Under review as a conference paper at ICLR 2026

DYNAMIC CHUNKING FOR
END-TO-END HIERARCHICAL SEQUENCE MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Major progress on language models (LMs) in recent years has largely resulted
from moving away from specialized models designed for specific tasks, to general
models based on powerful architectures (e.g. the Transformer) that learn every-
thing from raw data. Despite this trend, pre-processing steps such as tokenization
remain a barrier to true end-to-end foundation models. We introduce a collec-
tion of new techniques that enable a dynamic chunking mechanism which auto-
matically learns content- and context- dependent segmentation strategies learned
jointly with the rest of the model. Incorporating this into an explicit hierarchi-
cal network (H-Net) allows replacing the (implicitly hierarchical) tokenization—
LM-detokenization pipeline with a single model learned fully end-to-end. When
compute- and data- matched, an H-Net with one stage of hierarchy operating at
the byte level outperforms a strong Transformer language model operating over
BPE tokens. Iterating the hierarchy to multiple stages further increases its perfor-
mance by modeling multiple levels of abstraction, demonstrating significantly bet-
ter scaling with data and matching the token-based Transformer of twice its size.
H-Nets pretrained on English show significantly increased character-level robust-
ness, and qualitatively learn meaningful data-dependent chunking strategies with-
out any heuristics or explicit supervision. Finally, the H-Net’s improvement over
tokenized pipelines is further increased in languages and modalities with weaker
tokenization heuristics, such as Chinese and code, or DNA sequences (nearly 4 x
improvement in data efficiency over baselines), showing the potential of true end-
to-end models that learn and scale better from unprocessed data.

1 INTRODUCTION

A broad goal of deep learning is to learn meaningful patterns from raw data, automatically ex-
tracting features and building abstractions in an end-to-end fashion. However, fixed-vocabulary
tokenization, the process of compressing raw text into predefined chunks through algorithms such
as byte-pair encoding (BPE) (Sennrich et al.| 2015; Kudo & Richardson, 2018]), remains a pervasive
handcrafted preprocessing step in modern language models (LMs) (Grattafiori et al., 2024} [Brown
et al.l2020). Tokenization comes with a host of well-documented drawbacks, from poor character-
level understanding to lack of meaning and interpretability to degraded performance on complex
languages and modalities (Petrov et al.| [2023; |Ahia et al.| 2023} Belinkov & Bisk}, |[2017; Sun et al.,
2020;|Clark et al.,2022)). Replacing the tokenization—LM—detokenization pipeline with a single end-
to-end model would also adhere better to the spirit of deep learning, ideally scaling more powerfully
with data and parameters (c.f. the bitter lesson) (Sutton, 2019; Peric} |2025). However, tokenization
remains an indispensable component of language models and other sequential data for its ability
to compress and shorten sequences; as of yet, no end-to-end tokenizer-free model has matched the
performance of tokenizer-based language models when matched for computational budget.

A line of recent works has turned to overcoming tokenization in autoregressive sequence models,
which requires addressing a series of difficult technical challengesﬂ

* Direct byte-level language modeling with isotropic architecture can be improved with efficient
sequence models such as MambaByte (Wang et al.|2024)), but still incur prohibitive computational
costs while underperforming tokenized models in compute-matched settings.

' An extended related work can be found in Section which is summarized in Table[é_ll
2Non-hierarchical models with repeated blocks, such as the standard Transformer (Vaswani et al.,|2017).

Under review as a conference paper at ICLR 2026

» To improve efficiency, hierarchical architectures such as Hourglass Transformer (Nawrot et al.,
2022) and MegaByte (Yu et al.l 2023) use small byte-level models to compress raw inputs into
subsampled sequences, which are then processed with a more powerful standard language model.
However, simple pooling strategies such as compressing every k inputs are not data-dependent,
and perform poorly on modalities with variable information rates such as language.

» SpaceByte (Slaglel [2024) and Byte Latent Transformer (Pagnoni et al.| 2024) introduce data-
dependent chunking strategies such as delimiter- or entropy-based heuristics. These heuristics,
however, rely on auxiliary external boundary predictors, and are therefore modality-specific and
not fully end-to-end.

* Although jointly trainable boundary predictors are the ideal solution, they require optimizing dis-
crete selection operations without supervision, which is fundamentally a challenging problem.
Consequently, existing end-to-end approaches (Nawrot et al. [2023) exhibit training instabilities
that preclude scaling beyond small models or nesting multi-level hierarchies.

Fundamentally, creating a tokenizer-free architecture requires incorporating the data chunking pro-
cess directly into the model, while overcoming challenges in efficiency, learnability, and stability at
scale.

DYNAMIC CHUNKING: END-TO-END SEQUENCE MODELING WITHOUT TOKENIZATION

In this work, we introduce an end-to-end hierarchical network (H-Net) that compresses raw data
through a recursive, data-dependent dynamic chunking (DC) process (Figure [I). H-Nets match
the efficiency of tokenized pipelines while substantially improving modeling ability, by replacing
handcrafted heuristics with content-aware and context-dependent segmentation learned from data.

Hierarchical Processing. The H-Net adopts the hierarchical architecture from prior work (Goel
et al.| [2022; Nawrot et al.l 2022} Slagle, |2024), resembling an autoregressive U-Net (Ronneberger,
et al., [2015): (i) raw data is processed by a small encoder network, (ii) then downsampled and
passed through a main network operating on compressed chunks, (iii) and finally upsampled before
being passed through a decoder network operating on the original resolution. This modularity
creates a natural processing hierarchy where outer stages capture fine-grained patterns while inner
stages operate on coarse representations akin to traditional tokens. Crucially, while the main network
contains the bulk of parameters and can be any standard architecture designed for operating on
tokenized language—such as a Transformer (Vaswani et al., 2017) or state space model (SSM) (Gu
& Dao| |2024)—we show that the encoder and decoder networks are strongly improved by using
SSMs, which have an inductive bias for compression (Gul 2025).

Dynamic Chunking. H-Net’s core is a novel dynamic chunking (DC) mechanism which interfaces
between the main network and the encoder/decoder networks, learning how to segment data while
using standard differentiable optimization. DC is composed of two complementary new techniques:
(i) a routing module which predicts boundaries between adjacent elements through a similarity
score (ii) and a smoothing module which interpolates representations using the router’s outputs,
attenuating the effect of uncertain boundaries and significantly improving learnability. By combin-
ing these with a new auxiliary loss function that targets desired downsampling ratios, and modern
techniques for gradient-based learning of discrete choices (Fedus et al., [2022; Bengio et al.,|2013)),
DC lets an H-Net learn how to compress data in a fully end-to-end fashion.

Signal Propagation. We introduce several architectural and training techniques to improve stabil-
ity and scalability during end-to-end optimization. These include: (i) carefully placing projections
and normalization layers to balance signal propagation between interacting sub-networks, and (ii)
adjusting optimization parameters for each layer based on its dimensionality and effective batch
size, which changes between stages of the hierarchical structure.

Altogether, H-Net learns segmentation strategies optimized jointly with the main backbone, dynam-
ically compressing input vectors based on contextual information into meaningful chunks. H-Net
represents the first truly end-to-end, tokenizer-free language model: with a single stage of dynamic
chunking, a byte-level H-Net matches the perplexity and downstream performance of a strong
BPE-tokenized Transformer at sizes exceeding 1B parameters. Empirically, the dynamic chunking
module naturally compresses data to a similar resolution as BPE tokenizers (4.5-5 bytes/chunk) and
qualitatively learns meaningful boundaries, all without any external supervision or heuristics.

Under review as a conference paper at ICLR 2026

HIERARCHICAL CHUNKING: FROM DATA TO ABSTRACTIONS

Beyond addressing tokenization, H-Net improves general sequence modeling across a wide range
of settings. Subword tokenization in language models is a special case of chunking—the process of
building higher-level abstractions from low-level data—and is a central component of intelligenceﬂ
Crucially, because H-Net is fully end-to-end, it can be iterated recursively: the main network can
itself be an H-Net. Intuitively, more stages of chunking represent higher order meanings; just as
characters can be combined into words, words can be combined into clauses, sentences, and beyond.
Iterating the hierarchy should therefore lead to even more efficient use of compute and parameters,
and more effective reasoning over compressed representations.

Recursive H-Nets represent a new class of foundation model architectures that not only overcome
tokenization, but discover and operate over abstractions learned from raw data, leading to higher-
quality models with less pre-processing.

Iterating the 1-stage H-Net to 2 hierarchical stages further improves its capabilities and strongly
outperforms all baselines, with steeper training curves and better scaling with data. A byte-level
2-stage H-Net overtakes the perplexity of a strong tokenized Transformer after just 30B training
bytes, with the gap widening throughout training, and matches the downstream evaluations of the
tokenized Transformer of twice its size.

Finally, H-Nets realize the benefits of overcoming tokenization:

* Robustness. Without special data mixes, the pretrained H-Net is dramatically more robust to
textual perturbations than the token-based Transformer, as evaluated on the noisy HellaSwag suite
of benchmarks.

o Interpretability. Qualitative visualizations of learned boundaries reveal that H-Net automati-
cally discovers semantically coherent units without explicit supervision, validating that end-to-
end learning successfully detects the structural patterns traditionally imposed through handcrafted
tokenization.

* Other languages. H-Net’s improvements are even more pronounced on languages without obvious
segmentation cues, including Chinese and code (59.9 — 66.3 on XWinograd-zh compared to
tokenized Transformer) and DNA language modeling (3.6 x improved data efficiency compared
to isotropic models).

2 H-NET ARCHITECTURE

H-Nets are hierarchical U-Net-like networks, but with data-dependent dynamic subsampling that is
learned end-to-end together with the rest of the model. We first introduce H-Net’s hierarchical archi-
tecture for multi-level processing (Section[2.1), then present our dynamic chunking mechanism that
learns content-aware compression through standard optimization (Section [2.2). Additional details
appear in the appendix (Section[C), including: (i) architectural design principles; (ii) more explana-
tions about the dynamic chunking mechanism; (iii) optimization and architectural enhancements for
hierarchical sequence modeling; and (iv) preservation of autoregressive properties.

2.1 ARCHITECTURAL OVERVIEW

H-Net employs a hierarchical architecture comprising three primary components — encoder networks
(£), main network (M), and decoder networks (D) — where each component is implemented with a
stack of sequence mixing layers (e.g., Transformers or state space models). In its simplest form, a
single-stage H-Net consists of one encoder network, one main network, and one decoder network.
Crucially, the architecture’s key characteristic lies in the main network’s unique property: the main
network can be another complete H-Net, enabling recursive construction of multi-level hierarchies.

This recursive design allows H-Net to scale to arbitrary depths. In an S-stage model, we denote
components at each stage using superscripts: encoder networks as £° and decoder networks as D?
for stages 0 < s < 9, with the main network M residing only at the final stage s = .S. For example,
a two-stage model contains £, £', M, D', and D, as illustrated in Figure [I}(Left). Throughout
this paper, we use superscripts to denote stage indices, though we omit them when all variables
within an equation belong to the same stage.

3Chunking is a formal concept from cognitive psychology central to human memory and cognition, and is
the inspiration for this work’s terminology.

https://en.wikipedia.org/wiki/Chunking_(psychology)

Under review as a conference paper at ICLR 2026

4@@@@@@@@@@}
D

Dechunking

[0

1-P, 1-P, 1

_Pt
T]
= EH Eﬂ :

M (c) Smoothing Module

wﬁmmﬁmmgﬁmmﬁm
b

o0l [0ee] el (@

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
i (b) Downsampler \
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

Nj

N>

1
1
1
1
1
1
1
1
1
1
1
:
1
| (d) Upsampler
:
1
1
1
1
1
1
1
1
1
1
1
[}

s

Chunking

r@O000OOOOOOHOO

=

1 £)
el e][] o)k [efn][s] X Dynamic Chunking

Figure 1: (left) Architectural overview of H-Net with a two-stage hierarchical design (S = 2).
(right) Dynamic Chunking (DC). (bottom-right) Key components of a chunking layer: (a) a rout-
ing module for dynamically drawing chunk boundaries, and (b) a downsampler that selectively re-
tains vectors based on boundary indicators, reducing sequence length while preserving semantically
significant positions. (top-right) Key components of a dechunking layer: (c) a smoothing module
for converting discrete chunks into interpolated representations, and (d) an upsampler that restores
compressed vectors to their original resolution based on boundary indicators. Linear in equation
equation |§| and STE in equation equation|§| are omitted in the illustration for brevity.

Drawing inspiration from the U-Net architecture (Ronneberger et al., [2015)), H-Net progressively
compresses input sequences into fewer vectors with richer semantic embeddings through a chunking
layer, processes these representations in the main network, then decompresses the sequence back to
its original resolution using a dechunking layer. Unlike traditional U-Net designs, however, H-Net
dynamically determines chunking boundaries rather than using fixed-size pooling operations. The
overall pipeline can be formalized as:

75 = 55(1,5)7 25’ _ M(.TS), 25 — DS(ZS), (1)
where the chunking layer and the dechunking layer operations are defined as:
(71, p®) = Chunk(%),) 2* = Dechunk(£*** p®) + Linear(i*). (3)

The initial input to the model is 20 € RE"XD” \where L is the input sequence length and DY is
the embedding dimension. Intuitively, p° € [0,1]*" represents the chunking router’s confidence
that the token should be passed into the main stageﬂ This value is essential for both the chunk
(Section[2.2.T)) and dechunk operations (Section [2.2.2).

We further provide full details about H-Net’s design principles in Section[C.1}

“We also sometimes refer to it as a probability—it is interpreted as such in Section although we do
not use it as a formal probability.

Under review as a conference paper at ICLR 2026

2.2 DyNAMIC CHUNKING (DC)

H-Net learns chunking boundaries through end-to-end training, allowing it to identify semantically
meaningful units adaptively. Furthermore, this dynamic approach enables the model to allocate
computational resources efficiently by compressing low-information regions while preserving high-
information content at appropriate granularity.

2.2.1 CHUNKING LAYER

The chunking layer (Chunk in equation equation[2)) contains a routing module and downsampler, as
illustrated in Figure [T} (bottom-right).

Routing Module. In natural data, meaningful boundaries tend to emerge at points of contextual or
semantic shift. From this observation, we add an inductive bias by measuring the similarity between
adjacent representations: when context changes, consecutive vectors should exhibit lower similarity.
The routing module implements this intuition through cosine similarity between adjacent encoder
outputs. Given encoder outputs X, it calculates boundary probabilities p, and boundary indicators
b; as follows:

T

@ =W k=W pi= <1 - W) €01, bi=Tpz05, @
2 llgell o1l

where p; = 1.0 by definition, ensuring the sequence begins with a boundary. This formulation

scales cosine similarity into a boundary score or probability: ideally, when consecutive vectors Z;_1

and 2, span a semantic boundary (e.g., between morphemes, words, or phrases), their projections g;

and k;_; diverge in the latent space, yielding low cosine similarity and consequently high boundary

probability p;.

Downsampler. The downsampler compresses encoder outputs z° into a reduced set of vectors
2! using boundary indicators {b; }thl Among potential compression strategies — including mean
pooling, max pooling, or cross-attention — we adopt direct selection of boundary-marked vectors for
its simplicity and effectiveness (see Section[E.3.6|for ablations).

As illustrated in Figure [T}(b), this approach follows a straightforward selection rule: vectors where
by = 1 are retained in the compressed sequence z°*1, while those where b; = 0 are discarded.
Likewise, the same downsampler applies to boundary probabilities, compressing p* into P**! for
use in a dechunking layer (see Section[2.2.2).

2.2.2 DECHUNKING LAYER

The dechunking layer (Dechunk in equation equation [3)) consists of a smoothing module and up-
sampler, as illustrated in Figure [T}(top-right).

Smoothing Module. The critical challenge in training a dynamic chunking module lies in the
discrete nature of chunk boundaries, which impedes gradient flow during backpropagation. We in-
troduce the smoothing module as a technique to address this problem. As illustrated in Figure[T}(c),
this component transforms discrete chunking operations into differentiable computations by creating
smooth interpolations between chunks. Concretely, the smoothing module applies an exponential
moving average (EMA) with the following definition:

Zi=Pz+(1—P)zZ_1. %)
In Section[C.2.T] we describe several roles of the smoothing module and provide Figure @ with more

explanations.

Upsampler. We carefully design the upsampler (see Figure (d)) that decompresses z°! to
match the original resolution of inputs in the previous stage z° with the following definition:

b 1-b Dt ifb, =1,
— pbt(1 — t — - =
ce=pi'(1=pr) {1 —p; otherwise, © T AT bk ®)
STE(c:) = ¢t + stopgradient(1 — ¢;), (7) Upsampler(z,c); = STE (¢;) - 2. (9)

Each component serves a specific purpose in enabling stable end-to-end learning, which is described

in Section[C.2.2

Under review as a conference paper at ICLR 2026

2.2.3 RATIO LOSS

Without explicit regularization, the model may converge to trivial solutions: either retaining nearly
all vectors (negating computational benefits) or compressing excessively (losing critical informa-
tion). Inspired by load balancing mechanisms in Mixture-of-Experts (MoE) models
[2022), which face similar challenges in maintaining balanced expert utilization, we introduce a ratio
loss to guide compression:

N

L L
1 1
Lrio = 55— (N =DFG+ (1= F)(1-G)), F:f;bt, GZE;pt, (10)

where F’ represents the fraction of vectors actually selected, G denotes the average boundary proba-
bility, and N controls the target compression ratio. Mechanistically, although F' is not differentiable,
the network can be trained toward targeted compression ratios through GG, which provides contin-
uous feedback. When F' = @, the loss attains a minimum of L, = 1 when F = G = %
Interestingly, the loss can theoretically fall below 1 when F' # G (e.g., F' = % +eand G = % —€),
which we indeed observe during training. Despite this theoretical possibility, the loss effectively
guides the model toward the desired compression ratio in practice. In practice, as our architectural
design encourages the routing module to make confident decisions (i.e., boundary probabilities ap-
proaching 0 or 1), I naturally converges toward G, and the loss effectively guides the model toward
the desired compression ratio. Notationally, we sometimes use (N°, N1,... N*71)-DC to denote
the full dynamic chunking mechanism together with its targeted chunking ratios.

Combined together with the autoregressive prediction loss (i.e., £L = Lar + Zf;ol L:4o), this
mechanism preserves content-adaptive compression: the model learns which vectors to retain based
on semantic importance rather than following predetermined patterns, distinguishing H-Net from
fixed compression schemes. We fixed oo = 0.03 in all experiments in this paper as it provides a good
balance between prediction accuracy and chunking efficiency; however, in other settings, it may be
important to choose this hyperparameter more carefully.

3 EXPERIMENTS

We first describe our general experimental protocol for language modeling, used for the majority of
our experiments. In Section[3.1] we evaluate on a high-quality English dataset, showing significantly
stronger performance than baselines, as well as improved robustness and interpretability from avoid-
ing tokenization. In Section[3.2] we extend our evaluation to diverse datasets including Chinese, and
code, with even larger performance improvements, demonstrating H-Net’s versatility as a general
sequence model architecture. In the appendix, we share further details about the experiments in this
section (see Section D)), and provide more experiments and ablation studies (see Section [E)).

Models. We compare against a standard tokenized Transformer following the Llama architec-
ture (Touvron et al} 2023b} Grattafiori et al.| |2024|)E| We additionally compare against several
byte-level baselines:

* MambaByte (Wang et al.| 2024)) and LlamaByte are isotropic models using pure Mamba-2 layers
and pure Transformer layers, respectively.

* SpaceByte (Slagle| [2024) represents the canonical hierarchical architecture with external bound-
ary supervision, which chunks on spaces and “space-like” bytesﬁ On English, the space-like
delimiter heuristic empirically has an average ratio of 6.0 bytes per chunk.

* SpaceByte++ is our modification of SpaceByte that includes our architectural modifications to
the hierarchical structure (from Section 2.1). In particular, it changes the outer encoder/decoder
networks to use Mamba-2, and modifies the layer counts and widths slightly to match the H-Net
models below.

* H-Net (space) and H-Net (pool) differ from our full H-Net only through the chunking function.
H-Net (space) further improves SpaceByte++ with our training improvements to the network (Sec-

>This was called the Transformer++ in (2024); since by now it is firmly established, we remove
the ”++7.
SBLT is another architecture with external supervision using entropy instead of delimiters, but is unfortu-
nately too complex to set up and control as a baseline. We believe that the delimiter-based method is highl
y p p ghly
competitive. See Section

Under review as a conference paper at ICLR 2026

Table 1: Architectures for main language models, all data-/FLOP-matched. £°,D°, &' D!,
M. T and M denote a Transformer and a Mamba-2 layer, respectively. For hierarchical byte-level
models, the TOKENIZER column lists the chunking mechanism. The numbers before DC indicate
downsampling factor /V in equation equation for example, (3,3)-DC denotes N° = N! = 3. The
BPIC (Bytes-Per-Innermost-Chunk) measure shows that each chunk dynamically determined by our
1-stage comprises similar number of bytes to the GPT-2 tokenizer, despite aiming for N° = 6. All
Transformer layers in £ or D networks, as well as LlamaByte, use Sliding Window Attention (SWA)
with a window size of 1024. Just as in the original Mamba and Mamba-2
& Gu blocks, our Mamba-2 layers have roughly 6(D®)* parameters and Transformer layers
have 12(D%)? parameters in stage s.

MODEL INPUT TOKENIZER L° (LB SP/ILCO) #PARAMS ARCHITECTURE dmodel (D)
#FLOPs matched to GPT-3 Large
Transformer Token GPT2 1792 4.6 760M T24 1536
LlamaByte — 1.0 210M T16 1024
MambaByte — 1.0 190M M28 1024
SpaceByte Spacelike 6.0 570M T8 + T16 + T8 768 , 1536
SpaceByte++ Spacelike 6.0 850M M4 + T28 + M4 1024 , 1536
H-Net (pool) Byte 6-Pool 8192 6.0 850M M4 + T28 + M4 1024 , 1536
H-Net (space) Spacelike 6.0 850M M4 + T28 + M4 1024 , 1536
H-Net (1-stage) 6-DC 4.8 680M M4 + T22 + M4 1024, 1536
H-Net (2-stage) (3,3)-DC 7.0 870M M4 + TIM4 + T26 + M4T1 + M4 1024, 1024, 1536
#FLOPs matched to GPT-3 XL
Transformer Token GPT2 1792 4.6 1.3B T24 2048
SpaceByte++ Spacelike 6.0 1.6B M4 + T31 + M4 1024, 2048
H-Net (space) Spacelike 6.0 1.6B M4 + T31 + M4 1024 , 2048
H-Net (1-stage) Byte 6-DC 8192 4.7 1.3B M4 + T24 + M4 1024 , 2048
H-Net (2-stage) (3,3)-DC 6.9 1.6B M4 + TIM4 + T27 + M4T1 + M4 1024, 1536, 2048

tion |C.3), in particular, adding post-network norms, residual projections, and learning rate multi-
pliers on the outer networks. H-Net (pool) is a baseline ablating the effect of a simple chunking
strategy that pools every k tokens, which is expected to be weaker than all of the data-dependent
chunking strategies.

e H-Net (1-stage) is our full H-Net method with DC learned end-to-end (Section with com-
pression target N = 6.
+ H-Net (2-stage) is our full H-Net method, iterated to two nested stages using N = 3, N! = 3.

We provide results for two model scales, Large (L) and XL. Each scale is FLOP-matched to the
corresponding GPT-3 (Brown et al}, 2020) (i.e., GPT-3 L and GPT-3 XL) variant of the tokenized
Transformer (760M and 1.3B parameters respectively).

Experimental Setup. Following established practice (Xue et al.} 2022} [Wang et al, 2024} [Slagle]
[2024), we measure performance using bits-per-byte (BPB) to ensure comparability across different
input representations. For tokenized models, this amounts to simply rescaling the total negative log
likelihood of a sequence (in tokens) by the total number of bytes. In addition, we systematically
control the data and compute budget for all models (see Table [I)), matching all models carefully in
both bytes-per-batch and FLOPs-per-byte:

* Data Budget: We train all models on the 100B token subset sampled from the FineWeb-Edu
dataset (Penedo et all,[2024). All tokenizer-free models process 8192 ut £—8 encoded bytes per
sequence, while the Transformer uses 1792 tokens from the GPT2 tokenizer (roughly equivalent
to 8192 bytes). We use batch size 256 for all models; the total batch size is just under 0.5M tokens
per batch for the baseline BPE Transformer, roughly matching protocols from prior work
2029).

e Compute Budget: For calculating FLOPs, we follow standard methodology

with an extension for Mamba-2 layers (see Section[D.T)). We use the BPE-tokenized Trans-

former’s #FLOPs as a reference, and the number of layers of the other models is adjusted accord-
ingly to match the reference #FLOPs.

Training employs AdamW (Loshchilov & Hutter, 2017) optimizer with warmup-stable-decay
(WSD) (Hu et al., 2024) scheduling with 10% linear warmup and 20% inverse-square-root de-

Under review as a conference paper at ICLR 2026

#FLOPs matched to GPT-3 Large (760M) #FLOPs matched to GPT-3 XL (1.3B)
1.05- :
0.95-

0.90-
0.85-

0.80-

0.75- H-Net (2-stage) overtakes
(BPE) Transformer with 30B training bytes

0.75- 1 1 1 1 1 1 1 T 1 1

0.80-

1 1 1 1
«® ‘\QQ% »\6“% rng‘b ’L%Q% %QQ% rb%g‘b «® ’\“g% \636 ’LOQ‘& '7»66% Q’QQ% ,56@%
Total Training Bytes Total Training Bytes
—— H-Net (2-stage) —— H-Net (space) ——— SpaceByte++ —— LlamaByte (SWA) (BPE) Transformer

H-Net (1-stage) == H-Net (6-pool) == SpaceByte == LlamaByte (Global) ——— MambaByte

Figure 2: Validation Bits-per-byte (BPB) throughout training for different models at Large
(760M, left) and XL (1.3B, right) scales with matched computational and data budgets for train-
ing. All models but Transformer take raw byte inputs (Transformer uses GPT-2 tokenizer). Vertical
dotted lines indicate crossover points where H-Net begins to outperform Transformer with prede-
fined BPE tokenization. From the curves we can clearly see the following: (1) all hierarchical models
(i.e., SpaceByte++, H-Net variants) outperform the isotropic models (i.e., Transformer, MambaByte,
LlamaByte); (2) dynamic chunking is more powerful than BPE tokenizers; and (3) DC is more effec-
tive than other chunking strategies. Furthermore, H-Net’s 2-stage variant consistently outperforms
1-stage across both scales, demonstrating the effectiveness of deeper hierarchies. See Table [I] for
architectural details.

cay (Ibrahim et al.l 2024). Following Hagele et al.| (2024) which recommends WSD schedulers
with half the maximum learning rates as a cosine schedule, we adopt learning rates 2.5x higher
than GPT-3 (Radford et al., |2019)) standards; this corresponds to half of the maximum learning rate
used in|Gu & Dao|(2024), yielding 6.25 x 10~* for Large-scale models and 5.0 x 10~* for XL-scale
models. Architecture details include gated MLPs (Touvron et al.,[2023b) in all Transformer layers
and the main network’s Mamba layers, while Mamba layers in £ and D are without an MLP. For
Transformer layers in £ and D, we use Sliding Window Attention (SWA) (Beltagy et al.| [2020) with
the window size of 1024. As discussed Section[C.1} £ and D comprise mainly Mamba-2 layers.

3.1 LANGUAGE MODELING

Training Curves. Figure 2] presents validation BPB metrics throughout training for both Large
and XL model scales. At the Large scale, we make note of the following comparisons: (i) all
isotropic models severely underperform hierarchical models. Among these, MambaByte is signifi-
cantly better than LlamaByte, both the FLOP-matched sliding window attention (SWA) variant and
even the global attention variant that is data-matched but uses 2x the FLOPs; (ii) H-Net (pool) is
much worse than all other H-Net variants, validating that fixed-width chunking is not effective; (iii)
SpaceByte is much worse than SpaceByte++, validating our strategy for network design as well as
usage of Mamba in the outer networks (Section [2.I); (iv) SpaceByte++ is in turn worse than H-Net
(space), validating our improved signal propagation techniques (Section[C.3); (v) H-Net (space) is a
very strong model reaching the performance of the BPE Transformer, validating the effect of data-
dependent chunking strategies together with a well-designed hierarchical architecture; (vi) H-Net
(1-stage) is stronger than H-Net (space), validating that our dynamic chunking mechanism success-
fully learns how to segment data in a context-dependent way that improves over strong heuristics;
and (vii) H-Net (2-stage) is significantly better than H-Net (1-stage), validating that iterated dy-
namic chunking can potentially learn a nested hierarchy of useful features, and leverage compute
and parameters even more effectively.

At the XL scale, we zoom in more closely and compare only the strongest set of methods: Space-
Byte++, H-Net (space), H-Net (1-stage), and H-Net (2-stage). The same trends hold as at the Large
scale. Our SpaceByte++ baseline is strong, but slightly worse than the BPE Transformer baseline.
On the other hand, all byte-level H-Net methods start off worse than the token-level Trans-
former, but scale better after enough data. H-Net (space), H-Net (1-stage), and H-Net (2-stage)

Under review as a conference paper at ICLR 2026

Table 2: Zero-shot performance comparison across multiple benchmarks, all data-/FLOP-
matched. Evaluation results on seven downstream tasks at both Large (760M) and XL (1.3B) scales.
GFLOPs/BYTE is measured on FineWeb-Edu validation set, reported as the average over the course
of training. See Table E]for architectural details.

GFLOPs/ F-EDU LMB. HELLA. PIQA ARC-E ARC-C WINO. OPEN. AVERAGE
BYTE BPB] ACCT ACC.nT ACCT ACCT ACCnT ACCT ACC.nt AcCC?

#FLOPs matched to GPT-3 Large

MODEL INPUT

Transformer Token 0.42 0.756 45.0 54.5 723 699 36.3 55.9 38.8 53.3
LlamaByte 0.42 0.859 37.0 40.5 64.7 55.1 26.7 52.3 324 44.1
LlamaByte (Global) 0.95 0.845 364 41.5 65.7 572 27.1 49.8 322 44.3
MambaByte 0.42 0.845 329 42.0 66.2 559 28.1 51.7 332 44.3
SpaceByte 0.41 0.791 43.0 49.0 69.0 633 335 533 35.0 494
SpaceByte++ Byte 0.42 0.760 48.0 55.7 71.3 67.9 354 57.5 39.6 53.6
H-Net (pool) 0.42 0.780 432 54.7 69.7 67.9 347 54.8 36.4 51.6
H-Net (space) 0.42 0.755 46.7 559 724 68.8 34.6 57.6 38.0 534
H-Net (1-stage) 043 0.755 46.2 55.5 71.0 68.1 35.6 58.6 40.0 53.6
H-Net (2-stage) 0.43 0.743 469 574 720 717 39.2 60.4 40.6 55.5
#FLOPs matched to GPT-3 XL
Transformer Token 0.69 0.730 48.1 58.0 73.1 72.2 37.5 58.6 40.8 55.5
SpaceByte++ 0.72 0.733 513 60.1 724 718 38.0 585 40.6 56.1
H-Net (space) Byte 0.70 0.726 503 61.5 73.6 724 40.2 60.2 41.8 57.1
H-Net (1-stage) y 0.72 0.728 484 59.5 724 73.0 38.3 59.2 424 56.2
H-Net (2-stage) 0.69 0.715 50.5 62.2 737 74.2 42.2 60.5 44.0 58.2

Table 3: Robustness evaluation on HellaSwag with textual perturbations, all data-/FLOP-
matched. Zero-shot accuracy on five different perturbation types (AntSpeak, Drop, RandomCase,
Repeat, UpperCase) for models trained exclusively on clean data without noise augmentation. Best
and second best results in each column are denoted using bolded and underlined texts, respectively.
The Robustness Score metric show that all byte-level models are more robust to adversarial text in-
puts than tokenizer-based Transformer. H-Net (2-stage) shows significantly enhanced robustness in
textual perturbations, with the highest average accuracy across all noise types and highest robustness
score. See Table|l|for architectural details, and Sectionfor the definition of Robustness Score.

MODEL INPUT HELLASWAG AVERAGE T ROSBCUOSRT]??S
ANTSPEAK DROP RANDOMCASE REPEAT UPPERCASE

#FLOPs matched to GPT-3 Large
Transformer Token 31.1 29.9 27.1 27.8 38.9 30.9 20.2
LlamaByte (W1024) 30.4 28.1 29.3 27.2 38.5 30.7 36.9
LlamaByte (Global) 3.1 28.1 29.7 27.3 39.0 31.0 36.6
MambaByte 29.8 27.9 29.9 27.1 39.6 30.9 34.5
SpaceByte 30.7 29.8 335 29.5 47.8 343 38.1
SpaceByte++ Byte 31.0 30.9 35.8 29.3 54.0 36.2 36.4
H-Net (pool) 30.5 31.2 354 29.6 53.4 36.1 37.3
H-Net (space) 30.8 31.2 38.6 29.4 54.0 36.8 38.2
H-Net (1-stage) 31.2 31.1 354 29.9 54.1 36.4 37.2
H-Net (2-stage) 30.8 32.1 39.3 30.4 57.1 38.0 39.0

#FLOPs matched to GPT-3 XL
Transformer Token 31.6 30.7 28.0 28.5 43.0 323 22.2
SpaceByte++ 30.9 32.1 40.3 30.6 58.5 38.5 38.5
H-Net (space) Byite 312 332 419 318 60.7 39.8 40.5
H-Net (1-stage) y 30.9 32.7 39.2 31.2 58.4 38.6 39.5
H-Net (2-stage) 31.1 34.7 44.1 33.0 61.7 40.9 42.8

cross over the tokenized Transformer after just 200B bytes, 100B bytes, and 30B bytes respectively.
Beyond these points, H-Net’s performance advantage widens progressively, demonstrating that the
benefits of learnable dynamic chunking get strengthened with additional training data, as the model
continuously refines its chunking strategy.

Downstream Evaluations. Table[2|presents zero-shot accuracy across diverse downstream bench-
marks (Paperno et al.,[2016; Zellers et al.,[2019;|Bisk et al.||2020; |Clark et al.,|2018};|Sakaguchi et al.,
2021; Mihaylov et al.,[2018) using lm—-evaluation-harness (Gao et al.l[2024) for models at
Large and XL scales. SpaceByte++, H-Net (space), and H-Net (1-stage) all have similar perfor-
mance to the BPE Transformer at Large scale, and slightly outperform it at the XL scale, consistent
with their close training curves (and possibly reflecting some noise in the evaluations). H-Net (2-
stage) consistently achieves the highest performance across most tasks, outperforming 2.2% and
2.6% over the Transformer baseline at Large and XL scales respectively. Notably, the Large H-Net
(2-stage) matches the average downstream performance of the XL BPE Transformer.

Under review as a conference paper at ICLR 2026

Chinese (F.-Edu-Chinese-V2.1) Code (Pile Github)
0.90— 0.44-
£ 0s8-
o 042-
5 0.86-
&
@ 084~ 0.40-
0 g2~
c
S 0.80- 0.38-
©
% 0.78~-
0.36-
> 0.76-
0.74= | | | | | | | | | | | | | | |
o P P P P R P P P g © o N 1® o
Total Training Bytes Total Training Bytes
H-Net (2-stage) —— H-Net (space) —— (BPE) Transformer

Figure 3: Validation Bits-per-byte (BPB) throughout training on Chinese language and code
modeling. H-Net (space) and H-Net (2-stage) are byte-level, while the Transformers use the Llama-
3 tokenizer which was designed for multilingual. H-Net clearly outperforms both Transformer and
H-Net (space) on Chinese language modeling, which does not have space-like segmentation cues,
with lower BPB than H-Net (space) throughout training and crossing over with Transformer after
around 25B bytes. On code, both H-Net (2-stage) and H-Net (space) significantly outperform BPE
Transformer. Final post-decay results can be found in Table E}

Robustness to Textual Perturbations. Table [3] evaluates model robustness on HellaSwag with
various textual perturbations, following protocols from BLT (Pagnoni et al., |2024). Importantly,
these are the same checkpoints trained on clean FineWeb-Edu data used to evaluate Table [2)), with-
out any form of special data mix or augmentations that may improve character-level robustness.
H-Net (2-stage) demonstrates substantially improved robustness compared to all baselines, with
performance gaps exceeding those observed in standard benchmarks.

3.2 ALTERNATE LANGUAGE DATASETS

Besides conventional language modeling, we also examine three other language modeling settings
— Chinese, code, and DNA. These three settings present distinct challenges for traditional language-
modeling pipelines: (i) Chinese characters consist of 3 ut £-8 encoded bytes each and Chinese
language does not have natural spaces; thus, constructing a vocabulary or picking boundaries re-
quires special consideration; (ii) Code contains much more whitespace than typical language, which
allows greater compressibility if handled properly, and it also has latent hierarchical structure that
can be leveraged for improved reasoning capabilities; and (iii) DNA does not have any natural to-
kenization cues and instead must be processed as raw base pairs. In contrast, H-Net can operate
on raw data without the need for handcrafted features (whether vocabulary or delineation cues); it
therefore provides a natural architecture that can operate naturally on any language.

As demonstrated in Figure[3] we find that H-Net (2-stage) scales better than BPE Transformer (with
the Llama3 tokenizer) and H-Net (space) on both Chinese and code, and achieves lower compression
after the decay phase (see Table [5). We additionally measure the performance of each Chinese-
language model on the Chinese split of XWinograd, a multilingual Winograd Schema Challenge
(Muennighoff et al.,|2023), where H-Net (2-stage) is significantly better than H-Net (space) which
in turn is better than Transformer as shown in Table 3

4 CONCLUSION

Major advances in deep learning have resulted from powerful architectural innovations en-
abling previously-handcrafted features to be learned from data, from CNNs learning visual fea-
tures (Krizhevsky et al.l[2012) to Transformers discovering linguistic patterns (Vaswani et al.,[2017).
H-Nets similarly unlock the ability to remove another layer of pre-processing, such as tokenizers,
and instead learn them end-to-end. This ability results from a set of new techniques we introduce
that work together to form a dynamic chunking mechanism, which is able to learn content- and
context- dependent discrete segmentation strategies through standard gradient-based optimization.
A single-stage byte-level H-Net already exceeds the performance of standard tokenized language
models, and recursive H-Nets with multiple stages of dynamic chunking further improve its scaling.
H-Nets substantially remedy issues with tokenizers, display very strong performance on diverse
languages and language-like modalities, and more broadly may serve as the backbone of general
foundation models that do more learning with less processing.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Orevaoghene Ahia, Sachin Kumar, Hila Gonen, Jungo Kasai, David R Mortensen, Noah A Smith,
and Yulia Tsvetkov. Do all languages cost the same? tokenization in the era of commercial
language models. arXiv preprint arXiv:2305.13707, 2023.

Orevaoghene Ahia, Sachin Kumar, Hila Gonen, Valentin Hofmann, Tomasz Limisiewicz, Yulia
Tsvetkov, and Noah A Smith. MAGNET: Improving the multilingual fairness of language models
with adaptive gradient-based tokenization. Advances in Neural Information Processing Systems,
37:47790-47814, 2024.

Yonatan Belinkov and Yonatan Bisk. Synthetic and natural noise both break neural machine trans-
lation. arXiv preprint arXiv:1711.02173, 2017.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document Transformer.
arXiv preprint arXiv:2004.05150, 2020.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Aviv Bick, Kevin Li, Eric Xing, J Zico Kolter, and Albert Gu. Transformers to ssms: Distilling
quadratic knowledge to subquadratic models. Advances in Neural Information Processing Sys-
tems, 37:31788-31812, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. PIQA: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelli-
gence, 2020.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
Hoffman. Token merging: Your VIT but faster. arXiv preprint arXiv:2210.09461, 2022.

Garyk Brixi, Matthew G. Durrant, Jerome Ku, Michael Poli, Greg Brockman, Daniel Chang,
Gabriel A. Gonzalez, Samuel H. King, David B. Li, Aditi T. Merchant, Mohsen Naghipourfar,
Eric Nguyen, Chiara Ricci-Tam, David W. Romero, Gwanggyu Sun, Ali Taghibakshi, Anton
Vorontsov, Brandon Yang, Myra Deng, Liv Gorton, Nam Nguyen, Nicholas K. Wang, Etowah
Adams, Stephen A. Baccus, Steven Dillmann, Stefano Ermon, Daniel Guo, Rajesh Ilango, Ken
Janik, Amy X. Lu, Reshma Mehta, Mohammad R.K. Mofrad, Madelena Y. Ng, Jaspreet Pannu,
Christopher Ré, Jonathan C. Schmok, John St. John, Jeremy Sullivan, Kevin Zhu, Greg Zynda,
Daniel Balsam, Patrick Collison, Anthony B. Costa, Tina Hernandez-Boussard, Eric Ho, Ming-
Yu Liu, Thomas McGrath, Kimberly Powell, Dave P. Burke, Hani Goodarzi, Patrick D. Hsu, and
Brian L. Hie. Genome modeling and design across all domains of life with evo 2. bioRxiv preprint
biorXiv:2025.02.18.638918, 2025.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Shiyu Chang, Yang Zhang, Wei Han, Mo Yu, Xiaoxiao Guo, Wei Tan, Xiaodong Cui, Michael
Witbrock, Mark A Hasegawa-Johnson, and Thomas S Huang. Dilated recurrent neural networks.
Advances in Neural Information Processing Systems, 30, 2017.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Rohan Choudhury, Guanglei Zhu, Sihan Liu, Koichiro Niinuma, Kris Kitani, and Laszl6 Jeni. Don’t
look twice: Faster video transformers with run-length tokenization. Advances in Neural Informa-
tion Processing Systems, 37:28127-28149, 2024.

Jonathan H Clark, Dan Garrette, Iulia Turc, and John Wieting. Canine: Pre-training an efficient

tokenization-free encoder for language representation. Transactions of the Association for Com-
putational Linguistics, 10:73-91, 2022.

11

Under review as a conference paper at ICLR 2026

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try ARC, the AI2 reasoning chal-
lenge. arXiv preprint arXiv:1803.05457, 2018.

Zihang Dai, Guokun Lai, Yiming Yang, and Quoc Le. Funnel-Transformer: Filtering out sequen-
tial redundancy for efficient language processing. Advances in Neural Information Processing
Systems, 33:4271-4282, 2020.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In Inter-
national Conference on Learning Representations (ICLR), 2024.

Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms
through structured state space duality. In International Conference on Machine Learning (ICML),
2024.

DeepSeek-Al. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437, 2024.

Sander Dieleman, Charlie Nash, Jesse Engel, and Karen Simonyan. Variable-rate discrete represen-
tation learning. arXiv preprint arXiv:2103.06089, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. /CLR, 2021.

Shivam Duggal, Phillip Isola, Antonio Torralba, and William T Freeman. Adaptive length image
tokenization via recurrent allocation. In First Workshop on Scalable Optimization for Efficient
and Adaptive Foundation Models, 2024.

Eric Egli, Matteo Manica, and Jannis Born. Multiscale byte language models—a hierarchical archi-
tecture for causal million-length sequence modeling. arXiv preprint arXiv:2502.14553, 2025.

William Fedus, Barret Zoph, and Noam Shazeer. Switch Transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1-39,
2022.

William Fleshman and Benjamin Van Durme. Toucan: Token-aware character level language mod-
eling. arXiv preprint arXiv:2311.08620, 2023.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile:
An 800gb dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024. URL https://zenodo.org/records/12608602.

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R. Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with
latent reasoning: A recurrent depth approach. arXiv preprint arXiv:2502.05171, 2025.

Nathan Godey, Roman Castagné, Eric Villemonte De La Clergerie, and Benoit Sagot. Manta: Ef-
ficient gradient-based tokenization for end-to-end robust language modeling. In Findings of the
Association for Computational Linguistics: EMNLP 2022, pp. 2859-2870, 2022.

Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. It’s raw! audio generation with state-
space models. In ICML, 2022.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The Llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Albert Gu. Modeling Sequences with Structured State Spaces. Phd thesis, Stanford University, 2023.

12

https://zenodo.org/records/12608602

Under review as a conference paper at ICLR 2026

Albert Gu. On the tradeoffs of state space models and transformers, 2025. URL https:
//goombalab.github.io/blog/2025/tradeoffs/.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In
Conference on Language Modeling (COLM), 2024.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. ICLR, 2022.

Han Guo, Songlin Yang, Tarushii Goel, Eric P. Xing, Tri Dao, and Yoon Kim. Log-linear attention.
arXiv preprint arXiv:2506.04761, 2025.

Alex Higele, Elie Bakouch, Atli Kosson, Leandro Von Werra, Martin Jaggi, et al. Scaling laws
and compute-optimal training beyond fixed training durations. Advances in Neural Information
Processing Systems, 37:76232-76264, 2024.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Jonathan Hayase, Alisa Liu, Yejin Choi, Sewoong Oh, and Noah A Smith. Data mixture infer-
ence attack: BPE tokenizers reveal training data compositions. Advances in Neural Information
Processing Systems, 37:8956-8983, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Namgyu Ho, Sangmin Bae, Tachyeon Kim, Hyunjik Jo, Yireun Kim, Tal Schuster, Adam Fisch,
James Thorne, and Se-Young Yun. Block transformer: Global-to-local language modeling for
fast inference. Advances in Neural Information Processing Systems, 37:48740-48783, 2024.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, et al. MiniCPM: Unveiling the potential of small language models
with scalable training strategies. arXiv preprint arXiv:2404.06395, 2024.

Hongzhi Huang, Defa Zhu, Banggu Wu, Yutao Zeng, Ya Wang, Qiyang Min, and Xun Zhou. Over-
tokenized Transformer: Vocabulary is generally worth scaling. In The International Conference
on Machine Learning (ICML), 2025.

Adam Ibrahim, Benjamin Thérien, Kshitij Gupta, Mats L Richter, Quentin Anthony, Timothée
Lesort, Eugene Belilovsky, and Irina Rish. Simple and scalable strategies to continually pre-train
large language models. arXiv preprint arXiv:2403.08763, 2024.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
International Conference on Learning Representations (ICLR), 2017.

Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat after me: Trans-
formers are better than state space models at copying. arXiv preprint arXiv:2402.01032, 2024.

Julie Kallini, Shikhar Murty, Christopher D Manning, Christopher Potts, and Rébert Csordas. MrtS:
Dynamic token merging for efficient byte-level language models. In The Thirteenth International
Conference on Learning Representations (ICLR), 2025.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Francois Fleuret. Transformers are
RNNSs: Fast autoregressive Transformers with linear attention. In /CML, 2020.

13

https://goombalab.github.io/blog/2025/tradeoffs/
https://goombalab.github.io/blog/2025/tradeoffs/

Under review as a conference paper at ICLR 2026

Jan Koutnik, Klaus Greff, Faustino Gomez, and Juergen Schmidhuber. A clockwork RNN. In
International Conference on Machine Learning, pp. 1863—1871. PMLR, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification with deep convo-
lutional neural networks. Advances in Neural Information Processing Systems, 25, 2012.

Taku Kudo and John Richardson. SentencePiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. arXiv preprint arXiv:1808.06226, 2018.

Garreth Lee, Guilherme Penedo, Leandro von Werra, and Thomas Wolf. From digits to deci-
sions: How tokenization impacts arithmetic in llms, 2024. URL https://huggingface.
co/spaces/huggingface/number—tokenization-blogl

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274-19286. PMLR, 2023.

Shanchuan Lin, Ceyuan Yang, Hao He, Jianwen Jiang, Yuxi Ren, Xin Xia, Yang Zhao, Xuefeng
Xiao, and Lu Jiang. Autoregressive adversarial post-training for real-time interactive video gen-
eration. arXiv preprint arXiv:2506.09350, 2025.

Alisa Liu, Jonathan Hayase, Valentin Hofmann, Sewoong Oh, Noah A Smith, and Yejin Choi. Su-
perBPE: Space travel for language models. arXiv preprint arXiv:2503.13423, 2025.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh, and
Feryal Behbahani. Structured state space models for in-context reinforcement learning. Advances
in Neural Information Processing Systems, 36:47016-47031, 2023.

C Maddison, A Mnih, and Y Teh. The concrete distribution: A continuous relaxation of discrete
random variables. In International Conference on Learning Representations (ICLR), 2017.

Sadhika Malladi, Kaifeng Lyu, Abhishek Panigrahi, and Sanjeev Arora. On the sdes and scaling
rules for adaptive gradient algorithms. Advances in Neural Information Processing Systems, 35:
7697-T7711, 2022.

Prasanna Mayilvahanan, Thadddus Wiedemer, Sayak Mallick, Matthias Bethge, and Wieland Bren-
del. Llms on the line: Data determines loss-to-loss scaling laws. In The International Conference
on Machine Learning (ICML), 2025.

William Merrill, Shane Arora, Dirk Groeneveld, and Hannaneh Hajishirzi. Critical batch size re-
visited: A simple empirical approach to large-batch language model training. arXiv preprint
arXiv:2505.23971, 2025.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Benjamin Minixhofer, Edoardo Ponti, and Ivan Vuli¢. Zero-shot tokenizer transfer. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024.

Benjamin Minixhofer, Ivan Vuli¢, and Edoardo Maria Ponti. Universal cross-tokenizer distillation
via approximate likelihood matching. arXiv preprint arXiv:2503.20083, 2025.

Niklas Muennighoff, Thomas Wang, Lintang Sutawika, Adam Roberts, Stella Biderman, Teven
Le Scao, M Saiful Bari, Sheng Shen, Zheng Xin Yong, Hailey Schoelkopf, Xiangru Tang,
Dragomir Radev, Alham Fikri Aji, Khalid Almubarak, Samuel Albanie, Zaid Alyafeai, Albert
Webson, Edward Raff, and Colin Raffel. Crosslingual generalization through multitask fine-
tuning. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pp- 15991-16111, Toronto, Canada, July 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.acl-long.891. URL https://aclanthology.org/2023.
acl-long.891/.

14

https://huggingface.co/spaces/huggingface/number-tokenization-blog
https://huggingface.co/spaces/huggingface/number-tokenization-blog
https://aclanthology.org/2023.acl-long.891/
https://aclanthology.org/2023.acl-long.891/

Under review as a conference paper at ICLR 2026

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. S1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Piotr Nawrot, Szymon Tworkowski, Michat Tyrolski, Lukasz Kaiser, Yuhuai Wu, Christian Szegedy,
and Henryk Michalewski. Hierarchical transformers are more efficient language models. In
Findings of the Association for Computational Linguistics: NAACL 2022, pp. 1559-1571, 2022.

Piotr Nawrot, Jan Chorowski, Adrian Lancucki, and Edoardo Maria Ponti. Efficient transformers
with dynamic token pooling. In Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 6403-6417, 2023.

OpenAl. Introducing openai ol-preview, 2024. URL https://openai.com/index/
introducing-openai-ol-preview/.

Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret Li,
Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, et al. Byte latent Transformer: Patches
scale better than tokens. arXiv preprint arXiv:2412.09871, 2024.

Denis Paperno, German Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Ferndndez. The LAMBADA dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

Guilherme Penedo, Hynek Kydlicek, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineWeb datasets: Decanting the web for the finest text data
at scale. Advances in Neural Information Processing Systems, 37:30811-30849, 2024.

Luca Peri¢. The bitter lesson is coming for tokenization, 2025. URL https://lucalp.dev/
bitter—-lesson-tokenization—-and-blt.

Aleksandar Petrov, Emanuele La Malfa, Philip Torr, and Adel Bibi. Language model tokenizers
introduce unfairness between languages. Advances in Neural Information Processing Systems,
36:36963-36990, 2023.

Buu Phan, Brandon Amos, Itai Gat, Marton Havasi, Matthew Muckley, and Karen Ullrich. Exact
byte-level probabilities from tokenized language models for FIM-tasks and model ensembles.
arXiv preprint arXiv:2410.09303, 2024.

Buu Phan, Brandon Amos, Itai Gat, Marton Havasi, Matthew Muckley, and Karen Ullrich. Ex-
act byte-level probabilities from tokenized language models for fim-tasks and model ensembles.
arXiv preprint arXiv:2410.09303, 2025.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y. Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. In ICML, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Nived Rajaraman, Jiantao Jiao, and Kannan Ramchandran. An analysis of tokenization: Transform-
ers under markov data. Advances in Neural Information Processing Systems, 37:62503-62556,
2024.

David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and Adam
Santoro. Mixture-of-depths: Dynamically allocating compute in Transformer-based language
models. arXiv preprint arXiv:2404.02258, 2024.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention—
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18, pp. 234-241. Springer, 2015.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. WinoGrande: An ad-
versarial winograd schema challenge at scale. Communications of the ACM, 64(9):99-106, 2021.

15

https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/
https://lucalp.dev/bitter-lesson-tokenization-and-blt
https://lucalp.dev/bitter-lesson-tokenization-and-blt

Under review as a conference paper at ICLR 2026

Yair Schiff, Chia-Hsiang Kao, Aaron Gokaslan, Tri Dao, Albert Gu, and Volodymyr Kuleshov.
Caduceus: Bi-directional equivariant long-range DNA sequence modeling. In The International
Conference on Machine Learning (ICML), 2024.

Craig Schmidt, Varshini Reddy, Haoran Zhang, Alec Alameddine, Omri Uzan, Yuval Pinter, and
Chris Tanner. Tokenization is more than compression. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pp. 678702, 2024.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909, 2015.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Kevin Slagle. Spacebyte: Towards deleting tokenization from large language modeling. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Makesh Narsimhan Sreedhar, Xiangpeng Wan, Yu Cheng, and Junjie Hu. Local byte fusion for
neural machine translation. In Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 7199-7214, 2023.

Lichao Sun, Kazuma Hashimoto, Wenpeng Yin, Akari Asai, Jia Li, Philip Yu, and Caiming Xiong.
Adv-BERT: BERT is not robust on misspellings! generating nature adversarial samples on BERT.
arXiv preprint arXiv:2003.04985, 2020.

Richard Sutton. The bitter lesson, 2019. URL http://www.incompleteideas.net/
IncIdeas/BitterLesson.htmll

Chaofan Tao, Qian Liu, Longxu Dou, Niklas Muennighoff, Zhongwei Wan, Ping Luo, Min Lin, and
Ngai Wong. Scaling laws with vocabulary: Larger models deserve larger vocabularies. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Yi Tay, Vinh Q Tran, Sebastian Ruder, Jai Gupta, Hyung Won Chung, Dara Bahri, Zhen Qin, Si-
mon Baumgartner, Cong Yu, and Donald Metzler. CharFormer: Fast character Transformers via
gradient-based subword tokenization. arXiv preprint arXiv:2106.12672, 2021.

Avijit Thawani, Saurabh Ghanekar, Xiaoyuan Zhu, and Jay Pujara. Learn your tokens: Word-
pooled tokenization for language modeling. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pp. 9883-9893, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Neural Information Processing
Systems, 2017.

Mathurin Videau, Badr Youbi Idrissi, Alessandro Leite, Marc Schoenauer, Olivier Teytaud, and
David Lopez-Paz. From bytes to ideas: Language modeling with autoregressive u-nets. arXiv
preprint arXiv:2506.14761, 2025.

Tim Vieira, Ben LeBrun, Mario Giulianelli, Juan Luis Gastaldi, Brian DuSell, John Terilla, Timo-

thy J O’Donnell, and Ryan Cotterell. From language models over tokens to language models over
characters. In The International Conference on Machine Learning (ICML), 2024.

16

http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html

Under review as a conference paper at ICLR 2026

Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao, Albert
Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, et al. An empirical study of Mamba-
based language models. URL https.//arxiv. org/abs/2406.07887, 2024.

Junxiong Wang, Tushaar Gangavarapu, Jing Nathan Yan, and Alexander M Rush. Mambabyte:
Token-free selective state space model. First Conference on Language Modeling (COLM), 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language

models. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, NIPS °22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam
Roberts, and Colin Raffel. Byt5: Towards a token-free future with pre-trained byte-to-byte mod-
els. Transactions of the Association for Computational Linguistics, 10:291-306, 2022.

Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. arXiv preprint
arXiv:2011.14522, 2020.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated Linear Atten-
tion Transformers with hardware-efficient training. In The International Conference on Machine
Learning (ICML), 2024a.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transform-
ers with the delta rule over sequence length. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems (NeurlPS), 2024b.

Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2 with
delta rule. In The Thirteenth International Conference on Learning Representations (ICLR), 2025.

Morris Yau, Sharut Gupta, Valerie Engelmayer, Kazuki Irie, Stefanie Jegelka, and Jacob Andreas.
Sequential-parallel duality in prefix scannable models. arXiv preprint arXiv:2506.10918, 2025.

Lili Yu, Daniel Simig, Colin Flaherty, Armen Aghajanyan, Luke Zettlemoyer, and Mike Lewis.
MegaByte: Predicting million-byte sequences with multiscale Transformers. Advances in Neural
Information Processing Systems, 36:78808-78823, 2023.

Qihang Yu, Mark Weber, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-Chieh Chen.
An image is worth 32 tokens for reconstruction and generation. Advances in Neural Information
Processing Systems, 37:128940-128966, 2024.

Yijiong Yu, Ziyun Dai, Zekun Wang, Wei Wang, Ran Chen, and Ji Pei. Opencsg chinese corpus:
A series of high-quality chinese datasets for llm training, 2025. URL https://arxiv.org/
abs/2501.08197.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, 2019.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

17

https://arxiv.org/abs/2501.08197
https://arxiv.org/abs/2501.08197

Under review as a conference paper at ICLR 2026

APPENDIX

[A"Discussion|
[B_Related Work|

IB.1 Autoregressive Tokenizer-free Architectures|

IB.1.1 Isotropic Architectures| . . .
IB.1.2 Static Chunking|.
IB.1.3 External Chunking|
B.1.4 Dynamic Chunking.

IB.2 Non-Autoregressive Tokenizer-free Architectures|

|IC.1 Design Principles|
|IC.2 Dynamic Chunking (DC)|
IC.2.1 Smoothing Module|
IC.2.2 Upsampler|

|IC.3 Improved Techniques for Hierarchical Sequence Modeling|

|IC.4 Autoregressive Training and Inference|

[D Additional Experimental Details|

|[E.3.1 Importance of Components in H-Net|.

[E.3.2 Encoder & Decoder Layer Selection|

[LLM Usage for Paper Writing|

18

19

22
22
22
22
23
24
24
25

27
27
27
27
28
29
30

31
31
31
31

33
33
33
35
35
36
37
38
39
39
40

41

Under review as a conference paper at ICLR 2026

A DISCUSSION

Distillation. For new architectures, showing that they can be distilled from standard pretrained
Transformers can result in stronger new models with substantially reduced training (Bick et al.,
2024). In Section [E.2] we investigate this for H-Net by initializing the main network from a pre-
trained Llama checkpoint and learning the encoder and decoder networks. With less than 200B bytes
of training, the resulting model shows strong performance much better than if it were trained from
scratch, although still worse than the teacher model. Our distillation procedure is perhaps currently
the most efficient way of creating an end-to-end byte-level model, but we expect that it can be further
improved.

Efficiency. Because of the dynamic nature of our model, it requires different considerations in
making both the training pass and inference step efficient. Our implementation incorporates sev-
eral engineering techniques already, such as handling variable sequence lengths within a mini-batch
using specialized kernels provided by Daol| (2024)); |Dao & Gu| (2024). Because of the different
architectural considerations, it is difficult to compare to more standard pipelines; our current imple-
mentation may be approximately up to 2x slower than an isotropic model during training.

Note that the memory usage of our model is also dynamic, unlike standard sequence models, so
other edge cases may happen, such as unlucky batches of sequences that are too long and overflow
the device memory. Relatedly, one difficulty with stepping H-Net in batched mode is that different
tokens in the batch may require different amounts of compute.

We believe that such considerations are not fundamental and will be an important subject of future
work; just as how related dynamic sparsity and conditional compute methods such as Mixture-of-
Experts and speculative decoding (Leviathan et al.} 2023 Chen et al.| 2023) benefited from years of
dedicated engineering improvements.

Deeper Hierarchies. H-Net is the first dynamic hierarchical model that can recursively nest its
chunking strategy (see Table @] and Section [B)). In this paper, we showed that iterating H-Net from
0 stages (i.e. an isotropic model) to 1 stage and from 1 stage to 2 stages consistently improves
performance. We did not attempt a 3-stage H-Net at all for simplicity. Testing if H-Net can be
iterated even deeper remains an immediate direction to explore.

Global Sequence Model Considerations. Much research on sequence model architectures has
focused on individual layers, where the tradeoffs are often quite direct. For example, recurrent
models such as state space models (Gul [2023; |Gu & Daol [2024) and linear attention variants
(Katharopoulos et al., [2020; [Yang et al., [2024afb; 2025) compress arbitrarily long sequences into
fixed-size hidden states, offering higher efficiency at the expense of precise retrieval of information
(e.g. struggling with recall (Jelassi et al.| 2024)).

H-Net, however, is a global architectural design that is simultaneously orthogonal to, but may have
interactive effects with, the choice of individual layers. For example, using deeper hierarchies with
exclusively recurrent layers would preserve linear computation (in sequence length) but logarithmic
state size, resembling newer sequence model layers such as log-linear attention (Guo et al.| 2025))
and Prefix Scannable Models (Yau et al.| 2025), but with dynamic hierarchies. Similarly, the recur-
sive compression of sequence length may alleviate their limitations in retrieval on long sequences.
This may be considered a form of dynamic state allocation. This paper has not focused on such
implications, which would be a possible direction for future research.

Long Context. Similarly, an effect of the global hierarchical structure may be improved long
context abilities, which is a common motivation for hierarchical models (Koutnik et al.[2014;|Chang
et al.,[2017). Much research on sequence models again focuses on long context at the layer level (Poli
et al., 2023; |Gu & Daol [2024} [Vaswani et al.l [2017), and we hypothesize that H-Nets may provide
general long context improvements in an orthogonal direction.

Latent Test-Time Compute. Test-time compute techniques, exemplified by Chain-of-Thought
(Wei et al.| [2022), have been shown to improve model performance on a variety of reasoning bench-
marks (Muennighoff et al.| [2025; OpenAl, 2024). Recent work has explored including latent rep-
resentations (as opposed to just tokens) in the reasoning process (Hao et al., [2024), culminating in
“recurrent depth” models that roll out an RNN for as many steps as needed before emitting a token
(Geiping et al., 2025). As discussed in Section H-Net is also capable of dynamically chang-
ing compute per output generated; thus, it can be viewed as a model that can dynamically allocate

19

Under review as a conference paper at ICLR 2026

latent test-time compute as well. Additionally, as the motivation of H-Net is to recursively build
higher-order abstractions, we hypothesize that it would be more effective as a reasoning model that
operates over its own learned concepts instead of arbitrary token inputs.

Sparsity. H-Net can be viewed as a form of dynamic sparsity or conditional computation, and
is related to concepts such as mixture-of-experts (MoE) (Fedus et al., |2022; |Shazeer et al., [2017)
and mixture-of-depths (Raposo et al., 2024). We showed that at the byte level, DC is much more
effective than MoE when controlled for parameters and compute (Figure[T4), and leave fleshing out
further connections and comparisons for future work. We also note that H-Net can be viewed as
orthogonal to MoE, which can be applied to sparsify any MLP layers within an H-Net.

Scale. The largest models in this paper were FLOP-matched to the equivalent of a 1.3B parameter
Transformer. While we believe that this provides sufficient evidence for the effectiveness of this
approach, it remains to validate H-Net at larger model sizes of 3B, 7B, and beyond. We note that
while we observed no instabilities at our model sizes, the added complexity of H-Net and inherent
difficulties of learning end-to-end discrete selection problems may require more serious investigation
of potential stability challenges at larger scale.

Scaling Laws. Formally estimating the scaling behavior of a model requires calculating scaling
law coefficients that sweep across a large range of model sizes and compute horizons (Kaplan et al.,
2020; [Hoffmann et al., [2022). We did not pursue this formal approach in this paper due to resource
constraints.

Instead, we used a simpler heuristic for the scaling behavior of our models, at least with respect to
data. We note that

* essentially all modern models live in the “overtrained” regime (with respect to the formal
scaling laws) due to inference considerations at deployment (Touvron et al., 2023b)); and

* these overtrained models often use modern schedulers that have extended periods of con-
stant learning rates (Hu et al., |2024} |DeepSeek-Al, 2024)).

Thus, we decided to use the models’ losses during the constant phase as a proxy for how quickly
they improve with data. We believe this still provides useful insight into scaling behaviors, and a
more dedicated analysis of formal scaling laws remains an important topic for future work.

BPB Calculation. For baseline BPE tokenized models throughout this work, we used the standard
bits-per-byte (BPB) calculation of simply rescaling the negative log-likelihood (or log perplexity) by
the average number of bytes per token (Gao et al.l[2020; Wang et al.|[2024; |Slagle, 2024). However,
this is not strictly speaking a correct BPB estimate for tokenized models, as it assumes that the
probability the model outputs a string is equal to the probability of the model outputting the greedy
tokenization of the string.

Depending on how the model is trained, it is possible the model can output other tokenization se-
quences with nonzero probability. There are an exponential number of these, so computing the exact
BPB is intractable; however, concurrent work (Vieira et al., |2024) shows that the standard BPB cal-
culation indeed overestimates BPB. Due to the high computational overhead of estimating the true
BPB, we only provide the standard (inexact) value; nevertheless, H-Net’s superior performance on
downstreams provides supporting evidence that it scales better than BPE models.

20

Under review as a conference paper at ICLR 2026

Table 4: Related architectures. Comparison of related architectures, particularly those focused on
byte-level modeling. H-Net is the first architecture that enables dynamic, multi-stage hierarchies.
Extended discussion is provided in Section

CLASS AUTOREGRESSIVE CHUNKING MECHANISM

MULTI-STAGE

HIERARCHY EXAMPLE ARCHITECTURES

X

— ByT5

Isotropic
4

— MambaByte

k-width pooling

Funnel-Transformer
v Canine
Charformer

Hierarchical (static)

k-width pooling

Hourglass Transformer
SaShiMi

v MegaByte
Block Transformer
MBLM
AU-Net 3

delimiters

eByte
WSF

Hierarchical (external)

delimiters

DPT (Whitespaces)
X SpaceByte
AU-Net 2

entropy

DPT (Entropy)
BLT

Hierarchical (dynamic) v

soft matching

MANTa

soft gating

MrT5

stochastic reparameterization

DPT (Gumbel)

Hierarchical (dynamic) v

dynamic chunking

x| x| x| %

H-Net

21

Under review as a conference paper at ICLR 2026

B RELATED WORK

The fundamental challenge of transforming raw sequential data into computationally efficient rep-
resentations manifests across multiple domains through implicit chunking processes. In language
modeling, this challenge is addressed through tokenization using static vocabularies derived from
frequency-based algorithms such as Byte-Pair Encoding (BPE) (Sennrich et al.}[2015) in GPT mod-
els (Radford et al.l 2019; [Brown et al., [2020) and SentencePiece (Kudo & Richardson, [2018) in
Llama architectures (Touvron et al.|[2023b; |Grattafiori et al.,[2024)). Computer vision addresses sim-
ilar challenges through spatial pooling operations (Ronneberger et al., 2015) that aggregate neigh-
boring pixels into meaningful representations.

Despite achieving strong empirical performance, it is widely known that traditional tokenization ap-
proaches in language models suffer from fundamental limitations that constrain model capabilities.
Fixed vocabularies exhibit biases toward high-resource languages, demonstrate fragility when han-
dling adversarial inputs, and show lower performance on character-level tasks (Petrov et al.| 2023
Ahia et al., 2023} [Belinkov & Biskl, 2017 |Sun et al., [2020; | Xue et al.,[2022). These limitations stem
from the static nature of predefined vocabularies, which cannot adapt their chunking strategies to
input content or context.

To address these constraints, fokenizer-free methods have emerged that avoid the reliance on prede-
fined vocabularies.

* In Section[B.1] we discuss the most directly related prior work on autoregressive sequence
models, extending the overview from Section E}

* In Section[B.2] we discuss non-autoregressive models. We note that essentially all autore-
gressive architectures can be turned into non-autoregressive architectures (including our
proposed H-Net), and vice versa, which provide possible extensions of H-Net in future
work. However, we provide this delineation because it marks an important difference in
motivation that influences design considerations and downstream evaluations.

* Section [B.3]mentions other works in non-language modalities related to tokenization.
We summarize our discussion on tokenizer-free architectures in Table 4l

B.1 AUTOREGRESSIVE TOKENIZER-FREE ARCHITECTURES

As outlined in Section [I] prior work on autoregressive tokenizers for architectures can be divided
into four categories:

1. Non-hierarchical isotropic architectures.

2. Hierarchical architectures with static chunking strategies, where chunk boundaries are
content-agnostic (usually some variant of fixed-width pooling).

3. Hierarchical architectures with external chunking strategeies, where chunk boundaries are
provided by an external function or module.

4. Hierarchical architectures with dynamic chunking strategies, where chunk boundaries are
content-dependent and learned end-to-end.

B.1.1 ISOTROPIC ARCHITECTURES

The most direct approach to modeling language with tokenizers is to simply model raw byte se-
quences with a standard sequence model architecture. Since this naive approach suffers from com-
putational challenges on long sequences, MambaByte (Wang et al.l 2024) proposed using a state
space model for its linear-time efficiency. We similarly use Mamba(-2) (Dao & Gu, |2024) layers in
the outer stages of an H-Net. Notably, through extensive ablations we show that Mamba is not just
more efficient but also better at modeling high-resolution data such as text characters and DNA base
pairs.

B.1.2 STATIC CHUNKING
To reduce sequence length, several approaches downsample the input sequence hierarchically. The

most straightforward methods operate independently of input context, partitioning sequences using
fixed-size intervals. Many strategies could be used to aggregate a width-k window, including direct

22

Under review as a conference paper at ICLR 2026

downsampling, average pooling, linear transformations that mix across the chunk, convolutions, and
more; we lump these together as pooling operations.

Hourglass Transformer (Nawrot et al.|[2022) and MegaByte (Yu et al.,2023)) exemplify this strategy.
Other recent variants include the Block Transformer (Ho et al.|[2024) and Multiscale Byte Language
Model (MBLM) (Egli et al.l [2025), which use similar multi-stage static chunking architectures.
Concurrently to H-Net, the MBLM also proposes using Mamba layers in the outer stages.

These approaches share conceptual similarity with spatial pooling operations in vision models that
reduce resolution through fixed-window aggregation (Krizhevsky et al. 2012; |[He et al.l [2016).
While these content-agnostic methods have simple and efficient implementations, they face an in-
herent limitation: they do not reflect natural semantic boundaries in the data. Fixed-size chunking
inevitably creates arbitrary separations that can split meaningful units such as words, morphemes,
or phrases, thereby limiting model expressivity.

This class of models may also be called “autoregressive U-Nets”, characterized by the U-Net multi-
scale architecture (Ronneberger et al., [2015) with additional considerations to maintain causality.
Prior to these, the S4 and SaShiMi models (Gu et al., |[2022; |Goel et al., [2022) used the same archi-
tecture successfully in the vision and audio modalities, where fixed-window downsampling exhibits
more appropriate inductive bias in contrast to language. SaShiMi specifically operated over 8-bit
quantized audio inputs, hence also was a form of byte-level modeling that used BPB as a metric.

B.1.3 EXTERNAL CHUNKING

An improvement to hierarchical architectures with static downsampling is to use content-aware
chunking strategies that attempt to identify natural token boundaries based on semantic or statis-
tical properties of the input data. Several recent models propose using the boundaries provided by
an external module, with two main variations appearing.

Delimiter-based methods. The most intuitive content-aware approach segments on surface-level
syntactical boundaries, which can be often implemented by simple rules or regular expressions.

Dynamic Pooling Transformer (DPT) (Nawrot et al.l 2023) proposed a variant that segmented on
whitespace characters, effectively making each word its own token. SpaceByte (Slaglel [2024) ex-
tends this to “space-like” delimiters (e.g., /, 1, :) as natural boundary signals. This approach pro-
vides semantically meaningful chunking for languages with explicit word separators such as English
text and code.

However, delimiter-based methods cannot be used for inputs lacking explicit separators (e.g. many
non-European languages, or other modalities such as DNA). Additionally, these approaches cannot
be extended to multi-level hierarchical chunking due to ambiguities in defining natural delimiters at
higher semantic levels. AU-Net (Videau et al.||2025) is a concurrent work that augments SpaceByte
with additional stages of hierarchy using fixed-width chunking. Specifically, AU-Net 2 is SpaceByte
with minor architectural modifications, while AU-Net 3 (and AU-Net 4) add additional levels of
hierarchical with width-2 downsampling.

In this work, we show that SpaceByte’s delimiter chunking strategy can be a very powerful baseline
on appropriate languages — competitive with or outperforming traditional tokenizers on English and
code — when augmented with several of H-Net’s additional techniques (Section [3.1} Section [E.3]

Figure 3] Figure[9).

Entropy-based methods. Another approach to circumvent the delimiter dependency is using the
autoregressive conditional entropy as a heuristic to identify semantic boundaries. This was first
proposed by the Dynamic Pooling Transformer (DPT) (Nawrot et al.| 2023)), which detects entropy
spikes that correlate with semantic transitions. The recent Byte Latent Transformer (BLT) (Pagnoni
et al.| 2024) employs entropy thresholds computed by a separate pre-trained model to determine
chunking boundaries.

Despite showing promise, these entropy-based approaches face several practical limitations. First,
they require extensive domain-specific hyperparameter tuning to establish appropriate entropy
thresholds, reducing their general applicability. Second, they still fall behind in performance; for
example, BLT necessitates an extra 3B parameters (at the 8B scale) solely for multi-gram hash
embeddings to match BPE Transformer baselines. Finally, these methods also cannot be extended

23

Under review as a conference paper at ICLR 2026

hierarchically because computing cross-entropy loss requires access to target vocabularies, which
are unavailable for intermediate latent representations in multi-stage architectures.

In this work, we do not compare against BLT because of its complexity: (i) necessitating training an
auxiliary language model to provide proxy autoregressive conditional entropies (ii) converting it into
an external neural tokenizer through tuning entropy heuristics (iii) using hash embeddings, which
can be considered an orthogonal architectural component which may be incorporated into H-Net as
well if desired.

Instead, we compared against SpaceByte (and our own stronger versions of SpaceByte), which
we believe to be representative of the external-chunking family of methods and competitive to the
entropy-based chunking strategy of BLT (for our main experiments such as English data).

B.1.4 DyNAMIC CHUNKING

The ideal tokenizer-free architecture would incorporate a dynamic chunking method that attempts to
learn optimal segmentation strategies directly from data through gradient-based optimization. Such
a method would be optimized jointly together with the outer (fine-resolution) and inner (coarse-
resolution) networks, and be able to create boundaries that are content- and context- aware.

The only prior work we are aware of that attempted a true dynamic chunking method is (one variant
of) the Dynamic Pooling Transformer (DPT) (Nawrot et al., [2023)), which incorporates stochastic
exploration mechanisms using Gumbel noise (Jang et al.,2017;|Maddison et al.,[2017) to enable dif-
ferentiable boundary selection during training. Despite their theoretical flexibility, trainable methods
encounter critical challenges. The stochastic exploration process requires careful tuning of noise
magnitudes and introduces high-variance gradients that destabilize training, making it difficult to
scale to larger model sizes.

In practice, the end-to-end (stochastic reparameterization) variant of DPT underperformed the exter-
nal chunking variants (drawing boundaries on entropy spikes or whitespaces) (Nawrot et al., |[2023)),
illustrating the difficulty of this problem. Furthermore, the training instability prevented DPT from
expanding to multiple hierarchical stages, constraining these methods to single-stage chunking.

We additionally highlight simple architectural modifications of DPT motivated by improved infer-
ence (Fleshman & Van Durme, 2023) or multilingual ability (Ahia et al., 2024). Such techniques
can also be easily adapted to H-Nets in future work.

B.2 NON-AUTOREGRESSIVE TOKENIZER-FREE ARCHITECTURES

Each class of autoregressive architectures from Section [B.1] has corresponding non-autoregressive
variants as well. Although these often have similar design principles, they are also motivated by
different tasks, settings, and design considerations (e.g. no evaluation on large-scale autoregressive
pretraining) and thus can be difficult to compare directly to autoregressive models. We include these
for context and completeness.

Isotropic. ByT5 (Xue et al., [2022) directly models bytes using a bidirectional encoder-decoder
architecture, showing improved performance with small models (because more power is moved into
model parameters rather than vocabulary embeddings) and spelling-sensitive tasks.

Hierarchical (Static). Funnel-Transformer (Dai et al., |2020) is an early architecture that uses
a U-Net-like architecture for language, focusing on the non-causal setting. Canine (Clark et al.,
2022) proposes a hierarchical model with convolution-based static downsampling; their method
also targets non-autoregressive language models.

Charformer (Tay et al.,[2021) presents a gradient-based subword tokenization (GBST) method that
pools the input sequence at different resolutions, inducing an implicit ensemble of hierarchical mod-
els. It shows improved efficiency to performance trade-offs compared to models that use a single
downsample resolution.

We note that these methods can also be endowed with implicit supervision from external tokeniz-
ers; for example, Canine proposes a variant that uses subword tokens in the objective function (via
masking out subwords in the masked language modeling objective), but does not need the tokenizer
at inference time. We also note that such techniques are particular to non-autoregressive models,
since they allow for variations in the modeling objective.

24

Under review as a conference paper at ICLR 2026

Hierarchical (External). Thawani et al. (2023) propose the eByte method, which resembles
MegaByte but chunks on spaces with Transformer-based CLS-token pooling, and lacks the byte-
level residual stream that enables autoregressive modeling. Word-based self-attention fusion
(WSF) (Sreedhar et al.,[2023) proposes a similar pooling strategy for encoder language models.

Hierarchical (Dynamic). MANTa (Godey et al.|[2022)) introduces an end-to-end method that pre-
dicts segmentation boundaries and pools bytes into blocks using a matching objective. MrT5 (Kallini
et al.| [2025) is a recent method improving on ByTS5 with a gating mechanism that allows for explicit
dynamic token-merging at inference time, reducing sequence lengths by up to 80%.

B.3 OTHER TOKENIZATION-RELATED WORK

Tokenizers for Other Modalities. While computer vision pipelines do not use tokenizers like
BPE in the same way as language models do, they frequently need to turn raw perceptual data (im-
ages and videos) into shorter sequences of representations. One approach is the simple patchification
step first introduced by the Vision Transformer (ViT) (Dosovitskiy et al.,|2021). However, images,
videos, and audio can have varying amounts of semantic content and non-uniform redundancies. A
number of more recent approaches attempt to produce variable length tokenizations that adapt to
the information content of the data, Which performs a more similar role to tokenization in language
models. This can be done in the latent space of an autoencoder (Yu et al., 2024; Duggal et al.,
2024) or through explicit token merging (or “run length encoding™) with heuristics (Bolya et al.,
2022; |Choudhury et al) [2024). In the audio domain, SlowAE (Dieleman et al., [2021) proposes a
joint autoencoder with autoregressive modeling that finds semantic segmentation boundaries, which
resembles H-Net’s approach at a high level.

FAST (Lin et al., 2025) introduces a tokenizer for robotics, Which tokenizes continuous control
actions by combining the Discrete Cosine Transform (DCT) with BPE.

Vocabulary Scaling. While scaling laws for language models have generally kept tokenizers
fixed (Kaplan et al., | 2020; Hoffmann et al., 2022; (Grattafiori et al., 2024), recent works have showed
that the tokenizer also warps scaling laws, in fact more so than model architecture changes (Mayil-
vahanan et al., 2025)). |Tao et al.|(2024)) and Huang et al.|(2025) directly show that it is more optimal
to scale an LLM’s vocabulary together with the rest of the model parameters.

In H-Nets, which are designed to operate over higher resolution raw data, the actual vocabulary can
be kept minimal, but the chunking mechanism can be viewed as an implicit "tokenizer” with infinite
vocabulary. As H-Nets scale in size, one expects that more iterations of hierarchy can be added
(increasing effective chunk size), or the chunk size can directly be increased to leverage parameters
more efficiently. This resembles the idea of increasing a vocabulary in tokenized models (which
would generally increase the average length of tokens).

SuperBPE (Liu et al., [2025]) shows that allowing vocabulary tokens to cross whitespace boundaries
can also improve performance. This is related to H-Net’s motivation of higher-level chunking of
words into phrases; empirically, Figure [IT|shows how the 2-stage H-Net finds semantic multi-word
groups in the inner stage.

Cross-Tokenizer Transfer. Minixhofer et al.| (2024) and Minixhofer et al. (2025) address the
problem of tokenizer transfer, or adapting models across different tokenizers (for example for cross-
language or cross-modality usage, or for knowledge distillation).

Other Effects of Tokenization. |Lee et al.|(2024) discuss the effects that tokenization has on arith-
metic in LLMs. For example, comparing the performance of left-to-right vs. right-to-left tokeniza-
tion. |Hayase et al.|(2024) show that examining the vocabulary of a BPE tokenizer leaks information
about the data mix that it was trained on.

Tokenization Theory. [Schmidt et al.| (2024) examined the hypothesis that the primary role of
tokenization is to shrink the input sequence length. They invented a new tokenizer that has even
higher compression rates than BPE (actually, they keep the same vocabulary but simply find different
segmentations that are more compressed) yet leads to worse language models, providing evidence
against the hypothesis.

Rajaraman et al.|(2024) showed that for certain data distributions, applying tokenization qualitatively
changes what Transformers can learn.

25

Under review as a conference paper at ICLR 2026

Phan et al.| (2024) and |Vieira et al.| (2024) propose various algorithms for converting a language
model over tokens into a language model over characters or bytes. This helps alleviate some limita-
tions of tokenizers such as the “prompt boundary” problem, the ability to compare different LLMs
with different tokenizers, and simply produces better estimates of a language model’s true compres-
sive ability (as measured by bits-per-byte). However, such algorithms are complex and expensive,
and compared to direct byte-level models they are not practical for use during inference decoding
(repeated autoregressive sampling).

26

Under review as a conference paper at ICLR 2026

C MODEL DETAILS

C.1 DESIGN PRINCIPLES

Encoder and Decoder Networks. The encoder and decoder networks in H-Net face unique design
constraints due to their dual objectives and computational requirements. Each encoder must simulta-
neously (i) preserve fine-grained information for transmission to its corresponding decoder through
residual connections equation [3] and (ii) compress inputs into chunks of richer representations for
the main network. The decoder, in turn, must effectively combine coarse-grained representations
from the main network with fine-grained details from the encoder residuals.

Importantly, both encoders and decoders operate on uncompressed sequences, making computa-
tional efficiency a significant design constraint that shapes our architectural choices. Recent studies
demonstrate that state space models (SSMs) (Gu et al.l [2022; |Gu & Daol [2024) excel at process-
ing fine-grained data including audio (Goel et al., [2022), DNA sequences (Schiff et al., [2024), and
robotic control signals (Lu et al.l 2023).

Based on these insights, we employ Mamba-2 layers (Dao & Gu, [2024)) as the primary building
blocks for the encoder and decoder networks. This choice yields two significant benefits: effective
handling of fine-grained inputs, and substantially improved efficiency when processing long, uncom-
pressed sequences. Our ablation studies (Section [E.3)) confirm that SSM-based encoders/decoders
significantly outperform Transformer layers, not just at the byte level but even on coarser inputs,
which we attribute to their stronger inductive bias for compression which helps build abstrac-
tions (Gu, [2025]).

Main Network. H-Net’s computational efficiency stems from strategic parameter allocation. We
concentrate the majority of model capacity in the main network, which operates on progressively
compressed sequences. After S stages of compression, the main network receives sequences where
LS < LY, enabling much larger networks within the same computational budget. This design re-
flects two key principles: (i) compressed sequences allow more parameters and compute per chunk,
and (ii) higher-level abstractions benefit from increased processing power.

The main network functions as a standard language model and can employ any sequence mixing
architecture. We default to Transformer layers for two reasons: compressed representations align
well with Transformers’ strengths in processing discrete, semantically-rich tokens, and this choice
enables more controlled comparison with traditional BPE-based Transformer baselines in our ex-
periments. However, the modular design also allows straightforward substitution with alternative
architectures (e.g., a state space model, hybrid, or H-Net itself) as explored in our ablations.

Architectural Guidelines. Compared to standard isotropic models, the H-Net’s structure intro-
duces several new dimensions of architectural parameters to balance the parameter/compute alloca-
tion to each network. To simplify the search space, we follow a few general guidelines.

* First, we ensure the model width (often referred to as dpege; for isotropic architectures) is
monotone in the hierarchy: D° < D' < ... < D, This allows increasing compute and
parameters used in the main network without significantly increasing its depth.

* Second, using efficient and powerful SSM layers in the outer networks allow reducing the
number of layers used compared to similar prior architectures that only used Transformer
layers (Slaglel |2024)); in this paper, we always stick to four layers (or the equivalent of four
Mamba layers) in each encoder/decoder network.

To handle the changes in dimensions without an additional linear layer, we adopt the technique used
in SpaceByte (Slagle, [2024) with the marginal change: to expand dimensions (i.e., D® — Dt1),
we append all vectors with a shared trainable vector of dimension D**! — D?; to reduce dimensions
(i.e., D*t! — D?), we take the first D® dimensions from each vector.

We note that H-Net’s performance can likely be improved with more careful tuning of the layer
allocation and hyperparameters between sub-networks.

C.2 DyNAMIC CHUNKING (DC)
C.2.1 SMOOTHING MODULE

The smoothing module is defined with an EMA operation (see equation [3)), which performs several
roles:

27

Under review as a conference paper at ICLR 2026

new_product!_new_product!_ne%product!_
wm”

ZAnew, ZApro ZAduct! ZAne ZAnevL ZApm ZAdu ZAduct! ZAnﬁZ_,ne ZAnevL ZApru ZA{J.?Z_pmnu 2mmz

Upper Stages] Upper Stages] [Upper Stages]

xnew, xnru x:iucl! xne xnew, xpro xdu xductl xne xnew, xpru x:m xduct!

.new_product!i.new_product!i.new_product!

° ° ° e.®e O© o e © ei® © o e O©)

(a) Oracle Boundaries (b) w/o Smoothing Module (c) w/ Smoothing Module
Figure 4: Comparison of decompression strategies on the example sequence "...new

product!". @ indicates a boundary with high confidence (P; = 1.0) and © indicates a bound-
ary with low confidence (P, = 0.5). As each letter in the example is unique, we use the letters in
subscripts to denote expected semantics of chunks. (a) Optimal chunking with oracle boundaries
identifying linguistically meaningful units. (b) Suboptimal chunking without a smoothing module.
This creates misalignment during upsampling, causing information from incorrect contexts to prop-
agate. (c) Improved decompression with a smoothing module, where low-confidence chunks are
interpolated with weighted combinations of previous chunks, correcting the shaded regions. In pan-
els (b) and (c), we interpret low-confidence boundaries cause the encoder network to embed broader
contexts at subsequent positions. Specifically, the vectors at _ and ! encode new_ and duct!,
respectively (instead of w_and ct !).

* Differentiable boundary learning: It transforms the discrete upsampling operation into
a continuous one, enabling effective backpropagation through chunk boundaries during
training without requiring stochastic exploration-based approaches (Jang et al.|[2017).

» Adaptive error correction: Chunks with high confidence (P; ~ 1.0) maintain discrete
boundaries (z; ~ z:), while chunks with low confidence (P; ~ 0.5) are smoothed using
information from previous chunks, creating a self-correcting mechanism.

» Training stability: By smoothly interpolating between discrete choices based on con-
fidence scores, a smoothing module prevents the model from overfitting to suboptimal
chunking patterns early in training.

Figure [] illustrates this with the example ". . .new product!". The word “product” can be
morphologically decomposed into ”pro-” and ”-duct’{’l Without the smoothing module (see Fig-
ure [4}(b)), suboptimal chunking (e.g., "du" as shown with half-filled circles) creates alignment
mismatches that disrupt information flow. With the smoothing module (see Figure fi}(c)), chunks
with low confidence are smoothed with previous context, ensuring proper information propagation
and enabling the model to learn optimal chunk boundaries through gradient descent.

C.2.2 UPSAMPLER

Equations (6] to (9) are designed carefully with these following objectives:

* Confidence scoring equation [6} The coefficient ¢ quantifies the routing module’s confi-
dence in its boundary decisions. For positions marked as boundaries (b; = 1), ¢; = p;
rewards high boundary probabilities. In contrast, for non-boundary positions (b; = 0),
¢t = 1 — p, penalizes false boundary predictions. This formulation encourages the model
to produce boundary probabilities near 1.0 at true boundaries and near 0.0 elsewhere.

* Gradient stabilization equation[7} The Straight-Through Estimator (STE) (Bengio et al.,
2013)) is a well established technique from discrete representation learning (Van Den Oord!
et al., 2017; Jang et al.l 2017) that rounds confidence scores to 1.0 in the forward pass
while maintaining continuous gradients during backpropagation. While H-Net already
demonstrates strong performance without STE, incorporating this technique provides an
additional performance boost that empirically further stabilizes the optimization dynamics.

» Causal expansion equation |8} The upsampling operation repeats each compressed vector
until the next boundary position, ensuring that each reconstructed position receives infor-
mation from its most recent chunk. This maintains the sequential flow of information while
expanding the compressed representation back to its original length.

+ Confidence-weighted decompression equation[9} Multiplying upsampled vectors by their
confidence scores incentivizes the routing module to make confident, accurate decisions.

"pro- — meaning forward or forth, -duct — from Latin ducere, meaning to lead or to bring

28

Under review as a conference paper at ICLR 2026

High-confidence boundaries create direct reward signals that encourage the model to
sharpen its boundary predictions through gradient feedback.

C.3 IMPROVED TECHNIQUES FOR HIERARCHICAL SEQUENCE MODELING

We introduce several techniques that improve the overall architecture. These may generally be
considered techniques to improve signal propagation throughout the network, improving stability
and learnability.

Norm Balance. Modern large language models employ pre-normalization architectures (Radford
et al., [2019; [Touvron et al.| 2023a), departing from the post-normalization design of the original
Transformer (Vaswani et al., [2017). Following established best practices, these models typically
include a final normalization layer after all residual blocks. H-Net adopts this convention through
network normalization, by placing an RMSNorm (Zhang & Sennrich, 2019) at the end of each
network component (£¢, D*, and M).

This addition of a normalization layer addresses a critical challenge in hierarchical architectures.
Pre-normalization allows residual stream magnitudes to grow unbounded through successive layers,
with feature norms increasing monotonically. For H-Net, this poses a particular problem: the ar-
chitecture leverages residual connections to preserve fine-grained information across stages. With-
out network normalization, outputs from deeper components (especially the many-layered main
network) would dominate the residual signals from earlier encoder networks through imbalanced
feature norms, neglecting the fine-grained details that are essential for decompression. The normal-
ization layers restore balance between processed features and residual information, ensuring both
contribute meaningfully to the final representation.

Separation of Two Streams. Encoder outputs () serve dual purposes in our architecture: passing
fine-grained information to corresponding decoders through residual connections, and providing
compressed representations as inputs to subsequent stages. This dual functionality creates a design
challenge, as these two roles may benefit from different representations. We consider three options
to address this: (i) apply a projection to the residual connection only, (ii) apply a projection to the
main network inputs only, (iii) and apply a projection to both pathways.

As indicated in equation equation 3| we adopt the first approach — adding a projection (Linear) only
to the residual connection. This choice is motivated by the fundamental principle of designing deep
learning models (He et al.,|2016): maintaining intact gradient flow through the main computational
path is crucial for effective training.

Empirically, we found that the third option underperforms despite additional parameters and com-
putations, as the extra projections interfere with gradient propagation. The second option, while
preserving residual gradients, disrupts the main network’s gradient flow and had worse training dy-
namics. Our chosen design maintains unimpeded gradients from deeper stages while allowing the
residual connection to adapt its contribution through the learned projection. This encourages the
model to leverage the main network’s computational depth while using residuals in a complemen-
tary role.

One additional detail is that this residual connection is initialized close to 0; earlier versions of H-
Net found this to be an important detail, but it may be less important when combined with additional
techniques such as LR modulation.

Learning Rate Modulation The hierarchical design of H-Net requires careful adjustment of
learning rates across stages to ensure balanced training dynamics. Modern theory establishes that
neural network hyperparameters should be scaled in predictable ways for optimal trainability (Yang
& Hul 2020). To provide a more systematic experimental results across different architectural con-
figurations, we follow previous works and set learning rates to be proportionally to the (1) square
root of batch size (Malladi et al.| [2022; Merrill et al., |2025), and (2) inverse square root of hidden
dimension (Vaswani et al., 2017; Yang & Hu, |[2020). Concretely, without heavy manual tuning, we
define \° as follows:

S ari pS
- N'" D
NS — | NGPT. Hgi D NS =1.0 (11)
[Tz V?

where NOFT is the average number of bytes per token of training dataset, which is 4.6 for the GPT-2
tokenizer on FineWeb-Edu.

29

Under review as a conference paper at ICLR 2026

With this modulation, the model achieves more stable training dynamics and improved convergence
behavior across the entire hierarchy. In particular, we empirically find that since outer stages directly
influence the chunk boundaries that inner stages depend on, the higher learning rates in the outer
stages seem to accelerate learning the chunking mechanism. We note that such principles for opti-
mizing signal propagation as neural network hyperparameters change is an active area of research,
and our scaling factors are just heuristics that can likely be improved.

C.4 AUTOREGRESSIVE TRAINING AND INFERENCE

In this section, we explain how H-Net preserves autoregressive properties throughout its hierarchical
structure during both training and inference.

Every component of H-Net (i.e., encoder-, decoder-, main- networks, and the dynamic chunking
mechanism) is carefully designed to preserve autoregressive properties essential for language mod-
eling.

Training. During training, H-Net employs standard causal masking across all sequence mixing
layers. DC maintains causality by computing boundary probabilities based only on current and
previous representations. Specifically, the boundary probability p; depends on ¢; and k; from the
current and previous positions (equation equation f), ensuring no information leakage from fu-
ture tokens. The smoothing module similarly maintains causality through its recursive formulation
(equation equation [5), where each output depends only on past compressed representations.

Inference. For inference, H-Net generates raw bytes (or whatever the outermost modality is) au-
toregressively with a modified procedure to handle its hierarchical structure.

Generation with a prompt proceeds as follows:

1. Imitial processing: During prefill, we generate chunks via the encoders (as in training). For
each component (i.e. the isotropic components, and the routing module and dechunking
layer), we generate a state. Isotropic state (e.g. KV cache for Transformer layers, SSM
state for Mamba-2 layers) is generated as usual.

2. DC state and DC step: As noted above, the DC modules have recursive formulations
that maintain causality at train-time. These recursive formulations become autoregressive
formulations at inference time.

(a) Routing Module: In order to compute p;, we need k;_1 (see equation equation EI), SO
our state consists of the key value of the most recent token processed.

(b) Dechunking Layer: In order to compute Z;, we need P; and z; 1. Thus, the dechunk-
ing layer state should consist of the last z value.

3. Token Generationﬂ To perform a model step, we do the following for a 1-stage hierarchy:

(a) Pass the token through the encoder network,

(b) Step the routing module to determine whether the token needs to be processed by the
main network,

(c) Step the main network if necessary, in which case we also need to step the dechunking
layer.

(d) Use the result of the dechunking layer to step the decoder network.

A consequence of this inference formulation is that, at inference time, H-Net decides individually
for each token how much compute to use when processing it. Therefore, H-Net can allocate more
or less compute to different tokens as it deems necessary. A particular connection is that inference
resembles speculative decoding (Leviathan et al.l 2023} |Chen et al.l |2023), which also involves a
small network (the draft model) stepping on every token, and a larger network (the verification
model) only stepping on contiguous chunks of every few tokens.

8Here, we use foken in the autoregressive generation sense, referring to one time step, not in the literal BPE
token sense.

30

Under review as a conference paper at ICLR 2026

D ADDITIONAL EXPERIMENTAL DETAILS

D.1 FLOPSs COMPUTATION

We largely follow [Hoffmann et al.|(2022)) with two marginally updated computations: (1) add com-
putations for Mamba-2 (Dao & Gu, 2024), and (2) modify computations in MLP blocks as we use
the recent Transformer++ architecture. Assuming that all query, key, and value share the same
num_heads and head_dim, we calculate the forward pass FLOPs as follows:

* Embeddings: 2 x seq_len x vocab_size x d_model
* Attention:

- QKYV projections: 2 x 3 x seq-len x d_model x (num_heads x head_dim)

— Attention Logit Calculation: 2 x seq_len x seq-len X (num_heads x head_dim)

— Attention Score Softmax: 3 x num_heads x seq_len x seq_len

- Score @ Query: 2 x seq_len x seq_len x (num_heads x head_dim)

— Output projection: 2 x seq_len x (num_heads x head_dim) x d_model
* Mamba-2:

— X 7 projections: 2 x seq_len x d_model x (2 x expand x d_model)
BCAt projections: 2 x seq_len x d_model x (2 x d_state + num_heads)
SSD: 2 x 3 x seq-len x (expand x d_model) x d_state
Depthwise Convolution: 2 x seq_len x d_model x window _size
Gating: 5 x seq_len x d_model
Output projection: 2 x seq_len x d_model x d_model
* Gated MLP:

— In, Gate, Out projections: 2 x seq_len x (3 x d_model x ffw_size)
— Gating: 5 x seq_len x d_model

* Logit Prediction Head: 2 x seq_len x vocab_size x d_model
We assume the backward pass consumes twice the FLOPs of the forward pass.

D.2 ROBUSTNESS SCORE

We introduce a metric called the robustness score to measure the robustness of a model’s perfor-
mance to textual perturbations, defined for Hellaswag as follows:

perturbed accuracy — 0.25

bust =100 - .
robustiess score max (unperturbed accuracy — 0.25, 0)

This score measures the percentage of original (unperturbed) performance that is captured by the
model in the perturbed setting. We subtract by 0.25 as HellaSwag is multiple choice with 4 options,
thus a model that scores 0.25 in the perturbed setting should be considered to have lost all of its
original capability.

D.3 EXPERIMENTAL SETUP FOR CHINESE AND CODE.

In Section [3.2] we analyzed the performance of H-Net (2-stage) against Transformer and H-Net
(space) on Chinese and on code, finding superior scaling for H-Net (2-stage) versus the other archi-
tectures. Here, we describe additional details from the experiment.

On Chinese and code, we use 46B token subset from FineWeb-Edu-Chinese-V2.1 (Yu et al., [2025)
and Github subset from Pile (Gao et al., 2020) to train three models at the 1.3B GPT-3 XL scale:
H-Net (2-stage), H-Net (space), and Transformer. We maintain the same bytes per gradient step
(256 batch size with 8192 ut £-8 encoded bytes per example) as the main text experiments.

For model architecture, we primarily matched the settings from the GPT-3 XL, including doqe1 and
encoder/decoder architecture for H-Net models. However, we adjusted the number of layers in the
main network of each model to account for slightly different compression ratios. Specifically, the
Chinese-language models used a slightly higher total training flops target than the original language
models, while the code models used a lower flops target. Full architecture details and results are also
in Table

31

Under review as a conference paper at ICLR 2026

Table 5: Architecture details and model benchmarks for Chinese and code models. BPIC (de-
fined in Table [2)) denotes the compression between the main network and outermost stage (bytes).
Each H-Net used (3,3)-DC, targeting an inner downsampling ratio of 9. However, the resulting
BPIC was significantly different, indicating that code is much easier to compress than Chinese. In
terms of results, H-Net (2-stage) performs better than both H-Net (space) and BPE Transformer on
Chinese, which is reflected in the downstreams. On the other hand, H-Net (2-stage) achieves similar
performance to H-Net (space) on code, and both H-Net models perform significantly better than
Transformer.

MODEL CHINESE CODE

BPIC MAIN ARCH. VAL. BPB | XW-zH. Acc.T BPIC MAIN ARCH. VAL. BPB |
Transformer 3.62 T15 0.7404 0.599 3.58 T13 0.3376
H-Net (space) 3.38 T19 0.7478 0.629 7.97 T40 0.3163
H-Net (2-stage) 5.81 T30 0.7032 0.663 7.23 T28 0.3161

For the H-Net (2-stage), we use the same target downsampling ratio (N° = N! = 3) as the main
experiments. Unlike BPE or spacelike-based tokenization, whose downsampling ratios can vary
widely by dataset, H-Net allows for using similar compute budgets without much adjustment. For
H-Net (space), we use the same definition of spacelike as the original SpaceByte paper (Slagle,
2024), and for BPE, we use the LLlama3 tokenizer (Grattafior1 et al., [2024), as the GPT2 tokenizer
attains very poor downsampling ratios on both datasets. Despite this change, both H-Net (space)
and Transformer (BPE) still have highly varied downsampling ratios between ordinary (primarily
English) language, Chinese, and code. On the other hand, H-Net can adhere to a target ratio regard-
less of dataset, chunking into concepts at appropriate ratios.

32

Under review as a conference paper at ICLR 2026

MODEL / ARCHITECTURE PARAMS. FINAL PPL. |

Transformer (T9) 29M 2.769
Mamba-2 (M10) 33M 2.757
H-Net (M3T1 +T15+M4) 64M 2.705
H-Net (M3T1 + MI5+M4) 66M 2.697

Table 6: Model details and final perfor-
mance on HG38. We trained two isotropic
models and two H-Net models, varying the
main network architecture (Transformer or
Mamba-2). Each H-Net model outperforms
the corresponding isotropic model. We em-

pirically find that the £° = M3T1 en-

Perplexity on HG38

—— Transformer
—— Mamba-2
H-Net (Trans.)
H-Net (Mamba)

2.95-
2.90-
2.85-
2.80-

2.75-
3.6x more data efficient than isotropic model
1
N\ ® ® o o« ® 1® ®
Training Base Pairs Seen

Figure 5: Scaling performance on HG38 during
the stable phase of training. Each H-Net model
achieves the same pre-decay perplexity of the cor-
responding isotropic model with approximately
3.6x less data.

coder architecture slightly outperforms a pure
Mamba-2 encoder £° = M4 (Section .

Table 7: Distilling Llama 3.2 3B to a byte level model. Average acc indicates average of the
benchmarks measured in Table[2] H-Net loses performance across the board compared to the teacher,
which is expected because we cannot quite replicate the exact behavior of the original model due to
non-causality of BPE tokens. However, it is still much stronger than an H-Net trained from scratch
on this small amount of data (189B bytes).

LMB. HELLA. PIQA ARC-E ARC-c WINO. OPEN. AVERAGE MMLU (5-SHOT)

MoDEL ACC?T ACC.nT ACCT ACCT ACCntT ACCT ACC.ntT ACCT ACC T
Llama 3.2 3B (base) 0.701 0.737 0.768 0.745 0460 0.688 0.428 0.647 0.561
Distilled H-Net (1-stage) 0.634 0.702 0.761 0.721 0433 0.665 0.414 0.617 0.519

E ADDITIONAL EXPERIMENTS

E.1 DNA (HUMAN GENOME) EXPERIMENTS

DNA is a setting that presents both a unique promise and challenge for hierarchical modeling. For
one, handcrafted tokens do not work well on DNA, due to the lack of segmentation cues. Addition-
ally, the same sequence of base pairs may serve different functions (e.g., depending on whether or
not the pair is inside a gene or not). Consequently, a naive BPE-based approach may not work either.
On the other hand, DNA can exhibit higher resolution structure (e.g., codons, various regulatory el-
ements), suggesting that there is room for principled hierarchical modeling. Indeed, state-of-the-art
DNA models (Brixi et al.| 2025)) operate directly on base pairs (A, C, G, T) with implicit hierarchical
structure.

Thus, we evaluated four models on DNA: two isotropic models (pure Transformer and pure Mamba-
2) operating at the base-pair level, and two corresponding H-Net (1-stage) with Transformer and
Mamba-2 as the main network. Each model was trained on the HG38 dataset with a learning rate of
5 - 1073 for modules at the base-pair resolution. For the H-Net models, we used a downsampling
ratio of NO = 3. All models were trained with a dpogqe Of 512, which was used for all isotropic
modules of H-Net (including the main network).

Previous work has shown that SSMs show improved DNA modeling ability compared to Trans-
formers (Gu & Daol 2024), and we find that this effect is preserved when examining Transformers
vs. Mamba-2 as the main network (see Table[6). This finding suggests that existing layer selection
principles can be applied when deciding main network architecture. In fact, by directly comparing
the perplexity curves during the stable phase of training (Figure [3), we find that H-Net models can
achieve similar performance to isotropic models with 3.6 less data, a finding that holds for both
choices of main network architecture.

E.2 DISTILLING TOKEN-LEVEL MODELS TO BYTE-LEVEL

The role of the outer stages in H-Net is analagous to that of the tokenizer, embedding module, and
LM head in a traditional BPE-based language model; together, these modules interconvert between
raw text and an embedding space that the main model backbone can process. Given this similarity,

33

Under review as a conference paper at ICLR 2026

wr @OO0000000e00® —
g [[] []]

BCE Loss
MSE Loss

MOINIIGINIL OIS L]

Figure 6: Auxiliary loss strategy for training the encoder of a H-Net with pretrained main stage.
In order to mimic the behavior of the tokenizer + embedding layer of a pretrained language model,
we add supervision to both the routing module boundary probabilities and to the hidden states that
we pass through to the main network. These losses encourage the encoder to tokenize once at the
start of every token, while also passing the correct embedding into the main network near the start
of the token, thus making maximal use of the next-token prediction ability.

we investigated whether it would be possible to convert a BPE-tokenized model directly into a byte
level H-Net. To do this, we trained a 1-stage H-Net with frozen main network initialized from the
backbone of Llama 3.2 3B (base). Our H-Net uses 4 Mamba-2 layers without MLPs for both the
encoder and decoder with a hidden dimension of 1536. Because the Llama model has a hidden
dimension of 3072, we add MLP adapters with hidden dimension 8192 after chunking and right
before dechunking (i.e. right before and after feeding into the main stage). We train the model for
90000 gradient steps with sequence length 8192 and batch size 256, for a total of 189B bytes.

Aligning the encoder. The primary difficulty in converting a tokenized model into a byte-level one
is that the encoder and DC must produce chunks that the tokenized model can produce useful output
with. Thus, our training (besides using the standard next-byte prediction loss), adds the following
losses (see Figure[6|for a visual).

1. A binary cross-entropy boundary-prediction loss (with equal weight as the main loss) that
operates on the routing module probabilities and targets the router to pass the start of every
real token through the main network.

2. A hidden state matching loss that matches the post-adapter hidden state with the “correct”
hidden state. Here, if Zj, is the hidden representation that was passed into the main network
at (byte) position ¢, we try to match z; with the embedding of the token that the tth byte
was part of, except when the th byte is the first byte of its token, in which case we match
the z; with the previous token’s embedding. Embedding matching is done with an L2 loss
with a weight of 0.02.

In the ideal case where both losses are zero, the router sends exactly the first byte of each token
through to the main network with the right embedding. The main network would thus see exactly the
representation it would see with a tokenizer + embedding setup. In practice, sending both losses to
zero is literally impossible, as we discuss below. However, we still find that the boundary-prediction
loss is crucial for learning a good matching, while the embedding-matching loss is helpful in speed-
ing up training but not necessary. In fact, increasing the loss weight on the embedding-matching
loss too much can harm the language-modeling loss.

Tokenization bias. We are not able to send all auxiliary losses to zero because online prediction
of BPE boundaries is an impossible task. [Phan et al.| (2025) coined the term “tokenization bias”
to represent the fact that the tokenization process implicitly contains next-byte information. For
example, the Llama 3 tokenizer tokenizes the strings _distill and .distinct into [_dist,
i11] and [_distinct]. Prior use of this term has been to suggest that if an autoregressive

34

Under review as a conference paper at ICLR 2026

Bits-per-byte (2-stage) Compression Ratio L*/L° Compression Ratio L2/L!

0.38-

1051 \/Jf_\'\’\vw\“\‘ .

1.00- O 0.42-

0.95- 0.36- 0.40-

0.90- 035- na

0.85-
0.34- 0.36-

0.80-

,Lg,% «° 15% \Qg% \'L(:’% ,Lg,% o AP ’\QQ% \’L‘J% ,L@% «® ’l("% ’\Qgﬁ '\'LE’%
Total Training Bytes Total Training Bytes Total Training Bytes
—— H-Net —— w/o smoothing —— w/o cosine routing —— w/o STE

Figure 7: Ablation study on key H-Net components showing validation BPB (left) and compres-
sion ratios for the first stage L' /L° (center) and second stage L?/L" (right) during training. Using
H-Net (2-stage), we evaluate the impact of removing three components: the smoothing module (w/o
smoothing), the similarity-based routing module (w/o cosine routing), and Straight-Through Esti-
mator (w/o STE).

language model is prompted with _dist, the nature of its training will be that it will never complete
with inct (this is in fact a flaw of all tokenization-based models).

For us, however, tokenization bias implies that we cannot determine whether or not the i in
_disti is the start of a new word until after seeing the next character. In fact, the problem can
be even worse—consider _applicable (becomes [_app, licable]) and _applicant (be-
comes [-applicant]): Determining whether 1 is the start of a token requires knowing the next
two bytes as well.

While the H-Net does use the main network, it is not able to exactly match the behavior of the
original tokenized model. Instead, it is finding slightly different representations of tokens to use in
the main stage. Recent work has shown that tokenized language models can process tokenization
sequences distinct from the “canonical” greedy tokenization (Vieira et al., |2024)), so it is possible
our H-Net found another alternate representation that the pretrained model could process.

Remark. One might ask if our distilled model has simply learned to tokenize on spaces (since
spaces are always the start of a new token). It has not. Simply tokenizing on spaces would yield
a sub-95% boundary prediction accuracy; however, our distilled model gets boundary prediction
accuracy above 99.5%. This suggests that the resulting H-Net is able to recognize some, but not all,
subword boundaries.

Results. The results from our distillation procedure are shown in Table[7] H-Net is able to approx-
imately match performance across almost all benchmarks; in general, H-Net is not able to replicate
the behavior of the tokenized model exactly, so it is not unexpected that the benchmarks are slightly
worse. Byte-Latent Transformer (Pagnoni et al., 2024] Table 5) performs a similar experiment, and
they see a greater gap among most benchmarks (particularly PiQA, Arc-Easy, and Arc-Challenge)
despite using a much larger amount of data (220B tokens versus 189B bytes); it is possible that this
performance difference is due to the fact that a BLT module cannot be supervised to align boundaries
the way that end-to-end DC can.

E.3 ABLATION STUDIES

In this section, we provide comprehensive ablations that study individual architectural components
and design choices. For ablation studies, we employ H-Net at Large scale following the configura-
tions in Table[I] training on 36B tokens randomly sampled from FineWeb-Edu.

E.3.1 IMPORTANCE OF COMPONENTS IN H-NET
Figure [7) illustrates the impact of each architectural component on both model performance and

compression ratio (L*T!/L®) stability during training. We conduct three targeted ablations: (i)
using direct upsampling z; = Z; by removing the smoothing module (w/o smoothing), (ii) replacing

35

Under review as a conference paper at ICLR 2026

Bits-per-byte Compression Ratio L1/L°

0.94-

0.24-
0.92-
0.90-

0.23-
0.88—

0.86—
0.22-

0.84-

0.82- 021~

AT
0.80-
1 1 1 1

1 1
N4 ?&6 %QQ \“Q% \,LQ% \&g% x© 6(3% %Q% ’\QQ% '\'LQ% »\b«“%
Total Training Bytes Total Training Bytes
— M4-M4 M2T1-T1M2 — T1M2-M2T1 — T2-T2

Figure 8: Encoder-decoder architecture ablation using raw byte inputs. Validation BPB (left)
and compression ratio L' /L° (right) for H-Net (1-stage) throughout training. We evaluate four
encoder-decoder (£° — D) configurations: M4-M4 , M2T1-T1M2 and TIM2-M2T1, and T2-T2,
where M denotes Mamba layers and T denotes Transformer layers.

the routing module that is based on scaled cosine similarity, with direct probability prediction from
individual inputs (w/o cosine routing), and (iii) skipping the straight-through estimator in equation
equation[9](w/o STE).

The smoothing module proves essential for stable training dynamics. Without this module, com-
pression ratios fluctuate severely throughout training, preventing the model from learning consistent
chunking boundaries. This instability directly manifests as substantial performance degradation,
confirming that smooth gradient flow through the decompression process is crucial for effective
end-to-end learning. While less critical than the smoothing module, both the similarity-based rout-
ing module and STE operation exhibit importance in training stability and final performance. These
components help maintain consistent compression ratios and lead to more interpretable chunking
patterns. The similarity-based approach particularly enables the model to identify natural linguistic
boundaries (e.g., whitespaces, subwords) by comparing adjacent representations rather than making
isolated predictions.

E.3.2 ENCODER & DECODER LAYER SELECTION

The composition of sequence mixing layers in H-Net’s encoders and decoders substantially influ-
ences both compression efficiency and modeling capability. We systematically evaluate different
architectural combinations using H-Net (1-stage) while fixing all other configurations in Table[I] the
same. Four distinct encoder-decoder (£°-DY) pairings are tested: M4-M4, M2T1-T1IM2, TIM2-
M2T1, and T2-T2, where M denotes a Mamba-2 layer and T denotes a Transformer layer. These
combinations are chosen by keeping the symmetry and replacing each Transformer layer with two
Mamba-2 layers, as they contain equivalent parameter counts — 12.D? for Transformer (4D? for
the attention mechanism and 8 D? for an MLP) vs. ~ 6 D? per Mamba-2 layer (no MLP).

Figure [§]and Figure [9]demonstrate that Mamba layers are essential for effective byte-level sequence
processing. For both H-Net and SpaceByte++, the pure Transformer configuration (T2-T2) ex-
hibits by far the worst performance despite using more FLOPs (it also down-compresses se-
quences poorly compared to other configurations, thus using more compute in the main network).
This configuration struggles to compress byte sequences effectively, resulting in both computa-
tional waste and degraded modeling performance. Performance improves monotonically with in-
creased Mamba layer allocation, achieving optimal results with the highest compression efficiency
in the pure Mamba configuration (M4-M4). These findings align with recent research demonstrating
SSMs’ advantages over Transformers for fine-grained sequence modeling (Goel et al., 2022} [Schiff]
et all [2024), as corroborated by MambaByte’s superior performance over LlamaByte in Figure 2]

A natural question arises: does the importance of Mamba layers (i) stem specifically from process-
ing fine-grained byte inputs, or (ii) because they are better for compressing information into
the next stage, even at coarser input resolutions? To investigate these hypotheses, we train a
1-stage H-Net on top of BPE-tokenized inputs processed by the GPT-2 tokenizer. We then evaluate
six different encoder-decoder combinations.

36

Under review as a conference paper at ICLR 2026

Bits-per-byt:
Bits-per-byte its-per-byte

— T3T3
1,000

094 — T2T2 —— T2M2-M2T2

A —— T1M2-M2T1 0.975- —— M2T2-T2M2

: M2T1-T1M2 0.950— —— T1M4-M4T1

090 M4-M4 M4T1-T1M4

0.925- M6-M6

088+ 0.900-

0.86— 0.875-

0.84- 0.850—

! 0.825-

| | | | | |
1 1 1 1 1 1 © © © © © ©
N S o o oS NS
O rog% %Q% '\QQ% '\,LQ% »\@%

Total Training Bytes

Total Training Bytes

Figure 10: Encoder-decoder architecture ab-
lation using BPE-tokenized inputs. Assum-
ing that GPT-2 tokenizer serves as the outer-
most encoder-decoder (i.e., £2-DP), we evaluate
six £1-D! combinations: M6-M6, M4T1-T1M4,
T1M4-M4T1, M2T2-T2M2, T2M2-M2T2, and
T3-T3.

Figure 9: SpaceByte++ encoder-decoder archi-
tecture ablation using raw byte inputs. We
evaluate four encoder-decoder (£° — D%) con-
figurations: M4-M4 , M2T1-T1M2 and T1M2-
M2T1, and T2-T2, where M denotes Mamba lay-
ers and T denotes Transformer layers.

e If hypothesis (i) holds, then we would expect different combinations of
Mamba/Transformer layers in the encoder/decoder to have similar performance, since it is
known that they have similar performance on standard tokenized language modeling.

* If hypothesis (ii) holds, then we would expect that encoders/decoders using some Mamba
layers to be better than pure Transformer layers.

As demonstrated in Figure [T0] Mamba layers prove significantly important even when processing
BPE tokens rather than raw bytes, providing evidence for the second hypothesis.

We hypothesize that this consistent advantage across input granularities stems from fundamental ar-
chitectural differences between SSMs and Transformers. While Transformers naturally store com-
plete key-value caches for all positions, SSMs are designed to compress information into fixed-size
states. This compression-oriented architecture aligns naturally with our chunking mechanism, which
requires aggregating multiple input vectors into consolidated representations. The inherent compres-
sion capability of Mamba layers makes them particularly well-suited for the encoder and decoder
roles in our hierarchical architecture (Gu, |2025). Based on these findings, we employ Mamba layers
throughout all encoders and decoders in our final H-Net configuration, as detailed in Table|[T]

These findings transfer to more general hierarchical structures (such as a 2-stage H-Net at the byte
level), in which case the outermost encoder and decoder layers (£° and D°) serve a similar role as
the GPT-2 tokenizer and the inner layers (£ and D') would share similar findings of benefiting
from using Mamba layers.

E.3.3 VISUALIZATION OF TOKENIZED POSITIONS

In Figure[TT] we provide visualizations of the boundaries dynamically drawn by H-Net (1-stage) and
H-Net (2-stage). The visualization offers several insights about how the model decides boundaries.

* Single-stage behavior: H-Net (1-stage) predominantly places boundaries at whitespace
characters, closely mirroring the delimiters used by SpaceByte. This indicates that H-Net
learns that word boundaries represent natural semantic units in text. This convergence to
spacelike boundaries, discovered purely through end-to-end training, conversely validates
SpaceByte’s strong empirical performance.

* Hierarchical chunking patterns: The first stage of H-Net (2-stage) combines spacelike
boundaries with first few characters of each word. This strategy helps the model because
once the initial positions of a word are identified, the remaining characters become highly
predictable.

* Content-aware chunking: One might question if H-Net’s chunking decisions follow static
rules, such as drawing boundaries only at certain fixed bytes (e.g., whitespace). However,

37

Under review as a conference paper at ICLR 2026

=
E
=~
o
< -
o
°
o
o

tie a
EO0DO0ORO000OmRO0O0OCOOOOOCOmMOO0 Stage 0 77 69 T4 68 20 6b 65 79 20 T0 T2 6f 70 65 T2 T

w i th k ey pro
i 61 6b 65 20 74 63 65 64 20 73 75 69 74 61 62 6c 65 20 61 73 E000Em00NRON0000000RO000 Stage 0
t ma ke t hem suitable a -
_omo [s OmOD00O00O0OMOO | Staged " 0o i " _, Stagel
4 1 b f 6 o 4 d b 4 d 4 62
t he backbone o f genera t make t hem suitable a s
(EHFHHHHFHHHHFETHEFHTFH’)StageO HT!H!HT!H‘\HH!H!!HTH‘\H!TH%Stageo
" o 64 74 69 6f Ge 20 6d & 64 65 6c 73 20 6 70 . - u u) O " , Stage 1
L foundation mode | s op e
FDHED]DDED]DDHD]DDEDHED:‘)Stageo 20 74 68 65 20 62 63 6b 62 ¢ 65 20 6f 66 20 67 65 6e 65 T2 61
t h b ackbone o f gener a
61 65 ’ !I: :! I.Djl !DD!I]DDE StageO
rating on s equences . (i - -
,0000C0OmOC0mMO000000000 e Stage0 " 0o o " " _, Stagel
1 65 4 1 9 f 64 65 6¢ 65
) Hi gh qguality: s el ecti l foundation mode | s ope
 mmO000mM0000000MM0000000 | Stage0 OmO00OmNO0000O000 [§ Euiulisl Nsll Wi Stage 0
3 ¢ 6e . O 0 m O yStagel
viioty br ings s trong perf
FDDED!DDED:ID!ED:IDDE!:IED:‘)Stageo 4 69 6e 6 71 6
rating on s equence
of ! ‘ f G o f e] D:D:I! j!D !j m] StageO
ormance on dens e moda | i -
.0oo =i=K E=R=1 J=1= mOOOEOO | Stage0 - " " J Stage 1
61 61 61 1 6c 69 T4 3
ties such as language a) High quali it.y selecti
FuuLu!uuLu!uu!uJuuLuJL!,% Stageo mEEO [“Nim} oo om] [| o0 StageO
oo o : _ O 0 0o N Stage 1
nd genomics . (i i) Fas t
 bompo0omoo000EmECOEERO0O N0 Stage 0 6 69 74 79 20 62 T2 69 6e 67 73 20 73 74 T2 € 67 20 70 65 6
v ity br ings s trong per f
. ED:H HH]DD“DHHDED“HHEDHStageo
(a) H-Net (1-stage), using 6-DC. - oo I moo) Stasel
[: 72 6d 61 6e 63 65 20 6f 6e 20 6 6! d 1 6c
Figure 11: Visualization of boundaries drawn ormance on dense modali o
. . ooooooomO0O a OmmmQOQd age
by H-Net. Numbers above indicate byte value, - i - P8
.. L. [m 00 m 00D Stage 1
and the colored boxes indicate positions where - -
b = 1. (a) H-Net (1-stage) tends to draw bound- R
. t i e s s uch a s Il anguage a
aries at spacelike bytes, which is very similar DOOOEOEOOEOONONODOODOEO Staged
to SpaceByte. (b) The boundaries of the first "m0 o0 m 0O n Stage 1
stage in H-Net (2-stage) are focused on spacelike
bytes, as well as starting characters of each word.
The second stage of H-Net (2-stage) chunks the Stage 0
text into more meaningful units, such as words Stage1

or numberings (i.e., * (1i)’). We can also ob-
serve that it often chunks multiple words that
form one semantic group; for example, ‘the
backbone’ and ‘such as’.

(b) H-Net (2-stage), using (3,3)-DC.

as shown in the figure, H-Net often merges multiple words and spacelike characters based
on content (examples include the backbone, such as,and (ii)).

* Perturbation behavior: Figure [I2]shows the same example with textual perturbations such
as removing whitespaces, which more prominently demonstrates that boundaries drawn
by H-Net are based on content and context. In particular, it often still chunks in between
semantic words even if the space is removed.

E.3.4 HYBRID ARCHITECTURES FOR THE MAIN NETWORK

We also aimed to understand the role of architecture selection in the main network. To this end,
we compared H-Net (2-stage) with an identical model where we replaced the Transformer stack
with a hybrid model containing both 20 Mamba-2 and 7 Transformer layers interleaved in a 3:1
ratio. Hybrid architectures have shown promise in isotropic (BPE) models (Waleffe et al, [2024),
and similarly perform better for our choice of main network (Figure[T3).

38

Under review as a conference paper at ICLR 2026

(i i) Fas t tor i i dinfer : mputation
..i,....j..i,..[DjDDE om Elllillilll Djjlll_lllED]jD O jDDIII_H Stage 0
6e 64 4 6f T2 79 73 63 6 7 69 Ge 65 61 72 6¢ 7 69 e 2 6 5 65) 6c 65 6e b
and memor ryscales L i near ly in s equence Il ength
HIDDE[DIDDEIII_III O omoo oooomoomOo00Oo O m0O0 IDDII_H Stage 0
1 6 69 6e € 1 6f € 69 67 74 68 €] 61 75 6f 72 65 6
dur ingtraining, and unrol | i ngthe mo d e | autoreg
O oooomOd ooooog Ooom OmmRO000O0OmMOOmROO0 OomOOOmOmO>d Stage 0
«— Il I Il Il Il IL I
3 69 6 6 69 6 2 1 5 9 7 f) 63 6f 6e 7 4 61
ress ivelyduring inferencerequire:s onl ycons tan
Hj ooog DDu_l-lil.l omoOo0o u l.l_l.l_l.lej om0 jD-‘L‘- DDDHStageo
4 6 70 0 € 0 69 7 64 4 5 69 61
t t i me per s tep s i nc e it d o e s n o t requir.e a c
FiIIIDEE EOO00OROO00O0ONO00 omoom u oomg O O F.i..i Stage 0

Figure 12: Visualization of boundary positions dynamically drawn by H-Net (1-stage). The given
text is perturbed that some whitespaces are missing. H-Net detects word boundaries even if they are
not explicitly separated by whitespaces.

Bits-per-byte Bits-per-byte

0.86-

—— H-Net (2-stage, hybrid)
—— H-Net (2-stage, T27)

—— LlamaByte (200M)
LlamaByte MoE (860M)
H-Net (1-stage, 680M)
—— H-Net (2-stage, 870M)

1.05-

0.84-

1.00-
0.82-

0.80- 0.95-
0.78- 0.90-
0.76- 0.85-
0.74- 0.80-
%I %I %I %I %I %I 1 1 1 1 1 1
o A AP N o o o © «® o® &° a® o®
lotaliraining[Bytes Total Training Bytes
Figure 13: Hybrid main network. Bits-per-byte Figure 14: Comparison to Mixtures-of-
during the stable phase of training, for H-Net (2- Experts. Bits-per-byte comparison of H-Net

stage) with Transformer main stage and with hy-
brid main stage. The hybrid main stage scales
better, similar to findings for standard token-
based language models. This finding suggests
that design principles for isotropic (tokenized)
models can carry over to choices of the main net-

(both 1-stage and 2-stage) to LlamaByte-MoE,
which is a FLOPs-matched MoE model that uses
a similar number of parameters as H-Net (2-
stage). Both H-Nets perform much better than
LlamaByte-MoE, implying that H-Net’s capabil-
ities do not just come from sparsity.

work.

E.3.5 COMPARISON TO MIXTURE-OF-EXPERTS

H-Net can be viewed as a form of dynamic sparsity similar to Mixture-of-Experts (MoEs), in that
they are able to improve performance by using more parameters, all while keeping the total FLOPs
budget constant. We were interested in understanding whether or not its performance benefits were
simply due to increasing sparsity. We compare against a sparsified version of LlamaByte (byte-level
isotropic Transformer model) at the Large scale with a standard Mixture-of-Experts recipe (Fe-|
and similar parameter count as ours (Figure [T4). While sparsity does improve
LlamaByte performance, it is still far worse than either FLOPs-matched H-Net (1-stage) or H-Net
(2-stage), even with similar parameter count. We interpret this result as: H-Net not only achieves
sparsity, but does so in a more semantically meaningful manner, which allows for better scaling than
even generic sparse methods.

E.3.6 DIFFERENT DOWNSAMPLING METHODS IN THE CHUNKING LAYER
Given the dynamically determined boundaries from the boundary predictor, we explore various com-

pression strategies in the chunking layer. We compare the default Downsample operation of H-Net

39

Under review as a conference paper at ICLR 2026

Bits-per-byte

E E E 0.84 ---- XAttn + Res
! H H (a) Default He/T —— XAttn
:DD :DDD :D ---- Max + Res
L je}el lelele] e 0.83- s
---- Mean + Res
D 0827 —— Mean
' . \ (b) Mean/Max Base
| D H D D :D Pooling 0.81-
[{ele] lelelel e 0,604
KV E<]2 KV Et]J 0.79- ==
| | | © Cross Attention ! | ! 1 |
OOCOO0D — Peoins & «° o P e
.EO O .EO OO .EO Total Training Bytes

Figure 15: Compression Methods in chunking layer. Default: H-Net’s Downsample operation
(left-a). Max/Mean: Channel-wise max and mean pooling within boundaries (left-b). XAttn: Cross-
attention pooling within boundaries (left-c). +Res: Adds boundary vector residuals to compressed

outputs.
Perplexity on HG38

295-
—— H-Net (T1M13T1)

MODEL ARCHITECTURE PARAMS. FINAL PPL. | 290- \ H-Net (Trans.)
H-Net (Mamba)

H-Net MB3T1 + T15 + M4 64M 2.705 -

H-Net M3TI + MI5 + M4 66M 2.697 '

H-Net M4 + T15 + M4 62M 2.722 2.80-

H-Net M4 +MI15 + M4 64M 2.706

H-Net M4 +TIMI3TI + M4 64M 2706 275 L
. ' ¢ 5 e e 8 e o e

Table 8: Encoder architecture ablations on Training Base Pairs Seen

HG38. Switching the encoder architecture

from M3T1 to M4 leads to worse perfor- Figure 16: Mamba-2-only encoder loss curves
mance across the board, though the results ~ during the stable phase of training. The pure
are still better than isotropic models (Table[). ~ Mamba-2 model is more unstable with a loss
Transformers in the encoder network do not spike. Adding Transformer layers to the main net-
appear to be helpful for text (Figure [§), sug- yvprk near the DC modul;s can alleviate instabil-
gesting that this finding may be modality- ities. H-Net (I-stage, principled) corresponds to
specific. the TIMI13T1 main network architecture.

(see Section 2.2.T)) against three alternatives (see Figure [[3}eft): channel-wise max/mean pooling
and cross-attention, all applied to vectors within the same boundary. Despite its simple design, the
default compression in H-Net performs on-par with the other variants as demonstrated in Figure T3}
right. This shows that the sequence mixing layers in encoder are trained to implicitly compress nec-
essary context into vectors at boundaries, without explicit compression mechanisms such as pooling
or cross-attention.

E.3.7 DNA ARCHITECTURE ABLATIONS

As shown in Figure H-Net (1-stage) with an M3T1 encoder achieves 3.6 x the data efficiency of
an isotropic architecture. As mentioned in the caption of Table EI, we found that an M3T1 encoder

outperformed a pure Mamba-2 M4 encoder, which is demonstrated in Table The results in
Figure [show that putting a Transformer in the encoder network does not appear to be helpful for
text. Thus, it is possible the Transformer being useful is a DNA-specific result.

Interestingly, the loss curve for the M4 encoder with a pure Mamba-2 main network was more

unstable. We then also tried replacing the M15 in the main network witha T1M13T1 architecture,
inspired by the finding that Transformer layers are good for dealing directly with compressed input
(see Fi gurﬁ@. The new, principled main network architecture improved stability greatly as shown
in Figure

40

Under review as a conference paper at ICLR 2026

F LLM USAGE FOR PAPER WRITING

LLMs were used only to detect typos and grammatical errors.

41

	Introduction
	H-Net Architecture
	Architectural Overview
	Dynamic Chunking (DC)
	Chunking Layer
	Dechunking Layer
	Ratio Loss

	Experiments
	Language Modeling
	Alternate Language Datasets

	Conclusion
	Discussion
	Related Work
	Autoregressive Tokenizer-free Architectures
	Isotropic Architectures
	Static Chunking
	External Chunking
	Dynamic Chunking

	Non-Autoregressive Tokenizer-free Architectures
	Other Tokenization-related Work

	Model Details
	Design Principles
	Dynamic Chunking (DC)
	Smoothing Module
	Upsampler

	Improved Techniques for Hierarchical Sequence Modeling
	Autoregressive Training and Inference

	Additional Experimental Details
	FLOPs Computation
	Robustness Score
	Experimental setup for Chinese and code.

	Additional Experiments
	DNA (Human Genome) Experiments
	Distilling Token-Level Models to Byte-Level
	Ablation Studies
	Importance of Components in H-Net
	Encoder & Decoder Layer Selection
	Visualization of Tokenized Positions
	Hybrid Architectures for the Main Network
	Comparison to Mixture-of-Experts
	Different Downsampling Methods in the Chunking Layer
	DNA Architecture Ablations

	LLM Usage for Paper Writing

