all eight datasets and three CLIP models are
provided in Appendix B.1.

Standard Classifier Unlearning Scenario. Table 2
presents a comparison of various unlearning techniques
on CIFAR-10 using ResNet-18. In this task, we randomly
select 10% of the training set as the forget set. The goal is
to make the model forget the knowledge associated with the
forget set while maintaining its performance on the retain
set. The fully retrained model serves as the ideal benchmark
for forget, retain, and privacy tasks. Following SalUn (Fan
et al., 2023), we report the Avg. Gap metric to evaluate how
closely each unlearning method replicates the performance
of the retrained model across key metrics such as Acc Dr

(accuracy on the retain set), Acc Df (accuracy on the forget
set), Acc Dtest (accuracy on the test set), and MIA score.

Our method achieves an average gap of 1.07, effectively
unlearning the required knowledge while causing minimal
degradation to the overall model performance. In compar-
ison, SalUn, which utilizes all data splits for unlearning,
achieves a slightly higher average gap of 1.15. Notably,
our approach, relying solely on the forget set, outperforms
SalUn, demonstrating superior efficiency in unlearning with-
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Table 2. Unlearning Performance for 10% Random Data Forgetting on CIFAR-10 using ResNet-18. The results are reported as a±b,
representing the mean (a) and standard deviation (b) across three independent trials. The Avg. Gap is the average performance difference
between each unlearning model and the Retrain model, measured across Acc Dr , Acc Df , Acc Dtest, and MIA. (≃) denotes that smaller
performance differences from the Retrain model are preferred. ∗ indicates that the numbers are borrowed from (Fan et al., 2023). †

denotes the best results achieved through hyperparameter search. NegMerge achieves the lowest Avg. Gap, indicating performance
closest to the Retrain model, which serves as the ideal benchmark.

Method Used Splits Acc Dr(≃) Acc Df (≃) Acc Dtest(≃) MIA(≃) Avg. Gap(↓)

Retrain * retain 100.00±0.00 94.76±0.69 94.26±0.02 12.88±0.09 0.00

Random Labeling *
all

99.67±0.14 92.39±0.31 92.83±0.38 37.36±0.06 7.15
Influence * 99.20±0.22 98.93±0.28 93.20±1.03 2.67±0.01 4.06
SalUn * 99.62±0.12 97.15±0.43 93.93±0.29 14.39±0.82 1.15

Finetune * retain 99.88±0.08 99.37±0.55 94.06±0.27 2.70±0.01 3.78
ℓ1-sparse * 97.74±0.33 95.81±0.62 91.59±0.57 9.84±0.00 2.26

Gradient Ascent *

forget

99.50±0.38 99.31±0.54 94.01±0.47 1.70±0.01 4.12
Boundary Shrink * 98.29±2.50 98.22±2.52 92.69±2.99 8.96±0.13 2.67
Boundary Expanding * 99.42±0.33 99.41±0.30 93.85±1.02 7.47±1.15 2.76
Random Labeling 99.99±0.00 99.98±0.02 95.04±0.11 2.15±1.94 4.19
SalUn 99.88±0.04 99.89±0.04 94.42±0.05 9.51±2.07 2.20

Task Arithmetic

forget

Single Best Model† 98.36±0.51 94.85±0.16 91.49±0.80 10.91±0.72 1.62
Uniform Merge 98.70±0.91 95.83±2.17 92.36±1.16 10.14±2.93 1.75
TIES-Merging 98.38±0.17 95.45±0.32 92.23±0.14 9.36±0.31 1.96
MagMax 98.38±0.12 97.97±0.77 91.53±0.00 8.45±2.60 3.00
NegMerge (ours) 99.15±0.24 96.63±0.59 92.71±0.39 12.87±1.29 1.07

out depending on the retain set. In contrast, Task Arithmetic
and merging methods, including Uniform Merge, TIES-
Merging, and MagMax, exhibit larger gaps of 1.62, 1.75,
1.96, and 3.00, respectively. These results highlight that our
method achieves a better balance between unlearning and
preserving knowledge in the retain set. Furthermore, our
approach ensures strong privacy protection, achieving an
MIA score of 12.87, nearly identical to that of the retrained
model. This demonstrates that the model effectively forgets
targeted data without introducing privacy vulnerabilities.

Additional experiments are provided in Appendix B.3. We
evaluate unlearning methods on CUB (Wah et al., 2011) and
Tiny ImageNet (Le & Yang, 2015), demonstrating the ef-
fectiveness of NegMerge under diverse datasets (Table B8,
Table B9). We also assess generalizability across back-
bone architectures by evaluating unlearning methods on
VGG-16 (Simonyan, 2014) and Swin-T (Liu et al., 2021),
where NegMerge consistently performs well (Table B10,
Table B11). Finally, NegMerge maintains its advantage in
different unlearning scenarios, including 50% random for-
getting and class-wise forgetting, confirming its scalability
and robustness (Table B12, Table B13).

4.3. Ablation Studies

Effect of Sign Conflict on Unlearning Performance. We
argue that elements with consistent signs across multiple
task vectors correspond to knowledge related to the forget

Table 3. Impact of Sign Consensus Across Task Vectors. The
results present unlearning performance across multiple datasets,
comparing three different methods. “All”, Uniform Merge, uses
all indices without regard to sign conflict, “Conflict” uses only
indices with conflicting signs, and “Consensus”, our proposed
method, uses only indices with consistent signs across task vectors.
The Conflict method degrades unlearning performance, while Con-
sensus performs best, confirming the effectiveness of using only
sign-consistent elements.

Method Cars DTD SUN397

Df (↓) Dr Df (↓) Dr Df (↓) Dr

All 31.7 60.4 29.6 60.6 51.4 60.5
Conflict 40.2 60.2 31.9 60.3 58.3 60.9
Consensus 27.4 60.4 27.2 60.5 47.2 60.6

set, while elements with conflicting signs are less relevant
to the forget set. To verify this, we compare unlearning
performance when our method is applied in reverse. The
experimental results are shown in Table 3. We use the CLIP
ViT-B/32 model and the standard Task Arithmetic (Ilharco
et al., 2022a). The All method refers to the Uniform Merge
approach, which uses all elements without considering sign
consensus. The Conflict method uses only elements with
conflicting signs, while our proposed Consensus method
uses only elements with consistent signs. The results show
that the Conflict method significantly degrades unlearning
performance, while the All method performs better than Con-
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(a) Image (b) Original model (c) Conflict (d) Consensus

Figure 3. Visualization of the Impact of Sign Consensus. Grad-
CAM visualizations on the RESISC45 dataset compare the Con-
flict, Consensus, and original models. The first and second rows
correspond to the cloud and airplane classes, respectively. Red
areas indicate strong class relevance, while blue areas indicate
weaker relevance. The Consensus model exhibits lower activation
in class-relevant regions, indicating more effective unlearning.

flict but is outperformed by our Consensus method. These
experimental results indicate that the design choice of merg-
ing only sign-consistent elements is effective. Full results
are provided in Table B6.

In Figure 3, we demonstrate the effectiveness of our method
using Grad-CAM (Selvaraju et al., 2017) visualizations on
the RESISC45 dataset. We compare the Conflict and our
Consensus methods, and include visualizations of the orig-
inal model as a baseline. The red areas represent regions
where the model strongly associates with the class label,
while the blue areas indicate regions with less relevance.
In the first row (cloud class), we observe that the Conflict
method directs the model’s attention to the cloud’s loca-
tion, resembling the behavior of the original model. In
contrast, our method does not highlight the cloud’s area,
which suggests that the model has successfully forgotten
its knowledge of the cloud. The same pattern appears in
the second row for the airplane class. These visual results
demonstrate that our proposed method is more effective for
machine unlearning.

Ratio of Zeroed Elements in the Merged Vector. The
proposed method masks out all elements that do not exhibit
consistent signs across multiple task vectors, leaving only
those with consistent signs. In Table 4, we investigate the
proportion of zeroed-out elements in the final task vector
τ , where “zeroed-out” includes both elements that were
already zero (e.g., due to freezing during fine-tuning) and
those masked during merging. Our observations show that
as the number of merged models increases, the proportion of
masked elements also increases, meaning that the sparsity
of the final task vector τ increases with the inclusion of
more models. Ultimately, the task vectors generated by our
method modify only 5–10% of the weight elements in the

Table 4. Sparsity and Unlearning Performance. The results re-
port the sparsity (i.e., the percentage of zeroed elements in the final
task vector τ , denoted as %), Acc Df , and Acc Dr , averaged over
three runs using ViT-B/32. # indicates the number of task vectors
used for merging. As more task vectors are merged, sparsity in-
creases and Acc Df decreases, indicating improved unlearning
performance.

# Cars DTD SUN397

% Df (↓) Dr % Df (↓) Dr % Df (↓) Dr

30 90.3 27.4 60.4 92.9 27.2 60.5 92.2 47.2 60.6
25 89.7 26.6 60.2 92.2 27.3 60.5 91.7 47.0 60.4
20 88.8 26.1 60.1 91.5 27.1 60.4 90.9 47.8 60.6
15 87.5 26.0 60.0 90.2 27.7 60.4 89.6 47.7 60.5
10 84.9 26.6 59.9 87.5 27.8 60.4 87.2 48.7 60.6
5 77.1 30.5 60.4 79.9 28.8 60.5 81.5 49.7 60.5

Table 5. Performance of Task Vector Addition. The evaluated
models are obtained by adding task vector τ to the original model.
∗ denotes our reproduced results based on the configurations from
(Ilharco et al., 2022a). † represents the single model’s best results
achieved through hyperparameter tuning, including adjustments
to data augmentation. ‡ combines models in descending order of
losses. NegMerge achieves high performance on both the forget
and retain sets.

Method Cars DTD SUN397

Df (↑) Dr(↑) Df (↑) Dr(↑) Df (↑) Dr(↑)

Pretrained 59.6 66.7 43.9 66.7 63.3 66.7

Task Arithmetic
Paper config∗ 85.0 58.6 78.7 49.3 74.9 59.8
Single Best† 86.6 52.7 76.9 48.4 76.5 55.7
Uniform Merge 87.2 55.3 79.0 52.8 76.0 57.1
Greedy Merge‡ 87.5 55.2 79.3 52.8 76.2 57.1
NegMerge (ours) 87.1 61.7 76.3 63.0 76.3 63.4

original model via negation, and interestingly, as sparsity
increases, unlearning performance also improves. This sug-
gests that leveraging a larger number of task vectors enables
more accurate identification of specific elements correspond-
ing to the forget set, allowing us to minimize performance
degradation on the retain set. The full results are provided
in Table B7. It is noteworthy that other merging methods
have significantly fewer zeroed-out elements, resulting in
lower unlearning performance, as shown in Table C2.

Results of Task Vector Addition. To better understand
the characteristics of task vectors derived from our method
and comparative techniques, we add these task vectors to
the original model. The experimental results, presented in
Table 5, reveal several key observations.

Most existing methods achieve high performance on the
forget set but suffer significant degradation on the retain
set. In contrast, our method maintains high performance on
the retain set, which we consider a key factor in effective
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Table 6. Sparsity by Layer Depth. Transformer layers are
grouped into three depth ranges, and the average sparsity (%)
is reported for each range across 30 models trained on the Cars
dataset. Shallower layers exhibit higher sparsity.

Layer Group ViT-B/32 ViT-L/14

Range % Range %

Shallow 0 – 3 73.4 0 – 7 83.5
Middle 4 – 7 68.4 8 – 15 76.4
Deep 8 – 11 62.9 16 – 23 73.3

machine unlearning. Specifically, for effective machine
unlearning, the task vector must adjust the knowledge of the
forget set while minimizing its impact on the retain set. Our
experimental results demonstrate that our method effectively
meets this requirement.

This characteristic of our approach appears to be closely
related to the high sparsity of the task vector. As shown
in Table C2, while other techniques modify 50–60% of
the parameters, our method adjusts only 5–10%, enabling
precise modification of performance on the forget set while
minimizing the impact on the retain set. This finding is
expected to aid future research in machine unlearning, and
we plan to explore it further.

NegMerge with Different Model Pools. To evaluate the
robustness of the proposed method to the composition of the
model pool, we observe its performance using model pools
constructed with various training configurations. Specif-
ically, we conduct experiments by creating model pools
with hyperparameter search spaces different from the origi-
nal experimental setting. The results demonstrate that the
proposed technique consistently outperforms the baseline,
regardless of the model pool composition method. This
indicates that the proposed method is robust to the compo-
sition of the model pool. The full experimental results are
provided in Appendix D.

Different Merging Operations. Our method computes the
final task vector by averaging the task vectors, as shown in
Equation (1). The experimental results of using max or min
operations instead of averaging are presented in Table C1.
The results indicate that both max and min operations also
improve unlearning performance compared to the baseline.
However, our avg operation achieves the best performance.
We hypothesize that averaging smooths out potential outliers
in individual models during merging, resulting in a more
stable and effective task vector.

Ratio of Zeroed Elements by Layer Depth. As shown in
Table 6, sparsity, defined as the ratio of zeroed elements,
decreases with layer depth in both ViT-B/32 and ViT-L/14.
Shallower layers show higher sparsity, suggesting that they
are more sensitive to hyperparameter variations and thus
experience greater conflict across task vectors. We hypothe-

size that this is because general knowledge, parameterized
within shallow layers, is more susceptible to distortion dur-
ing fine-tuning. In contrast, deeper layers with task-specific
knowledge are more robust to such variations (Morcos et al.,
2018; Kornblith et al., 2019). These findings motivate future
research on layer-wise unlearning strategies.

We further examine the sparsity across different components
in Table C3. We also discuss the broader applicability of
our method to LLMs and VLMs in Appendix F.

5. Conclusion and Limitation
We propose NegMerge, a novel machine unlearning tech-
nique that merges and leverages all fine-tuned models gener-
ated during validation, rather than discarding all but one. By
introducing a sign consensus approach to identify and iso-
late parameters associated with the forget set, NegMerge
modifies only the parameters strongly related to the for-
get set, achieving effective unlearning while preserving the
knowledge of the retain set. NegMerge achieves state-of-
the-art performance across 12 datasets and 4 architectures.
Additionally, by improving the validation process of existing
techniques, NegMerge effectively leverages multiple mod-
els without requiring additional computational resources.
Although empirically validated, NegMerge currently lacks
theoretical justification. Future work will focus on theoreti-
cal validation and analytical insights for method extension.
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Appendix
This appendix includes the following materials: 1) Implementation Details (Appendix A), 2) Further Experimental Results
(Appendix B), 3) Additional Ablation Studies (Appendix C), 4) Results in Diverse Model Pool (Appendix D), 5) Theoretical
Analysis (Appendix E), 6) Applicability Beyond Image Classification (Appendix F).

A. Implementation Details
In the CLIP scenario, for fine-tuning, we set the batch size to 128 and use a learning rate of 1e-5 with a cosine annealing
schedule. We utilize the AdamW optimizer, applying a weight decay of 0.1. Following Task Arithmetic (Ilharco et al.,
2022a), we freeze the final classification layer of CLIP’s text encoder during fine-tuning. With the observation that freezing
the classification layer does not affect accuracy (Ilharco et al., 2022b), we do not consider unfreezing the final layer of
CLIP’s text encoder. Attention layers are also frozen (Ye et al., 2023; Tang et al., 2024). We fine-tune the models by
adjusting the configurations of RandAugment. Specifically, we vary the number of sequential augmentation transformations
(ranging from 1 to 3) and the magnitude of these transformations (ranging from 1 to 10). A total of 30 models are fine-tuned.
Unlike previous works, we incorporate data augmentation directly into the fine-tuning process, which requires adjusting the
number of training epochs to better accommodate the augmented data. Consequently, the number of training epochs is set as
follows: 70 epochs for Cars, 100 epochs for DTD, 40 epochs for EuroSAT, GTSRB, RESISC45, SUN397, and 30 epochs
for MNIST and SVHN.

In the standard image classifier unlearning scenario, we fine-tune models with varied hyperparameters. For CIFAR-10, we
use ResNet-18 with a batch size of 256 and a learning rate of 0.05, and VGG-16 with a batch size of 64 and a learning rate
of 0.01. Instead of data augmentation, we adjust training settings, setting the number of epochs to 40, 50, or 60, weight
decay to 1e-4, 5e-5, and 1e-5, and label smoothing to 0, 0.05, or 0.1, resulting in 27 fine-tuned models. Similarly, for CUB
with ResNet-18, we use a batch size of 64, a learning rate of 0.01, and vary epochs to 5, 10, or 20, weight decay to 1e-4,
5e-5, and 1e-5, and label smoothing to 0, 0.05, and 0.1, producing another 27 models.

B. Further Experimental Results
B.1. Full Results

Table B1, Table B2, and Table B3 show the full accuracy results for the eight datasets (Cars, DTD, EuroSAT, GTSRB,
MNIST, RESISC45, SUN397, and SVHN) and the three CLIP models we examine. Similarly, Table B4 and Table B5
provide accuracy results for Linear Task Arithmetic (Ortiz-Jimenez et al., 2024) on these datasets for two CLIP models.

Table B1. ViT-B/32 Task Arithmetic Results.

Method Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN

Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr

Task Arithmetic† 29.0 59.9 30.4 60.8 10.4 60.9 9.1 60.9 21.2 60.6 30.7 60.8 50.6 59.9 7.6 60.9
Uniform Merge 31.7 60.4 29.6 60.6 8.9 60.8 7.0 60.0 20.5 61.4 23.8 60.1 51.4 60.5 7.3 60.7
Greedy Merge‡ 31.0 60.3 29.5 60.6 9.4 60.8 8.4 60.5 21.3 62.0 28.3 60.7 51.4 60.4 7.2 60.7
TIES-Merging 34.0 60.3 33.1 61.3 11.6 61.1 10.2 61.3 26.1 62.4 33.4 61.0 53.8 60.3 7.5 60.9
MagMax 35.6 60.6 31.9 61.1 10.5 60.7 8.4 60.8 20.1 60.7 30.7 60.6 55.4 61.1 9.3 62.0

NegMerge (ours) 27.4 60.4 27.2 60.5 7.9 60.2 6.2 60.0 20.5 59.9 22.6 60.5 47.2 60.6 7.2 60.9

Table B2. ViT-B/16 Task Arithmetic Results.

Method Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN

Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr

Task Arithmetic† 31.6 63.8 26.1 63.8 7.6 64.3 7.7 64.5 8.9 64.0 27.2 64.4 49.1 63.7 6.9 63.9
Uniform Merge 32.9 64.6 26.3 64.5 9.8 64.8 7.0 64.1 13.9 65.0 25.6 64.7 49.7 64.6 6.9 64.7
Greedy Merge‡ 32.9 64.6 25.0 63.7 9.9 64.7 7.0 64.1 12.4 64.8 25.6 64.6 51.1 65.1 6.9 64.7
TIES-Merging 39.4 65.0 27.4 64.0 10.2 64.8 8.6 64.6 11.1 64.9 33.6 65.3 53.2 64.8 6.7 64.3
MagMax 38.4 64.8 26.6 63.9 10.2 65.0 9.0 64.9 14.6 64.4 36.6 66.0 53.5 65.0 6.7 64.3

NegMerge (ours) 28.8 64.8 25.2 64.5 9.8 65.9 7.1 64.4 10.7 63.8 20.3 63.9 45.2 64.4 7.0 64.6
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Table B3. ViT-L/14 Task Arithmetic Results.

Method Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN

Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr

Task Arithmetic† 34.6 72.2 24.7 71.3 5.4 72.5 3.0 71.6 10.3 73.6 17.0 71.7 51.6 71.9 6.7 71.9
Uniform Merge 29.1 71.8 23.5 71.4 8.2 72.1 3.1 71.5 9.9 72.4 13.9 71.5 50.5 72.3 6.7 72.2
Greedy Merge‡ 28.2 71.5 23.9 71.5 7.3 73.0 3.1 71.7 9.9 72.8 11.5 71.0 51.1 72.3 6.8 72.1
TIES-Merging 48.2 73.1 25.5 71.5 9.2 72.4 4.1 72.6 10.3 73.0 21.0 72.0 56.6 72.8 6.8 71.9
MagMax 39.2 72.0 28.7 72.7 9.9 73.6 4.2 72.5 10.7 73.5 20.6 72.2 53.7 72.1 6.7 71.9

NegMerge (ours) 32.7 71.9 23.9 71.9 9.1 72.1 2.8 71.3 10.9 73.6 8.8 70.9 43.6 72.1 6.8 72.8

Table B4. ViT-B/32 Linear Task Arithmetic Results.

Method Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN

Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr

Task Arithmetic† 13.5 60.2 15.2 59.7 0.1 60.3 0.2 60.2 0.1 61.0 2.6 59.6 38.8 59.9 0.7 60.5
Uniform Merge 14.2 60.4 15.3 60.2 0.0 60.3 0.2 60.8 0.0 60.2 2.6 60.2 39.7 60.4 0.8 61.3
Greedy Merge‡ 14.4 60.3 15.8 60.2 0.0 60.4 0.2 60.2 0.0 60.5 2.6 60.3 36.3 59.7 0.7 60.6
TIES-Merging 19.3 60.4 16.5 60.0 0.3 60.5 0.2 60.5 0.0 60.4 5.6 60.4 42.8 60.3 0.8 60.5
MagMax 22.6 61.0 16.5 60.1 0.2 60.6 0.2 60.8 0.1 61.5 4.2 60.1 46.1 60.9 0.7 60.4

NegMerge (ours) 12.1 60.6 15.6 60.4 0.0 60.9 0.2 61.2 0.0 60.9 1.6 60.1 34.0 59.8 0.7 60.8

Table B5. ViT-B/16 Linear Task Arithmetic Results.

Method Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN

Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr

Task Arithmetic† 5.3 64.4 10.2 63.8 0.0 64.8 0.0 64.5 0.1 67.0 2.0 63.6 37.4 64.7 0.5 64.1
Uniform Merge 5.0 64.7 10.1 64.2 0.1 66.0 0.0 66.0 0.1 67.4 1.6 64.0 37.5 65.0 0.4 64.8
Greedy Merge‡ 5.0 64.8 10.3 64.1 0.0 64.5 0.0 64.5 0.1 66.8 1.5 63.9 37.1 65.0 0.4 64.2
TIES-Merging 7.4 64.3 11.7 64.6 0.1 65.3 0.0 65.4 0.1 66.9 4.1 64.4 43.8 65.7 0.4 64.3
MagMax 8.8 64.6 12.3 64.9 0.0 64.9 0.0 64.9 0.1 67.2 5.1 64.9 42.5 65.4 0.4 64.6

NegMerge (ours) 6.6 65.9 10.4 64.5 0.0 65.9 0.0 66.0 0.1 66.9 1.1 64.5 34.1 64.7 0.5 64.8

Table B6 extends Table 3 by showing results for all eight datasets, analyzing the impact of sign conflicts in weights during
unlearning. Table B7 expands on Table 4, providing zero ratios, forget set accuracy (Acc Df ), and retain set accuracy (Acc
Dr) across different numbers of task vectors used for merging.

Table B6. Impact of Sign Conflict in Weights for Unlearning. This table presents unlearning performance across various datasets using
CLIP ViT-B/32, comparing three different methods. “All,” Uniform Merge, uses all indices regardless of sign conflict, “Conflict” uses
only indices with conflicting signs, and “Non-conflict,” our proposed method, uses only indices with consistent signs across task vectors.

Method Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN

Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr

All 31.7 60.4 29.6 60.6 8.9 60.8 7.0 60.0 20.5 61.4 23.8 60.1 51.4 60.5 7.3 60.7
Conflict 40.2 60.2 31.9 60.3 11.1 60.7 9.1 60.6 24.0 61.9 32.3 60.2 58.3 60.9 8.8 60.6
Non-conflict 27.4 60.4 27.2 60.5 7.9 60.2 6.2 60.0 20.5 59.9 22.6 60.5 47.2 60.6 7.2 60.9

B.2. Full Charts of CLIP Unlearning Scenario

We provide the complete trade-off graphs illustrating the forget set’s accuracy (i.e., 1 - accuracy) versus the retain set’s
accuracy (Figure B1), extending the partial illustration presented in the main paper (Figure 1). Each graph denotes the
trade-offs for different datasets, including Cars, DTD, EuroSAT, GTSRB, MNIST, RESISC45, SUN397, and SVHN. Our
method enjoys the best trade-offs among competing methods across most of the datasets.
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Table B7. Ratio of Zeroed Elements based on the Number of Merged Models. The results, averaged over three runs with standard
deviations (std, ±), were obtained using ViT-B/32 Task Arithmetic.

(a) Part 1: Cars, DTD, EuroSAT, GTSRB

# Cars DTD EuroSAT GTSRB

% Acc Df (↓) Acc Dr % Acc Df (↓) Acc Dr % Acc Df (↓) Acc Dr % Acc Df (↓) Acc Dr

30 90.3 27.4 60.4 92.9 27.2 60.5 94.1 7.9 60.2 94.8 6.2 60.0
25 89.7±0.04 26.6±0.06 60.2±0.02 92.2±0.10 27.2±0.28 60.5±0.10 93.4±0.09 8.3±0.06 60.3±0.05 94.1±0.02 6.5±0.01 60.1±0.03

20 88.8±0.21 26.1±0.66 60.1±0.09 91.5±0.13 27.1±0.13 60.4±0.04 92.7±0.05 8.8±0.06 60.6±0.03 93.3±0.03 6.7±0.06 60.3±0.01

15 87.5±0.17 26.0±0.20 60.0±0.07 90.2±0.12 27.7±0.09 60.4±0.03 90.8±0.28 8.3±0.11 60.4±0.07 91.9±0.09 6.9±0.17 60.3±0.01

10 84.9±0.51 26.6±0.82 59.9±0.14 87.5±0.31 27.8±0.09 60.4±0.12 88.3±0.51 8.9±0.21 60.6±0.11 89.2±0.19 8.1±0.08 60.6±0.04

5 77.1±0.30 30.5±0.42 60.4±0.09 79.9±0.60 28.8±0.39 60.5±0.14 81.5±0.26 9.3±0.55 60.6±0.10 81.9±0.32 8.3±0.35 60.5±0.08

(b) Part 2: MNIST, RESISC45, SUN397, SVHN

# MNIST RESISC45 SUN397 SVHN

% Acc Df (↓) Acc Dr % Acc Df (↓) Acc Dr % Acc Df (↓) Acc Dr % Acc Df (↓) Acc Dr

30 94.0 20.5 59.9 92.9 22.6 60.5 92.2 47.2 60.6 92.4 7.2 60.9
25 93.3±0.10 20.5±0.46 60.2±0.06 92.3±0.04 23.7±0.06 60.6±0.02 91.7±0.09 47.0±0.02 60.4±0.04 91.7±0.02 7.1±0.01 60.7±0.01

20 92.5±0.08 19.6±0.46 59.9±0.07 91.5±0.06 22.7±0.08 60.5±0.02 90.9±0.12 47.8±0.10 60.6±0.04 90.7±0.04 7.0±0.02 60.4±0.03

15 91.0±0.06 20.8±0.49 60.1±0.30 90.1±0.09 23.2±0.18 60.5±0.03 89.6±0.33 47.7±0.54 60.5±0.19 89.2±0.27 7.1±0.04 60.7±0.08

10 88.2±0.47 19.9±0.77 60.5±0.15 87.6±0.28 22.6±0.79 60.4±0.08 87.2±0.31 48.7±0.41 60.6±0.11 86.0±0.20 7.2±0.01 60.8±0.08

5 81.4±0.25 23.0±0.36 62.4±0.02 80.2±0.52 24.1±1.24 60.4±0.20 81.5±0.10 49.7±0.08 60.5±0.11 78.9±0.18 7.2±0.03 60.6±0.08
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Figure B1. Comparison of Merged Models on ViT-B/32. Performance metrics for merged models showing accuracy on the retain set and
forget set across different models. Methods positioned towards the upper right corner are generally considered to be better performers.
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B.3. Additional Standard Classifier Unlearning Scenario Results

Performance on Different Datasets. Table B8 compares unlearning methods on CUB (Wah et al., 2011) with ResNet-18
for 10% random data forgetting. This experiment is important as it validates the effectiveness of NegMerge in fine-grained
image classification. Table B9 shows similar results on Tiny ImageNet (Le & Yang, 2015) using ResNet-18.

Table B8. Unlearning Performance for 10% Random Data Forgetting on CUB using ResNet-18.

Method Used Splits Acc Dr(≃) Acc Df (≃) Acc Dtest(≃) MIA(≃) Avg. Gap(↓)

Retrain retain 78.55 56.43 74.61 80.47 0.00

Gradient Ascent

forget

66.75 57.26 66.60 67.61 8.38
Boundary Shrink 66.88 61.60 64.14 100.00 11.71
Boundary Expanding 65.32 61.60 58.80 73.62 10.27
Random Labeling 64.13 57.43 59.54 71.79 9.79
SalUn 66.69 59.60 63.88 74.46 7.94

Task Arithmetic

forgetSingle Best Model† 74.68 58.60 70.56 100.00 7.41
Uniform Merge 73.94 56.93 69.78 100.00 7.37
NegMerge (ours) 74.64 58.26 70.69 100.00 7.30

Table B9. Unlearning Performance for 10% Random Data Forgetting on Tiny ImageNet using ResNet-18.

Method Used Splits Acc Dr(≃) Acc Df (≃) Acc Dtest(≃) MIA(≃) Avg. Gap(↓)

Retrain * retain 99.98 63.60 63.67 63.77 0.00

Random Labeling forget 76.43 76.09 58.09 32.33 18.27
SalUn 73.61 73.81 56.68 30.59 19.19

Task Arithmetic
forgetSingle Best Model† 77.54 73.63 59.62 30.14 17.54

NegMerge (ours) 75.95 71.87 58.58 31.34 17.46

Performance on Different Models. Table B10 and Table B11 show results on CIFAR-10 using VGG-16 (Simonyan, 2014)
and Swin-T (Liu et al., 2021), respectively. In both cases, NegMerge effectively unlearns the forget set Df using only the
forget set itself. These results demonstrate that our method generalizes well across different model architectures.

Table B10. Unlearning Performance for 10% Random Data Forgetting on CIFAR-10 using VGG-16.

Method Used Splits Acc Dr(≃) Acc Df (≃) Acc Dtest(≃) MIA(≃) Avg. Gap(↓)

Retrain * retain 99.99 94.02 93.06 10.36 0.00

Gradient Ascent *
forget

99.37 99.07 93.63 1.36 3.81
Boundary Shrink * 99.40 99.20 93.68 1.38 3.84
Boundary Expanding * 99.39 99.20 93.68 1.42 3.84

Task Arithmetic
forgetSingle Best Model† 97.26 94.90 90.10 10.34 1.64

NegMerge (ours) 98.00 95.74 91.01 10.10 1.50

Table B11. Unlearning Performance for 10% Random Data Forgetting on CIFAR-10 using Swin-T.

Method Used Splits Acc Dr(≃) Acc Df (≃) Acc Dtest(≃) MIA(≃) Avg. Gap(↓)

Retrain retain 100.00 97.76 97.67 4.74 0.00

Random Labeling forget 99.96 99.96 97.71 0.64 1.60
SalUn 98.98 99.04 96.40 3.36 1.24

Task Arithmetic
forgetSingle Best Model† 98.50 97.84 95.98 4.04 0.99

NegMerge (ours) 98.79 97.80 95.93 4.60 0.78
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Performance on Different Scenarios. Table B12 presents a comparison of various unlearning techniques for 50% random
data forgetting on CIFAR-10 using ResNet-18. Table B13 compares various unlearning techniques for class-wise forgetting
on CIFAR-10 using ResNet-18. These results highlight the scalability of NegMerge across diverse unlearning scenarios.

Table B12. Unlearning Performance for 50% Random Data Forgetting on CIFAR-10 using ResNet-18.

Method Used Splits Acc Dr(≃) Acc Df (≃) Acc Dtest(≃) MIA(≃) Avg. Gap(↓)

Retrain retain 100.00 92.10 91.70 19.30 0.00

Random Labeling forget 99.80 99.90 94.70 2.20 7.03
SalUn 99.60 99.60 94.20 4.40 6.33

Task Arithmetic
forgetSingle Best Model† 98.40 97.90 92.60 5.60 5.50

NegMerge (ours) 96.80 96.50 91.50 6.30 5.20

Table B13. Unlearning Performance for Class-wise Forgetting on CIFAR-10 using ResNet-18.

Method Used Splits Acc Dr(≃) Acc Df (≃) Acc Dtest(≃) MIA(≃) Avg. Gap(↓)

Retrain retain 100.00 0.00 92.50 100.00 0.00

Random Labeling forget 83.00 10.10 70.90 99.50 12.30
SalUn 86.50 10.80 74.10 100.00 10.68

Task Arithmetic
forgetSingle Best Model† 95.30 0.10 80.60 100.00 4.18

NegMerge (ours) 96.80 0.80 81.80 99.80 3.73

C. Additional Ablation Studies
Table C1 compares ways to derive the improved final task vector τmerged. We found that our originally proposed averaging
method performed the best. This is likely because averaging helps smooth out potential outliers in individual models during
merging, resulting in a more stable and effective task vector.

Table C1. Results When Different Merging Operations Are Used. NegMerge (min), NegMerge (max), and NegMerge (avg)
represent merging minimum, maximum, and average of task vectors elements, respectively. The experimental results are obtained using
CLIP ViT-B/32.

Method Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN

Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr

Task Arithmetic† 29.0 59.9 30.4 60.8 10.4 60.9 9.1 60.9 21.2 60.6 30.7 60.8 50.6 59.9 7.6 60.9
NegMerge (min) 26.5 59.9 27.9 60.6 10.3 60.8 8.3 60.7 25.2 61.0 20.1 60.0 46.8 60.2 8.2 61.0
NegMerge (max) 28.2 60.3 27.4 60.4 10.7 60.9 7.5 60.4 28.7 60.2 26.0 61.0 48.3 60.7 7.3 60.8
NegMerge (avg) 27.4 60.4 27.2 60.5 7.9 60.2 6.2 60.0 20.5 59.9 22.6 60.5 47.2 60.6 7.2 60.9

Table C2 shows that larger zero-out values with uniformly merged sparsified task vectors lead to improved unlearning
results. TIES-merging and MagMax exhibit fewer zero-out values, and their performance is expected to be outperformed by
NegMerge.

Table C2. Ratio of Zeroed Elements and the Unlearning Performance. The table reports the zero ratio and the accuracy of the forget
set (Acc Df ), comparing these values across several baseline methods. Results are obtained using ViT-B/32 Task Arithmetic. Accuracy
on Dr is omitted as all methods remain around 60% accuracy on the retain set.

Method Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN

% Df (↓) % Df (↓) % Df (↓) % Df (↓) % Df (↓) % Df (↓) % Df (↓) % Df (↓)

Task Arithmetic† 47.55 29.00 47.55 30.42 47.55 10.44 47.55 9.09 47.55 21.15 47.55 30.71 47.55 50.58 47.55 7.61
MagMax 47.55 35.59 47.55 31.86 47.55 10.51 47.55 8.42 47.55 20.14 47.55 30.69 47.55 55.36 47.55 9.33
TIES-Merging 51.59 34.03 50.62 33.09 51.62 11.56 50.72 10.21 51.94 26.09 51.00 33.41 50.58 53.80 52.06 7.48
NegMerge (ours) 90.34 27.40 92.94 27.18 94.05 7.85 94.76 6.20 93.96 20.50 92.86 22.61 92.20 47.19 92.40 7.18
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Table C3. Sparsity by Component Type. The results report the sparsity (%) for the Stem and MLP layers across 30 models trained on
the Cars dataset. Std. Dev. denotes variability across layers within each component; not applicable to the single-layer Stem.

Component ViT-B/32 ViT-L/14

% Std. Dev. % Std. Dev.

Stem 98.3 - 99.6 -
MLP 55.1 0.3 77.6 0.2

Table C3 examines sparsity across different architectural components. Specifically, we compared the Stem layer (i.e., the
patch embedding) and MLP layers (c fc and c proj weights/biases).

D. Results in Diverse Model Pool
D.1. Robustness on Diverse Model Pool

In the CLIP Unlearning Scenario, we conducted additional experiments to analyze the impact of varying hyperparameters,
such as weight decay, learning rates, and label smoothing, as shown in Table D1. Also, in Table D2 we present the effects of
modifying training hyperparameters and RandAugment configurations. Furthermore, we evaluated using seven different
model pools, which are detailed in Table D3. In the Standard Classifier Unlearning Scenario, we enhanced the diversity of
the fine-tuned models by adjusting RandAugment configurations, as summarized in Table D4.

As shown in Table D1–Table D4, unlearning performance improves further compared to the baseline, as expected, with
diverse types of hyperparameters. These results highlight that, while the degree of improvement may vary depending on the
model pool, using multiple models consistently provides more stable performance gains compared to using a single model.

Table D1. Learning Rate, Weight Decay, and Label Smoothing Configuration Pool on ViT-B/32 Task Arithmetic in CLIP Unlearning
Scenario. Results are obtained by evaluating 16 models created from a pool of configurations using the following hyperparameter settings:
learning rates of 1e-4, 5e-5, 1e-5, and 5e-6; weight decay values of 0.01 and 0.1; and label smoothing to 0 and 0.1.

Method Cars DTD SUN397

Acc Df (↓) Acc Dr Acc Df (↓) Acc Dr Acc Df (↓) Acc Dr

Task Arithmetic† 33.52 60.29 29.14 60.38 51.36 60.55
NegMerge (ours) 30.33 60.16 26.43 59.95 47.94 60.33

Table D2. RandAugment, Learning Rate, and Weight Decay Configuration Pool on ViT-B/32 Task Arithmetic in CLIP Unlearning
Scenario. Results are obtained by evaluating 8 models created from a pool of configurations using the following hyperparameter settings:
RandAugment with n = 1, 2 and m = 1, 5, 10, learning rates of 1e-5, 5e-6, and 1e-6, and weight decay values of 0.01 and 0.1.

Method Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN

Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr Df (↓) Dr

Task Arithmetic† 28.62 60.17 28.03 60.15 7.66 60.46 5.31 60.22 14.56 60.55 27.19 60.72 51.38 60.32 6.75 61.30
NegMerge (ours) 27.42 60.03 26.80 60.08 7.03 60.39 4.82 59.50 12.89 59.94 18.23 59.81 48.73 60.38 6.71 60.29

D.2. Strategy to Create Variants

NegMerge relies on the knowledge encoded in each task vector. Based on our observations, poorly constructed task vectors,
such as those trained with unreasonable weight decay, can result in unreliable knowledge and introduce noise into the
process. To mitigate this, we recommend constructing a task vector pool using reasonable hyperparameters, ensuring the
vectors are reliable and contribute effectively to unlearning.

Furthermore, our method inherently produces a model with a well-optimized retain loss. This aligns with one of our core
assumptions discussed in Section 4.3: the merged model should preserve performance on the retain set. Practitioners can
leverage this property by using the retain loss as a guiding signal during the model generation phase, enabling more effective
model merging through better monitoring and optimization of retain set performance. While we have not yet explored this
idea, we view it as an exciting direction for future research.
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Table D3. Average of Seven Different Model Pools. To evaluate robustness across diverse model pools, we assessed performance on
seven different model pools. The results show that leveraging multiple models consistently leads to more stable performance improvements
compared to relying on a single model.

Pool RandAugment (n, m) Learning Rates Weight Decay Label Smoothing #

Pool 1 n = 1–3, m = 1–10 - - - 30
Pool 2 - 1e-4, 1e-5, 5e-5, 5e-6 0.01, 0.1 0, 0.1 16
Pool 3 - 1e-4, 1e-5, 5e-5, 5e-6 0.01, 0.1 - 8
Pool 4 - 1e-5, 5e-6, 5e-5 0.01, 0.1 - 6
Pool 5 n = 1, 2, m = 5, 10 1e-4, 1e-5, 5e-5, 5e-6 0.01, 0.1 0, 0.1 64
Pool 6 n = 1, 2, m = 5, 10 1e-4, 1e-5, 5e-5, 5e-6 0.01, 0.1 - 32
Pool 7 n = 1, 2, m = 1, 5, 10 1e-5, 5e-6, 1e-6 0.01, 0.1 - 8

Pool Pool 1 (Df ↓) Pool 2 (Df ↓) Pool 3 (Df ↓) Pool 4 (Df ↓) Pool 5 (Df ↓) Pool 6 (Df ↓) Pool 7 (Df ↓)

Task Arithmetic† 23.63 22.80 23.21 23.21 24.05 21.31 21.19
NegMerge (ours) 20.76 21.69 21.56 22.23 22.65 19.37 19.08

Table D4. RandAugment Configuration Pool on ResNet-18 in Standard Classifier Unlearning Scenario. Results are obtained by
evaluating 5 models created from a pool of configurations using the following hyperparameter settings: RandAugment with n = 1 and
m = 1, 2, 3, 4, 5.

Method Acc Dr(≃) Acc Df (≃) Acc Dtest(≃) MIA(≃) Avg. Gap(↓)

Retrain * 100.00 94.76 94.26 12.88 0.00

Task Arithmetic† 97.79 95.88 91.31 9.58 2.40
NegMerge (ours) 97.81 95.76 91.03 10.76 2.14

E. Theoretical Analysis
Let θori and θft denote the weights of the pre-trained model and a fine-tuned model, respectively. We have the formulation
θunlearn = θori − λτmerged, where τmerged is from Equation (1) - our consensually merged task vector. We argue that
achieving larger zero-out values with sparsified consensus editing signals in τmerged could lead to unlearning performance
improvements, based on the following fundamental claims: (1) Weight-wise unanimous consensus merging reduces non-zero
values and gives a robust τmerged; the larger zero-out values in τmerged contribute to stable merging. (2) There exists a stable
merged point θ∗unlearn, which enjoys better unlearning results as the number of task vectors τk increases.

As the number of task vectors τk in τmerged increases, the non-zero values decrease because our consensus operation performs
like an AND operation. The robustness of τmerged increases upon merging, as sparse weights are merged uniformly, which
enjoys inherently more robustness than an individual weight as revealed in (Wortsman et al., 2022; Jang et al., 2024), where
the first term of τmerged = 1

n ∗
∑n

k=1 θft − θori conducts uniform merge. θunlearn moves closer to θori, which likely stays
in lower loss regions due to weights that generally hold linear mode connectivity (LMC) (Frankle et al., 2020; Juneja
et al., 2022; Entezari et al., 2021). It also mitigates issues that cause fluctuating high losses (i.e., loss barriers) on certain
loss surfaces, when weights deviate significantly from θori. Therefore, task negation at an improved θ∗unlearn is likely to
reside in lower loss regions, leading to better results. While we do not specify the exact θ∗unlearn, increasing the number of
merged task vectors allows the process to approach a closer-to-optimal point as more sparsified merged weights are merged
uniformly (Jang et al., 2024).

Our empirical evidence, shown in Table 4 demonstrates that larger zero-out values from uniformly merged sparsified task
vectors lead to improved unlearning results. Additionally, as indicated in Table C2, TIES-merging and MagMax exhibit
fewer zero-out values, which explains their lower performance compared to our method.

F. Applicability Beyond Image Classification
While our study focuses on image classification tasks, we believe NegMerge is broadly applicable to other modalities,
including large language models (LLMs) and vision-language models (VLMs). Our approach leverages the consistency
of directional changes in parameter space across multiple fine-tuned models, a principle not specific to visual tasks or
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architectures. Given that LLMs and VLMs are often built on transformer backbones, which our method already demonstrates
strong performance on (e.g., ViT-B/32, ViT-L/14), we expect the sign-consensual merging strategy to extend to these
domains.
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