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Abstract
Natural data is often organized as a hierarchical composition of features. How many samples do
generative models need to learn the composition rules, so as to produce a combinatorially large
number of novel data? What signal in the data is exploited to learn those rules? We investigate
these questions in the context of diffusion models both theoretically and empirically. Theoreti-
cally, we consider simple probabilistic context-free grammars—tree-like graphical models used to
represent the hierarchical and compositional structure of data such as language and images. We
demonstrate that diffusion models learn the grammar’s composition rules with the sample com-
plexity required for clustering features with statistically similar context. This clustering emerges
hierarchically: higher-level features associated with longer contexts require more data to be identi-
fied. This mechanism leads to a sample complexity that scales polynomially with the said context
size. As a result, diffusion models trained on an intermediate dataset size generate data coherent up
to a certain scale, but that lacks global coherence. We test these predictions in different domains and
find remarkable agreement: both generated texts and images achieve progressively larger coherence
lengths as the training time or dataset size grows.

1. Introduction

Compositional generalization, the ability to understand and generate novel combinations of known
components, is a fundamental characteristic of human intelligence and creativity. For instance, this
skill allows humans to create grammatically correct and meaningful sentences never heard before
or to reason originally by assembling together known ideas. Under which conditions can machines
learn such a skill? The success of diffusion models in producing realistic data across various do-
mains [3, 19, 34, 43, 44] provides a unique opportunity to study how this ability emerges. Fun-
damental questions include: What signals in the data are exploited by neural networks to learn the
compositional rules? How many training examples are needed to learn such rules, and in what order
are they learned? How does the finiteness of the training set affect the structure of generated data?

To address these questions theoretically, we bridge two viewpoints developed in the context
of natural language processing. On the one hand, symbolic approaches aim to describe the struc-
ture of data via a list of rules that generate them. For example, probabilistic context-free grammars
(PCFG) [10] describe sentences with trees, whose nodes are hidden variables that can generate other
nodes or leaves according to probabilistic production rules. PCFGs can approximate both structural
and semantic aspects of text and have been proposed for the description of images under the name
of Pattern Theory [16, 22, 42]. On the other hand, statistical approaches use data-driven analyses
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agnostic to expert knowledge of grammatical structure. A notable example is word2vec [29], where
a shallow network learns meaningful representations of words by predicting their neighborhood.

We unify these two viewpoints by studying how diffusion models learn simple PCFGs. In
particular, we show empirically that the learning process of diffusion models is hierarchical, pro-
gressively capturing compositional rules at deeper levels of the PCFG’s hierarchy. We then argue
that the grammar rules can be deduced iteratively by clustering, as in word2vec, sequences of to-
kens based on the statistics of their context. For each level, we analytically derive the corresponding
sample complexity. We show that it matches the number of data required by the diffusion model
to generate data that follow the PCFG rules up to that level. Since this hierarchical clustering pro-
cedure requires a number of samples that is polynomial in the size of the token’s sequence, this
mechanism allows the diffusion model to learn a high-dimensional distribution while avoiding the
curse of dimensionality. Beyond simple PCFGs, we predict that diffusion models trained on limited
samples generate data that is locally coherent (i.e., satisfying local compositional rules), but not
globally, with a coherence length growing with the training time/number of samples. We confirm
this prediction in diffusion models trained on OpenWebText and ImageNet.

2. Setup

Diffusion models Denoising diffusion models are a family of generative models built to draw
samples from a target distribution by reversing a process where noise is gradually added [19, 43–45].
Let t denote the time index running in [0, . . . , T ], and let q(·) be the distribution we aim to sample
from, with x(0) ∼ q(x(0)) denoting a sample from this distribution. A diffusion model is composed
of two main parts. Firstly, a forward process that sequentially adds noise to the data to produce the
sequence {x(t)}1≤t≤T , q(x(1), . . . , x(T ) | x(0)) =

∏T
t=1 q(x(t) | x(t − 1)), culminating in a

purely noisy sample x(T ). Secondly, a backward process that reverses the noise addition step by
step and is typically learned by training a neural network to approximate the backward transition
kernels p(x(t− 1) | x(t)). This process effectively learns the score function, which is proportional
to the conditional expectation Eq(x(0)|x(t))[x(0)] :=E[x(0)|x(t)]. To draw a new sample from q(·),
one starts with a noise sample x(T ) ∼ q(x(T )) and then applies the learned backward process to
obtain a clean sample x(0) ∼ q(x(0)). Depending on the characteristics of the data space, diffusion
models differ in how they define the forward process.

Probabilistic graphical models To investigate how diffusion models learn compositional struc-
tures, we consider synthetic datasets generated via a probabilistic context-free grammar (PCFG) [36]:
a collection of symbols and rules that prescribe how to generate sequence data starting from a single
feature. Generic PCFGs consist of a vocabulary of hidden (nonterminal) symbols, a vocabulary of
visible (terminal) symbols and production rules that quantify the probability that one hidden symbol
generates tuples of either hidden or visible symbols. The Random Hierarchy Model (RHM) [8] is
a particular PCFG, including the following additional assumptions to make it analytically tractable.
(i) The nonterminal symbols are split into L finite vocabularies (Vℓ)ℓ=1,...,L of finite size v and
V ≡ V0 denotes the vocabulary of terminal symbols. (ii) All the production rules transform one
level-(ℓ+1) symbol into a string of s level-ℓ symbols. (iii) There are m unambiguous production
rules per nonterminal symbol, i.e., two distinct nonterminals cannot generate the same s-tuple. The
rules are randomly chosen and frozen for a given instance of the RHM. We call the m strings pro-
duced by any given symbol synonyms; (iv) All the available production rules are equally likely. Due
to assumptions (i) and (ii), the data-generating process can be represented as a regular tree graph
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(a) Standard training.
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(b) Online training.
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Figure 1: Learning different levels of the grammar. (a) Accuracy at various levels as a function
of training set size P . (b) Online learning setting, where fresh training points are sampled at each
step. (c) Token-token correlations for N = 106 samples generated by the diffusion model trained
with P training points.

with depth L and branching ratio s. The leaf nodes ( ℓ = 0) correspond to the tokens of the visible
data, which form strings of size d = sL. Knowing the production rules and the tree structure of
the RHM, in these models the score can be computed exactly using Belief Propagation. In what
follows, we study instead how many samples are necessary to learn sampling from the distribution
and the score function from data.

3. How diffusion models learn a grammar

In this section, we investigate how diffusion models learn to generate data from the RHM. Given
an instantiation of the RHM, we uniformly sample P distinct training points, i.e., strings from the
grammar. Each input symbol is encoded as a one-hot vector, x ∈ {0, 1}d,v. With this dataset,
we train a Discrete Denoising Diffusion Probabilistic Model (D3PM) [2] with uniform transition
probabilities [20]. The diffusion model architecture is a convolutional U-Net [35] with L resolution
blocks in both the encoder and decoder. We use the neural network to predict the conditional expec-
tation E(x(0)|x(t)), which parameterizes the reverse diffusion process. We explore both an offline
learning setting, where a finite dataset is generated, and the model is trained over multiple epochs,
and an online learning setting. Additional details are reported in Appendix E.

After training, we generate 1024 samples and evaluate whether the generated data satisfies the
compositional rules of the RHM at different hierarchical levels. Specifically, we define the accu-
racy Aℓ at level ℓ as the fraction of generated samples that satisfy level-ℓ rules. Figure 1a shows the
accuracy at different levels as a function of P . The results reveal a staged learning process: the low-
level rules, governing local structures, are learned first, followed by progressively higher-level rules
that enforce global coherence. Thus, models trained on intermediate P values generate data that are
locally consistent but lack global coherence. The inset of Figure 1a compares favorably the scaling
of accuracy with our theoretical prediction, which is derived in the next section. This prediction
indicates that learning to satisfy rules at level ℓ requires a number of samples that scales as mℓ+1.
Importantly, this scaling is polynomial, not exponential, in the data dimension d = sL. Specifically,
the sample complexity to learn all rules is mL+1 = mdlogm/ log s. Figure 1b demonstrates that the
same staged learning process applies in the online learning setting, where fresh training samples
are drawn at each training step. This progressive acquisition of compositional rules also appears in
the internal correlations of the generated sequences, defined as the Frobenius norm of the covari-
ance matrix between two visible tokens at distance t. As shown in Figure 1c, at small training set
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sizes or training times, only nearby tokens exhibit significant correlations, while long-range corre-
lations approach sampling noise (black dashed line, given by 1/(vN1/2), where N is the number of
sequences used to measure correlations). As training progresses, long-range correlations emerge.

Emergence of hierarchical representations To generate sequences that satisfy the compositional
rules of the RHM, the diffusion model needs to construct internal representations of the latent vari-
ables at each level. To do so, it must represent together inputs that differ by low-level synonyms.
In Appendix F, we show that this is indeed the case: as the training set size increases, the hidden
representations of the U-Net become insensitive to higher and higher levels of synonyms.

4. Theoretical Analysis
Let x(t) denote a noised RHM string obtained from a clean sample x(0). Diffusion models are
trained to predict the conditional expectation E[x(0) | x(t)]. We analyze the low-noise limit (t →
0), assuming that only the first token x1(t) is corrupted. In this case, the network must therefore
estimate E[x1(0) | x2:d(0)], which is proportional to the correlation between x1(0) and the context
x2:d(0). In the RHM, these correlations are invariant under exchanges of synonyms [7]. Hence, the
score depends only on the latent variables that generated the context:

E[x1(0) | x2:d(0)] = E[x1 | x2:s,h
(1)
2:s,h

(2)
2:s, . . . ,h

(L−1)
2:s ], (1)

where h
(ℓ)
i is a latent at level ℓ. This expression depends only on a sequence of length (s− 1)L ≪

d = sL. Thus, learning the production rules and clustering synonyms by their latents drastically
reduces the effective dimensionality of the task.

In Appendix B, we compute the sample complexity needed to reconstruct latent variables. By
equating the magnitude of their correlations with the visible tokens with the sampling noise in a
finite dataset, we find that the number of samples required to reconstruct level ℓ−1 latents scales as

P (ℓ) ∼ mℓ+1. (2)

As a result, lower-level production rules are learned first, while deeper rules require progressively
more data. This scaling exactly matches the U-Net learning curves in Figure 1.

5. Natural data
In this section, we investigate whether the hierarchical learning dynamics observed in the RHM
also emerge in diffusion models trained on natural data, such as language and images. Since both
modalities have an inherent compositional structure—where words form sentences and object parts
form images—we expect their learning process to progress hierarchically.

Language diffusion models We consider MD4 [41], a state-of-the-art masked diffusion model
with absorbing state for discrete data such as language, as described in Appendix E. We train MD4
from scratch using a standard GPT-like transformer architecture with 12 layers (≈ 165M parame-
ters) on the OpenWebText corpus [15]. The model is trained for a full epoch on the training split
(≈ 1010 tokens) using the same hyperparameters as Shi et al. [41]. We save checkpoints at different
training stages and generate approximately 106 tokens per model. Figure 2a presents text samples
generated at various training times. Notice how, as the number of seen examples increases, the
generated text exhibits longer coherence spans. In particular, the intermediate checkpoint (≈ 109

tokens) correctly assembles words locally but fails to generate coherent sentences, similar to what
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108 training tokens

In popular spokesman typeted in diversity adventure allow price
Zha Tampa usually Pages superstays’s under leveldowns swim a
cycle who retains highly weapons batch floor despite

109 training tokens

Just like you are growing fast and growing strong. But this way you
became organic, changed someone else 2019s. But even then you
made them off. I sort came to smile around, because I was in China
okay.

1010 training tokens

At the beginning of winter when I walked around; even if he would
be talking to me, on the highest field and back in the second round
in my team I would take him over in his cell because it was my
game against Juventus.

(a) Text generated at different training stages.
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(b) Correlations of generated text.

Figure 2: Stage-wise learning of masked language diffusion model on OpenWebText. (a) The
text generated by MD4 exhibits longer coherence spans as training progresses. (b) Correlations
between tokens at a distance t in the generated text.

we observed in our synthetic experiments in Section 3. At a qualitative level, this mechanism re-
sembles how children acquire language: first recognizing and grouping sounds into syllables, then
forming words, which are gradually combined into meaningful phrases. We confirm this result
quantitatively by measuring the token-token correlation function of the generated text (Figure 2b),
as done for the RHM. Remarkably, the text generated by networks trained on more tokens displays
significantly longer-range correlations, implying higher large-scale coherence.

Vision diffusion models For image data, we consider Improved Denoising Diffusion Probabilistic
Models (DDPMs) [30]. Specifically, we train a U-Net model architecture [35, 37] with multi-head
attention layers [47] (≈ 120M parameters). The model is trained for 10 epochs on ImageNet
64× 64. Figure 8a in Appendix F, illustrates images generated at different training stages. Initially,
the outputs exhibit patterns of textures. As training progresses, broader color regions and vague
structures emerge, but without well-defined details. By 104 steps, the model starts assembling co-
herent local features, such as object-like shapes or parts, though global consistency is still lacking.
Finally, images from the last checkpoint exhibit highly structured and realistic compositions, indi-
cating that the model successfully learns to generate coherent scenes with well-defined objects. To
quantify these observations, in Appendix F we analyze the hierarchical and compositional structure
of generated images using deep latent representations from a pre-trained convolutional architecture,
showing that structures in deeper layers emerge later in training.

6. Conclusions
We have provided a theory explaining how diffusion models can learn certain structured distribu-
tions with a polynomial number of data in the dimension, thus beating the curse of dimensionality.
We showed that if data consists of a hierarchical combination of features, U-Nets can lower the
data dimension by giving identical representations to groups of features that have similar contexts.
This idea, explicit in word2vec, is performed hierarchically in diffusion models. This framework
predicts that as the training time or training set size increases, generated data becomes coherent at
larger scales. We provided direct evidence that this is the case for generated text and images.
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flows and multinomial diffusion: Learning categorical distributions. Advances in Neural In-
formation Processing Systems, 34:12454–12465, 2021.

[21] Sadeep Jayasumana, Srikumar Ramalingam, Andreas Veit, Daniel Glasner, Ayan Chakrabarti,
and Sanjiv Kumar. Rethinking fid: Towards a better evaluation metric for image generation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 9307–9315, 2024.

[22] Ya Jin and Stuart Geman. Context and hierarchy in a probabilistic image model. In 2006
IEEE computer society conference on computer vision and pattern recognition (CVPR’06),
volume 2, pages 2145–2152. IEEE, 2006.
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Appendix A. Related work

Sample complexity in diffusion models Under mild assumptions on the data distribution, diffu-
sion models exhibit a sample complexity that scales exponentially with the data dimension [5, 32].
It is not the case if data lie on a low-dimensional latent subspace [9, 13, 49], correspond to Gaussian
mixture models [4, 11, 40], Ising models [28], or distributions that can be factorized across spatial
scales [23]. These works do not consider the sample complexity in compositional data.

Compositional generalization of diffusion models Okawa et al. [31] considered synthetic com-
positional data to empirically show how diffusion models learn to generalize by composing different
concepts, in the absence of a compositional hierarchy. Kamb and Ganguli [24] studied how equivari-
ant diffusion models can compose images by combining local patches seen in the dataset. Sclocchi
et al. [38, 39] showed that diffusion on hierarchically compositional data can be solved using Belief
Propagation. Mei [27] showed that U-Nets can efficiently approximate the Belief Propagation algo-
rithm on hierarchical data. Yet, efficient representability does not guarantee learnability by gradient
descent for hierarchical data [8]. These works do not, however, address the sample complexity of
diffusion models learned by gradient descent or variations of it.

Learning hierarchical representation via next-token prediction It has been observed that trans-
formers trained on next-token prediction on PCFGs learn a hierarchical representation of the data
that reflects the structure of the latent variables [1, 6, 14]. Closest to our work, Cagnetta and Wyart
[6] showed that for the prediction of the last token in a sequence of fixed length, the latent structure
is learned hierarchically, with a sample complexity polynomial in the context length. Our work ex-
tends this finding to diffusion models, in a setup where complete sequences can be generated. This
setup allows us to make novel predictions on the limitations of generated data as a function of the
training set size, which we test empirically across domains.

Appendix B. Theoretical analysis

To derive the sample complexity of the U-Net, we build upon prior work that explains how deep
networks efficiently learn hierarchical tasks. This result is achieved by building a lower-dimensional
representation that iteratively clusters synonyms [26], allowing the network to recover the latent
hierarchical structure of the data. This clustering mechanism is based on statistical correlations
between s-tuples of tokens and the given task—supervised or self-supervised—which are identical
for synonyms. Notably, the sample complexity of deep networks trained with gradient descent
aligns with the training set size required to detect these correlations [6, 8]. For supervised learning,
this connection can be justified in a one-step gradient descent (GD) setting.

Here, we extend these results to diffusion models. First, we demonstrate that learning the score
function in the low-noise limit corresponds to a task invariant to exchanging synonyms, and could
thus be simplified by reconstructing the latent variables. Then, we compute the sample complexities
required to reconstruct latent variables of different levels using correlations. We conclude by show-
ing that a) a clustering algorithm based on correlations does indeed recover the latent variables with
the predicted sample complexities and b) the sample complexity required to reconstruct first-level
latent variables can be recovered in a one-step-GD setting.

10
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(a) U-Net scheme.

input: x(t)

label: E[x(0)|x(t)]
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h
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h
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(2)
2

h
(3)
1

(b) RHM structure.
Figure 3: U-Net scheme and RHM structure. (a) To denoise the RHM data, the U-Net has to
predict the conditional expectation E[x(0)|x(t)] for a given noisy input x(t), which is proportional
to the correlations of the single tokens xi(0) with x(t). This can be done efficiently by learning
the latent hierarchical structure of the data. (b) The correlations of the RHM data reflect the tree
structure of the model (black squares represent the rules at different levels). For the token x1,
using the correlations with tuples at different levels (highlighted in red), the conditional expectation
E[x1|x2:8] can be represented as E[x1|x2, h(1)2 , h

(2)
2 ].

B.1. Learning the score in the low-noise limit

Input-output correlations in diffusion models The loss function of diffusion models is min-
imized when the model prediction converges to the conditional expectation E[x(0)|x(t)], which
is sampled in the limit of infinite diffusion trajectories and is proportional to the score function
[2, 43, 44]. Since the expectation operates independently for each v-dimensional one-hot-encoded
token xj(0), j ∈ [d], we have that E[xj(0)|x(t)] is directly proportional to the correlation between
a token xj(0) and the input x(t).

Score function at low noise We now consider a small-noise regime t→ 0 where only the first
token has been changed by noise, to some value x1(t) uncorrelated with x1(0). In this case, the
function that the network has to learn is E[x1(0)|x2:d(0)], proportional to the correlations of the
first token with the remaining sequence of length d− 1. Since these correlations are invariant under
exchanges of synonyms [8], they correspond to the correlations of the x1 token with the latents at
all levels generating the rest of the sequence, i.e., E[x1|x2:s,h

(1)
2:s,h

(2)
2:s, . . . ,h

(L−1)
2:s ] (Figure 3(b)).

This function depends on a sequence of length (s − 1)L, much smaller than the data dimension
d= sL. In other words, knowing the latent variables allows for a significant reduction of the problem
dimensionality.

11
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B.2. Sample complexities

In this section, we determine the sample complexities required to reconstruct the tuple of latent
variables of different levels h(ℓ)

2:s appearing in the low-noise score function. As shown in Cagnetta
and Wyart [6], latents can be reconstructed via their correlations with the noised token x1. We thus
work under the following assumption.

Assumption The U-Net learns to generate data that is consistent with the rules at layer ℓ when
the correlations between a visible token and a tuple of latents at layer ℓ− 2 become detectable from
the training data.

Hence, in what follows, we compute the number of samples required to detect these correlations.

Local constraints The first step in the learning process is to recognize the valid s-tuples generated
by the RHM at the visible level. Since these tuples lack internal structure, they can only be memo-
rized. Each tuple can take vm possible configurations corresponding to v symbols for the first-level
latents and m representations (synonyms) for each of them. Thus, the sample complexity required
to learn the local constraints scales as P (1) ∼ vm. Note that depending on the presence of weight
sharing, an additional factor 1/d can enter this expression. Here, we focus on the dependence of
sample complexity with m, which is the dominant factor if m ≫ s as we shall see below.

First-level latents Once the local constraints are learned, the network can refine its estimate of x1
by utilizing correlations with the neighboring tuples xs+1:2s, . . . ,xs2−(s−1):s2 . The sample com-
plexity required to detect the correlations between x1 and xs+1:2s was computed in Cagnetta and
Wyart [6] and correponds to P

(2)
corr ∼ vm3. After learning the first-level rules, the network can

collapse the (s2 − s)-dimensional sequence of neighboring tuples into the corresponding first-level
latents h(1)

2:s.

Second-level latents Having built the first-level latent representation, the model can leverage cor-
relations between s-tuples of first-level latents h

(1)
i ’s and the first token to learn the rules at the

second level, further improving the denoising task. These correlations can be computed by studying
the statistics of the token-latent tuple correlations,

P[x1 = µ,h
(1)
s+1:2s = ν]− P[x1 = µ]P[h(1)

s+1:2s = ν], (3)

over realizations of the RHM. Since correlations have zero mean, we take the standard deviation
over RHM realizations as an estimate of their typical size. As shown in Appendix C, the resulting
correlation magnitude is given, in the limit of large v and m, by C(3) ≃ (v3m5)−1/2. Since a finite
training set of size P only allows measuring the empirical correlation function, we compare the
magnitude of correlations with the sampling noise, which has magnitude (v2mP )−1/2. Thus, the
number of samples required to detect correlations between tuples of first-level latents and visible
tokens, denoted as P (3)

corr, follows P (3)
corr ∼ vm4.

Extension to general depth ℓ The same procedure generalizes to any depth ℓ. The correlations
between tuples of latents at level ℓ − 2 and visible tokens, having lowest common ancestor at
level ℓ, have magnitude C(ℓ) ≃

√
1/(v3mℓ+2). Meanwhile, the sampling noise remains of or-

der (v2mP )−1/2. Equating these terms gives the sample complexity required to reconstruct level-
(ℓ− 1) latents,

P (ℓ)
corr ∼ vmℓ+1. (4)

12
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This result indicates that learning rules leveraging correlations at depth L requires a number of
samples scaling as mL+1 = mdlogm/ log s, which is polynomial (and not exponential) in the dimen-
sion. Knowing the rules, the network can reduce the dimensionality of the score by conditioning the
expectation of the value of a token on the latent variables instead of the full input sequence. Remark-
ably, Eq. (4) displays the same scaling observed in our experiments with the U-Net in Section 3,
confirming our assumption.

B.3. Clustering and one-step GD

Clustering To validate the hypothesis that synonyms can be grouped based on correlations, we
consider a simple clustering algorithm that computes the empirical correlations between (latent)
tuples and a visible token and then applies k-means clustering. As shown in Figure 4, the sample
complexity for such an algorithm (black points) closely follows the theoretical prediction P

(L)
corr ∼

mL+1. We also test a modified algorithm that uses all the tokens in the first visible tuple instead of
just the first (red points in Figure 4). Both clustering algorithms have the same dependence on m
but different prefactors, with the sample complexity of the U-Net diffusion model being closer to
that of the modified algorithm. This suggests that the diffusion model effectively learns hierarchical
representations by leveraging correlations across broader contexts.

One-step gradient descent Finally, to support the connection with standard training techniques,
we consider a simplified setting where a linear architecture is trained via gradient descent to predict
the token xs+1 given an adjacent tuple (x1, . . . xs). This task corresponds to learning the score
function E[xs+1(0)|x1:s(0)], which is invariant to exchanging the tuple (x1, . . . xs) with a synonym.
As proved in Appendix D, one step of gradient descent aligns the learned weights with the empirical
token-tuple correlations. Consequently, if the size of the training set is large enough for the accurate
measure of correlations, then the network can build a representation of the tuple (x1, . . . xs), which
is invariant to exchanging synonyms. This invariance is empirically observed for the U-Net in
Figure 5 of Appendix F.

Appendix C. Token-latent tuple correlations

In this section, we derive our estimate for the magnitude of the correlations between x1 and tuples of
latent, level-(ℓ− 1) features h(ℓ−1)

(i−1)×s+1:i×s, with i=2, . . . , s and ℓ=1, . . . , L− 1 (level-0 latents

h(0) correspond to visible tokens). These correlations are identical for all the tuples of latents
corresponding to the same higher-level feature h

(ℓ)
i , thus can be used to reconstruct level-ℓ latents.

For instance, with s=2, so that i=2 (see Figure 3), the correlations of x1 with (x3, x4) determine
the value of h(1)2 , while those with (h

(1)
3 , h

(1)
4 ) determine h

(2)
2 . To simplify the notation, we will

stick to the case i=2 for the remainder of the section. Then, the goal is to compute the statistics of

C(ℓ+1)(µ,ν) := P
{
X1 = µ,h

(ℓ−1)
s+1:2s = ν

}
− P {X1 = µ}P

{
h
(ℓ−1)
s+1:2s = ν

}
, (5)

over realizations of the RHM.

13
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For each visible token i=1, . . . , d, single-token probabilities can be written as products of
probabilities over the single production rules,

P {Xi=µ} =

v∑
µ1,...,µL=1

p
(1)
i1

(µ|µ1) . . . p
(L)
iL

(µL−1|µL)p
(L+1)(µL), (6)

where

(i) the indices iL, . . . , iL are such that iL . . . i1 equals the s-ary representation of i, with iℓ=1, . . . , s,
and 1’s added to ensure that the representation always consists of L indices. In other words,
the multi-index iL, . . . , iL uniquely identifies the path linking the root of the tree to the i-th
leaf.

(ii) p
(ℓ)
iℓ
(µℓ−1|µℓ) denotes the probability of choosing, among the available production rules start-

ing from µℓ, one that has the symbol µℓ−1 on the iℓ-th position of the right-hand size.

(iii) p(L)(µL) denotes the probability of selecting the symbol µL as the root (1/v for our model).

These decompositions arise naturally due to the connection between probabilistic context-free gram-
mars and Markov processes. Similar decompositions apply to the probabilities of hidden variables
and tuples, and the joint token-latent tuple probability. For the latter, in particular, starting from the
level-(ℓ+1) hidden symbol h(ℓ+1)

1 , lowest common ancestor (LCA) of X1 and the tuple h
(ℓ−1)
s+1:2s,

we have

P
{
X1 = µ,h

(ℓ−1)
s+1:2s = ν

}
=

v∑
µ1,...,µℓ−1=1

p
(1)
1 (µ|µ1) . . . p

(ℓ)
1 (µℓ−1|µℓ)×∑

νℓ−1,µℓ

p(ℓ)(ν|νℓ)p(ℓ+1)
1,2 (µℓ, νℓ|µℓ+1)p

(ℓ+2)
1 (µℓ+1). (7)

For ℓ=1, the probability above coincides with the joint probability of the visible token X1 and
the tuple of visible tokens Xs+1, . . . , X2s. The correlations,

C(2)(µ,ν) := P {X1 = µ,Xs+1:2s = ν} − P {X1 = µ}P {Xs+1:2s = ν} , (8)

have been analyzed in Cagnetta and Wyart [6]: the mean vanishes, while the variance, in the limit
of m, v → ∞ with f =m/vs−1 finite, follows〈(

C(2)(µ,ν)
)2〉

≃ (1− f)

v3m4
. (9)

For ℓ=2, after applying Equation 7, we get

C(3)(µ,ν) =
v∑

µ1=1

p
(1)
1 (µ|µ1)

(
P
{
h
(1)
1 = µ1,h

(ℓ−1)
s+1:2s = ν

}
− P

{
h
(1)
1 = µ1

}
P
{
h
(ℓ−1)
s+1:2s = ν

})
=

v∑
µ1=1

p
(1)
1 (µ|µ1)C

(2)(µ1,ν), (10)
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where the last equality follows from noticing that the probability of level-ℓ hidden variables coin-
cides with the probability of the leaves of a tree with L− ℓ layers. In general,

C(ℓ+1)(µ,ν) =
v∑

µ1=1

p
(1)
1 (µ|µ1)C

(ℓ)(µ1,ν), (11)

thus 〈(
C(ℓ+1)(µ,ν)

)2〉
=
∑
µ1,ν1

〈
p
(1)
1 (µ|µ1)p

(1)
1 (µ|ν1)

〉〈
C(ℓ)(µ1,ν)C

(ℓ)(ν1,ν)
〉

=
∑
µ1

〈(
p
(1)
1 (µ|µ1)

)2〉〈(
C(ℓ)(µ1,ν)

)2〉
+

∑
µ1,ν1 ̸=µ1

〈
p
(1)
1 (µ|µ1)p

(1)
1 (µ|ν1)

〉〈
C(ℓ)(µ1,ν)C

(ℓ)(ν1,ν)
〉
. (12)

Knowing that the production rules of an RHM realization are chosen uniformly at random compat-
ibly with the unambiguity constraint [6],〈(

p(1)(µ|µ1)
)2〉

=
vs−1(v − 1) +m(vs−1 − 1)

mv(vs − 1)
, (13)

and, for ν1 ̸= µ1, 〈
p(1)(µ|µ1)p

(1)(ν|ν1)
〉
=

vs−1 − 1

v(vs − 1)
. (14)

In addition, since
∑

µC
(ℓ)(µ,ν)= 0, then

∑
ν1 ̸=µ1

〈
C(ℓ)(µ1,ν)C

(ℓ)(ν1,ν)
〉
= −

〈(
C(ℓ)(µ1,ν)

)2〉
. (15)

Hence,〈(
C(ℓ+1)(µ,ν)

)2〉
=

vs−1(v − 1)

m(vs − 1)

〈(
C(ℓ)(µ1,ν)

)2〉 v≫1−−−→ 1

m

〈(
C(ℓ)(µ1,ν)

)2〉
. (16)

Starting with C(2) from Equation 9, we get

C(ℓ) =

√〈(
C(ℓ)(µ,ν)

)2〉 ≃
√

(1− f)

v3m2+ℓ
. (17)

Appendix D. One-step gradient descent

We consider a simplified one-step gradient descent setting [12], where a simple machine-learning
model is trained to approximate the conditional probability of one input token Xs+1 following an s-
tuple of tokens X =(X1, . . . , Xs). The training set XP consists of P pairs (x, ν), with ν denoting
the feature in the token Xs+1. We assume that
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i) the input tuple X is given as the one-hot encoding of the tuple index. Each of the mv possible
combinations of s features is assigned an index µ=1, . . . ,mv and x is the mv-dimensional
sequence xµ = δµ,µ(x);

ii) the machine-learning model is initialized on the empirical marginal probability of the token
Xs+1 over the training set, P̂ (Xs+1= ν) :=P−1

∑
(x,λ)∈XP

δν,λ. This assumption is equiva-
lent to a preprocessing step on the labels [12] that removes the class imbalance of the training
set.

Due to assumption i), the task can be solved with a perceptron model followed by a softmax non-
linearity,

fν(x;W ) =
∑
µ

Wν,µxµ; pν(x;W ) = efν(x;W )

(∑
σ

efσ(x;W )

)−1

; (18)

where W ∈ Rv×(vm) is the weight matrix. In this setup, Assumption ii) is realized by initializing
the weights as Wν,µ= log P̂ (Xs+1= ν) independently of µ.

The model fν of Equation 18 is trained via Gradient Descent on the empirical cross-entropy
loss computed over a training set XP consisting of P pairs (x, ν), with ν denoting the feature in the
token Xs+1,

L = E(x,ν)∈XP

[
− log

(
efν(x;W )∑v
σ=1 e

fσ(x;W )

)]
, (19)

where E(x,ν)∈XP
denotes the empirical average over the training set. Denoting the learning rate

with η, the update of the weights reads

∆Wν,µ = −η
∂L
∂fν

∂fν
∂Wν,µ

= ηE(x,λ)∈XP

[
δλ,νxµ − efν∑v

σ=1 e
fσ
xµ

]
= ηE(x,λ)∈XP

[
δλ,νδµ,µ(x) − P̂ (Xs+1= ν) δµ,µ(x)

]
= η

(
P̂ [Xs+1 = ν; (X1, . . . , Xs) = (µ1, . . . , µs)]− P̂ [Xs+1 = ν] P̂ [(X1, . . . , Xs) = (µ1, . . . , µs)]

)
,

(20)

where, in the second line, we used assumption i) to replace xµ with δµ,µ(x) and assumption ii) to
replace efν/(

∑v
σ=1 e

fσ) with P̂ (Xs+1= ν). The right-hand side of the last line equals the empirical
token-tuple correlation ĈP (ν,µ). Therefore, after one gradient step, the weights are given by

Wν,µ = log P̂ (Xs+1= ν) + ηĈP (ν,µ). (21)

The first term is independent of the input µ, whereas the second can be thought of as a noisy
measurement of the true token-tuple correlation C(ν,µ). The true correlation is equal for all µ’s
generated by the same higher-level hidden symbol h(1)(µ) and its size can be estimated as the
standard deviation over realizations of the RHM [6],

C(2) =

(
1

v2m

(1− f)

vm3

)1/2

. (22)
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The empirical measurement ĈP includes a sampling noise contribution, having size (v2mP )−1/2.
If P ≫P2= vm3/(1 − f), then the ĈP in the right-hand side of Equation 21 is approximately
equal to the true token-tuple correlation, thus the weights can be used to build a representation of
the hidden variables of the generative model.

Appendix E. Experimental details

Random Hierarchy Model We train the U-Net-based Discrete Denoising Diffusion Probabilistic
Model (D3PM), optimizing the diffusion loss derived from a variational bound on the negative log-
likelihood [43]. Following Austin et al. [2], we use the neural network to predict the conditional
expectation E(x(0)|x(t)), which parameterizes the reverse diffusion process.

The convolutional U-Net consists of L resolution blocks in both the encoder and decoder, with a
filter size of s, stride of s, and 8192 channels. Each block uses GeLU activation functions, and skip
connections link encoder and decoder layers with the same resolution. The model also includes two
embedding and unembedding layers, implemented as convolutions with filter size 1.

We initialize the network using the maximal-update (µP) parameterization [48]. This allows
stable feature learning dynamics even in large models. The model is trained with SGD with a
learning rate of 1, using a batch size of 32, and momentum parameter of 0.9. The diffusion process
follows a linear schedule with 1,000 noise levels. To prevent overfitting, we apply early stopping
based on the validation loss, halting training when it plateaus or begins to increase.

Language diffusion model Our experiments are based on the codebase of MD4 [41]:
https://github.com/google-deepmind/md4. MD4 is a masked diffusion model. At each time step t,
non-masked tokens either remain unchanged or transition to [MASK] with probability βt. Using a
one-hot-encoding representation of the |V|+ 1 states, the forward transition matrix is given by:

q(xi(t)|xi(t− 1)) = (1− βt)I+ βt1e
⊤
M , (23)

with I the identity matrix, 1 a vector of ones and eM the one-hot-encoding vector corresponding to
the [MASK] symbol. At the final time T , all tokens are masked, i.e., xi(T ) = [MASK] for every
i ∈ [dim(x)]. We train MD4 with batch size 64 and context size 1024 on 4 H100s for a single
epoch. All other hyperparameters are kept unchanged.

Vision diffusion model Our experiments are based on the codebase of Improved DDPMs [30]:
https://github.com/openai/improved-diffusion/tree/main. In particular, we train a DDPM with 128
channels, 3 resolution blocks, 4000 diffusion steps, cosine noise schedule, learning rate 10−4 and
batch size 128 for 10 epochs using a hybrid objective [30].

Appendix F. Additional results

F.1. Dependence of sample complexity with m

To investigate the dependence of the accuracy on the number of synonyms m, we define the sample
complexity P ∗ as the training set size at which the accuracy of the last level AL surpasses a threshold
value A∗. In our experiments, we set A∗ = 1/2.1 Figure 4 shows the scaling behavior of P ∗ with
m at fixed depth L = 2 (blue points). Empirically, we find good agreement with mL+1 (dashed line
in the figure).

1. Notice that the observed scaling of sample complexity remains robust to the specific choice of threshold value.
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Figure 4: Sample complexity P ∗ for L = 2 in diffusion models and clustering algorithms based
on correlations. Blue points show the empirical values of P ∗ for trained diffusion models, while
black and red points represent clustering methods based on the correlations of latent tuples with the
first token and the first visible tuple, respectively. The scaling P ∗ ∼ mL+1 aligns with theoretical
predictions. Notably, the simple complexity of the diffusion model closely matches that of the
correlation algorithm, suggesting that diffusion models learn hierarchical structures by leveraging
statistical dependencies between synonyms.

F.2. Emergence of hierarchical representations in the U-Net

In Figure 5, we test the hypothesis that the U-Net learns to represent together inputs that differ
by low-level synonyms, i.e., the choice of low-level production rules. To do so, we introduce a
transformation operator Rℓ x, which modifies a given data sample x by resetting all choices of the
production rules emanating from layer ℓ. This operation is equivalent to substituting all tuples at
depth ℓ− 1 with a synonym. We then define the relative sensitivity Sk,ℓ of the pre-activations ak at
layer k to the transformation Rℓ:

Sk,ℓ =
Ex[∥ak(x)− ak(Rℓ x)∥2]
Ex,y[∥ak(x)− ak(y)∥2]

. (24)

Here, the numerator measures how much the activations change when synonym substitutions are
applied at depth ℓ, while the denominator normalizes by the overall variability of activations across
different data points. A low value of Sk,ℓ indicates that the network is invariant to synonym substi-
tutions at depth ℓ, implying that it has learned the corresponding compositional rule.

Figure 5 shows the relative sensitivity of each layer as a function of the number of training
points P . As P increases, the sensitivities Sk,ℓ decrease sequentially across levels, following the
same staged learning process observed in Figure 1. Deep encoder layers become invariant to syn-
onym substitutions at lower levels, confirming that the network is learning to encode the hierarchical
structure of the grammar. In contrast, decoder layers gradually regain sensitivity to specific low-
level symbols as the output is approached. This behavior aligns with their role in reconstructing
low-level details from high-level representations. Crucially, the network begins to satisfy rules at
level ℓ precisely when it becomes insensitive to synonymic variations at level ℓ − 1. This suggests
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Figure 5: Relative sensitivity of the hidden representations of the U-Net, defined in Equa-
tion 24, with respect to the number of training points P . Different colors correspond to different
levels ℓ of synonymic exchange, while different panels correspond to the pre-activations of differ-
ent U-Net blocks. Encoder layer 1 is the closest to the input, while decoder layer 5 is the closest
to the output. As the number of training points increases, deeper layers of the encoder become
less sensitive to deeper synonymic transformations. This implies that deeper encoder layers learn
to represent deeper latent variables of the RHM. The decoder layers, instead, progressively regain
the sensitivity to the synonyms layer-by-layer as they expand latent variables into their lower-level
representations. For each level ℓ, the dashed line represents the fraction of generated samples that
do not satisfy the rules at that level, i.e., 1−Aℓ. The U-Net learns to satisfy rules at level ℓ when it
becomes insensitive to the synonyms of the variables at level ℓ− 1.
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Figure 6: Sample complexity of clustering with L = 3. Empirical values of P ∗ for clustering
methods based on the correlations of latent tuples with the first token (black) and the first visible
tuple (red), respectively. The scaling P ∗ ∼ mL+1 aligns with theoretical predictions.

that the U-Net learns to collapse lower-level synonyms into shared latent representations and to
compose these latents according to the production rules at level ℓ.

F.3. Sample complexity of deep clustering algorithm

In Figure 6, we test our theoretical prediction for the hierarchical clustering algorithm with L = 3.
Specifically, we examine how tuples of latent variables at depth ℓ = 2 are clustered based on their
correlations with either a single visible token (black points) or an entire visible s-tuple (red points)
in the context. As predicted in Section B, the sample complexity of both clustering approaches
scales as m4, confirming our theoretical result.

F.4. Perplexity of the generated text

Figure 7 presents an alternative measure to correlations in the generated text for quantifying the
longer and longer coherence as training progresses. Specifically, we extract sentences from the
generated datasets and estimate token-level average log-likelihoods using LLaMA-2-7B [46], i.e.,
we compute

Ex0:T [log pLLM(xT |x0:T−1)] (25)

for a token xT as a function of its context length T . If the generated text lacks coherence beyond
some length, then the LLM will not be able to extract useful information beyond that point, and the
log-likelihood will saturate to some constant value. Figure 7 reports the corresponding perplexity,
defined as the exponential of the negative log-likelihood (25), where the average is done over 1024
samples. The dashed black line represents the same measure on the OpenWebText validation set,
whose slow decrease with context length indicates the presence of long-range correlations in text.
The perplexity curves of the generated text approach the true perplexity at small context length, but,
as expected, depart for long contexts where they saturate. Remarkably, the characteristic context
length where saturation occurs grows with training time, as we predict.
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Figure 7: Perplexity of the generated text as a function of the conditioning context length
computed with LLaMA-2-7B. Averages done over 1024 samples. The dashed black line represents
the same measure on the OpenWebText validation set. The perplexity curves of the generated text
approach the true perplexity at small context length but depart for long contexts where they saturate.
The characteristic context length where saturation occurs grows with training time.

F.5. Depth-wise maximum mean discrepancy

To quantify hierarchical learning of vision diffusion models, we analyze the hierarchical and compo-
sitional structure of generated images using deep latent representations from a pre-trained ResNet-
18 [18]. Early layers encode low-level localized features, while deep layers represent more abstract
and global factors [25, 33], as also observed for CNNs trained on the RHM [8]. We compute the
Maximum Mean Discrepancy (MMD) [17] between ResNet embeddings of the generated images
and those from the ImageNet validation set. MMD-based evaluations with deep network embed-
dings have recently been proposed as a robust metric for assessing image quality in diffusion models
[21].

Figure 8b presents the MMD measured at different depths of the ResNet model as a function of
the number of seen examples. Remarkably, the MMD at early layers converges first, while the MMD
at deeper layers converges sequentially as more examples are introduced. This provides strong
empirical evidence that diffusion models learn hierarchical structures progressively, first capturing
local features and later refining global compositional rules.
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Figure 8: Stage-wise learning of vision diffusion model on ImageNet64. (a) Examples of images
generated by the diffusion model at different training steps. (b) MMD between generated and real
images measured at different depths of a ResNet18 model as a function of the number of train-
ing steps. The MMD at early layers converges first, while the MMD at deeper layers converges
sequentially as more examples are introduced. The grey dashed line indicates the end of the first
epoch.
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