
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COLLABEDIT: TOWARDS NON-DESTRUCTIVE COL-
LABORATIVE KNOWLEDGE EDITING

Anonymous authors
Paper under double-blind review

ABSTRACT

Collaborative learning of large language models (LLMs) has emerged as a
new paradigm for utilizing private data from different parties to guarantee
efficiency and privacy. Meanwhile, Knowledge Editing (KE) for LLMs has also
garnered increased attention due to its ability to manipulate the behaviors of
LLMs explicitly, yet leaves the collaborative KE case—in which knowledge
edits of multiple parties are aggregated in a privacy-preserving and continual
manner—unexamined. To this end, this manuscript dives into the first investiga-
tion of collaborative KE, in which we start by carefully identifying the unique
three challenges therein, including knowledge overlap, knowledge conflict, and
knowledge forgetting. We then propose a non-destructive collaborative KE
framework, COLLABEDIT, which employs a novel model merging mechanism
to mimic the global KE behavior while preventing the severe performance drop.
Extensive experiments on two canonical datasets demonstrate the superiority of
COLLABEDIT compared to other destructive baselines, and results shed light on
addressing three collaborative KE challenges and future applications.

1 INTRODUCTION

50 100 200 500 1000 5000
Number of edits

30
40
50
60
70
80
90

H
-m

ea
n

of
 (E

S,
 P

S,
 N

S)

Global-edit
Task-Arithmetic
Simple-Average

Figure 1: Limits of existing KE
methods under the collaborative KE
scenarios on the Multi-CounterFact
dataset (Meng et al., 2022).

Large Language Models (LLMs) (Achiam et al., 2023; Qiao
et al., 2023) recently have emerged as the promising solu-
tion toward general artificial intelligence. However, deploy-
ing LLMs in practice usually requires customizing LLMs with
specific knowledge (Meng et al., 2022), where re-training
LLMs may be expensive and unacceptable (Jang et al., 2023).
Accordingly, Knowledge Editing (KE) (Meng et al., 2022;
Mitchell et al., 2022a; Tan et al., 2024; Zhang et al., 2023),
which allows efficient modification of knowledge stored in ex-
isting models, has been proposed as an alternative solution.
To explicitly update LLMs with knowledge from multiple
parties or organizations—each possesses a distinct and
private dataset (Ye et al., 2024; Wu et al., 2022; McMahan
et al., 2017)—and meet individual demands, current KE
methods (Meng et al., 2022; 2023) first need to collect edit requests from these parties with violated
privacy concerns: the edit request itself contains sensitive private information and thus becomes
infeasible for sharing. It motivates resorting to the cross-silo collaborative learning paradigm (Wu
et al., 2023; Kairouz et al., 2021)—by only communicating the locally-updated-models, rather than
uploading a list of risky edit requests—namely collaborative KE for LLMs.
However, existing KE methods are all designed for the single-party single-model scenario (Meng
et al., 2022; Mitchell et al., 2022a; Tan et al., 2024; Meng et al., 2023). Noting that model merg-
ing (MM) techniques (Ortiz-Jimenez et al., 2023; Chronopoulou et al., 2023; Yadav et al., 2023)
allow a straightforward extension of KE methods to a collaborative KE scenario. Therefore as our
(side)-contribution, we examine a naive combination of local KE and MM techniques, and compare
them with the optimal global KE method (GLOBAL-EDIT): we can witness that all these naive col-
laborative KE methods are destructive. In detail, we conduct independent KE (i.e., MEMIT (Meng
et al., 2023)) on each party locally, and then use model merging techniques like Simple-Average
(Chronopoulou et al., 2023) and Task-Arithemetic (Ilharco et al., 2023) to merge local models

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Edits Request list for client n
Edits Request ε1
New Fact: Messi plays soccer. tennis.
Q: What sport did Messi play ? A: Tennis.

Edits Request list for client 2
Edits Request ε1
New Fact: The president of US is Obama. Biden.
Q: The president of US is ? A: Biden.Edits Request list for client 1

Edits Request ε1
New Fact: Jack Ma founded Alibaba. Tesla.
Q: Who founded Google ? A: Larry Page.

Edits Request ε2
New Fact: AirPods was created by Apple. Google.
Q: WeChat, created by ? A: Tencent.

Server (Global-model)

MG

Updated Global-
Model’s weight (Ideal)

(a) Global Editing (b) Collaborative Editing

Edits list for client 1
 KE

M1

M2

Mn

Clients (Sub-models)

Nondestructive
(Ours)

Model-fusion Module

Destructive

Server (Global-model)

Nondestructive-fusion
Model’s weight (ours)

Destructive-fusion
Model’s weight
(Baseline)

Nearly identical !

Edits list for client 2

Edits list for client n

 KE

 KE

 KE

Figure 2: Comparison of global KE (GLOBAL-EDIT) and collaborative KE.

(LLMs) into a global model (LLM). We find that as the number of edits increases, the performance
gap between naive baselines with the optimal GLOBAL-EDIT also widens.
Alongside the pitfalls of naive collaborative KE methods, in this manuscript, we carefully examine
the intervention issues among different parties and identify the knowledge overlap and knowledge
conflict challenges. These challenges arise from the global server’s blind access to the edit requests
of each party. In addition, the continual KE requirement for each party inherently results in the
interventions among different rounds of editing, corresponding to knowledge forgetting challenge.
To bridge the gap and provide a deeper understanding of collaborative KE, we first analyze the
performance drop between naive collaborative KE methods and GLOBAL-EDIT from a theoretical
perspective, upon which we design a novel framework COLLABEDIT that allows non-destructive
collaborative KE. We further pioneer the explorations on the interventions associated with collab-
orative KE (namely the three challenges we identified) and design tailored solutions to effectively
address them. Our contributions can be summarized as follows:
• We are the first to propose the collaborative KE paradigm (including naive collaborative KE base-

lines, GLOBAL-EDIT, and our COLLABEDIT), in which we summarize the unique interventions
associated with collaborative KE and conclude them with three challenges in this novel paradigm.

• We identify the performance gap between the naive collaborative KE method and the upper bound
performance (i.e., GLOBAL-EDIT) through theoretical and empirical analysis.

• To the best of our knowledge, we propose the first non-destructive collaborative KE framework:
it is versatile, allowing nondestructive integration of existing KE methods and providing insights
into the solution of each challenge.

• Our empirical results demonstrate the effectiveness of our proposed framework compared with
baselines and that of the novel solutions to three challenges based on our COLLABEDIT. Our
discussions shed light on future research for collaborative KE.

2 RELATED WORK

Knowledge Editing (KE). KE (De Cao et al., 2021; Mitchell et al., 2022a) has received significant
attention due to the increasing demands for efficient updating of LLMs. Hypernetwork knowledge
editing and direct model editing are the two most representative KE methods. Given edit requests,
hypernetwork knowledge editing (Mitchell et al., 2022a;b; Tan et al., 2024) leverages a trained
hypernetwork to predict the model updates, while direct model editing (Meng et al., 2023; 2022;
De Cao et al., 2021) updates LLMs as an associative memory and inserts new memory via solving
an optimization problem. However, these KE methods are all designed for a single LLM, which
limits their applications to a more practical collaborative learning scenario. In this paper, we place
emphasis on the SoTA frameworks of two KE methods types stated above, which are respectively
MALMEN (Tan et al., 2024) and MEMIT (Meng et al., 2023), to explore the integration of KE and
collaborative learning.

Collaborative learning and model merging. Collaborative learning (Kairouz et al., 2021; Wang
et al., 2021; Fan et al., 2024; Mohtashami et al., 2023) allows multiple parties to jointly and contin-
uously learn a machine learning model by sharing their updates to a global server for aggregation.
Alongside the orthogonal techniques to address data heterogeneity issue (Karimireddy et al., 2020;
Li et al., 2019), model aggregation/merging (Li et al., 2023b; Wortsman et al., 2022; Ortiz-Jimenez

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

et al., 2023; Yadav et al., 2023) has emerged as a promising research direction to collaborative
learning, which employs the global server to directly merge model updates in the weight space
without disclosing the training data of each party. The most commonly used model merging tech-
niques themselves are Simple-Average (SA) (Chronopoulou et al., 2023; Wortsman et al., 2022) and
Task-Arithmetic (TA) (Ortiz-Jimenez et al., 2023). Moreover, TIES-merging (Yadav et al., 2023)
has recently proposed to further enhance the merging performance by solving the symbol conflicts
among different models. However, all existing model merging techniques only achieve destructive
editing performance when used for collaborative KE, which inevitably results in knowledge loss
during the merging process.

3 PRELIMINARIES OF COLLABORATIVE KNOWLEDGE EDITING

We first introduce the basics of KE in a single LLM. Then, we illustrate the naive approaches to
conduct collaborative KE. Finally, we describe the inherent interventions within collaborative KE.

3.1 INTRODUCTION TO KNOWLEDGE EDITING IN A SINGLE LLM

LLMs can answer natural-language queries about facts based on implicit knowledge encoded within
the parameters. Following Meng et al. (Meng et al., 2023), we define a fact f as “(subject s, relation
r, object o)”, e.g., “(s = Danielle Darrieux, r = spoke the language, o = French)”. Given a
sequence of facts E = {fi|fi = (si, ri, oi)} to edit (denoted as edit requests), knowledge editing
aims to maximize the likelihood that the updated LLM Mθ predicts the desired object oi for any
factual prompt x⊕ p(si, ri), which involves a prefix x and a templated prompt p(si, ri):

argminMθ

1
|E|

∑|E|
i=1 Ex [− log PrMθ

[oi|x⊕ p(si, ri)]] . (1)

The state-of-the-art knowledge editing methods (Meng et al., 2022; 2023; Tan et al., 2024) found
that modifying a small sequence of MLP layers in the critical path of LLM is sufficient to edit its
factual associations. In particular, linear operation Wl in an MLP layer can operate as a key-value
store for input keys Kl and the memory/knowledge values Ml, where input keys correspond to the
intermediate feature vector of the model from a set of edit requests. Knowledge editing modifies
each MLP layer such that it associates Kl to the desired Ml by solving WlKl ≈ Ml. For brevity,
we will describe knowledge editing for a specific layer and omit l throughout the paper.

Given a set of facts E to edit (i.e., edit requests), we first obtain their input keys K = [k1, . . . ,k|E|]
to the layer l via a single feed-forward. We also obtain the desired memory values M =
[m1, . . . ,m|E|] of layer l that maximize Pr [oi|x⊕ p(si, ri)]. The goal of editing the layer l can
be formulated as optimizing the ∆ such that the updated weight W+∆ associates the input keys K
to the desired memory values M. Note that the MLP layer also contains previously stored memories
of existing knowledge, which should be preserved during the knowledge editing. Therefore, we also
maintain the associations between input keys of existing knowledge Kinit and their memory values
(WKinit). Following MEMIT (Meng et al., 2023), we derive the closed form of ∆ for a specific
layer l as:

∆ = RK⊤(C+KK⊤)−1, (2)

where C = KinitK
⊤
init is the covariance matrix of the input keys of existing knowledge, and R =

M−WK represents the residual error in the output space of layer l. See more details in Appendix A.

3.2 DESTRUCTIVE MODEL MERGING ENCOUNTERS KNOWLEDGE EDITING

KE in practice involves editing the factual associations of LLM, such as correcting the hallucinations
or updating outdated information. This process often requires handling simultaneous edit requests,
where multiple parties or clients access and collaboratively contribute to the same LLM service.
Though Global KE (GLOBAL-EDIT) illustrated in Figure 2(a) represents the ideal editing cases,
it also necessitates each client to directly share the edit requests with the server, which violates
the privacy constraints. Collaborative KE in Figure 2(b) instead allows each client to edit on its
local model and only rely on the server to aggregate the edit updates using the model merging
techniques (Wortsman et al., 2022; Ortiz-Jimenez et al., 2023; Yadav et al., 2023).

However, existing KE algorithms are all designed for a single client and cannot be trivially general-
ized to the collaborative KE scenario. As evidenced in Figure 1, naively extending existing editing

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

methods or model merging methods yields a dramatic performance drop compared to that of the
GLOBAL-EDIT (upper bound), especially when the number of edits increases. Given the limits of de-
structive collaborative KE methods, we aim to develop a non-destructive collaborative KE method
that can achieve a similar editing performance as GLOBAL-EDIT, even with a large number of edits.

3.3 INTERVENTIONS WITHIN COLLABORATIVE KNOWLEDGE EDITING

In addition to the performance drop, our proposed concept of collaborative KE also suffers from
several key challenges, due to the unique characteristics of this scenario. By default, we assume a
trustworthy and non-adversarial collaborative KE scenario. The collaborative KE employs a global
server to aggregate the edits of local clients without disclosing their edit requests, while requiring
each client to continually edit the global model by updating its local model in a multi-round manner.
However, there still exist several unique challenges due to the interventions among different clients
and different rounds of editing, warranting research in the future.

3.3.1 INTERVENTIONS AMONG DIFFERENT CLIENTS

In collaborative KE, multiple clients may use similar edit requests to update their local models and
send the updated models to the global server for aggregation. The interventions among clients are
then raised in the editing event e := (s1, r1, o1 → o2, t1,m1), which includes s1 as a subject, r1 as
a relationship, o1 and o2 as objects, t1 as a editing timestamp and m1 as client model.

Knowledge conflict indicates that edit requests from the same/different clients (in the same round1)
share the same subject s and relation r but with different objects o. Such a conflict renders the
effectiveness of knowledge editing and may even compromise the overall KE performance. We
elaborate the general formulation of conflict edit below (detailed illustration can be found in the
Table 7 of Appendix): {

e1 = (s1, r1, o1 → o2, t1,m1)

e2 = (s1, r1, o1 → o3, t2,m2)
, (3)

where local model m1 and m2 perform a conflicting editing for the same subject s1 and relationship
r1 at timestamp t1 and t2 respectively, changing the same original object o1 to different o2 and o3.

Similar to the composite edit operations mentioned by Li et al. (2024), composite conflict and
composite overlap arising from such operations may also occur in collaborative KE scenarios,
with even more diverse and complex forms. Here we aim to briefly introduce the key concept of
knowledge conflict, and a more detailed definition and investigation of this issue left for future work.

Knowledge overlap is a simplified case of knowledge conflict, where the object changing relation-
ship (i.e. o1 → o2 and o1 → o3) in editing events of e1 and e2 becomes identical. Knowledge
overlap is also closely related to the overfitting problem in machine learning, in which excessive
overlapped editing requests can degrade the model’s editing performance on other edit requests (ex-
cluding those repeated edit requests).

3.3.2 INTERVENTIONS AMONG DIFFERENT ROUNDS OF EDITING

The collaborative KE paradigm naturally requires multiple clients to continually update their local
models in a multi-round manner and thus edit the global model with the latest knowledge. Knowl-
edge forgetting issue, therefore, arises given the continual arrival of a large number of new editing
requests, alongside the existing knowledge and editing requests.

Assume that each client has a set of old edit requests Eo, as well as m sets of new edit requests
En = [En1

, En2
, · · · , Enm

], where the new edit requests are irrelevant (i.e., their subjects s and
relationships r are different) to the old edit requests. The model is initialized by updating the model
with the old edit requests Eo, and the local model of each client will be updated with the new edit
requests Eni at i-th round of editing, followed by the model aggregation step. The knowledge
forgetting issue encountered after m rounds of local editing and global aggregation can then be
defined as the editing performance on the old knowledge obtained from the old edit requests E0.

In particular, we find that as the value of m increases, the evaluation performance of the model on
old knowledge Eo deteriorates, as evidenced in Section 5.3.

1In cases of conflict between edits from different rounds, due to the overwriting nature of KE, the latter
conflicting edit will overwrite the former, naturally resolving the conflict.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 METHODOLOGY

4.1 COLLABEDIT: NON-DESTRUCTIVE COLLABORATIVE KE

To better understand the performance drop, we first explicitly model the relationship between the
weight updates ∆G of the global model using GLOBAL-EDIT and that of each client model ∆i using
local editing. For ease of presentation, we consider the collaborative KE scenario with N clients
and each client model has M edit requests. We simplify the theoretical analysis to the single-round
editing case and demonstrate the effectiveness of COLLABEDIT for multi-round editing in Remark 2.
Lemma 1 (The relationship between the weight updates from GLOBAL-EDIT and local editing).
Take the KE method MEMIT as an example. Following the definitions in Section 3.1, we denote
C as an aggregated statistic over the previously stored keys of existing knowledge and use Ki to
represent the new keys derived from client i’s edit. Then, the relationship between ∆G and ∆i is
measured as:

∆G =
∑N

i=1 ∆i ·
(
αi := (C+KiK

⊤
i)(C+

∑N
i=1 KiK

⊤
i)

−1
)
. (4)

See detailed proof in Appendix B.1.

Intuition: If we can estimate ∆G using ∆i, then we can merge {∆i}Ni=1 to obtain the same global
model as GLOBAL-EDIT and, therefore, obtain non-destructive collaborative KE.

Details of COLLABEDIT: Indeed ∆G can be represented as the weighted sum of different local
weight updates ∆i with coefficient αi. However, the coefficient αi relies on the value of Ki of all
the clients: it breaks the privacy, given the fact that Ki is an intermediate feature vector of the model
from a set of edit requests and any external party can easily reconstruct the edit requests if Ki is
leaked. As a remedy, our COLLABEDIT instead proposes to directly communicate KiK

⊤
i , in which

we prove in Section 6 that KiK
⊤
i is non-trivial to attack. See our pseudo-code in Appendix D.

Remark 1. Currently, we consider two mainstream KE methods (Akyürek et al., 2023), namely
(1) locate and edit activations (same as “Direct model editing” mentioned in Section 2, e.g.,
MEMIT (Meng et al., 2023) and ROME (Meng et al., 2022)); and (2) train an auxiliary model to di-
rectly predict parameters (same as “Hypernetwork knowledge editing” mentioned in Section 2, e.g.,
MEND (Mitchell et al., 2022a) and MALMEN (Tan et al., 2024)). Our framework COLLABEDIT is
general enough to integrate many other KE methods, and we leave them for future work.

Justifying the performance drop for destructive editing approaches. We further analyze the
performance degradation for destructive editing approaches when the number of edits increases, as
illustrated in Figure 1. For the sake of simplicity, we take the TASK-ARITHMETIC (Ilharco et al.,
2023) with MEMIT as an example. The drop can be explained by:

∆G −∆′
G =

∑N
i=1 ∆i

[
(C+KiK

⊤
i)(C+

∑N
j=1 KiK

⊤
i)

−1 − λI
]
, (5)

where ∆G and ∆′
G represent the weight updates derived from COLLABEDIT (our non-destructive

collaborative KE) and a destructive collaborative KE using TASK-ARITHMETIC, respectively. We
can see that the impact of new knowledge KiK

⊤
i is negligible compared to existing knowledge C

when the number of edits is small2, resulting in (C +
∑N

j=1 KiK
⊤
i)

−1 ≈ C and thus ∆G ≈ ∆′
G

when λ = 1. The gap becomes wider when the number of edits increases, contributing to the
continuous decline in TASK-ARITHMETIC’s performance in Figure 1 compared to GLOBAL-EDIT.

Remark 2 (COLLABEDIT is effective for multi-round editing). Collaborative KE involves mul-
tiple clients continuously editing the local models and sharing the updated global model across
multiple rounds, and thus requires robust support to ensure seamless knowledge integration and
consistent knowledge memorization. COLLABEDIT achieves non-destructive collaborative KE for
single-round editing—as an approximation of aggregating all edit requests of clients in a specific
round and applying global KE to update the global model—remains effective for multi-round editing.
Note that multi-round editing is equivalent to applying global KE to iteratively update a single LLM
multiple times under the reasonable editing budgets (Gupta et al., 2024).

2We randomly sample 100 edit requests to estimate the norm of KiKi
T . We observe that the average

ℓ2-norm of KiKi
T is approximately 0.0001% of that of C, which supports the claim.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.2 REMEDY TOWARDS SOLVING INTERVENTION CHALLENGES IN COLLABORATIVE
KNOWLEDGE EDITING: SOME CASE STUDIES

Interventions within collaborative KE scenarios are non-trivial, due to the challenges of explicitly
modeling the impacts of editing requests from different clients. Our COLLABEDIT paves the path
by mimicking the optimal GLOBAL-EDIT and allowing the non-destructive editing. This subsec-
tion case studies how our COLLABEDIT sheds insights on solving unique challenges caused by the
interventions among different clients (spatial aspect) and editing rounds (temporal aspect), namely
knowledge overlap, knowledge conflict, and knowledge forgetting.

4.2.1 EDITING RESIDUAL DETECTS KNOWLEDGE OVERLAP

COLLABEDIT simplifies the knowledge overlap challenge in collaborative KE scenarios into the
over-fitting problem under the global KE scenarios. In other words, multiple clients edit the same
piece of knowledge is equivalent to integrating several identical pieces of knowledge into the global
model. In detail: performing KE in the model results in weights update ∆ and residual Rold, as
determined by the input key K. In the case of editing the same knowledge (i.e., same K), we can
get new residual Rnew = Rold − ∆K, where the following equation can be leveraged to track the
dynamics of KE:

Rnew := Rold −∆K = Rold −RoldK
⊤(C+KK⊤)−1K . (6)

Intuitively, (6) explains that the residual should gradually approach 0 · I. If the residual R gradually
approaches zero, then we can accurately detect the knowledge overlap by examining the residual R,
as demonstrated in Section 5.3.

4.2.2 ADDRESSING KNOWLEDGE CONFLICT VIA DATA AUGMENTAION

Recall that in rare cases, edit requests from the same/different clients in the same round may share
the same subject s and relation r but with different objects o, known as knowledge conflict. An ideal
solution to the knowledge conflict should consist of two stages. In the first stage, the global server
and clients need to collaboratively detect the conflict in a privacy-preserving manner. For example,
when the knowledge conflict occurs, the global server produces poor editing performance on some
edit requests. As a result, the clients (who contribute to the edits) could report the issue.
Once the conflict is identified, the server will determine which of the conflicting edit requests to
retain for the global model based on the client’s report and a predefined strategy (e.g., FCFS (Zhao
& Stankovic, 1989) or FIFO (Morse & Richardson, 1983) strategy). The client whose edit request
is selected for integration can apply data augmentation techniques, such as incorporating relevant
knowledge (Li et al., 2024), to enhance the KE of the selected edit request and effectively resolve
the knowledge conflict.

4.2.3 DYNAMIC COVARIANCE MATRIX ALLEVIATES KNOWLEDGE FORGETTING

The previously memorized knowledge may be forgotten by the LLM after a large number of edits,
termed as knowledge forgetting issue. COLLABEDIT simplifies the analysis of this issue and we
can witness from (2) that the covariance matrix C of existing knowledge is immutable, amplifying
the forgetting as the number of edits increases. As a remedy, we propose using a dynamic version
of C, i.e.,

C = β0C0 + β1C1 = β0C0 + β1

∑
KiK

⊤
i , (7)

where β0 and β1 are hyper-parameters that balance the influences of existing knowledge and newly
acquired knowledge. C0 is the covariance matrix of existing knowledge and C1 is the accumulated
covariance matrix of new knowledge. Ki represents the input keys obtained from all the edit
requests at the i-th round. The dynamic covariance matrix continuously updated for the new
knowledge can effectively mitigate the knowledge forgetting issue, as verified in Section 5.3.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and models. Following the literature (Meng et al., 2022; 2023), we use Multi-CounterFact
(MCF) (Meng et al., 2022) and zsRE (Levy et al., 2017) as datasets and evaluate the editing perfor-
mance on GPT2-XL (Radford et al., 2019) and GPT-J (6B) (Wang & Komatsuzaki, 2021).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Overall editing performance on GPT2-XL. GLOBAL-EDIT is 5000 × 1, which means we edit 5000
requests in one model (global model) at one time. GLOBAL-EDIT is an ideal situation. Others are merging meth-
ods (500× 10) where we edit 10 models and each model will be edited by 500 requests. The line of GPT2-XL
means we directly evaluate 5000 requests without any editing operation to test the model’s original performance.
The “Score” serves as the overall metric for assessing the performance of each method on each dataset.

Method MCF zsRE
NS ↑ PS ↑ ES ↑ Score ↑ NA ↑ PA ↑ EA ↑ Score ↑

GPT2-XL 78.24 23.88 21.50 29.65 24.32 21.87 22.80 22.95

GLOBAL-EDIT 65.08 80.66 89.66 77.08 25.25 64.71 68.96 43.12

TIES-MERGING 78.46 26.35 27.16 34.27 24.94 25.99 27.59 26.12
TASK-ARITHMETIC 66.84 55.19 61.66 60.85 24.97 33.66 34.80 30.45
SIMPLE-AVERAGE 76.90 29.97 33.06 39.15 25.78 29.26 30.62 28.40

COLLABEDIT 65.26 80.67 89.70 77.18 25.21 64.27 68.40 42.95

Table 2: Overall editing performance on GPT-J (6B), based on MEMIT (Meng et al., 2023). The experimental
setting is identical to GPT2-XL in Table 1. The “Score” serves as the overall metric.

Method MCF zsRE
NS ↑ PS ↑ ES ↑ Score ↑ NA ↑ PA ↑ EA ↑ Score ↑

GPT-J 83.45 17.17 14.78 21.75 26.99 26.25 27.04 26.75

GLOBAL-EDIT 57.20 96.13 99.26 79.03 28.05 88.79 92.05 51.92

TIES-MERGING 76.15 30.13 30.98 38.16 30.17 42.55 43.55 37.68
TASK-ARITHMETIC 50.24 72.82 73.26 63.44 18.77 45.16 46.75 30.98
SIMPLE-AVERAGE 78.04 41.28 54.68 54.22 29.19 47.96 51.38 40.22

COLLABEDIT 57.12 96.03 99.06 78.91 28.26 88.78 92.19 52.17

Baselines. We compare COLLABEDIT with three naive collaborative KE methods, which apply
standard KE algorithms (e.g., MEMIT (Meng et al., 2023) and MALMEN (Tan et al., 2024)) to
update the local model and use the current model merging algorithms to merge local updates into the
global model. In particular, we experiment with three most commonly used algorithms for model
merging, including SIMPLE-AVERAGE (Chronopoulou et al., 2023), TASK-ARITHMETIC (Ortiz-
Jimenez et al., 2023), and TIES-MERGING (Yadav et al., 2023).

Evaluation metrics. Unless otherwise mentioned, we utilize MEMIT as the backend KE algorithm
and adopt the same metrics as MEMIT to evaluate editing performance. Strictly following the lit-
erature (Meng et al., 2022; 2023; Tan et al., 2024), we use Efficacy Score (ES), Paraphrase Score
(PS), Neighborhood Score (NS), N-gram Entropy (NE), Reference Score (RS), and Score (i.e., the
harmonic mean of ES, PS, NS) as metrics for MCF; we use Neighborhood Accuracy (NA), Para-
phrase Accuracy (PA), Efficacy accuracy (EA), and Score (i.e., the harmonic mean of NA, PA, and
EA) as metrics for zsRE. When using MALMEN (Tan et al., 2024) as the backend KE algorithm,
we adopt the same metrics as MALMEN for a fair comparison, including “editing success” (EA),
“generalization success” (PA), and “locality success” (NA). See detailed descriptions in Appendix C.

Evaluation benchmark for conflict knowledge editing scenarios. In order to conveniently simu-
late potential scenarios of collaborative knowledge conflict and analyze the issues and impacts that
these scenarios may bring, we reconstruct two existing benchmarks to simulate knowledge conflict
situations through GPT-3.5-turbo. Initially, we attempt to explore the impact of knowledge conflict
on model performance using Multi-CounterFact (MCF) (Meng et al., 2022) due to its large scale.
For each data point (s, r, o) in the MCF dataset, we utilize GPT-3.5-turbo to generate a conflict ob-
ject that is identical to s and r but differs in o. Section E in the Appendix showcases a concrete
example of the generated conflict object. To validate the effectiveness of our two-stage mechanism
to resolve knowledge conflict, we utilize the Easy dataset (Li et al., 2024) for the sake of simplicity.
This dataset was constructed by creating several additional related knowledge edits for each edit
using Wikipedia as the source, which MCF does not include. Additionally, we also generated a
corresponding conflict object for each edit in the dataset using GPT-3.5-turbo.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Overall editing performance on GPT-J (6B) and GPT2-XL, based on MALMEN (Tan et al., 2024). We
edit 8 models and each model will be edited by 125 requests of zsRE. The “Score” serves as the overall metric.

Method GPT2-XL (zsRE) GPT-J (zsRE)
EA ↑ PA ↑ NA ↑ Score ↑ EA ↑ PA ↑ NA ↑ Score ↑

GLOBAL-EDIT 99.21 93.08 16.5 36.84 99.95 95.66 27.32 52.57

TIES-MERGING 15.52 14.85 18.68 16.18 27.86 26.76 25.18 26.55
TASK-ARITHMETIC 50.37 45.79 4.28 10.89 27.59 29.6 26.3 27.76
SIMPLE-AVERAGE 52.39 46.03 4.58 11.57 71.15 53.96 4.82 12.49

COLLABEDIT 99.06 92.66 15.49 35.11 99.62 92.88 23.25 47.01

5.2 EXPERIMENTAL RESULTS OF KE PERFORMANCE

Superior collaborative knowledge editing performance. As shown in Table 1 and 2 when using
MEMIT (Tan et al., 2024) as the backend KE algorithm, our privacy-preserving solution COLLABE-
DIT achieves on-par editing performance with that of GLOBAL-EDIT, and significantly outperforms
other naive model merging methods in terms of the “Score” on two datasets and two models. Ad-
ditionally, our COLLABEDIT has nearly identical performance with GLOBAL-EDIT via combining
the weight updates of each client, which ensures both privacy protection and editing quality. Nev-
ertheless, there exists a significant gap between the performance of baselines and GLOBAL-EDIT.
Table 3 additionally shows the editing performance of COLLABEDIT when using MALMEN as the
backend KE algorithm (Tan et al., 2024): COLLABEDIT is capable of performing nondestructive
collaborative KE across various mainstream KE methods.

Discussion about the performance of baselines. Though other baselines (Table 1 and 2) have
a relatively higher NS value compared to GLOBAL-EDIT and our COLLABEDIT, we conjecture
that it might be caused by the under-fitting phenomenon: these model merging methods are not
specifically designed for merging the weight updates from knowledge editing, which is reflected
by their low values of PS, ES, and Score. The results of two models GPT2-XL and GPT-J (6B)
(the first line) further confirms that the high NS of other baselines are largely due to the inherent
high quality of the model itself, exhibiting their poor collaborative KE effects. Note that NS/NA
emphasizes that the edited model should maintain the same answer for neighborhood prompts of
edit requests. However, editing certain knowledge using existing KE (Tan et al., 2024; Meng et al.,
2023) methods would inevitably affect the association of its neighboring prompts, which leads to a
similar drop of NS/NA for both GLOBAL-EDIT and COLLABEDIT.

5.3 EXPERIMENTAL RESULTS ON THREE CHALLENGES OF COLLABORATIVE KE

0 5 10 15 20
Number of repeating edits

0

50

100

150

200

2-
no

rm
 o

f r
es

id
ua

l Global-edit

Figure 3: The ℓ2-norm of residual R when
data replication happens.

Residual R can effectively detect the knowledge over-
lap. To understand the impacts of knowledge overlap,
we repeatedly edit the same edit requests into the global
model. Figure 3 shows that as the number of repeating
edits increases, the ℓ2-norm of residual R reduces rapidly
and becomes smaller than 0.01 when repeating edits for
12 times, which is consistent with our theoretical analy-
sis in Section 4.2.1. This implies that the ℓ2-norm of R
can be used to check whether “overlapped editing” hap-
pens, which may be helpful for practitioners to avoid the
decrease in model performance.

Knowledge conflict can compromise the editing performance. To explore the impact of knowl-
edge conflict, we reconstruct MCF with knowledge conflict (see Section 5.1 for details), where each
edit request f ′ = (s′, r′, o′) in the benchmark corresponds to a f = (s, r, o) in MCF and s′ = s,
r′ = r, o′ ̸= o (based on the definition in Section 4.2.2). We randomly sample 5,000 edit requests
and their conflicted versions from both datasets, denoted as E and E ′. For experiments, we can either
distribute edit requests in E or both sets (E and E ′) across all the clients for collaborative KE to un-
derstand the impact of E ′ on E . Table 6 (see Appendix) evaluates the KE performance of E with and
without the editing of the conflicted set E ′ to explore the impact of knowledge conflict on KE perfor-
mance. We can see that the overall KE performance largely decreases due to conflicting knowledge

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

especially for PA and EA: as those accuracy-related metrics, in comparison to the success-related
metrics (i.e., PS, NS, ES), are more rigorous; while NA, a metric used to assess whether irrelevant
knowledge is affected, nearly remained unchanged. See Section C in Appendix for details.

Two-stage mechanism with knowledge augmentation can mitigate conflicts. Given the harmful
impacts of knowledge conflict, we examine our two-stage mechanism (introduced in section 4.2.2)
on the modified Easy dataset (Li et al., 2024). In this scenario, there is no objective standard to
determine which edit should be retained. Therefore, we can employ the FCFS (Zhao & Stankovic,
1989) or FIFO (Morse & Richardson, 1983) to select the correct edit to be preserved. Subsequently,
we augment edit requests and obtain weight updates from the selected client.

Conflict Unsolved Conflict Solved
Input: What use does fpart has _

0.0

0.2

0.4

0.6

R
el

at
iv

e
Pr

ob
ab

ili
ty

0.526
0.451

0.007

0.631

0.031 0.004

Target: data migration
Conflict: data transfer

Other: data storage

Figure 4: An example of using data augmen-
tation to address the problem of knowledge
conflict.

Firstly, we present a detailed example of resolving knowl-
edge conflicts in Figure 4. Specifically, given the question

“What use does ‘fpart’ have?”, there are two edit requests
that induce conflicting answers, i.e., “data migration” and
“data transfer”. Let’s define “data migration” as the target
knowledge to preserve and “data transfer” as the conflict
knowledge to remove, and we have the following observa-
tions after adopting the proposed mechanism: (1) Before
solving the conflict (left), the LLM produces a large out-
put probability for both “data migration” and “data trans-
fer”; (2) After solving the conflict (right), the probability of “data migration” slightly increases while
the probability of “data transfer” drops to 0. Moreover, the probability of unrelated knowledge re-
mains unchanged. The results show that knowledge conflict is effectively resolved.

Table 4: COLLABEDIT utilizes aug-
mented edit requests to mitigate the
knowledge conflict.

Avg-∆P Succ

Before Resolve -18.11 37%
After Resolve 17.6 77.6%

Secondly, we evaluate the performance of the proposed two-
stage mechanism with a large number of conflicting edit re-
quests. In Table 4, we present the Average Probability Differ-
ence (Avg-∆P) and Target Success Rate (Succ) before and af-
ter resolving knowledge conflict. Specifically, we experiment
with 1,000 pairs of target knowledge and corresponding con-
flicting knowledge. A larger Avg-∆P (i.e., output probabil-
ity of target knowledge minus output probability of conflicting
knowledge) and a higher Succ (i.e., the target knowledge is the
final output) indicate that the model is more inclined to output the target knowledge, which indicates
that knowledge conflict is resolved. As illustrated in Table 4, our two-stage mechanism effectively
mitigates the issue.

Dynamic C can alleviate the knowledge forgetting. As described in Section 3.3.2, we assume
that each client has a set of old edit requests Eo (initially edited), as well as m sets of new edit
requests En = [En1 , En2 , · · · , Enm]. We note that for this experiment, there exists no conflict
between Eo and En, which allows us to investigate the effects of knowledge forgetting. As shown
in Table 5, we find that after numerous rounds of editing, the LLMs produce much lower PS and
ES for knowledge obtained from Eo due to the knowledge forgetting. Under the same condition, we
dynamically update the covariance matrix C according to Equation 7 when editing both Eo and En.
We observe that the dynamic C significantly mitigates the issue, with the Score only dropping from
79.03 to 78.15 on GPT-J and MCF.

Table 5: Dynamic covariance matrix C can alleviate the knowledge forgetting. We gather all the edit requests
in each round and apply global KE to edit the global model to study the knowledge forgetting issue. For
experiments, we initially use Eo to edit the global model and sequentially use m sets of aggregated new edit
requests, where we set m to a large value (i.e., m = 1000). We report the editing performance of old edit
requests Eo before and after m rounds of new editing. GPT-J (6B) and GPT2-XL is used.

Model Method MCF zsRE
NS ↑ PS ↑ ES ↑ Score ↑ NA ↑ PA ↑ EA ↑ Score ↑

GPT-J
Before m rounds of editing 57.20 96.13 99.26 79.03 28.05 88.79 92.05 51.92

After m rounds of editing (Immutable C) 65.14 76.94 84.58 74.68 24.21 61.05 66.22 41.21
After m rounds of editing (Dynamic C) 58.15 91.62 97.32 78.15 26.54 79.34 84.40 48.28

GPT2-XL
Before m rounds of editing 65.08 80.66 89.66 77.08 25.25 64.71 68.96 43.12

After m rounds of editing (Immutable C) 64.89 60.38 69.82 64.80 25.28 50.31 53.96 38.47
After m rounds of editing (Dynamic C) 61.54 74.33 82.30 71.72 24.40 56.57 59.89 39.80

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6 THE DISCUSSION ON THE PRIVACY PRESERVING OF COLLABEDIT

This section theoretically and empirically justifies that COLLABEDIT is privacy-preserving via shar-
ing KK⊤. We begin our justification by defining input keys K as:

K = [k1,k2, · · · ,kM] ∈ Rd×M , (8)

where d indicates the dimension of the feature vector and M indicates the number of edit requests.
Theoretical aspect. We aim to prove that it is nontrivial to reconstruct the K given KK⊤, which is
equivalent to proving that given any specific KK⊤, there exists an infinite number of K (every K
may involve different M) that will lead to the same KK⊤.

Let’s assume there exists a matrix operation W′ ∈ RM×M ′
, which can transform K into K′ through

K′ = K ·W′ and ensure that K′K′⊤ = KK⊤. Then we have:

K′K′⊤ = KW′⊤(KW′)⊤ = K(W′W′⊤)K⊤ = KK⊤ , (9)

where any orthogonal matrix W′ such that W′W′⊤ = I will lead to the K′ which has the same
covariance matrix as K. Since there exists (Grove, 2002; Hall & Hall, 2013) an infinite number of
the orthogonal matrix W′ that meets the condition of W′W′⊤ = I when M > 1, we can conclude
that it is nontrivial to reconstruct the K given KK⊤ from theoretical perspective3.

K KK>M=1 KK
>
M=4 KK

>
M=8 KK

>
M=16

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

E
m

b
ed

d
in

g
S

im
ila

ri
ty

0.92

0.86

0.80

0.69 0.68

Figure 5: We show the average embedding
similarity between recovered sequences (in-
ferred from K or KK⊤ involving M se-
quences) and their ground truths. The grey
line is the average embedding similarity be-
tween two random text sequences.

Empirical aspect. Our objective is to quantify the ex-
tent of privacy leakage by recovering the input sequences
of edit requests solely based on the observed K or KK⊤.
Notably, K compromises the feature embeddings of input
sequences, and thus we leverage the SoTA embedding in-
version attack, GEIA (Li et al., 2023a), to recover input
sequences from their feature embeddings.
For generality, we adopt the same setup as GEIA to re-
cover input sequences. The key idea is to build a powerful
attacker model to decode the sequences from embeddings.
The privacy leakage is measured by embedding similar-
ity (Cer et al., 2017) between original sequences and re-
covered sequences in terms of an LLM (e.g., T5-Large
(Raffel et al., 2020)). Since we also want to measure the
privacy leakage of KK⊤, we further tailor the attacker
model to recover input sequences from KK⊤. Consid-
ering that KK⊤ is a covariance matrix involving M input sequences, we calculate the maximum
embedding similarity between the recovered sequence and any of the M sequences.
Figure 5 shows that sharing K results in severe privacy leakage as the recovered sequences are close
to the original sequences with large embedding similarity. In contrast, with only a small M such as
8, KK⊤ reduces the embedding similarity to 0.69, which is close to that between two random text
sequences (grey line). In other words, the recovered sequence from KK is almost irrelevant to any of
the M sequences when M ≥ 8. Therefore, we show that COLLABEDIT achieves privacy-preserving
via sharing KK⊤.

7 CONCLUSION AND FUTURE WORKS

In this work, we propose the first collaborative KE framework, COLLABEDIT, which allows
multiple parties to jointly edit the knowledge of an LLM without disclosing their private edit
requests. In particular, COLLABEDIT leverages the model merging techniques to combine the
updates made by each client in their local models. Motivated by the theoretical analysis, we design
our framework to be non-destructive, which achieves comparable performance to directly editing a
global model using aggregated edit requests. Based on COLLABEDIT, we further provide a remedy
toward solving intervention challenges raised in collaborative KE. Interesting future works include:
(1) Further improving the performance of KE in collaborative learning scenarios; and (2) Diving
deeper into the solutions to fully address intervention challenges in collaborative KE.

3The clients typically edit multiple requests simultaneously into the LLM and may also apply techniques
(e.g., MLE (Li et al., 2024)) to augment their knowledge. Therefore, it is reasonable to assume there are at least
2 edit requests in a single round (or it could be forced in regulation).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Afra Akyürek, Eric Pan, Garry Kuwanto, and Derry Wijaya. Dune: Dataset for unified editing. In Empirical
Methods in Natural Language Processing (EMNLP), 2023.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task 1: Semantic
textual similarity multilingual and crosslingual focused evaluation. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017), pp. 1–14, 2017.

Alexandra Chronopoulou, Matthew E Peters, Alexander Fraser, and Jesse Dodge. Adaptersoup: Weight averag-
ing to improve generalization of pretrained language models. In Association for Computational Linguistics
(ACL), 2023.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. arXiv preprint
arXiv:2104.08164, 2021.

Dongyang Fan, Celestine Mendler-Dünner, and Martin Jaggi. Collaborative learning via prediction consensus.
Neural Information Processing Systems (NeurIPS), 2024.

Larry C Grove. Classical groups and geometric algebra, volume 39. American Mathematical Soc., 2002.

Akshat Gupta, Anurag Rao, and Gopala Anumanchipalli. Model editing at scale leads to gradual and catas-
trophic forgetting. arXiv preprint arXiv:2401.07453, 2024.

Brian C Hall and Brian C Hall. Lie groups, Lie algebras, and representations. Springer, 2013.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali
Farhadi. Editing models with task arithmetic. In International Conference on Learning Representations
(ICLR), 2023.

Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, and Minjoon
Seo. Knowledge unlearning for mitigating privacy risks in language models. In Association for Computa-
tional Linguistics (ACL), 2023.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances and open prob-
lems in federated learning. Foundations and trends® in machine learning, 14(1–2):1–210, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and Ananda Theertha
Suresh. Scaffold: Stochastic controlled averaging for federated learning. In International conference on
machine learning, pp. 5132–5143. PMLR, 2020.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via reading com-
prehension. In Computational Natural Language Learning (CoNLL), 2017.

Haoran Li, Mingshi Xu, and Yangqiu Song. Sentence embedding leaks more information than you expect:
Generative embedding inversion attack to recover the whole sentence. arXiv preprint arXiv:2305.03010,
2023a.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of fedavg on
non-iid data. arXiv preprint arXiv:1907.02189, 2019.

Zexi Li, Tao Lin, Xinyi Shang, and Chao Wu. Revisiting weighted aggregation in federated learning with neural
networks. In International Conference on Machine Learning, pp. 19767–19788. PMLR, 2023b.

Zhoubo Li, Ningyu Zhang, Yunzhi Yao, Mengru Wang, Xi Chen, and Huajun Chen. Unveiling the pitfalls
of knowledge editing for large language models. In International Conference on Learning Representations
(ICLR), 2024.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics, pp. 1273–
1282. PMLR, 2017.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associations in
gpt. In Neural Information Processing Systems (NeurIPS), 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-editing memory in
a transformer. In International Conference on Learning Representations (ICLR), 2023.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast model editing at
scale. In International Conference on Learning Representations (ICLR), 2022a.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn. Memory-based
model editing at scale. In International Conference on Machine Learning (ICLR), pp. 15817–15831. PMLR,
2022b.

Amirkeivan Mohtashami, Florian Hartmann, Sian Gooding, Lukas Zilka, Matt Sharifi, et al. Social learning:
Towards collaborative learning with large language models. arXiv preprint arXiv:2312.11441, 2023.

Dale Morse and Gordon Richardson. The lifo/fifo decision. Journal of accounting research, pp. 106–127,
1983.

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent space: Im-
proved editing of pre-trained models. In Neural Information Processing Systems (NeurIPS), 2023.

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen, Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei Huang,
and Huajun Chen. Reasoning with language model prompting: A survey. In Association for Computational
Linguistics (ACL), 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of Machine Learning Research, 21(140):1–67, 2020. URL http://jmlr.org/papers/v21/
20-074.html.

Gilbert Strang. Introduction to linear algebra. SIAM, 2022.

Chenmien Tan, Ge Zhang, and Jie Fu. Massive editing for large language models via meta learning. In
International Conference on Learning Representations (ICLR), 2024.

Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model. https:
//github.com/kingoflolz/mesh-transformer-jax, 2021.

Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMahan, Maruan Al-Shedivat, Galen
Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, et al. A field guide to federated optimization.
arXiv preprint arXiv:2107.06917, 2021.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Morcos,
Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model soups: averaging weights of
multiple fine-tuned models improves accuracy without increasing inference time. In International conference
on machine learning (ICLR), 2022.

Leijie Wu, Song Guo, Junxiao Wang, Zicong Hong, Jie Zhang, and Yaohong Ding. Federated unlearning:
Guarantee the right of clients to forget. IEEE Network (IEEE Netw.), 2022.

Leijie Wu, Song Guo, Junxiao Wang, Zicong Hong, Jie Zhang, and Jingren Zhou. On knowledge editing in
federated learning: Perspectives, challenges, and future directions. arXiv preprint arXiv:2306.01431, 2023.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Ties-merging: Resolving inter-
ference when merging models. In Neural Information Processing Systems (NeurIPS), 2023.

Rui Ye, Wenhao Wang, Jingyi Chai, Dihan Li, Zexi Li, Yinda Xu, Yaxin Du, Yanfeng Wang, and Siheng Chen.
Openfedllm: Training large language models on decentralized private data via federated learning. In ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2024.

Ningyu Zhang, Yunzhi Yao, and Shumin Deng. Editing large language models. In International Joint Confer-
ence on Natural Language Processing and the Asia-Pacific Chapter of the Association for Computational
Linguistics (IJCNLP-AACL), 2023.

W. Zhao and J.A. Stankovic. Performance analysis of fcfs and improved fcfs scheduling algorithms for dynamic
real-time computer systems. In [1989] Proceedings. Real-Time Systems Symposium (RTSS), 1989.

12

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A DETAILS OF KNOWLEDGE EDITING IN A SINGLE LLM

Details of identifying the critical path of MLP layers. Following MEMIT (Meng et al., 2023),
we apply causal tracing to LLMs (e.g., GPT-2 XL) and identify the critical path of MLP layers to
edit. For consistency, we edit the same set of layers R as MEMIT such as the 13-17th layers of
GPT-2 XL.

Details of the closed form optimization of ∆ for a single layer. We optimize the following
objective to obtain the optimal weights W∗ of layer l:

W∗ ≜ argmin
Ŵ

 n∑
i=1

∥∥∥Ŵki −mi

∥∥∥2 + n+|E|∑
i=n+1

∥∥∥Ŵki −mi

∥∥∥2
 , (10)

where ki (1 ≤ i ≤ n) indicates the old keys derived from existing knowledge and ki (n + 1 ≤ i ≤
n+ |E|) indicates the new keys derived from the edit requests E .

Next, we denote W as the model weights before knowledge editing, Kinit = [k1, . . . ,kn] as the
set of old keys derived from existing knowledge and K = [kn+1, . . . ,kn+|E|] as the set of new
keys derived from the edit requests E . Moreover, Minit = [m1, . . . ,mn] = WKinit represents the
memory values of Kinit that are previously stored and M = [mn+1, . . . ,mn+|E|] represents the
desired memory values of K that we aim to store. We can solve the Equation (10) by applying the
normal equation(Strang, 2022):(

W +∆)(KinitK
⊤
init +KK⊤) = MinitK

⊤
init +MK⊤,

WKinitK
⊤
init +WKK⊤ +∆KinitK

⊤
init +∆KK⊤ = MinitK

⊤
init +MK⊤.

(11)

In addition, we define two variables: (1) C ≜ KinitK
⊤
init, which represents the covariance matrix of

the input keys of existing knowledge. (2) R ≜ M − WK, which represents the residual error of
the new associations when evaluated on the old weights W. Then, we can obtain the closed-form
solution of the weight updates ∆ as:

∆ = RK⊤(C+KK⊤)−1. (12)

We compute C = µ · Ek

[
kk⊤], where Ek

[
kk⊤] is estimated as an uncentered covariance statistic

collected using an empirical sample of vector inputs to the layer (e.g., 100,000 Wikipedia records).
µ is a hyperparameter that balances the weighting of new v.s. old associations (a typical value of µ
is 1.5× 104 according to MEMIT).

Details of the implementation on simultaneously editing multiple layers. Previously we fo-
cus on illustrating how existing knowledge editing algorithms edit a single layer in the LLM. To
simultaneously edit multiple layers of l ∈ R, existing editing algorithms (e.g., MEMIT (Meng
et al., 2023)) firstly obtain the desired output vector zi of final layer in R that can maximize
Pr [oi|x⊕ p(si, ri)]. Then, they spread the whole residual over all the layers in R by computing

partial residual rli =
zi−Wl

ik
l
i

L−l+1 of each layer, i.e., l ∈ R. Then, the desired memory value of layer l
can be computed as ml

i = Wl
ik

l
i + rli and we can use Equation (12) to edit each layer. For details

of the implementation, please also refer to Meng et al. (2023). In this work, we strictly follow their
implementation to simultaneously edit multiple layers.

B THEORETICAL ANALYSIS OF THE METHODS

For ease of understanding, we will describe knowledge editing for a specific layer l and omit l
for brevity. We denote ∆G and ∆i as the weight updates derived from GLOBAL-EDIT and client
i’s edit. KG and Ki represent the new keys derived from all the edit requests and client i’s edits
requests. According to Section 3.1, RG and Ri represent the residual errors in the output space
of layer l derived from all the edit requests and client i’s edits requests, respectively. C represents
the aggregated statistic over the previously stored keys of existing knowledge. We consider the
collaborative editing scenario with N clients and each client model has M edit requests.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B.1 ANALYSIS OF THE NON-DESTRUCTIVE COLLABORATIVE KNOWLEDGE EDITING

Note that ∆i and ∆G can be computed via (2) as:

∆G = RGK
⊤
G(C+KGK

⊤
G)

−1 ,

∆i = RiK
⊤
i (C+KiK

⊤
i)

−1 .
(13)

Following the definitions of K and R in Section 3.1, we have:

Ki = [ki×(M−1)+1,ki×(M−1)+2, · · · ,ki×M] ,

Ri = [ri×(M−1)+1, ri×(M−1)+2, · · · , ri×M] ,

KG = [k1,k2, · · · ,kN×M] = [K1,K2, · · · ,KN] ,

RG = [r1, r2, · · · , rN×M] = [R1,R2, · · · ,RN] .

(14)

Then we have:
RGK

⊤
G = R1K

⊤
1 +R2K

⊤
2 + · · ·+RNK⊤

N . (15)
According to Equations (13) and (15), we can obtain:

∆G(C+
∑N

j=1 KjK
⊤
j) = ∆G(C+K1K

⊤
1 · · ·+KNK⊤

N)

= ∆G(C+KGK
⊤
G)

= RGK
⊤
G

= R1K
⊤
1 +R2K

⊤
2 + · · ·+RNK⊤

N

= ∆1(C+K1K
⊤
1) + · · ·+∆N (C+KNK⊤

N)

=
∑N

i=1 ∆i(C+KiK
⊤
i) .

(16)

According to the Equation (16), we can finally reach the following conclusion:

∆G =
∑N

i=1 ∆i(C+KiK
⊤
i)(C+

∑N
j=1 KjK

⊤
j)

−1 . (17)

B.2 ANALYSIS OF THE GAP BETWEEN TWO EDITING METHODS

According to the Equation (17), we obtain the relationship between ∆G with ∆i as:

∆G = ∆1(C+K1K
⊤
1)A

−1 + · · ·+∆N (C+KNK⊤
N)A−1, (18)

where A = (C +
∑N

j=1 KiK
⊤
i). Furthermore, we denote the weight updates derived from the

destructive collaborative knowledge editing method using “Task-Arithmetic (TA)” as ∆′
G. We have:

∆′
G = λ× (∆1 +∆2 + · · ·+∆N) . (19)

Then, the gap between ∆G and ∆′
G can be calculated as:

∆G −∆′
G =

N∑
i=1

(∆i(C+KiK
⊤
i)A

−1)−
N∑
i=1

λ×∆i

=

N∑
i=1

∆i

(C+KiK
⊤
i)(C+

N∑
j=1

KiK
⊤
i)

−1 − λI

 .

(20)

C EVALUATION METRICS

C.1 METRICS FOR MULTI-COUNTERFACT

Multi-CounterFact (MCF) contains an assortment of prompts and texts for evaluating model rewrites.
For (si, ri), knowledge editing aims to rewrite the old object oci with the new desired object oi. We
use the same metrics as previous works (Meng et al., 2023) for evaluation:

• Efficacy Success (ES) is the proportion of cases where the new object oi exceeds the old object
oci in probability:

Ei [PrMθ
[oi|p(si, ri)] ≥ PrMθ

[oci |p(si, ri)]] . (21)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

• Paraphrase Success (PS) is the proportion of cases where the new object oi exceeds the old
object oci in probability on rephrasings of the original statement:

Ei

[
Ep∈paraphrases(si,ri) [PrMθ

[oi|p] > PrMθ
[oci |p]]

]
. (22)

• Neighborhood Success (NS) is the proportion of neighborhood prompts (all such prompts have
the same old object oci) where the model still assigns higher probability to the old object:

Ei

[
Ep∈neighborhood prompts(si,ri) [PrMθ

[oi|p] < PrMθ
[oci |p]]

]
. (23)

C.2 METRICS FOR ZSRE

For the sake of consistency, we report the same three accuracy-based metrics as the previous
work (Meng et al., 2023) to evaluate the editing performance on zsRE when using MEMIT (Meng
et al., 2023):

• Efficacy Accuracy (EA) is the proportion of edits that the model Mθ recalls with top-1 accuracy.
Specifically, an edited model Mθ should correctly recall the target object oi with the largest
probability given a templated prompt p(si, ri) containing si and ri:

Ei

[
oi = argmax

o′i

PrMθ
[o′i|p(si, ri)]

]
. (24)

• Paraphrase Accuracy (PA) is the accuracy of rephrasings of the original statement:

Ei

[
Ep∈paraphrases(si,ri)

[
oi = argmax

o′i

PrMθ
[o′i|p]

]]
. (25)

• Neighborhood Accuracy (NA) is the proportion of neighborhood prompts that the model gets
correct for the old object oci :

Ei

[
Ep∈neighborhood prompts(si,ri)

[
oci = argmax

o′i

PrMθ
[o′i|p]

]]
. (26)

D ALGORITHM OF OUR COLLABEDIT

Algorithm 1 COLLABEDIT: Non-destructive Collaborative Knowledge Editing
Require: The number of clients N , edit requests Ei of each client (1 ≤ i ≤ N) where Ei = {(sij , rij , oij |j)},

language modelMθ with weights Wl of layer l, a set of MLP layers to edit R, covariance matrix C of
existing knowledge (optional for direct editing methods, e.g., MEMIT), Hyper-network H with learnable
parameter κl for layer l (optional for hypernetwork-based editing methods, e.g., MALMEN), a set of
prompt templates P .

Ensure: Edited language modelMθ with updated weights W∗ = W +∆ of layer l.
1: ∆list = [] , KKTlist = []
2: for i ∈ N do
3: ∆i

list ,KKTi
list ← GetDeltaAndKKT (Ei,Mθ , C,H, P)

4: ∆list.append(∆
i
list) , KKTlist.append(KKTi

list)

5: for l ∈ R do
6: A← C

7: A← κlI

8: for i ∈ N do
9: Kl

iK
l
i
⊤
= KKTlist[i][l] , ∆l

i = ∆list[i][l]

10: A← A+Kl
iK

l
i
⊤

11: ∆l
i ←∆l

i × (C+Kl
iK

l
i
⊤
)

12: ∆l
i ←∆l

i × (κlI+Kl
iK

l
i
⊤
)

13: W∗l ←Wl +
N∑
i=1

∆l
i ×A−1

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 2 GetDeltaAndKKT
1: procedure GETDELTAANDKKT(Ei,Mθ ,H, C, P)
2: for sj , rj , oj ∈ Ei do
3: Lj ← 1

|P|
∑|P|

k=1− log PrMθ [oj |Pk(sj , rj)]

4: optimize zj ← argminzj
Lj ▷ the desired output of modified layers to output oj given(sj , rj)

5: Cache Lj

6: ∆list = [], KKTlist = []
7: for l ∈ R do
8: hl

i ← hl−1
i + al

i +ml
i

9: for sj , rj , oj ∈ Ei,j do
10: kl

i ← kl
i =

1
P
∑|P|

k=1 Pk(sj , rj)

11: rli ←
zj−Wlkl

R[−1]−l+1

12: rli ← H(kl
i,∇kl

i
Lj)k

l
i

13: Kl ← [kl
1, ...,k

l
i]

14: Rl ← [rl1, ..., r
l
i]

15: ∆l ← RlKl⊤(Cl +KlKl⊤)−1

16: ∆l ← RlKl⊤(λlI+KlKl⊤)−1

17: ∆list.append(∆l) , KKTlist.append(KlKl⊤)
18: return ∆list, KKTlist

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 6: Knowledge conflict can compromise the editing performance of collaborative KE. We denoted E and
E ′ in section 5.3. Edit E indicates that only requests in E are edited, while Edit E and E ′ indicates that
requests in both sets are edited. We evaluate the editing performance of edit requests in E .

Model Method NS ↑ PS ↑ ES ↑ NA ↑ PA ↑ EA ↑

GPT-J Edit E 57.09 96.31 99.2 5.32 69.24 91.96
Edit E and E ′ 60.59 85.43 91.18 5.33 27.83 48,84

GPT2-XL Edit E 64.85 81.06 89.56 8.5 38.89 58.28
Edit E and E ′ 63.77 69.89 78.16 7.54 15.96 24.28

Table 7: A summary of scenarios of knowledge conflict.

Situation Analysis
m1 = m2 Two conflicted editing events e1 and e2 are made by the same

client. In this case, the client could directly apply knowledge
augmentation techniques (e.g., Multi-label Editing Li et al.
(2024)) to overwrite its previous knowledge.

m1 ̸= m2 and t1 = t2 Two conflicted editing events e1 and e2 are made by different
clients at the same round of editing. In this case, we need to
further develop a two-stage mechanism to solve conflict as il-
lustrated in Section 4.2.2.

m1 ̸= m2 and t1 ̸= t2 Two conflicted editing events e1 and e2 are made by different
clients at different rounds of editing. In this case, we need to
further develop a two-stage mechanism to solve conflict as il-
lustrated in Section 4.2.2.

10 30 50 70
Numbers of clients

77

76

78

79

75

H
-m

ea
n

of
 (E

S,
 P

S,
 N

S) Global-Edit
CollabEdit

(a) A total of 5000 edited-knowledge

10 30 50 70
Numbers of clients

76

78

80

82

84

H
-m

ea
n

of
 (E

S,
 P

S,
 N

S)

Global-Edit
CollabEdit

(b) Every client edit 100 knowledge
Figure 6: Comparison of global KE (GLOBAL-EDIT) and collaborative KE with different client numbers.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

E CONCRETE EXAMPLE OF GENERATED CONFLICT OBJECT

Instruction:

Prompts for generating a conflict object
{"You're tasked with creating a new benchmark for

conflicts in knowledge clipping. Given a set of
data structure as shown in the example, your
objective is to generate a conflict object.
Specifically:

↪→

↪→

↪→

↪→

1) Modify the 'target_new' field to a similar but
different && incorrect answer.↪→

2) Adapt the 'attribute_prompts' accordingly to
reflect the modified 'target_new'.↪→

3) Provide the output in JSON format, containing the
modified 'target_new' and the adjusted
'attribute_prompts'.

↪→

↪→

Input: {}

Output:"}

Outputs: A conflict object response for case-0 in MCF by GPT-3.5-turbo

case-0-conflict:
{
"case_id": 0,
"pararel_idx": 2796,
"requested_rewrite": {
"prompt": "The mother tongue of {} is",
"relation_id": "P103",
"target_new": {
"str": "Spanish",
"id": -1
},
"target_true": {
"str": "French",
"id": "Q150"
},
"subject": "Danielle Darrieux"
},
"paraphrase_prompts": [
"Shayna does this and Yossel goes still and dies.

Danielle Darrieux, a native",↪→

"An album was recorded for Capitol Nashville but
never released. Danielle Darrieux spoke the
language"

↪→

↪→

],
"neighborhood_prompts": [
"The mother tongue of Léon Blum is",
"The native language of Montesquieu is",
"François Bayrou, a native",
"The native language of Raymond Barre is",
"Michel Rocard is a native speaker of",
"Jacques Chaban-Delmas is a native speaker of",

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

"The native language of François Bayrou is",
"Maurice Genevoix, speaker of",
"The mother tongue of François Bayrou is",
"Melchior de Vogüé, speaker of"
],
"attribute_prompts": [
"J.\\xa0R.\\xa0R. Tolkien is a native speaker of",
"The mother tongue of Douglas Adams is",
"The mother tongue of Paul McCartney is",
"Elvis Presley is a native speaker of",
"Barack Obama, speaker of",
"Douglas Adams, speaker of",
"Meryl Streep, a native",
"George Orwell spoke the language",
"George Washington, a native",
"Michael Jackson, a native"
],
"generation_prompts": [
"Danielle Darrieux's mother tongue is",
"Where Danielle Darrieux is from, people speak the

language of",↪→

"Danielle Darrieux's mother tongue is",
"Danielle Darrieux was born in",
"Danielle Darrieux's mother tongue is",
"Danielle Darrieux's mother tongue is",
"Danielle Darrieux was born in",
"Where Danielle Darrieux is from, people speak the

language of",↪→

"Danielle Darrieux was born in",
"Danielle Darrieux was born in"
]
}

Outputs: Original data of case-0 in MCF

case-0-conflict:
{
"case_id": 0,
"pararel_idx": 2796,
"requested_rewrite": {
"prompt": "The mother tongue of {} is",
"relation_id": "P103",
"target_new": {
"str": "English",
"id": "Q1860"
},
"target_true": {
"str": "French",
"id": "Q150"
},
"subject": "Danielle Darrieux"
},
"paraphrase_prompts": [
"Shayna does this and Yossel goes still and dies.

Danielle Darrieux, a native",↪→

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

"An album was recorded for Capitol Nashville but
never released. Danielle Darrieux spoke the
language"

↪→

↪→

],
"neighborhood_prompts": [
"The mother tongue of L\u00e9on Blum is",
"The native language of Montesquieu is",
"Fran\u00e7ois Bayrou, a native",
"The native language of Raymond Barre is",
"Michel Rocard is a native speaker of",
"Jacques Chaban-Delmas is a native speaker of",
"The native language of Fran\u00e7ois Bayrou is",
"Maurice Genevoix, speaker of",
"The mother tongue of Fran\u00e7ois Bayrou is",
"Melchior de Vog\u00fc\u00e9, speaker of"
],
"attribute_prompts": [
"J.\u00a0R.\u00a0R. Tolkien is a native speaker of",
"The mother tongue of Douglas Adams is",
"The mother tongue of Paul McCartney is",
"Elvis Presley is a native speaker of",
"Barack Obama, speaker of",
"Douglas Adams, speaker of",
"Meryl Streep, a native",
"George Orwell spoke the language",
"George Washington, a native",
"Michael Jackson, a native"
],
"generation_prompts": [
"Danielle Darrieux's mother tongue is",
"Where Danielle Darrieux is from, people speak the

language of",↪→

"Danielle Darrieux's mother tongue is",
"Danielle Darrieux was born in",
"Danielle Darrieux's mother tongue is",
"Danielle Darrieux's mother tongue is",
"Danielle Darrieux was born in",
"Where Danielle Darrieux is from, people speak the

language of",↪→

"Danielle Darrieux was born in",
"Danielle Darrieux was born in"
]
}

20

