

DYNAMIC CHUNKING FOR END-TO-END HIERARCHICAL SEQUENCE MODELING

Anonymous authors

Paper under double-blind review

ABSTRACT

Major progress on language models (LMs) in recent years has largely resulted from moving away from specialized models designed for specific tasks, to general models based on powerful architectures (e.g. the Transformer) that learn everything from raw data. Despite this trend, pre-processing steps such as tokenization remain a barrier to true end-to-end foundation models. We introduce a collection of new techniques that enable a **dynamic chunking** mechanism which automatically learns content- and context- dependent segmentation strategies learned jointly with the rest of the model. Incorporating this into an explicit **hierarchical network (H-Net)** allows replacing the (implicitly hierarchical) tokenization-LM-detokenization pipeline with a single model learned fully end-to-end. When compute- and data- matched, an H-Net with one stage of hierarchy operating at the byte level outperforms a strong Transformer language model operating over BPE tokens. Iterating the hierarchy to multiple stages further increases its performance by modeling multiple levels of abstraction, demonstrating significantly better scaling with data and matching the token-based Transformer of twice its size. H-Nets pretrained on English show significantly increased character-level robustness, and qualitatively learn meaningful data-dependent chunking strategies without any heuristics or explicit supervision. Finally, the H-Net’s improvement over tokenized pipelines is further increased in languages and modalities with weaker tokenization heuristics, such as Chinese and code, or DNA sequences (nearly 4× improvement in data efficiency over baselines), showing the potential of true end-to-end models that learn and scale better from unprocessed data.

1 INTRODUCTION

A broad goal of deep learning is to learn meaningful patterns from raw data, automatically extracting features and building abstractions in an end-to-end fashion. However, fixed-vocabulary **tokenization**, the process of compressing raw text into predefined chunks through algorithms such as byte-pair encoding (BPE) (Sennrich et al., 2015; Kudo & Richardson, 2018), remains a pervasive handcrafted preprocessing step in modern language models (LMs) (Grattafiori et al., 2024; Brown et al., 2020). Tokenization comes with a host of well-documented drawbacks, from poor character-level understanding to lack of meaning and interpretability to degraded performance on complex languages and modalities (Petrov et al., 2023; Ahia et al., 2023; Belinkov & Bisk, 2017; Sun et al., 2020; Clark et al., 2022). Replacing the tokenization–LM–detokenization pipeline with a single end-to-end model would also adhere better to the spirit of deep learning, ideally scaling more powerfully with data and parameters (c.f. *the bitter lesson*) (Sutton, 2019; Perić, 2025). However, tokenization remains an indispensable component of language models and other sequential data for its ability to compress and shorten sequences; as of yet, no *end-to-end* tokenizer-free model has matched the performance of tokenizer-based language models when matched for computational budget.

A line of recent works has turned to overcoming tokenization in autoregressive sequence models, which requires addressing a series of difficult technical challenges:¹

- Direct byte-level language modeling with isotropic architectures² can be improved with efficient sequence models such as MambaByte (Wang et al., 2024), but still incur prohibitive computational costs while underperforming tokenized models in compute-matched settings.

¹ An extended related work can be found in Section B, which is summarized in Table 4.

²Non-hierarchical models with repeated blocks, such as the standard Transformer (Vaswani et al., 2017).

- To improve efficiency, hierarchical architectures such as Hourglass Transformer (Nawrot et al., 2022) and MegaByte (Yu et al., 2023) use small byte-level models to compress raw inputs into subsampled sequences, which are then processed with a more powerful standard language model. However, simple pooling strategies such as compressing every k inputs are not data-dependent, and perform poorly on modalities with variable information rates such as language.
- SpaceByte (Slagle, 2024) and Byte Latent Transformer (Pagnoni et al., 2024) introduce data-dependent chunking strategies such as delimiter- or entropy-based heuristics. These heuristics, however, rely on auxiliary *external* boundary predictors, and are therefore modality-specific and not fully end-to-end.
- Although jointly trainable boundary predictors are the ideal solution, they require optimizing discrete selection operations without supervision, which is fundamentally a challenging problem. Consequently, existing end-to-end approaches (Nawrot et al., 2023) exhibit training instabilities that preclude scaling beyond small models or nesting multi-level hierarchies.

Fundamentally, creating a tokenizer-free architecture requires incorporating the data chunking process directly into the model, while overcoming challenges in efficiency, learnability, and stability at scale.

DYNAMIC CHUNKING: END-TO-END SEQUENCE MODELING WITHOUT TOKENIZATION

In this work, we introduce an end-to-end **hierarchical network (H-Net)** that compresses raw data through a recursive, data-dependent **dynamic chunking (DC)** process (Figure 1). H-Nets match the efficiency of tokenized pipelines while substantially improving modeling ability, by replacing handcrafted heuristics with content-aware and context-dependent segmentation learned from data.

Hierarchical Processing. The H-Net adopts the hierarchical architecture from prior work (Goel et al., 2022; Nawrot et al., 2022; Slagle, 2024), resembling an autoregressive U-Net (Ronneberger et al., 2015): (i) raw data is processed by a small **encoder network**, (ii) then downsampled and passed through a **main network** operating on compressed chunks, (iii) and finally upsampled before being passed through a **decoder network** operating on the original resolution. This modularity creates a natural processing hierarchy where outer stages capture fine-grained patterns while inner stages operate on coarse representations akin to traditional tokens. Crucially, while the main network contains the bulk of parameters and can be any standard architecture designed for operating on tokenized language—such as a Transformer (Vaswani et al., 2017) or state space model (SSM) (Gu & Dao, 2024)—we show that the encoder and decoder networks are strongly improved by using SSMs, which have an inductive bias for compression (Gu, 2025).

Dynamic Chunking. H-Net’s core is a novel dynamic chunking (DC) mechanism which interfaces between the main network and the encoder/decoder networks, learning how to segment data while using standard differentiable optimization. DC is composed of two complementary new techniques: (i) a **routing module** which predicts boundaries between adjacent elements through a similarity score (ii) and a **smoothing module** which interpolates representations using the router’s outputs, attenuating the effect of uncertain boundaries and significantly improving learnability. By combining these with a new auxiliary loss function that targets desired downsampling ratios, and modern techniques for gradient-based learning of discrete choices (Fedus et al., 2022; Bengio et al., 2013), DC lets an H-Net learn how to compress data in a fully end-to-end fashion.

Signal Propagation. We introduce several architectural and training techniques to improve stability and scalability during end-to-end optimization. These include: (i) carefully placing projections and normalization layers to balance signal propagation between interacting sub-networks, and (ii) adjusting optimization parameters for each layer based on its dimensionality and effective batch size, which changes between stages of the hierarchical structure.

Altogether, H-Net learns segmentation strategies *optimized jointly* with the main backbone, dynamically compressing input vectors based on contextual information into meaningful chunks. H-Net represents the first truly end-to-end, tokenizer-free language model: with a single stage of dynamic chunking, a **byte-level H-Net matches the perplexity and downstream performance of a strong BPE-tokenized Transformer** at sizes exceeding 1B parameters. Empirically, the dynamic chunking module naturally compresses data to a similar resolution as BPE tokenizers (4.5-5 bytes/chunk) and qualitatively learns meaningful boundaries, all without any external supervision or heuristics.

108
109

HIERARCHICAL CHUNKING: FROM DATA TO ABSTRACTIONS

110
111
112
113
114
115
116
117

Beyond addressing tokenization, H-Net improves general sequence modeling across a wide range of settings. Subword tokenization in language models is a special case of *chunking*—the process of building higher-level abstractions from low-level data—and is a central component of intelligence.³ Crucially, because H-Net is fully end-to-end, **it can be iterated recursively: the main network can itself be an H-Net**. Intuitively, more stages of chunking represent higher order meanings; just as characters can be combined into words, words can be combined into clauses, sentences, and beyond. Iterating the hierarchy should therefore lead to even more efficient use of compute and parameters, and more effective reasoning over compressed representations.

118
119
120

Recursive H-Nets represent a new class of foundation model architectures that not only overcome tokenization, but discover and operate over abstractions learned from raw data, leading to higher-quality models with less pre-processing.

121
122
123
124
125

Iterating the 1-stage H-Net to 2 hierarchical stages further improves its capabilities and strongly outperforms all baselines, with steeper training curves and better scaling with data. A byte-level 2-stage H-Net overtakes the perplexity of a strong tokenized Transformer after just 30B training bytes, with the gap widening throughout training, and matches the downstream evaluations of the tokenized Transformer of twice its size.

126

Finally, H-Nets realize the benefits of overcoming tokenization:

127
128
129
130
131
132
133
134
135
136
137
138

- *Robustness*. Without special data mixes, the pretrained H-Net is dramatically more robust to textual perturbations than the token-based Transformer, as evaluated on the noisy HellaSwag suite of benchmarks.
- *Interpretability*. Qualitative visualizations of learned boundaries reveal that H-Net automatically discovers semantically coherent units without explicit supervision, validating that end-to-end learning successfully detects the structural patterns traditionally imposed through handcrafted tokenization.
- *Other languages*. H-Net’s improvements are even more pronounced on languages without obvious segmentation cues, including Chinese and code (59.9 → 66.3 on XWinograd-zh compared to tokenized Transformer) and DNA language modeling (3.6× improved data efficiency compared to isotropic models).

139

2 H-NET ARCHITECTURE

140
141
142
143
144
145
146
147

H-Nets are hierarchical U-Net-like networks, but with data-dependent *dynamic subsampling* that is learned end-to-end together with the rest of the model. We first introduce H-Net’s hierarchical architecture for multi-level processing (Section 2.1), then present our dynamic chunking mechanism that learns content-aware compression through standard optimization (Section 2.2). Additional details appear in the appendix (Section C), including: (i) architectural design principles; (ii) more explanations about the dynamic chunking mechanism; (iii) optimization and architectural enhancements for hierarchical sequence modeling; and (iv) preservation of autoregressive properties.

148

2.1 ARCHITECTURAL OVERVIEW

149
150
151
152
153
154

H-Net employs a hierarchical architecture comprising three primary components – encoder networks (\mathcal{E}), main network (\mathcal{M}), and decoder networks (\mathcal{D}) – where each component is implemented with a stack of sequence mixing layers (e.g., Transformers or state space models). In its simplest form, a single-stage H-Net consists of one encoder network, one main network, and one decoder network. Crucially, the architecture’s key characteristic lies in the main network’s unique property: the main network can be another complete H-Net, enabling recursive construction of multi-level hierarchies.

155
156
157
158
159
160

This recursive design allows H-Net to scale to arbitrary depths. In an S -stage model, we denote components at each stage using superscripts: encoder networks as \mathcal{E}^s and decoder networks as \mathcal{D}^s for stages $0 \leq s < S$, with the main network \mathcal{M} residing only at the final stage $s = S$. For example, a two-stage model contains $\mathcal{E}^0, \mathcal{E}^1, \mathcal{M}, \mathcal{D}^1$, and \mathcal{D}^0 , as illustrated in Figure 1-(Left). Throughout this paper, we use superscripts to denote stage indices, though we omit them when all variables within an equation belong to the same stage.

161

³Chunking is a formal concept from cognitive psychology central to human memory and cognition, and is the inspiration for this work’s terminology.

Figure 1: **(left)** Architectural overview of H-Net with a two-stage hierarchical design ($S = 2$). **(right)** Dynamic Chunking (DC). **(bottom-right)** Key components of a chunking layer: (a) a routing module for dynamically drawing chunk boundaries, and (b) a downsampler that selectively retains vectors based on boundary indicators, reducing sequence length while preserving semantically significant positions. **(top-right)** Key components of a dechunking layer: (c) a smoothing module for converting discrete chunks into interpolated representations, and (d) an upsampler that restores compressed vectors to their original resolution based on boundary indicators. Linear in equation equation 3 and STE in equation equation 9 are omitted in the illustration for brevity.

Drawing inspiration from the U-Net architecture (Ronneberger et al., 2015), H-Net progressively compresses input sequences into fewer vectors with richer semantic embeddings through a chunking layer, processes these representations in the main network, then decompresses the sequence back to its original resolution using a dechunking layer. Unlike traditional U-Net designs, however, H-Net dynamically determines chunking boundaries rather than using fixed-size pooling operations. The overall pipeline can be formalized as:

$$\hat{x}^s = \mathcal{E}^s(x^s), \quad \hat{z}^s = \mathcal{M}(x^s), \quad \hat{z}^s = \mathcal{D}^s(z^s), \quad (1)$$

where the chunking layer and the dechunking layer operations are defined as:

$$(x^{s+1}, p^s) = \text{Chunk}(\hat{x}^s), \quad (2) \quad z^s = \text{Dechunk}(\hat{z}^{s+1}, p^s) + \text{Linear}(\hat{x}^s). \quad (3)$$

The initial input to the model is $x^0 \in \mathbb{R}^{L^0 \times D^0}$ where L^0 is the input sequence length and D^0 is the embedding dimension. Intuitively, $p^s \in [0, 1]^{L^s}$ represents the chunking router’s confidence that the token should be passed into the main stage.⁴ This value is essential for both the chunk (Section 2.2.1) and dechunk operations (Section 2.2.2).

We further provide full details about H-Net’s **design principles** in Section C.1.

⁴We also sometimes refer to it as a *probability*—it is interpreted as such in Section E.2—although we do not use it as a formal probability.

216 2.2 DYNAMIC CHUNKING (DC)
217

218 H-Net learns chunking boundaries through end-to-end training, allowing it to identify semantically
219 meaningful units adaptively. Furthermore, this dynamic approach enables the model to allocate
220 computational resources efficiently by compressing low-information regions while preserving high-
221 information content at appropriate granularity.

222 2.2.1 CHUNKING LAYER
223

224 The chunking layer (Chunk in equation equation 2) contains a routing module and downsample, as
225 illustrated in Figure 1-(bottom-right).

226 **Routing Module.** In natural data, meaningful boundaries tend to emerge at points of contextual or
227 semantic shift. From this observation, we add an inductive bias by measuring the similarity between
228 adjacent representations: when context changes, consecutive vectors should exhibit lower similarity.
229 The routing module implements this intuition through cosine similarity between adjacent encoder
230 outputs. Given encoder outputs \hat{X} , it calculates boundary probabilities p_t and boundary indicators
231 b_t as follows:

$$232 \quad q_t = W_q \hat{x}_t, \quad k_t = W_k \hat{x}_t, \quad p_t = \frac{1}{2} \left(1 - \frac{q_t^\top k_{t-1}}{\|q_t\| \|k_{t-1}\|} \right) \in [0, 1], \quad b_t = \mathbb{1}_{\{p_t \geq 0.5\}}, \quad (4)$$

235 where $p_1 = 1.0$ by definition, ensuring the sequence begins with a boundary. This formulation
236 scales cosine similarity into a boundary score or probability: ideally, when consecutive vectors \hat{x}_{t-1}
237 and \hat{x}_t span a semantic boundary (e.g., between morphemes, words, or phrases), their projections q_t
238 and k_{t-1} diverge in the latent space, yielding low cosine similarity and consequently high boundary
239 probability p_t .

240 **Downsampler.** The downsample compresses encoder outputs \hat{x}^s into a reduced set of vectors
241 x^{s+1} using boundary indicators $\{b_t^s\}_{t=1}^{L^s}$. Among potential compression strategies – including mean
242 pooling, max pooling, or cross-attention – we adopt direct selection of boundary-marked vectors for
243 its simplicity and effectiveness (see Section E.3.6 for ablations).

244 As illustrated in Figure 1-(b), this approach follows a straightforward selection rule: vectors where
245 $b_t = 1$ are retained in the compressed sequence x^{s+1} , while those where $b_t = 0$ are discarded.
246 Likewise, the same downsample applies to boundary probabilities, compressing p^s into P^{s+1} for
247 use in a dechunking layer (see Section 2.2.2).

248 2.2.2 DECHUNKING LAYER
249

250 The dechunking layer (Dechunk in equation equation 3) consists of a smoothing module and up-
251 sampler, as illustrated in Figure 1-(top-right).

253 **Smoothing Module.** The critical challenge in training a dynamic chunking module lies in the
254 discrete nature of chunk boundaries, which impedes gradient flow during backpropagation. We in-
255 troduce the smoothing module as a technique to address this problem. As illustrated in Figure 1-(c),
256 this component transforms discrete chunking operations into differentiable computations by creating
257 smooth interpolations between chunks. Concretely, the smoothing module applies an exponential
258 moving average (EMA) with the following definition:

$$259 \quad \bar{z}_t = P_t \hat{z}_t + (1 - P_t) \bar{z}_{t-1}. \quad (5)$$

260 In Section C.2.1, we describe several roles of the smoothing module and provide Figure 4 with more
261 explanations.

262 **Upsampler.** We carefully design the upsampler (see Figure 1-(d)) that decompresses \bar{z}^{s+1} to
263 match the original resolution of inputs in the previous stage z^s with the following definition:

$$265 \quad c_t = p_t^{b_t} (1 - p_t)^{1-b_t} = \begin{cases} p_t & \text{if } b_t = 1, \\ 1 - p_t & \text{otherwise,} \end{cases} \quad (6) \quad \tilde{z}_t = \bar{z}_{\sum_{k=1}^t b_k}, \quad (8)$$

$$266 \quad \text{STE}(c_t) = c_t + \text{stopgradient}(1 - c_t), \quad (7) \quad \text{Upsampler}(\bar{z}, c)_t = \text{STE}(c_t) \cdot \tilde{z}_t. \quad (9)$$

267 Each component serves a specific purpose in enabling stable end-to-end learning, which is described
268 in Section C.2.2.

270 2.2.3 RATIO LOSS
271

272 Without explicit regularization, the model may converge to trivial solutions: either retaining nearly
273 all vectors (negating computational benefits) or compressing excessively (losing critical information).
274 Inspired by load balancing mechanisms in Mixture-of-Experts (MoE) models (Fedus et al.,
275 2022), which face similar challenges in maintaining balanced expert utilization, we introduce a ratio
276 loss to guide compression:

$$277 \mathcal{L}_{\text{ratio}} = \frac{N}{N-1} ((N-1)FG + (1-F)(1-G)), \quad F = \frac{1}{L} \sum_{t=1}^L b_t, \quad G = \frac{1}{L} \sum_{t=1}^L p_t, \quad (10)$$

280 where F represents the fraction of vectors actually selected, G denotes the average boundary probability,
281 N controls the target compression ratio. Mechanistically, although F is not differentiable,
282 the network can be trained toward targeted compression ratios through G , which provides continuous
283 feedback. When $F = G$, the loss attains a minimum of $\mathcal{L}_{\text{ratio}} = 1$ when $F = G = \frac{1}{N}$.
284 Interestingly, the loss can theoretically fall below 1 when $F \neq G$ (e.g., $F = \frac{1}{N} + \epsilon$ and $G = \frac{1}{N} - \epsilon$),
285 which we indeed observe during training. Despite this theoretical possibility, the loss effectively
286 guides the model toward the desired compression ratio in practice. In practice, as our architectural
287 design encourages the routing module to make confident decisions (*i.e.*, boundary probabilities ap-
288 proaching 0 or 1), F naturally converges toward G , and the loss effectively guides the model toward
289 the desired compression ratio. Notationally, we sometimes use $(N^0, N^1, \dots, N^{s-1})\text{-DC}$ to denote
290 the full dynamic chunking mechanism together with its targeted chunking ratios.

291 Combined together with the autoregressive prediction loss (*i.e.*, $\mathcal{L} = \mathcal{L}_{\text{AR}} + \alpha \sum_{s=0}^{S-1} \mathcal{L}_{\text{ratio}}^s$), this
292 mechanism preserves content-adaptive compression: the model learns which vectors to retain based
293 on semantic importance rather than following predetermined patterns, distinguishing H-Net from
294 fixed compression schemes. We fixed $\alpha = 0.03$ in all experiments in this paper as it provides a good
295 balance between prediction accuracy and chunking efficiency; however, in other settings, it may be
296 important to choose this hyperparameter more carefully.

297 3 EXPERIMENTS

298 We first describe our general experimental protocol for language modeling, used for the majority of
299 our experiments. In Section 3.1, we evaluate on a high-quality English dataset, showing significantly
300 stronger performance than baselines, as well as improved robustness and interpretability from avoid-
301 ing tokenization. In Section 3.2, we extend our evaluation to diverse datasets including Chinese, and
302 code, with even larger performance improvements, demonstrating H-Net’s versatility as a general
303 sequence model architecture. In the appendix, we share further details about the experiments in this
304 section (see Section D), and provide more experiments and ablation studies (see Section E).

305 **Models.** We compare against a standard tokenized Transformer following the Llama archi-
306 tecture (Touvron et al., 2023b; Grattafiori et al., 2024).⁵ We additionally compare against several
307 byte-level baselines:

- 309 • **MambaByte** (Wang et al., 2024) and **LlamaByte** are isotropic models using pure Mamba-2 layers
310 and pure Transformer layers, respectively.
- 311 • **SpaceByte** (Slagle, 2024) represents the canonical hierarchical architecture with external bound-
312 ary supervision, which chunks on spaces and “space-like” bytes.⁶ On English, the space-like
313 delimiter heuristic empirically has an average ratio of 6.0 bytes per chunk.
- 314 • **SpaceByte++** is our modification of SpaceByte that includes our architectural modifications to
315 the hierarchical structure (from Section 2.1). In particular, it changes the outer encoder/decoder
316 networks to use Mamba-2, and modifies the layer counts and widths slightly to match the H-Net
317 models below.
- 318 • **H-Net (space)** and **H-Net (pool)** differ from our full H-Net only through the chunking function.
319 H-Net (space) further improves SpaceByte++ with our training improvements to the network (Sec-

320 ⁵This was called the “Transformer++” in Gu & Dao (2024); since by now it is firmly established, we remove
321 the “++”.

322 ⁶BLT is another architecture with external supervision using entropy instead of delimiters, but is unfor-
323 tunately too complex to set up and control as a baseline. We believe that the delimiter-based method is highly
324 competitive. See Section B.1.3.

324 **Table 1: Architectures for main language models, all data-/FLOP-matched.** $\mathcal{E}^0, \mathcal{D}^0, \mathcal{E}^1, \mathcal{D}^1$,
 325 \mathcal{M} . T and M denote a Transformer and a Mamba-2 layer, respectively. For hierarchical byte-level
 326 models, the TOKENIZER column lists the chunking mechanism. The numbers before DC indicate
 327 downsampling factor N in equation equation 10; for example, (3,3)-DC denotes $N^0 = N^1 = 3$. The
 328 BPIC (Bytes-Per-Innermost-Chunk) measure shows that each chunk dynamically determined by our
 329 1-stage comprises similar number of bytes to the GPT-2 tokenizer, despite aiming for $N^0 = 6$. All
 330 Transformer layers in \mathcal{E} or \mathcal{D} networks, as well as LlamaByte, use Sliding Window Attention (SWA)
 331 with a window size of 1024. Just as in the original Mamba (Gu & Dao, 2024) and Mamba-2 (Dao
 332 & Gu, 2024) blocks, our Mamba-2 layers have roughly $6(D^s)^2$ parameters and Transformer layers
 333 have $12(D^s)^2$ parameters in stage s .

MODEL	INPUT	TOKENIZER	L^0	BPIC (L^s/L^0)	#PARAMS	ARCHITECTURE	d_model (D)
#FLOPs matched to GPT-3 Large							
Transformer	Token	GPT2	1792	4.6	760M	T24	1536
LlamaByte		—		1.0	210M	T16	1024
MambaByte		—		1.0	190M	M28	1024
SpaceByte		Spacelike		6.0	570M	T8 + T16 + T8	768 , 1536
SpaceByte++		Spacelike		6.0	850M	M4 + T28 + M4	1024 , 1536
H-Net (pool)	Byte	6-Pool	8192	6.0	850M	M4 + T28 + M4	1024 , 1536
H-Net (space)		Spacelike		6.0	850M	M4 + T28 + M4	1024 , 1536
H-Net (1-stage)		6-DC		4.8	680M	M4 + T22 + M4	1024 , 1536
H-Net (2-stage)		(3,3)-DC		7.0	870M	M4 + T1M4 + T26 + M4T1 + M4	1024 , 1024 , 1536
#FLOPs matched to GPT-3 XL							
Transformer	Token	GPT2	1792	4.6	1.3B	T24	2048
SpaceByte++		Spacelike		6.0	1.6B	M4 + T31 + M4	1024 , 2048
H-Net (space)	Byte	Spacelike	8192	6.0	1.6B	M4 + T31 + M4	1024 , 2048
H-Net (1-stage)		6-DC		4.7	1.3B	M4 + T24 + M4	1024 , 2048
H-Net (2-stage)		(3,3)-DC		6.9	1.6B	M4 + T1M4 + T27 + M4T1 + M4	1024 , 1536 , 2048

349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443 <

Figure 2: **Validation Bits-per-byte (BPB) throughout training** for different models at Large (760M, left) and XL (1.3B, right) scales with matched computational and data budgets for training. All models but Transformer take raw byte inputs (Transformer uses GPT-2 tokenizer). Vertical dotted lines indicate crossover points where H-Net begins to outperform Transformer with pre-defined BPE tokenization. From the curves we can clearly see the following: (1) all hierarchical models (*i.e.*, SpaceByte++, H-Net variants) outperform the isotropic models (*i.e.*, Transformer, MambaByte, LlamaByte); (2) dynamic chunking is more powerful than BPE tokenizers; and (3) DC is more effective than other chunking strategies. Furthermore, H-Net’s 2-stage variant consistently outperforms 1-stage across both scales, demonstrating the effectiveness of deeper hierarchies. See Table 1 for architectural details.

cay (Ibrahim et al., 2024). Following Hägele et al. (2024) which recommends WSD schedulers with half the maximum learning rates as a cosine schedule, we adopt learning rates $2.5 \times$ higher than GPT-3 (Radford et al., 2019) standards; this corresponds to half of the maximum learning rate used in Gu & Dao (2024), yielding 6.25×10^{-4} for *Large*-scale models and 5.0×10^{-4} for *XL*-scale models. Architecture details include gated MLPs (Touvron et al., 2023b) in all Transformer layers and the main network’s Mamba layers, while Mamba layers in \mathcal{E} and \mathcal{D} are without an MLP. For Transformer layers in \mathcal{E} and \mathcal{D} , we use Sliding Window Attention (SWA) (Beltagy et al., 2020) with the window size of 1024. As discussed [Section C.1](#), \mathcal{E} and \mathcal{D} comprise mainly Mamba-2 layers.

3.1 LANGUAGE MODELING

Training Curves. Figure 2 presents validation BPB metrics throughout training for both Large and XL model scales. At the *Large scale*, we make note of the following comparisons: (i) all isotropic models severely underperform hierarchical models. Among these, **MambaByte** is significantly better than **LlamaByte**, both the FLOP-matched sliding window attention (SWA) variant and even the global attention variant that is data-matched but uses $2 \times$ the FLOPs; (ii) **H-Net (pool)** is much worse than all other H-Net variants, validating that fixed-width chunking is not effective; (iii) **SpaceByte** is much worse than **SpaceByte++**, validating our strategy for network design as well as usage of Mamba in the outer networks (Section 2.1); (iv) **SpaceByte++** is in turn worse than **H-Net (space)**, validating our improved signal propagation techniques (Section C.3); (v) **H-Net (space)** is a very strong model reaching the performance of the **BPE Transformer**, validating the effect of data-dependent chunking strategies together with a well-designed hierarchical architecture; (vi) **H-Net (1-stage)** is stronger than **H-Net (space)**, validating that our dynamic chunking mechanism successfully learns how to segment data in a *context-dependent* way that improves over strong heuristics; and (vii) **H-Net (2-stage)** is significantly better than **H-Net (1-stage)**, validating that iterated dynamic chunking can potentially learn a nested hierarchy of useful features, and leverage compute and parameters even more effectively.

At the *XL scale*, we zoom in more closely and compare only the strongest set of methods: SpaceByte++, H-Net (space), H-Net (1-stage), and H-Net (2-stage). The same trends hold as at the Large scale. Our SpaceByte++ baseline is strong, but slightly worse than the BPE Transformer baseline. On the other hand, **all byte-level H-Net methods start off worse than the token-level Transformer, but scale better after enough data.** H-Net (space), H-Net (1-stage), and H-Net (2-stage)

432 **Table 2: Zero-shot performance comparison across multiple benchmarks, all data-/FLOP-
433 matched.** Evaluation results on seven downstream tasks at both Large (760M) and XL (1.3B) scales.
434 GFLOPs/BYTE is measured on FineWeb-Edu validation set, reported as the average over the course
435 of training. See Table 1 for architectural details.

436 MODEL	437 INPUT	438 GFLOPs/ 439 BYTE	440 F-EDU 441 BPB ↓	442 LMB. 443 ACC ↑	444 HELLA. 445 ACC_n ↑	446 PIQA 447 ACC ↑	448 ARC-E 449 ACC ↑	450 ARC-C 451 ACC_n ↑	452 WINO. 453 ACC ↑	454 OPEN. 455 ACC_n ↑	456 AVERAGE 457 ACC ↑
#FLOPs matched to GPT-3 Large											
439 Transformer	440 Token	441 0.42	442 0.756	443 45.0	444 54.5	445 72.3	446 69.9	447 36.3	448 55.9	449 38.8	450 53.3
440 LlamaByte		441 0.42	442 0.859	443 37.0	444 40.5	445 64.7	446 55.1	447 26.7	448 52.3	449 32.4	450 44.1
441 LlamaByte (Global)		442 0.95	443 0.845	444 36.4	445 41.5	446 65.7	447 57.2	448 27.1	449 49.8	450 32.2	451 44.3
442 MambaByte		443 0.42	444 0.845	445 32.9	446 42.0	447 66.2	448 55.9	449 28.1	450 51.7	451 33.2	452 44.3
443 SpaceByte		444 0.41	445 0.791	446 43.0	447 49.0	448 69.0	449 63.3	450 33.5	451 53.3	452 35.0	453 49.4
444 SpaceByte++	445 Byte	446 0.42	447 0.760	448 48.0	449 55.7	450 71.3	451 67.9	452 35.4	453 57.5	454 39.6	455 53.6
445 H-Net (pool)		446 0.42	447 0.780	448 43.2	449 54.7	450 69.7	451 67.9	452 34.7	453 54.8	454 36.4	455 51.6
446 H-Net (space)		447 0.42	448 0.755	449 46.7	450 55.9	451 72.4	452 68.8	453 34.6	454 57.6	455 38.0	456 53.4
447 H-Net (1-stage)		448 0.43	449 0.755	450 46.2	451 55.5	452 71.0	453 68.1	454 35.6	455 58.6	456 40.0	457 53.6
448 H-Net (2-stage)		449 0.43	450 0.743	451 46.9	452 57.4	453 72.0	454 71.7	455 39.2	456 60.4	457 40.6	458 55.5
#FLOPs matched to GPT-3 XL											
449 Transformer	450 Token	451 0.69	452 0.730	453 48.1	454 58.0	455 73.1	456 72.2	457 37.5	458 58.6	459 40.8	460 55.5
450 SpaceByte++		451 0.72	452 0.733	453 51.3	454 60.1	455 72.4	456 71.8	457 38.0	458 58.5	459 40.6	460 56.1
451 H-Net (space)		452 0.70	453 0.726	454 50.3	455 61.5	456 73.6	457 72.4	458 40.2	459 60.2	460 41.8	461 57.1
452 H-Net (1-stage)	453 Byte	454 0.72	455 0.728	456 48.4	457 59.5	458 72.4	459 73.0	460 38.3	461 59.2	462 42.4	463 56.2
453 H-Net (2-stage)		454 0.69	455 0.715	456 50.5	457 62.2	458 73.7	459 74.2	460 42.2	461 60.5	462 44.0	463 58.2

451 **Table 3: Robustness evaluation on HellaSwag with textual perturbations, all data-/FLOP-
452 matched.** Zero-shot accuracy on five different perturbation types (AntSpeak, Drop, RandomCase,
453 Repeat, UpperCase) for models trained exclusively on clean data without noise augmentation. Best
454 and second best results in each column are denoted using bolded and underlined texts, respectively.
455 The Robustness Score metric show that all byte-level models are more robust to adversarial text inputs
456 than tokenizer-based Transformer. H-Net (2-stage) shows significantly enhanced robustness in
457 textual perturbations, with the highest average accuracy across all noise types and highest robustness
458 score. See Table 1 for architectural details, and Section D.2 for the definition of Robustness Score.

459 MODEL	460 INPUT	461 HELLA-SWAG					462 AVERAGE ↑	463 ROBUSTNESS 464 SCORE ↑
		465 ANTSPEAK	466 DROP	467 RANDOMCASE	468 REPEAT	469 UPPERCASE		
#FLOPs matched to GPT-3 Large								
461 Transformer	462 Token	463 31.1	464 29.9	465 27.1	466 27.8	467 38.9	468 30.9	469 20.2
462 LlamaByte (W1024)		463 30.4	464 28.1	465 29.3	466 27.2	467 38.5	468 30.7	469 36.9
463 LlamaByte (Global)		464 31.1	465 28.1	466 29.7	467 27.3	468 39.0	469 31.0	470 36.6
464 MambaByte		465 29.8	466 27.9	467 29.9	468 27.1	469 39.6	470 30.9	471 34.5
465 SpaceByte		466 30.7	467 29.8	468 33.5	469 29.5	470 47.8	471 34.3	472 38.1
466 SpaceByte++	467 Byte	468 31.0	469 30.9	470 35.8	471 29.3	472 54.0	473 36.2	474 36.4
467 H-Net (pool)		468 30.5	469 31.2	470 35.4	471 29.6	472 53.4	473 36.1	474 37.3
468 H-Net (space)		469 30.8	470 31.2	471 38.6	472 29.4	473 54.0	474 36.8	475 38.2
469 H-Net (1-stage)		470 31.2	471 31.1	472 35.4	473 29.9	474 54.1	475 36.4	476 37.2
470 H-Net (2-stage)		471 30.8	472 32.1	473 39.3	474 30.4	475 57.1	476 38.0	477 39.0
#FLOPs matched to GPT-3 XL								
471 Transformer	472 Token	473 31.6	474 30.7	475 28.0	476 28.5	477 43.0	478 32.3	479 22.2
472 SpaceByte++		473 30.9	474 32.1	475 40.3	476 30.6	477 58.5	478 38.5	479 38.5
473 H-Net (space)		474 31.2	475 33.2	476 41.9	477 31.8	478 60.7	479 39.8	480 40.5
474 H-Net (1-stage)		475 30.9	476 32.7	477 39.2	478 31.2	479 58.4	480 38.6	481 39.5
475 H-Net (2-stage)		476 31.1	477 34.7	478 44.1	479 33.0	480 61.7	481 40.9	482 42.8

476 cross over the tokenized Transformer after just 200B bytes, 100B bytes, and 30B bytes respectively.
477 Beyond these points, H-Net’s performance advantage widens progressively, demonstrating that the
478 benefits of learnable dynamic chunking get strengthened with additional training data, as the model
479 continuously refines its chunking strategy.

480 **Downstream Evaluations.** Table 2 presents zero-shot accuracy across diverse downstream benchmarks (Paperno et al., 2016; Zellers et al., 2019; Bisk et al., 2020; Clark et al., 2018; Sakaguchi et al., 2021; Mihaylov et al., 2018) using 1m-evaluation-harness (Gao et al., 2024) for models at Large and XL scales. SpaceByte++, H-Net (space), and H-Net (1-stage) all have similar performance to the BPE Transformer at *Large* scale, and slightly outperform it at the *XL* scale, consistent with their close training curves (and possibly reflecting some noise in the evaluations). **H-Net (2-stage) consistently achieves the highest performance across most tasks**, outperforming 2.2% and 2.6% over the Transformer baseline at *Large* and *XL* scales respectively. Notably, the *Large* H-Net (2-stage) matches the average downstream performance of the *XL* BPE Transformer.

Figure 3: **Validation Bits-per-byte (BPB) throughout training on Chinese language and code modeling.** H-Net (space) and H-Net (2-stage) are byte-level, while the Transformers use the Llama-3 tokenizer which was designed for multilingual. H-Net clearly outperforms both Transformer and H-Net (space) on Chinese language modeling, which does not have space-like segmentation cues, with lower BPB than H-Net (space) throughout training and crossing over with Transformer after around 25B bytes. On code, both H-Net (2-stage) and H-Net (space) significantly outperform BPE Transformer. Final post-decay results can be found in Table 5.

Robustness to Textual Perturbations. Table 3 evaluates model robustness on HellaSwag with various textual perturbations, following protocols from BLT (Pagnoni et al., 2024). Importantly, these are the same checkpoints trained on clean FineWeb-Edu data used to evaluate Table 2), without any form of special data mix or augmentations that may improve character-level robustness. H-Net (2-stage) demonstrates substantially improved robustness compared to all baselines, with performance gaps exceeding those observed in standard benchmarks.

3.2 ALTERNATE LANGUAGE DATASETS

Besides conventional language modeling, we also examine three other language modeling settings – Chinese, code, and DNA. These three settings present distinct challenges for traditional language-modeling pipelines: (i) Chinese characters consist of 3 utf-8 encoded bytes each and Chinese language does not have natural spaces; thus, constructing a vocabulary or picking boundaries requires special consideration; (ii) Code contains much more whitespace than typical language, which allows greater compressibility if handled properly, and it also has latent hierarchical structure that can be leveraged for improved reasoning capabilities; and (iii) DNA does not have any natural tokenization cues and instead must be processed as raw base pairs. In contrast, H-Net can operate on raw data without the need for handcrafted features (whether vocabulary or delineation cues); it therefore provides a natural architecture that can operate naturally on any language.

As demonstrated in Figure 3, we find that H-Net (2-stage) scales better than BPE Transformer (with the Llama3 tokenizer) and H-Net (space) on both Chinese and code, and achieves lower compression after the decay phase (see Table 5). We additionally measure the performance of each Chinese-language model on the Chinese split of XWinograd, a multilingual Winograd Schema Challenge (Muennighoff et al., 2023), where H-Net (2-stage) is significantly better than H-Net (space) which in turn is better than Transformer as shown in Table 5.

4 CONCLUSION

Major advances in deep learning have resulted from powerful architectural innovations enabling previously-handcrafted features to be learned from data, from CNNs learning visual features (Krizhevsky et al., 2012) to Transformers discovering linguistic patterns (Vaswani et al., 2017). **H-Nets** similarly unlock the ability to remove another layer of pre-processing, such as tokenizers, and instead learn them end-to-end. This ability results from a set of new techniques we introduce that work together to form a **dynamic chunking** mechanism, which is able to learn content- and context- dependent discrete segmentation strategies through standard gradient-based optimization. A single-stage byte-level H-Net already exceeds the performance of standard tokenized language models, and recursive H-Nets with multiple stages of dynamic chunking further improve its scaling. H-Nets substantially remedy issues with tokenizers, display very strong performance on diverse languages and language-like modalities, and more broadly may serve as the backbone of general foundation models that do *more learning with less processing*.

540 REFERENCES

541

542 Orevaoghene Ahia, Sachin Kumar, Hila Gonen, Jungo Kasai, David R Mortensen, Noah A Smith,
543 and Yulia Tsvetkov. Do all languages cost the same? tokenization in the era of commercial
544 language models. *arXiv preprint arXiv:2305.13707*, 2023.

545 Orevaoghene Ahia, Sachin Kumar, Hila Gonen, Valentin Hofmann, Tomasz Limisiewicz, Yulia
546 Tsvetkov, and Noah A Smith. MAGNET: Improving the multilingual fairness of language models
547 with adaptive gradient-based tokenization. *Advances in Neural Information Processing Systems*,
548 37:47790–47814, 2024.

549

550 Yonatan Belinkov and Yonatan Bisk. Synthetic and natural noise both break neural machine trans-
551 lation. *arXiv preprint arXiv:1711.02173*, 2017.

552 Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document Transformer.
553 *arXiv preprint arXiv:2004.05150*, 2020.

554

555 Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
556 through stochastic neurons for conditional computation. *arXiv preprint arXiv:1308.3432*, 2013.

557

558 Aviv Bick, Kevin Li, Eric Xing, J Zico Kolter, and Albert Gu. Transformers to ssms: Distilling
559 quadratic knowledge to subquadratic models. *Advances in Neural Information Processing Sys-
560 tems*, 37:31788–31812, 2024.

561 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. PIQA: Reasoning about physical
562 commonsense in natural language. In *Proceedings of the AAAI conference on artificial intelli-
563 gence*, 2020.

564 Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
565 Hoffman. Token merging: Your VIT but faster. *arXiv preprint arXiv:2210.09461*, 2022.

566

567 Garyk Brixi, Matthew G. Durrant, Jerome Ku, Michael Poli, Greg Brockman, Daniel Chang,
568 Gabriel A. Gonzalez, Samuel H. King, David B. Li, Aditi T. Merchant, Mohsen Naghipourfar,
569 Eric Nguyen, Chiara Ricci-Tam, David W. Romero, Gwanggyu Sun, Ali Taghibakshi, Anton
570 Vorontsov, Brandon Yang, Myra Deng, Liv Gorton, Nam Nguyen, Nicholas K. Wang, Etowah
571 Adams, Stephen A. Baccus, Steven Dillmann, Stefano Ermon, Daniel Guo, Rajesh Ilanga, Ken
572 Janik, Amy X. Lu, Reshma Mehta, Mohammad R.K. Mofrad, Madelena Y. Ng, Jaspreet Pannu,
573 Christopher Ré, Jonathan C. Schmok, John St. John, Jeremy Sullivan, Kevin Zhu, Greg Zynda,
574 Daniel Balsam, Patrick Collison, Anthony B. Costa, Tina Hernandez-Boussard, Eric Ho, Ming-
575 Yu Liu, Thomas McGrath, Kimberly Powell, Dave P. Burke, Hani Goodarzi, Patrick D. Hsu, and
576 Brian L. Hie. Genome modeling and design across all domains of life with evo 2. *bioRxiv preprint
577 biorXiv:2025.02.18.638918*, 2025.

578 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
579 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
580 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

581 Shiyu Chang, Yang Zhang, Wei Han, Mo Yu, Xiaoxiao Guo, Wei Tan, Xiaodong Cui, Michael
582 Witbrock, Mark A Hasegawa-Johnson, and Thomas S Huang. Dilated recurrent neural networks.
583 *Advances in Neural Information Processing Systems*, 30, 2017.

584

585 Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
586 Jumper. Accelerating large language model decoding with speculative sampling. *arXiv preprint
587 arXiv:2302.01318*, 2023.

588 Rohan Choudhury, Guanglei Zhu, Sihan Liu, Koichiro Niinuma, Kris Kitani, and László Jeni. Don’t
589 look twice: Faster video transformers with run-length tokenization. *Advances in Neural Informa-
590 tion Processing Systems*, 37:28127–28149, 2024.

591

592 Jonathan H Clark, Dan Garrette, Iulia Turc, and John Wieting. Canine: Pre-training an efficient
593 tokenization-free encoder for language representation. *Transactions of the Association for Com-
594 putational Linguistics*, 10:73–91, 2022.

594 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 595 Oyvind Tafjord. Think you have solved question answering? try ARC, the AI2 reasoning chal-
 596 lenge. *arXiv preprint arXiv:1803.05457*, 2018.

597

598 Zihang Dai, Guokun Lai, Yiming Yang, and Quoc Le. Funnel-Transformer: Filtering out sequen-
 599 tial redundancy for efficient language processing. *Advances in Neural Information Processing
 600 Systems*, 33:4271–4282, 2020.

601 Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In *Inter-
 602 national Conference on Learning Representations (ICLR)*, 2024.

603

604 Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms
 605 through structured state space duality. In *International Conference on Machine Learning (ICML)*,
 606 2024.

607 DeepSeek-AI. Deepseek-v3 technical report. *arXiv preprint arXiv:2412.19437*, 2024.

608

609 Sander Dieleman, Charlie Nash, Jesse Engel, and Karen Simonyan. Variable-rate discrete repres-
 610 entation learning. *arXiv preprint arXiv:2103.06089*, 2021.

611 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 612 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
 613 image is worth 16x16 words: Transformers for image recognition at scale. *ICLR*, 2021.

614

615 Shivam Duggal, Phillip Isola, Antonio Torralba, and William T Freeman. Adaptive length image
 616 tokenization via recurrent allocation. In *First Workshop on Scalable Optimization for Efficient
 617 and Adaptive Foundation Models*, 2024.

618 Eric Egli, Matteo Manica, and Jannis Born. Multiscale byte language models—a hierarchical archi-
 619 tecture for causal million-length sequence modeling. *arXiv preprint arXiv:2502.14553*, 2025.

620 William Fedus, Barret Zoph, and Noam Shazeer. Switch Transformers: Scaling to trillion parameter
 621 models with simple and efficient sparsity. *Journal of Machine Learning Research*, 23(120):1–39,
 622 2022.

623

624 William Fleshman and Benjamin Van Durme. Toucan: Token-aware character level language mod-
 625 eling. *arXiv preprint arXiv:2311.08620*, 2023.

626

627 Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
 628 Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile:
 629 An 800gb dataset of diverse text for language modeling. *arXiv preprint arXiv:2101.00027*, 2020.

630

631 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
 632 ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muen-
 633 nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
 634 Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
 635 evaluation harness, 07 2024. URL <https://zenodo.org/records/12608602>.

636

637 Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R. Bartoldson,
 638 Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with
 639 latent reasoning: A recurrent depth approach. *arXiv preprint arXiv:2502.05171*, 2025.

640

641 Nathan Godey, Roman Castagné, Éric Villemonte De La Clergerie, and Benoit Sagot. Manta: Ef-
 642 ficient gradient-based tokenization for end-to-end robust language modeling. In *Findings of the
 643 Association for Computational Linguistics: EMNLP 2022*, pp. 2859–2870, 2022.

644

645 Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. It’s raw! audio generation with state-
 646 space models. In *ICML*, 2022.

647

648 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 649 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The Llama 3 herd
 650 of models. *arXiv preprint arXiv:2407.21783*, 2024.

651

652 Albert Gu. *Modeling Sequences with Structured State Spaces*. Phd thesis, Stanford University, 2023.

648 Albert Gu. On the tradeoffs of state space models and transformers, 2025. URL <https://goombalab.github.io/blog/2025/tradeoffs/>.
649
650

651 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In
652 *Conference on Language Modeling (COLM)*, 2024.

653 Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
654 state spaces. *ICLR*, 2022.
655

656 Han Guo, Songlin Yang, Tarushii Goel, Eric P. Xing, Tri Dao, and Yoon Kim. Log-linear attention.
657 *arXiv preprint arXiv:2506.04761*, 2025.

658 Alex Hägele, Elie Bakouch, Atli Kosson, Leandro Von Werra, Martin Jaggi, et al. Scaling laws
659 and compute-optimal training beyond fixed training durations. *Advances in Neural Information
660 Processing Systems*, 37:76232–76264, 2024.
661

662 Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
663 Tian. Training large language models to reason in a continuous latent space. *arXiv preprint
664 arXiv:2412.06769*, 2024.

665 Jonathan Hayase, Alisa Liu, Yejin Choi, Sewoong Oh, and Noah A Smith. Data mixture infer-
666 ence attack: BPE tokenizers reveal training data compositions. *Advances in Neural Information
667 Processing Systems*, 37:8956–8983, 2024.

668 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
669 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
670 770–778, 2016.
671

672 Namgyu Ho, Sangmin Bae, Taehyeon Kim, Hyunjik Jo, Yireun Kim, Tal Schuster, Adam Fisch,
673 James Thorne, and Se-Young Yun. Block transformer: Global-to-local language modeling for
674 fast inference. *Advances in Neural Information Processing Systems*, 37:48740–48783, 2024.

675 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
676 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
677 ing compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.
678

679 Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
680 Yuxiang Huang, Weilin Zhao, et al. MiniCPM: Unveiling the potential of small language models
681 with scalable training strategies. *arXiv preprint arXiv:2404.06395*, 2024.

682 Hongzhi Huang, Defa Zhu, Banggu Wu, Yutao Zeng, Ya Wang, Qiyang Min, and Xun Zhou. Over-
683 tokenized Transformer: Vocabulary is generally worth scaling. In *The International Conference
684 on Machine Learning (ICML)*, 2025.

685 Adam Ibrahim, Benjamin Thérien, Kshitij Gupta, Mats L Richter, Quentin Anthony, Timothée
686 Lesort, Eugene Belilovsky, and Irina Rish. Simple and scalable strategies to continually pre-train
687 large language models. *arXiv preprint arXiv:2403.08763*, 2024.
688

689 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
690 *International Conference on Learning Representations (ICLR)*, 2017.

691 Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat after me: Trans-
692 formers are better than state space models at copying. *arXiv preprint arXiv:2402.01032*, 2024.
693

694 Julie Kallini, Shikhar Murty, Christopher D Manning, Christopher Potts, and Róbert Csordás. Mrt5:
695 Dynamic token merging for efficient byte-level language models. In *The Thirteenth International
696 Conference on Learning Representations (ICLR)*, 2025.

697 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
698 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
699 models. *arXiv preprint arXiv:2001.08361*, 2020.
700

701 Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
RNNs: Fast autoregressive Transformers with linear attention. In *ICML*, 2020.

702 Jan Koutnik, Klaus Greff, Faustino Gomez, and Juergen Schmidhuber. A clockwork RNN. In
 703 *International Conference on Machine Learning*, pp. 1863–1871. PMLR, 2014.

704

705 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification with deep convolutional neural networks. *Advances in Neural Information Processing Systems*, 25, 2012.

706

707 Taku Kudo and John Richardson. SentencePiece: A simple and language independent subword
 708 tokenizer and detokenizer for neural text processing. *arXiv preprint arXiv:1808.06226*, 2018.

709

710 Gareth Lee, Guilherme Penedo, Leandro von Werra, and Thomas Wolf. From digits to decisions:
 711 How tokenization impacts arithmetic in llms, 2024. URL <https://huggingface.co/spaces/huggingface/number-tokenization-blog>.

712

713 Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
 714 decoding. In *International Conference on Machine Learning*, pp. 19274–19286. PMLR, 2023.

715

716 Shanchuan Lin, Ceyuan Yang, Hao He, Jianwen Jiang, Yuxi Ren, Xin Xia, Yang Zhao, Xuefeng
 717 Xiao, and Lu Jiang. Autoregressive adversarial post-training for real-time interactive video gen-
 718 eration. *arXiv preprint arXiv:2506.09350*, 2025.

719

720 Alisa Liu, Jonathan Hayase, Valentin Hofmann, Sewoong Oh, Noah A Smith, and Yejin Choi. Su-
 721 perBPE: Space travel for language models. *arXiv preprint arXiv:2503.13423*, 2025.

722

723 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint
 724 arXiv:1711.05101*, 2017.

725

726 Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh, and
 727 Feryal Behbahani. Structured state space models for in-context reinforcement learning. *Advances
 728 in Neural Information Processing Systems*, 36:47016–47031, 2023.

729

730 C Maddison, A Mnih, and Y Teh. The concrete distribution: A continuous relaxation of discrete
 731 random variables. In *International Conference on Learning Representations (ICLR)*, 2017.

732

733 Sadhika Malladi, Kaifeng Lyu, Abhishek Panigrahi, and Sanjeev Arora. On the sdes and scaling
 734 rules for adaptive gradient algorithms. *Advances in Neural Information Processing Systems*, 35:
 735 7697–7711, 2022.

736

737 Prasanna Mayilvahanan, Thaddäus Wiedemer, Sayak Mallick, Matthias Bethge, and Wieland Bren-
 738 del. Llms on the line: Data determines loss-to-loss scaling laws. In *The International Conference
 739 on Machine Learning (ICML)*, 2025.

740

741 William Merrill, Shane Arora, Dirk Groeneveld, and Hannaneh Hajishirzi. Critical batch size re-
 742 visited: A simple empirical approach to large-batch language model training. *arXiv preprint
 743 arXiv:2505.23971*, 2025.

744

745 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 746 electricity? a new dataset for open book question answering. *arXiv preprint arXiv:1809.02789*,
 747 2018.

748

749 Benjamin Minixhofer, Edoardo Ponti, and Ivan Vulić. Zero-shot tokenizer transfer. In *The Thirty-
 750 eighth Annual Conference on Neural Information Processing Systems*, 2024.

751

752 Benjamin Minixhofer, Ivan Vulić, and Edoardo Maria Ponti. Universal cross-tokenizer distillation
 753 via approximate likelihood matching. *arXiv preprint arXiv:2503.20083*, 2025.

754

755 Niklas Muennighoff, Thomas Wang, Lintang Sutawika, Adam Roberts, Stella Biderman, Teven
 756 Le Scao, M Saiful Bari, Sheng Shen, Zheng Xin Yong, Hailey Schoelkopf, Xiangru Tang,
 757 Dragomir Radev, Alham Fikri Aji, Khalid Almubarak, Samuel Albanie, Zaid Alyafeai, Albert
 758 Webson, Edward Raff, and Colin Raffel. Crosslingual generalization through multitask fine-
 759 tuning. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the
 760 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
 761 pers)*, pp. 15991–16111, Toronto, Canada, July 2023. Association for Computational Linguis-
 762 tics. doi: 10.18653/v1/2023.acl-long.891. URL <https://aclanthology.org/2023.acl-long.891/>.

756 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 757 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. S1: Simple test-time
 758 scaling. *arXiv preprint arXiv:2501.19393*, 2025.

759 Piotr Nawrot, Szymon Tworkowski, Michał Tyrolski, Łukasz Kaiser, Yuhuai Wu, Christian Szegedy,
 760 and Henryk Michalewski. Hierarchical transformers are more efficient language models. In
 761 *Findings of the Association for Computational Linguistics: NAACL 2022*, pp. 1559–1571, 2022.

762 Piotr Nawrot, Jan Chorowski, Adrian Lancucki, and Edoardo Maria Ponti. Efficient transformers
 763 with dynamic token pooling. In *Proceedings of the 61st Annual Meeting of the Association for
 764 Computational Linguistics (Volume 1: Long Papers)*, pp. 6403–6417, 2023.

765 OpenAI. Introducing openai o1-preview, 2024. URL <https://openai.com/index/introducing-openai-o1-preview/>.

766 Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret Li,
 767 Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, et al. Byte latent Transformer: Patches
 768 scale better than tokens. *arXiv preprint arXiv:2412.09871*, 2024.

769 Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
 770 Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The LAMBADA dataset:
 771 Word prediction requiring a broad discourse context. *arXiv preprint arXiv:1606.06031*, 2016.

772 Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
 773 Von Werra, Thomas Wolf, et al. The fineWeb datasets: Decanting the web for the finest text data
 774 at scale. *Advances in Neural Information Processing Systems*, 37:30811–30849, 2024.

775 Luca Perić. The bitter lesson is coming for tokenization, 2025. URL <https://lucalp.dev/bitter-lesson-tokenization-and-blt>.

776 Aleksandar Petrov, Emanuele La Malfa, Philip Torr, and Adel Bibi. Language model tokenizers
 777 introduce unfairness between languages. *Advances in Neural Information Processing Systems*,
 778 36:36963–36990, 2023.

779 Buu Phan, Brandon Amos, Itai Gat, Marton Havasi, Matthew Muckley, and Karen Ullrich. Exact
 780 byte-level probabilities from tokenized language models for FIM-tasks and model ensembles.
 781 *arXiv preprint arXiv:2410.09303*, 2024.

782 Buu Phan, Brandon Amos, Itai Gat, Marton Havasi, Matthew Muckley, and Karen Ullrich. Ex-
 783 act byte-level probabilities from tokenized language models for firm-tasks and model ensembles.
 784 *arXiv preprint arXiv:2410.09303*, 2025.

785 Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y. Fu, Tri Dao, Stephen Baccus, Yoshua
 786 Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
 787 language models. In *ICML*, 2023.

788 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 789 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

790 Nived Rajaraman, Jiantao Jiao, and Kannan Ramchandran. An analysis of tokenization: Transform-
 791 ers under markov data. *Advances in Neural Information Processing Systems*, 37:62503–62556,
 792 2024.

793 David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and Adam
 794 Santoro. Mixture-of-depths: Dynamically allocating compute in Transformer-based language
 795 models. *arXiv preprint arXiv:2404.02258*, 2024.

796 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional networks for biomedical
 797 image segmentation. In *Medical image computing and computer-assisted intervention-MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
 798 ings, part III 18*, pp. 234–241. Springer, 2015.

799 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. WinoGrande: An ad-
 800 versarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.

810 Yair Schiff, Chia-Hsiang Kao, Aaron Gokaslan, Tri Dao, Albert Gu, and Volodymyr Kuleshov.
 811 Caduceus: Bi-directional equivariant long-range DNA sequence modeling. In *The International*
 812 *Conference on Machine Learning (ICML)*, 2024.

813

814 Craig Schmidt, Varshini Reddy, Haoran Zhang, Alec Alameddine, Omri Uzan, Yuval Pinter, and
 815 Chris Tanner. Tokenization is more than compression. In *Proceedings of the 2024 Conference on*
 816 *Empirical Methods in Natural Language Processing*, pp. 678–702, 2024.

817 Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
 818 subword units. *arXiv preprint arXiv:1508.07909*, 2015.

819

820 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
 821 and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
 822 *arXiv preprint arXiv:1701.06538*, 2017.

823 Kevin Slagle. Spacebyte: Towards deleting tokenization from large language modeling. In *The*
 824 *Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.

825

826 Makesh Narsimhan Sreedhar, Xiangpeng Wan, Yu Cheng, and Junjie Hu. Local byte fusion for
 827 neural machine translation. In *Proceedings of the 61st Annual Meeting of the Association for*
 828 *Computational Linguistics (Volume 1: Long Papers)*, pp. 7199–7214, 2023.

829 Lichao Sun, Kazuma Hashimoto, Wenpeng Yin, Akari Asai, Jia Li, Philip Yu, and Caiming Xiong.
 830 Adv-BERT: BERT is not robust on misspellings! generating nature adversarial samples on BERT.
 831 *arXiv preprint arXiv:2003.04985*, 2020.

832 Richard Sutton. The bitter lesson, 2019. URL <http://www.incompleteideas.net/IncIdeas/BitterLesson.html>.

833

834 Chaofan Tao, Qian Liu, Longxu Dou, Niklas Muennighoff, Zhongwei Wan, Ping Luo, Min Lin, and
 835 Ngai Wong. Scaling laws with vocabulary: Larger models deserve larger vocabularies. In *The*
 836 *Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.

837

838 Yi Tay, Vinh Q Tran, Sebastian Ruder, Jai Gupta, Hyung Won Chung, Dara Bahri, Zhen Qin, Si-
 839 mon Baumgartner, Cong Yu, and Donald Metzler. CharFormer: Fast character Transformers via
 840 gradient-based subword tokenization. *arXiv preprint arXiv:2106.12672*, 2021.

841

842 Avijit Thawani, Saurabh Ghanekar, Xiaoyuan Zhu, and Jay Pujara. Learn your tokens: Word-
 843 pooled tokenization for language modeling. In *Findings of the Association for Computational*
 844 *Linguistics: EMNLP 2023*, pp. 9883–9893, 2023.

845

846 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 847 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 848 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023a.

849

850 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 851 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 852 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b.

853

854 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in*
 855 *neural information processing systems*, 30, 2017.

856

857 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 858 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Neural Information Processing*
 859 *Systems*, 2017.

860

861 Mathurin Videau, Badr Youbi Idrissi, Alessandro Leite, Marc Schoenauer, Olivier Teytaud, and
 862 David Lopez-Paz. From bytes to ideas: Language modeling with autoregressive u-nets. *arXiv*
 863 *preprint arXiv:2506.14761*, 2025.

864

865 Tim Vieira, Ben LeBrun, Mario Julianelli, Juan Luis Gastaldi, Brian DuSell, John Terilla, Timo-
 866 thy J O'Donnell, and Ryan Cotterell. From language models over tokens to language models over
 867 characters. In *The International Conference on Machine Learning (ICML)*, 2024.

864 Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao, Albert
 865 Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, et al. An empirical study of Mamba-
 866 based language models. *URL <https://arxiv.org/abs/2406.07887>, 2024.*

867 Junxiong Wang, Tushaar Gangavarapu, Jing Nathan Yan, and Alexander M Rush. Mambabyte:
 868 Token-free selective state space model. *First Conference on Language Modeling (COLM)*, 2024.

870 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
 871 Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
 872 models. In *Proceedings of the 36th International Conference on Neural Information Processing
 873 Systems*, NIPS '22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

874 Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam
 875 Roberts, and Colin Raffel. Byt5: Towards a token-free future with pre-trained byte-to-byte mod-
 876 els. *Transactions of the Association for Computational Linguistics*, 10:291–306, 2022.

877 Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. *arXiv preprint
 878 arXiv:2011.14522*, 2020.

880 Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated Linear Atten-
 881 tion Transformers with hardware-efficient training. In *The International Conference on Machine
 882 Learning (ICML)*, 2024a.

883 Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transform-
 884 ers with the delta rule over sequence length. In *The Thirty-eighth Annual Conference on Neural
 885 Information Processing Systems (NeurIPS)*, 2024b.

887 Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2 with
 888 delta rule. In *The Thirteenth International Conference on Learning Representations (ICLR)*, 2025.

889 Morris Yau, Sharut Gupta, Valerie Engelmayer, Kazuki Irie, Stefanie Jegelka, and Jacob Andreas.
 890 Sequential-parallel duality in prefix scannable models. *arXiv preprint arXiv:2506.10918*, 2025.

892 Lili Yu, Dániel Simig, Colin Flaherty, Armen Aghajanyan, Luke Zettlemoyer, and Mike Lewis.
 893 MegaByte: Predicting million-byte sequences with multiscale Transformers. *Advances in Neural
 894 Information Processing Systems*, 36:78808–78823, 2023.

895 Qihang Yu, Mark Weber, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-Chieh Chen.
 896 An image is worth 32 tokens for reconstruction and generation. *Advances in Neural Information
 897 Processing Systems*, 37:128940–128966, 2024.

898 Yijiong Yu, Ziyun Dai, Zekun Wang, Wei Wang, Ran Chen, and Ji Pei. Openesg chinese corpus:
 899 A series of high-quality chinese datasets for llm training, 2025. *URL <https://arxiv.org/abs/2501.08197>*.

900 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a ma-
 901 chine really finish your sentence? In *Proceedings of the 57th Annual Meeting of the Association
 902 for Computational Linguistics*, 2019.

905 Biao Zhang and Rico Sennrich. Root mean square layer normalization. *Advances in Neural Infor-
 906 mation Processing Systems*, 32, 2019.

907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917

918	APPENDIX	
919		
920	A Discussion	19
921		
922	B Related Work	22
923		
924	B.1 Autoregressive Tokenizer-free Architectures	22
925	B.1.1 Isotropic Architectures	22
926	B.1.2 Static Chunking	22
927	B.1.3 External Chunking	23
928	B.1.4 Dynamic Chunking	24
929	B.2 Non-Autoregressive Tokenizer-free Architectures	24
930	B.3 Other Tokenization-related Work	25
931		
932	C Model Details	27
933		
934	C.1 Design Principles	27
935	C.2 Dynamic Chunking (DC)	27
936	C.2.1 Smoothing Module	27
937	C.2.2 Upsampler	28
938	C.3 Improved Techniques for Hierarchical Sequence Modeling	29
939	C.4 Autoregressive Training and Inference	30
940		
941	D Additional Experimental Details	31
942		
943	D.1 FLOPs Computation	31
944	D.2 Robustness Score	31
945	D.3 Experimental setup for Chinese and code.	31
946		
947	E Additional Experiments	33
948		
949	E.1 DNA (Human Genome) Experiments	33
950	E.2 Distilling Token-Level Models to Byte-Level	33
951	E.3 Ablation Studies	35
952	E.3.1 Importance of Components in H-Net	35
953	E.3.2 Encoder & Decoder Layer Selection	36
954	E.3.3 Visualization of Tokenized Positions	37
955	E.3.4 Hybrid Architectures for the Main Network	38
956	E.3.5 Comparison to Mixture-of-Experts	39
957	E.3.6 Different Downsampling Methods in the Chunking Layer	39
958	E.3.7 DNA Architecture Ablations	40
959		
960	F LLM Usage for Paper Writing	41
961		
962		
963		
964		
965		
966		
967		
968		
969		
970		
971		

972 **A DISCUSSION**
 973

974 **Distillation.** For new architectures, showing that they can be distilled from standard pretrained
 975 Transformers can result in stronger new models with substantially reduced training (Bick et al.,
 976 2024). In Section E.2, we investigate this for H-Net by initializing the main network from a pre-
 977 trained Llama checkpoint and learning the encoder and decoder networks. With less than 200B bytes
 978 of training, the resulting model shows strong performance much better than if it were trained from
 979 scratch, although still worse than the teacher model. Our distillation procedure is perhaps currently
 980 the most efficient way of creating an end-to-end byte-level model, but we expect that it can be further
 981 improved.

982 **Efficiency.** Because of the dynamic nature of our model, it requires different considerations in
 983 making both the training pass and inference step efficient. Our implementation incorporates sev-
 984 eral engineering techniques already, such as handling variable sequence lengths within a mini-batch
 985 using specialized kernels provided by Dao (2024); Dao & Gu (2024). Because of the different
 986 architectural considerations, it is difficult to compare to more standard pipelines; our current imple-
 987 mentation may be approximately up to $2\times$ slower than an isotropic model during training.

988 Note that the memory usage of our model is also dynamic, unlike standard sequence models, so
 989 other edge cases may happen, such as unlucky batches of sequences that are too long and overflow
 990 the device memory. Relatedly, one difficulty with stepping H-Net in batched mode is that different
 991 tokens in the batch may require different amounts of compute.

992 We believe that such considerations are not fundamental and will be an important subject of future
 993 work; just as how related dynamic sparsity and conditional compute methods such as Mixture-of-
 994 Experts and speculative decoding (Leviathan et al., 2023; Chen et al., 2023) benefited from years of
 995 dedicated engineering improvements.

996 **Deeper Hierarchies.** H-Net is the first *dynamic* hierarchical model that can *recursively* nest its
 997 chunking strategy (see Table 4 and Section B). In this paper, we showed that iterating H-Net from
 998 0 stages (i.e. an isotropic model) to 1 stage and from 1 stage to 2 stages consistently improves
 999 performance. We did not attempt a 3-stage H-Net at all for simplicity. Testing if H-Net can be
 1000 iterated even deeper remains an immediate direction to explore.

1001 **Global Sequence Model Considerations.** Much research on sequence model architectures has
 1002 focused on individual layers, where the tradeoffs are often quite direct. For example, recurrent
 1003 models such as state space models (Gu, 2023; Gu & Dao, 2024) and linear attention variants
 1004 (Katharopoulos et al., 2020; Yang et al., 2024a;b; 2025) compress arbitrarily long sequences into
 1005 fixed-size hidden states, offering higher efficiency at the expense of precise retrieval of information
 1006 (e.g. struggling with recall (Jelassi et al., 2024)).

1007 H-Net, however, is a *global* architectural design that is simultaneously orthogonal to, but may have
 1008 interactive effects with, the choice of individual layers. For example, using deeper hierarchies with
 1009 exclusively recurrent layers would preserve linear computation (in sequence length) but *logarithmic*
 1010 state size, resembling newer sequence model layers such as log-linear attention (Guo et al., 2025)
 1011 and Prefix Scannable Models (Yau et al., 2025), but with dynamic hierarchies. Similarly, the recur-
 1012 sive compression of sequence length may alleviate their limitations in retrieval on long sequences.
 1013 This may be considered a form of *dynamic state allocation*. This paper has not focused on such
 1014 implications, which would be a possible direction for future research.

1015 **Long Context.** Similarly, an effect of the global hierarchical structure may be improved long
 1016 context abilities, which is a common motivation for hierarchical models (Koutnik et al., 2014; Chang
 1017 et al., 2017). Much research on sequence models again focuses on long context at the layer level (Poli
 1018 et al., 2023; Gu & Dao, 2024; Vaswani et al., 2017), and we hypothesize that H-Nets may provide
 1019 general long context improvements in an orthogonal direction.

1020 **Latent Test-Time Compute.** Test-time compute techniques, exemplified by Chain-of-Thought
 1021 (Wei et al., 2022), have been shown to improve model performance on a variety of reasoning bench-
 1022 marks (Muennighoff et al., 2025; OpenAI, 2024). Recent work has explored including latent rep-
 1023 resentations (as opposed to just tokens) in the reasoning process (Hao et al., 2024), culminating in
 1024 “recurrent depth” models that roll out an RNN for as many steps as needed before emitting a token
 1025 (Geiping et al., 2025). As discussed in Section C.4, H-Net is also capable of dynamically chang-
 ing compute per output generated; thus, it can be viewed as a model that can dynamically allocate

1026 latent test-time compute as well. Additionally, as the motivation of H-Net is to recursively build
 1027 higher-order abstractions, we hypothesize that it would be more effective as a reasoning model that
 1028 operates over its own learned concepts instead of arbitrary token inputs.

1029
 1030 **Sparsity.** H-Net can be viewed as a form of dynamic sparsity or conditional computation, and
 1031 is related to concepts such as mixture-of-experts (MoE) (Fedus et al., 2022; Shazeer et al., 2017)
 1032 and mixture-of-depths (Raposo et al., 2024). We showed that at the byte level, DC is much more
 1033 effective than MoE when controlled for parameters and compute (Figure 14), and leave fleshing out
 1034 further connections and comparisons for future work. We also note that H-Net can be viewed as
 1035 orthogonal to MoE, which can be applied to sparsify any MLP layers within an H-Net.

1036 **Scale.** The largest models in this paper were FLOP-matched to the equivalent of a 1.3B parameter
 1037 Transformer. While we believe that this provides sufficient evidence for the effectiveness of this
 1038 approach, it remains to validate H-Net at larger model sizes of 3B, 7B, and beyond. We note that
 1039 while we observed no instabilities at our model sizes, the added complexity of H-Net and inherent
 1040 difficulties of learning end-to-end discrete selection problems may require more serious investigation
 1041 of potential stability challenges at larger scale.

1042 **Scaling Laws.** Formally estimating the scaling behavior of a model requires calculating scaling
 1043 law coefficients that sweep across a large range of model sizes and compute horizons (Kaplan et al.,
 1044 2020; Hoffmann et al., 2022). We did not pursue this formal approach in this paper due to resource
 1045 constraints.

1046 Instead, we used a simpler heuristic for the scaling behavior of our models, at least with respect to
 1047 data. We note that

- 1049 • essentially all modern models live in the “overtrained” regime (with respect to the formal
 1050 scaling laws) due to inference considerations at deployment (Touvron et al., 2023b); and
- 1051 • these overtrained models often use modern schedulers that have extended periods of con-
 1052 stant learning rates (Hu et al., 2024; DeepSeek-AI, 2024).

1053 Thus, we decided to use the models’ losses during the constant phase as a proxy for how quickly
 1054 they improve with data. We believe this still provides useful insight into scaling behaviors, and a
 1055 more dedicated analysis of formal scaling laws remains an important topic for future work.

1056 **BPB Calculation.** For baseline BPE tokenized models throughout this work, we used the standard
 1057 bits-per-byte (BPB) calculation of simply rescaling the negative log-likelihood (or log perplexity) by
 1058 the average number of bytes per token (Gao et al., 2020; Wang et al., 2024; Slagle, 2024). However,
 1059 this is not strictly speaking a correct BPB estimate for tokenized models, as it assumes that the
 1060 probability the model outputs a string is equal to the probability of the model outputting the greedy
 1061 tokenization of the string.

1062 Depending on how the model is trained, it is possible the model can output other tokenization se-
 1063 quences with nonzero probability. There are an exponential number of these, so computing the exact
 1064 BPB is intractable; however, concurrent work (Vieira et al., 2024) shows that the standard BPB cal-
 1065 culation indeed overestimates BPB. Due to the high computational overhead of estimating the true
 1066 BPB, we only provide the standard (inexact) value; nevertheless, H-Net’s superior performance on
 1067 downstreams provides supporting evidence that it scales better than BPE models.

1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094

Table 4: **Related architectures.** Comparison of related architectures, particularly those focused on byte-level modeling. H-Net is the first architecture that enables dynamic, multi-stage hierarchies. Extended discussion is provided in Section B.

CLASS	AUTOREGRESSIVE	CHUNKING MECHANISM	MULTI-STAGE HIERARCHY	EXAMPLE ARCHITECTURES
Isotropic	✗	—	—	ByT5
	✓	—	—	MambaByte
Hierarchical (static)	✗	k -width pooling	✓	Funnel-Transformer Canine Charformer
	✓	k -width pooling	✓	Hourglass Transformer SaShiMi MegaByte Block Transformer MBLM AU-Net 3
Hierarchical (external)	✗	delimiters	✗	eByte WSF
	✓	delimiters	✗	DPT (Whitespaces) SpaceByte AU-Net 2
Hierarchical (dynamic)		entropy	✗	DPT (Entropy) BLT
	✓	soft matching	✗	MANTa
Hierarchical (dynamic)	✓	soft gating	✗	MrT5
		stochastic reparameterization	✗	DPT (Gumbel)
Hierarchical (dynamic)	✓	dynamic chunking	✓	H-Net

1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

1134 B RELATED WORK

1135
 1136 The fundamental challenge of transforming raw sequential data into computationally efficient rep-
 1137 resentations manifests across multiple domains through implicit chunking processes. In language
 1138 modeling, this challenge is addressed through tokenization using static vocabularies derived from
 1139 frequency-based algorithms such as Byte-Pair Encoding (BPE) (Sennrich et al., 2015) in GPT mod-
 1140 els (Radford et al., 2019; Brown et al., 2020) and SentencePiece (Kudo & Richardson, 2018) in
 1141 Llama architectures (Touvron et al., 2023b; Grattafiori et al., 2024). Computer vision addresses sim-
 1142 ilar challenges through spatial pooling operations (Ronneberger et al., 2015) that aggregate neigh-
 1143 boring pixels into meaningful representations.

1144 Despite achieving strong empirical performance, it is widely known that traditional tokenization ap-
 1145 proaches in language models suffer from fundamental limitations that constrain model capabilities.
 1146 Fixed vocabularies exhibit biases toward high-resource languages, demonstrate fragility when han-
 1147 dling adversarial inputs, and show lower performance on character-level tasks (Petrov et al., 2023;
 1148 Ahia et al., 2023; Belinkov & Bisk, 2017; Sun et al., 2020; Xue et al., 2022). These limitations stem
 1149 from the static nature of predefined vocabularies, which cannot adapt their chunking strategies to
 1150 input content or context.

1151 To address these constraints, *tokenizer-free* methods have emerged that avoid the reliance on prede-
 1152 fined vocabularies.

- 1153 • In Section B.1, we discuss the most directly related prior work on autoregressive sequence
 1154 models, extending the overview from Section 1.
- 1155 • In Section B.2, we discuss non-autoregressive models. We note that essentially all autore-
 1156 gressive architectures can be turned into non-autoregressive architectures (including our
 1157 proposed H-Net), and vice versa, which provide possible extensions of H-Net in future
 1158 work. However, we provide this delineation because it marks an important difference in
 1159 motivation that influences design considerations and downstream evaluations.
- 1160 • Section B.3 mentions other works in non-language modalities related to tokenization.

1161 We summarize our discussion on tokenizer-free architectures in Table 4.

1163 B.1 AUTOREGRESSIVE TOKENIZER-FREE ARCHITECTURES

1164 As outlined in Section 1, prior work on autoregressive tokenizers for architectures can be divided
 1165 into four categories:

- 1166 1. Non-hierarchical *isotropic* architectures.
- 1167 2. Hierarchical architectures with *static* chunking strategies, where chunk boundaries are
 1168 content-agnostic (usually some variant of fixed-width pooling).
- 1169 3. Hierarchical architectures with *external* chunking strategies, where chunk boundaries are
 1170 provided by an external function or module.
- 1171 4. Hierarchical architectures with *dynamic* chunking strategies, where chunk boundaries are
 1172 content-dependent and learned end-to-end.

1173 B.1.1 ISOTROPIC ARCHITECTURES

1174 The most direct approach to modeling language with tokenizers is to simply model raw byte se-
 1175 quences with a standard sequence model architecture. Since this naive approach suffers from com-
 1176 putational challenges on long sequences, MambaByte (Wang et al., 2024) proposed using a state
 1177 space model for its linear-time efficiency. We similarly use Mamba(-2) (Dao & Gu, 2024) layers in
 1178 the outer stages of an H-Net. Notably, through extensive ablations we show that Mamba is not just
 1179 more efficient but also better at modeling high-resolution data such as text characters and DNA base
 1180 pairs.

1181 B.1.2 STATIC CHUNKING

1182 To reduce sequence length, several approaches downsample the input sequence hierarchically. The
 1183 most straightforward methods operate independently of input context, partitioning sequences using
 1184 fixed-size intervals. Many strategies could be used to aggregate a width- k window, including direct

1188 downsampling, average pooling, linear transformations that mix across the chunk, convolutions, and
 1189 more; we lump these together as *pooling* operations.

1190 Hourglass Transformer (Nawrot et al., 2022) and MegaByte (Yu et al., 2023) exemplify this strategy.
 1191 Other recent variants include the Block Transformer (Ho et al., 2024) and Multiscale Byte Language
 1192 Model (MBLM) (Egli et al., 2025), which use similar multi-stage static chunking architectures.
 1193 Concurrently to H-Net, the MBLM also proposes using Mamba layers in the outer stages.

1194 These approaches share conceptual similarity with spatial pooling operations in vision models that
 1195 reduce resolution through fixed-window aggregation (Krizhevsky et al., 2012; He et al., 2016).
 1196 While these content-agnostic methods have simple and efficient implementations, they face an in-
 1197 herent limitation: they do not reflect natural semantic boundaries in the data. Fixed-size chunking
 1198 inevitably creates arbitrary separations that can split meaningful units such as words, morphemes,
 1199 or phrases, thereby limiting model expressivity.

1200 This class of models may also be called “autoregressive U-Nets”, characterized by the U-Net multi-
 1201 scale architecture (Ronneberger et al., 2015) with additional considerations to maintain causality.
 1202 Prior to these, the S4 and SaShiMi models (Gu et al., 2022; Goel et al., 2022) used the same archi-
 1203 tecture successfully in the vision and audio modalities, where fixed-window downsampling exhibits
 1204 more appropriate inductive bias in contrast to language. SaShiMi specifically operated over 8-bit
 1205 quantized audio inputs, hence also was a form of byte-level modeling that used BPB as a metric.

1207 B.1.3 EXTERNAL CHUNKING

1208 An improvement to hierarchical architectures with static downsampling is to use content-aware
 1209 chunking strategies that attempt to identify natural token boundaries based on semantic or statis-
 1210 tical properties of the input data. Several recent models propose using the boundaries provided by
 1211 an external module, with two main variations appearing.

1212 **Delimiter-based methods.** The most intuitive content-aware approach segments on surface-level
 1213 syntactical boundaries, which can be often implemented by simple rules or regular expressions.

1214 Dynamic Pooling Transformer (DPT) (Nawrot et al., 2023) proposed a variant that segmented on
 1215 whitespace characters, effectively making each word its own token. SpaceByte (Slagle, 2024) ex-
 1216 tends this to “space-like” delimiters (e.g., /,], :) as natural boundary signals. This approach pro-
 1217 vides semantically meaningful chunking for languages with explicit word separators such as English
 1218 text and code.

1219 However, delimiter-based methods cannot be used for inputs lacking explicit separators (e.g. many
 1220 non-European languages, or other modalities such as DNA). Additionally, these approaches cannot
 1221 be extended to multi-level hierarchical chunking due to ambiguities in defining natural delimiters at
 1222 higher semantic levels. AU-Net (Videau et al., 2025) is a concurrent work that augments SpaceByte
 1223 with additional stages of hierarchy using fixed-width chunking. Specifically, AU-Net 2 is SpaceByte
 1224 with minor architectural modifications, while AU-Net 3 (and AU-Net 4) add additional levels of
 1225 hierarchical with width-2 downsampling.

1226 In this work, we show that SpaceByte’s delimiter chunking strategy can be a very powerful baseline
 1227 on appropriate languages – competitive with or outperforming traditional tokenizers on English and
 1228 code – when augmented with several of H-Net’s additional techniques (Section 3.1, Section E.3,
 1229 Figure 3, Figure 9).

1230 **Entropy-based methods.** Another approach to circumvent the delimiter dependency is using the
 1231 autoregressive conditional entropy as a heuristic to identify semantic boundaries. This was first
 1232 proposed by the Dynamic Pooling Transformer (DPT) (Nawrot et al., 2023), which detects entropy
 1233 spikes that correlate with semantic transitions. The recent Byte Latent Transformer (BLT) (Pagnoni
 1234 et al., 2024) employs entropy thresholds computed by a separate pre-trained model to determine
 1235 chunking boundaries.

1236 Despite showing promise, these entropy-based approaches face several practical limitations. First,
 1237 they require extensive domain-specific hyperparameter tuning to establish appropriate entropy
 1238 thresholds, reducing their general applicability. Second, they still fall behind in performance; for
 1239 example, BLT necessitates an extra 3B parameters (at the 8B scale) solely for multi-gram hash
 1240 embeddings to match BPE Transformer baselines. Finally, these methods also cannot be extended

1242 hierarchically because computing cross-entropy loss requires access to target vocabularies, which
 1243 are unavailable for intermediate latent representations in multi-stage architectures.

1244 In this work, we do not compare against BLT because of its complexity: (i) necessitating training an
 1245 auxiliary language model to provide proxy autoregressive conditional entropies (ii) converting it into
 1246 an external neural tokenizer through tuning entropy heuristics (iii) using hash embeddings, which
 1247 can be considered an orthogonal architectural component which may be incorporated into H-Net as
 1248 well if desired.

1249 Instead, we compared against SpaceByte (and our own stronger versions of SpaceByte), which
 1250 we believe to be representative of the external-chunking family of methods and competitive to the
 1251 entropy-based chunking strategy of BLT (for our main experiments such as English data).

1253 B.1.4 DYNAMIC CHUNKING

1254 The ideal tokenizer-free architecture would incorporate a *dynamic chunking method* that attempts to
 1255 learn optimal segmentation strategies directly from data through gradient-based optimization. Such
 1256 a method would be optimized jointly together with the outer (fine-resolution) and inner (coarse-
 1257 resolution) networks, and be able to create boundaries that are *content-* and *context-* aware.

1258 The only prior work we are aware of that attempted a true dynamic chunking method is (one variant
 1259 of) the Dynamic Pooling Transformer (DPT) (Nawrot et al., 2023), which incorporates stochastic
 1260 exploration mechanisms using Gumbel noise (Jang et al., 2017; Maddison et al., 2017) to enable dif-
 1261 ferentiable boundary selection during training. Despite their theoretical flexibility, trainable methods
 1262 encounter critical challenges. The stochastic exploration process requires careful tuning of noise
 1263 magnitudes and introduces high-variance gradients that destabilize training, making it difficult to
 1264 scale to larger model sizes.

1265 In practice, the end-to-end (stochastic reparameterization) variant of DPT underperformed the exter-
 1266 nal chunking variants (drawing boundaries on entropy spikes or whitespaces) (Nawrot et al., 2023),
 1267 illustrating the difficulty of this problem. Furthermore, the training instability prevented DPT from
 1268 expanding to multiple hierarchical stages, constraining these methods to single-stage chunking.

1269 We additionally highlight simple architectural modifications of DPT motivated by improved infer-
 1270 ence (Fleshman & Van Durme, 2023) or multilingual ability (Ahia et al., 2024). Such techniques
 1271 can also be easily adapted to H-Nets in future work.

1273 B.2 NON-AUTOREGRESSIVE TOKENIZER-FREE ARCHITECTURES

1274 Each class of autoregressive architectures from Section B.1 has corresponding non-autoregressive
 1275 variants as well. Although these often have similar design principles, they are also motivated by
 1276 different tasks, settings, and design considerations (e.g. no evaluation on large-scale autoregressive
 1277 pretraining) and thus can be difficult to compare directly to autoregressive models. We include these
 1278 for context and completeness.

1279 **Isotropic.** ByT5 (Xue et al., 2022) directly models bytes using a bidirectional encoder-decoder
 1280 architecture, showing improved performance with small models (because more power is moved into
 1281 model parameters rather than vocabulary embeddings) and spelling-sensitive tasks.

1282 **Hierarchical (Static).** Funnel-Transformer (Dai et al., 2020) is an early architecture that uses
 1283 a U-Net-like architecture for language, focusing on the non-causal setting. Canine (Clark et al.,
 1284 2022) proposes a hierarchical model with convolution-based static downsampling; their method
 1285 also targets non-autoregressive language models.

1286 Charformer (Tay et al., 2021) presents a gradient-based subword tokenization (GBST) method that
 1287 pools the input sequence at different resolutions, inducing an implicit ensemble of hierarchical mod-
 1288 els. It shows improved efficiency to performance trade-offs compared to models that use a single
 1289 downsample resolution.

1290 We note that these methods can also be endowed with implicit supervision from external tokeniz-
 1291 ers; for example, Canine proposes a variant that uses subword tokens in the *objective function* (via
 1292 masking out subwords in the masked language modeling objective), but does not need the tokenizer
 1293 at inference time. We also note that such techniques are particular to non-autoregressive models,
 1294 since they allow for variations in the modeling objective.

1296 **Hierarchical (External).** Thawani et al. (2023) propose the eByte method, which resembles
 1297 MegaByte but chunks on spaces with Transformer-based CLS-token pooling, and lacks the byte-
 1298 level residual stream that enables autoregressive modeling. Word-based self-attention fusion
 1299 (WSF) (Sreedhar et al., 2023) proposes a similar pooling strategy for encoder language models.
 1300

1301 **Hierarchical (Dynamic).** MANTa (Godey et al., 2022) introduces an end-to-end method that pre-
 1302 dictates segmentation boundaries and pools bytes into blocks using a matching objective. MrT5 (Kallini
 1303 et al., 2025) is a recent method improving on ByT5 with a gating mechanism that allows for explicit
 1304 dynamic token-merging at inference time, reducing sequence lengths by up to 80%.
 1305

B.3 OTHER TOKENIZATION-RELATED WORK

1306 **Tokenizers for Other Modalities.** While computer vision pipelines do not use tokenizers like
 1307 BPE in the same way as language models do, they frequently need to turn raw perceptual data (im-
 1308 ages and videos) into shorter sequences of representations. One approach is the simple patchification
 1309 step first introduced by the Vision Transformer (ViT) (Dosovitskiy et al., 2021). However, images,
 1310 videos, and audio can have varying amounts of semantic content and non-uniform redundancies. A
 1311 number of more recent approaches attempt to produce variable length tokenizations that adapt to
 1312 the information content of the data, which performs a more similar role to tokenization in language
 1313 models. This can be done in the latent space of an autoencoder (Yu et al., 2024; Duggal et al.,
 1314 2024) or through explicit token merging (or "run length encoding") with heuristics (Bolya et al.,
 1315 2022; Choudhury et al., 2024). In the audio domain, SlowAE (Dieleman et al., 2021) proposes a
 1316 joint autoencoder with autoregressive modeling that finds semantic segmentation boundaries, which
 1317 resembles H-Net's approach at a high level.
 1318

1319 FAST (Lin et al., 2025) introduces a tokenizer for robotics, which tokenizes continuous control
 1320 actions by combining the Discrete Cosine Transform (DCT) with BPE.
 1321

1322 **Vocabulary Scaling.** While scaling laws for language models have generally kept tokenizers
 1323 fixed (Kaplan et al., 2020; Hoffmann et al., 2022; Grattafiori et al., 2024), recent works have shown
 1324 that the tokenizer also warps scaling laws, in fact more so than model architecture changes (Mayil-
 1325 vahanan et al., 2025). Tao et al. (2024) and Huang et al. (2025) directly show that it is more optimal
 1326 to scale an LLM's vocabulary together with the rest of the model parameters.
 1327

1328 In H-Nets, which are designed to operate over higher resolution raw data, the actual vocabulary can
 1329 be kept minimal, but the chunking mechanism can be viewed as an implicit "tokenizer" with infinite
 1330 vocabulary. As H-Nets scale in size, one expects that more iterations of hierarchy can be added
 1331 (increasing effective chunk size), or the chunk size can directly be increased to leverage parameters
 1332 more efficiently. This resembles the idea of increasing a vocabulary in tokenized models (which
 1333 would generally increase the average length of tokens).
 1334

1335 SuperBPE (Liu et al., 2025) shows that allowing vocabulary tokens to cross whitespace boundaries
 1336 can also improve performance. This is related to H-Net's motivation of higher-level chunking of
 1337 words into phrases; empirically, Figure 11 shows how the 2-stage H-Net finds semantic multi-word
 1338 groups in the inner stage.
 1339

1340 **Cross-Tokenizer Transfer.** Minixhofer et al. (2024) and Minixhofer et al. (2025) address the
 1341 problem of *tokenizer transfer*, or adapting models across different tokenizers (for example for cross-
 1342 language or cross-modality usage, or for knowledge distillation).
 1343

1344 **Other Effects of Tokenization.** Lee et al. (2024) discuss the effects that tokenization has on arith-
 1345 metic in LLMs. For example, comparing the performance of left-to-right vs. right-to-left tokeniza-
 1346 tion. Hayase et al. (2024) show that examining the vocabulary of a BPE tokenizer leaks information
 1347 about the data mix that it was trained on.
 1348

1349 **Tokenization Theory.** Schmidt et al. (2024) examined the hypothesis that the primary role of
 1350 tokenization is to shrink the input sequence length. They invented a new tokenizer that has even
 1351 higher compression rates than BPE (actually, they keep the same vocabulary but simply find different
 1352 segmentations that are more compressed) yet leads to worse language models, providing evidence
 1353 against the hypothesis.
 1354

1355 Rajaraman et al. (2024) showed that for certain data distributions, applying tokenization qualitatively
 1356 changes what Transformers can learn.
 1357

1350 Phan et al. (2024) and Vieira et al. (2024) propose various algorithms for converting a language
1351 model over tokens into a language model over characters or bytes. This helps alleviate some limita-
1352 tions of tokenizers such as the "prompt boundary" problem, the ability to compare different LLMs
1353 with different tokenizers, and simply produces better estimates of a language model's true compres-
1354 sive ability (as measured by bits-per-byte). However, such algorithms are complex and expensive,
1355 and compared to direct byte-level models they are not practical for use during inference decoding
1356 (repeated autoregressive sampling).

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404 **C MODEL DETAILS**1405 **C.1 DESIGN PRINCIPLES**

1407 **Encoder and Decoder Networks.** The encoder and decoder networks in H-Net face unique design
 1408 constraints due to their dual objectives and computational requirements. Each encoder must simulta-
 1409 neously (i) preserve fine-grained information for transmission to its corresponding decoder through
 1410 residual connections equation 3, and (ii) compress inputs into chunks of richer representations for
 1411 the main network. The decoder, in turn, must effectively combine coarse-grained representations
 1412 from the main network with fine-grained details from the encoder residuals.

1413 Importantly, both encoders and decoders operate on uncompressed sequences, making compu-
 1414 tational efficiency a significant design constraint that shapes our architectural choices. Recent studies
 1415 demonstrate that state space models (SSMs) (Gu et al., 2022; Gu & Dao, 2024) excel at process-
 1416 ing fine-grained data including audio (Goel et al., 2022), DNA sequences (Schiff et al., 2024), and
 1417 robotic control signals (Lu et al., 2023).

1418 Based on these insights, we employ Mamba-2 layers (Dao & Gu, 2024) as the primary building
 1419 blocks for the encoder and decoder networks. This choice yields two significant benefits: effective
 1420 handling of fine-grained inputs, and substantially improved efficiency when processing long, uncom-
 1421 pressed sequences. Our ablation studies (Section E.3) confirm that SSM-based encoders/decoders
 1422 significantly outperform Transformer layers, not just at the byte level but even on coarser inputs,
 1423 which we attribute to their stronger inductive bias for compression which helps build abstrac-
 1424 tions (Gu, 2025).

1425 **Main Network.** H-Net’s computational efficiency stems from strategic parameter allocation. We
 1426 concentrate the majority of model capacity in the main network, which operates on progressively
 1427 compressed sequences. After S stages of compression, the main network receives sequences where
 1428 $L^S \ll L^0$, enabling much larger networks within the same computational budget. This design re-
 1429 flects two key principles: (i) compressed sequences allow more parameters and compute per chunk,
 1430 and (ii) higher-level abstractions benefit from increased processing power.

1431 The main network functions as a standard language model and can employ any sequence mixing
 1432 architecture. We default to Transformer layers for two reasons: compressed representations align
 1433 well with Transformers’ strengths in processing discrete, semantically-rich tokens, and this choice
 1434 enables more controlled comparison with traditional BPE-based Transformer baselines in our ex-
 1435 periments. However, the modular design also allows straightforward substitution with alternative
 1436 architectures (e.g., a state space model, hybrid, or H-Net itself) as explored in our ablations.

1437 **Architectural Guidelines.** Compared to standard isotropic models, the H-Net’s structure intro-
 1438 duces several new dimensions of architectural parameters to balance the parameter/compute alloca-
 1439 tion to each network. To simplify the search space, we follow a few general guidelines.

- 1440 • First, we ensure the model width (often referred to as d_{model} for isotropic architectures) is
 1441 monotone in the hierarchy: $D^0 \leq D^1 \leq \dots \leq D^S$. This allows increasing compute and
 1442 parameters used in the main network without significantly increasing its depth.
- 1443 • Second, using efficient and powerful SSM layers in the outer networks allow reducing the
 1444 number of layers used compared to similar prior architectures that only used Transformer
 1445 layers (Slagle, 2024); in this paper, we always stick to four layers (or the equivalent of four
 1446 Mamba layers) in each encoder/decoder network.

1447 To handle the changes in dimensions without an additional linear layer, we adopt the technique used
 1448 in SpaceByte (Slagle, 2024) with the marginal change: to expand dimensions (*i.e.*, $D^s \rightarrow D^{s+1}$),
 1449 we append all vectors with a shared trainable vector of dimension $D^{s+1} - D^s$; to reduce dimensions
 1450 (*i.e.*, $D^{s+1} \rightarrow D^s$), we take the first D^s dimensions from each vector.

1451 We note that H-Net’s performance can likely be improved with more careful tuning of the layer
 1452 allocation and hyperparameters between sub-networks.

1453 **C.2 DYNAMIC CHUNKING (DC)**1454 **C.2.1 SMOOTHING MODULE**

1455 The smoothing module is defined with an EMA operation (see equation 5), which performs several
 1456 roles:

Figure 4: Comparison of decompression strategies on the example sequence "...new product!". ● indicates a boundary with high confidence ($P_t = 1.0$) and ○ indicates a boundary with low confidence ($P_t = 0.5$). As each letter in the example is unique, we use the letters in subscripts to denote expected semantics of chunks. (a) Optimal chunking with oracle boundaries identifying linguistically meaningful units. (b) Suboptimal chunking without a smoothing module. This creates misalignment during upsampling, causing information from incorrect contexts to propagate. (c) Improved decompression with a smoothing module, where low-confidence chunks are interpolated with weighted combinations of previous chunks, correcting the shaded regions. In panels (b) and (c), we interpret low-confidence boundaries cause the encoder network to embed broader contexts at subsequent positions. Specifically, the vectors at _ and ! encode new_ and duct!, respectively (instead of w_ and ct!).

- **Differentiable boundary learning:** It transforms the discrete upsampling operation into a continuous one, enabling effective backpropagation through chunk boundaries during training without requiring stochastic exploration-based approaches (Jang et al., 2017).
- **Adaptive error correction:** Chunks with high confidence ($P_t \approx 1.0$) maintain discrete boundaries ($\bar{z}_t \approx z_t$), while chunks with low confidence ($P_t \approx 0.5$) are smoothed using information from previous chunks, creating a self-correcting mechanism.
- **Training stability:** By smoothly interpolating between discrete choices based on confidence scores, a smoothing module prevents the model from overfitting to suboptimal chunking patterns early in training.

Figure 4 illustrates this with the example "...new_product!". The word "product" can be morphologically decomposed into "pro-" and "-duct"⁷. Without the smoothing module (see Figure 4-(b)), suboptimal chunking (e.g., "du" as shown with half-filled circles) creates alignment mismatches that disrupt information flow. With the smoothing module (see Figure 4-(c)), chunks with low confidence are smoothed with previous context, ensuring proper information propagation and enabling the model to learn optimal chunk boundaries through gradient descent.

C.2.2 UPSAMPLER

Equations (6) to (9) are designed carefully with these following objectives:

- **Confidence scoring** equation 6: The coefficient c quantifies the routing module's confidence in its boundary decisions. For positions marked as boundaries ($b_t = 1$), $c_t = p_t$ rewards high boundary probabilities. In contrast, for non-boundary positions ($b_t = 0$), $c_t = 1 - p_t$ penalizes false boundary predictions. This formulation encourages the model to produce boundary probabilities near 1.0 at true boundaries and near 0.0 elsewhere.
- **Gradient stabilization** equation 7: The Straight-Through Estimator (STE) (Bengio et al., 2013) is a well established technique from discrete representation learning (Van Den Oord et al., 2017; Jang et al., 2017) that rounds confidence scores to 1.0 in the forward pass while maintaining continuous gradients during backpropagation. While H-Net already demonstrates strong performance without STE, incorporating this technique provides an additional performance boost that empirically further stabilizes the optimization dynamics.
- **Causal expansion** equation 8: The upsampling operation repeats each compressed vector until the next boundary position, ensuring that each reconstructed position receives information from its most recent chunk. This maintains the sequential flow of information while expanding the compressed representation back to its original length.
- **Confidence-weighted decompression** equation 9: Multiplying upsampled vectors by their confidence scores incentivizes the routing module to make confident, accurate decisions.

⁷pro- – meaning forward or forth, -duct – from Latin *ducere*, meaning to lead or to bring

1512 High-confidence boundaries create direct reward signals that encourage the model to
 1513 sharpen its boundary predictions through gradient feedback.
 1514

1515 C.3 IMPROVED TECHNIQUES FOR HIERARCHICAL SEQUENCE MODELING

1516 We introduce several techniques that improve the overall architecture. These may generally be
 1517 considered techniques to improve *signal propagation* throughout the network, improving stability
 1518 and learnability.

1519 **Norm Balance.** Modern large language models employ pre-normalization architectures (Radford
 1520 et al., 2019; Touvron et al., 2023a), departing from the post-normalization design of the original
 1521 Transformer (Vaswani et al., 2017). Following established best practices, these models typically
 1522 include a final normalization layer after all residual blocks. H-Net adopts this convention through
 1523 *network normalization*, by placing an RMSNorm (Zhang & Sennrich, 2019) at the end of each
 1524 network component (\mathcal{E}^s , \mathcal{D}^s , and \mathcal{M}).

1525 This addition of a normalization layer addresses a critical challenge in hierarchical architectures.
 1526 Pre-normalization allows residual stream magnitudes to grow unbounded through successive layers,
 1527 with feature norms increasing monotonically. For H-Net, this poses a particular problem: the ar-
 1528 chitecture leverages residual connections to preserve fine-grained information across stages. With-
 1529 out network normalization, outputs from deeper components (especially the many-layered main
 1530 network) would dominate the residual signals from earlier encoder networks through imbalanced
 1531 feature norms, neglecting the fine-grained details that are essential for decompression. The normal-
 1532 ization layers restore balance between processed features and residual information, ensuring both
 1533 contribute meaningfully to the final representation.

1534 **Separation of Two Streams.** Encoder outputs (\hat{x}) serve dual purposes in our architecture: passing
 1535 fine-grained information to corresponding decoders through residual connections, and providing
 1536 compressed representations as inputs to subsequent stages. This dual functionality creates a design
 1537 challenge, as these two roles may benefit from different representations. We consider three options
 1538 to address this: (i) apply a projection to the residual connection only, (ii) apply a projection to the
 1539 main network inputs only, (iii) and apply a projection to both pathways.

1540 As indicated in equation equation 3, we adopt the first approach – adding a projection (Linear) only
 1541 to the residual connection. This choice is motivated by the fundamental principle of designing deep
 1542 learning models (He et al., 2016): maintaining intact gradient flow through the main computational
 1543 path is crucial for effective training.

1544 Empirically, we found that the third option underperforms despite additional parameters and com-
 1545 putations, as the extra projections interfere with gradient propagation. The second option, while
 1546 preserving residual gradients, disrupts the main network’s gradient flow and had worse training dy-
 1547 namics. Our chosen design maintains unimpeded gradients from deeper stages while allowing the
 1548 residual connection to adapt its contribution through the learned projection. This encourages the
 1549 model to leverage the main network’s computational depth while using residuals in a comple-
 1550 mentary role.

1551 One additional detail is that this residual connection is initialized close to 0; earlier versions of H-
 1552 Net found this to be an important detail, but it may be less important when combined with additional
 1553 techniques such as LR modulation.

1554 **Learning Rate Modulation** The hierarchical design of H-Net requires careful adjustment of
 1555 learning rates across stages to ensure balanced training dynamics. Modern theory establishes that
 1556 neural network hyperparameters should be scaled in predictable ways for optimal trainability (Yang
 1557 & Hu, 2020). To provide a more systematic experimental results across different architectural con-
 1558 figurations, we follow previous works and set learning rates to be proportionally to the (1) square
 1559 root of batch size (Malladi et al., 2022; Merrill et al., 2025), and (2) inverse square root of hidden
 1560 dimension (Vaswani et al., 2017; Yang & Hu, 2020). Concretely, without heavy manual tuning, we
 1561 define λ^s as follows:

$$\lambda^s = \sqrt{N^{\text{GPT}} \cdot \frac{\prod_{i=s}^S N^i}{\prod_{i=0}^S N^i} \cdot \frac{D^s}{D^s}}, \quad N^S = 1.0 \quad (11)$$

1562 where N^{GPT} is the average number of bytes per token of training dataset, which is 4.6 for the GPT-2
 1563 tokenizer on FineWeb-Edu.

1566 With this modulation, the model achieves more stable training dynamics and improved convergence
 1567 behavior across the entire hierarchy. In particular, we empirically find that since outer stages directly
 1568 influence the chunk boundaries that inner stages depend on, the higher learning rates in the outer
 1569 stages seem to accelerate learning the chunking mechanism. We note that such principles for opti-
 1570 mizing signal propagation as neural network hyperparameters change is an active area of research,
 1571 and our scaling factors are just heuristics that can likely be improved.

1572 C.4 AUTOREGRESSIVE TRAINING AND INFERENCE

1573 In this section, we explain how H-Net preserves autoregressive properties throughout its hierarchical
 1574 structure during both training and inference.

1575 Every component of H-Net (*i.e.*, encoder-, decoder-, main- networks, and the dynamic chunking
 1576 mechanism) is carefully designed to preserve autoregressive properties essential for language mod-
 1577 eling.

1578 **Training.** During training, H-Net employs standard causal masking across all sequence mixing
 1579 layers. DC maintains causality by computing boundary probabilities based only on current and
 1580 previous representations. Specifically, the boundary probability p_t depends on q_t and k_t from the
 1581 current and previous positions (equation equation 4), ensuring no information leakage from fu-
 1582 ture tokens. The smoothing module similarly maintains causality through its recursive formulation
 1583 (equation equation 5), where each output depends only on past compressed representations.

1584 **Inference.** For inference, H-Net generates raw bytes (or whatever the outermost modality is) au-
 1585 toregressively with a modified procedure to handle its hierarchical structure.

1586 Generation with a prompt proceeds as follows:

- 1587 1. **Initial processing:** During prefill, we generate chunks via the encoders (as in training). For
 1588 each component (*i.e.* the isotropic components, and the routing module and dechunking
 1589 layer), we generate a state. Isotropic state (*e.g.* KV cache for Transformer layers, SSM
 1590 state for Mamba-2 layers) is generated as usual.
- 1591 2. **DC state and DC step:** As noted above, the DC modules have recursive formulations
 1592 that maintain causality at train-time. These recursive formulations become autoregressive
 1593 formulations at inference time.
 - 1594 (a) **Routing Module:** In order to compute p_t , we need k_{t-1} (see equation equation 4), so
 1595 our state consists of the key value of the most recent token processed.
 - 1596 (b) **Dechunking Layer:** In order to compute \tilde{z}_t , we need P_t and \tilde{z}_{t-1} . Thus, the dechunk-
 1597 ing layer state should consist of the last \tilde{z} value.
- 1598 3. **Token Generation:**⁸ To perform a model step, we do the following for a 1-stage hierarchy:
 - 1599 (a) Pass the token through the encoder network,
 - 1600 (b) Step the routing module to determine whether the token needs to be processed by the
 1601 main network,
 - 1602 (c) Step the main network if necessary, in which case we also need to step the dechunking
 1603 layer.
 - 1604 (d) Use the result of the dechunking layer to step the decoder network.

1605 A consequence of this inference formulation is that, at inference time, H-Net decides individually
 1606 for each token how much compute to use when processing it. Therefore, H-Net can allocate more
 1607 or less compute to different tokens as it deems necessary. A particular connection is that inference
 1608 resembles speculative decoding (Leviathan et al., 2023; Chen et al., 2023), which also involves a
 1609 small network (*the draft model*) stepping on every token, and a larger network (*the verification
 1610 model*) only stepping on contiguous chunks of every few tokens.

1611

1612

1613

1614

1615

1616

1617

1618

1619

⁸Here, we use *token* in the autoregressive generation sense, referring to one time step, not in the literal BPE
 token sense.

1620 D ADDITIONAL EXPERIMENTAL DETAILS

1621 D.1 FLOPs COMPUTATION

1623 We largely follow Hoffmann et al. (2022) with two marginally updated computations: (1) add computations for Mamba-2 (Dao & Gu, 2024), and (2) modify computations in MLP blocks as we use 1624 the recent Transformer++ architecture. Assuming that all query, key, and value share the same 1625 num_heads and head_dim, we calculate the forward pass FLOPs as follows:

- 1627 • **Embeddings:** $2 \times \text{seq_len} \times \text{vocab_size} \times d_{\text{model}}$
- 1628 • **Attention:**
 - 1629 – **QKV projections:** $2 \times 3 \times \text{seq_len} \times d_{\text{model}} \times (\text{num_heads} \times \text{head_dim})$
 - 1630 – **Attention Logit Calculation:** $2 \times \text{seq_len} \times \text{seq_len} \times (\text{num_heads} \times \text{head_dim})$
 - 1631 – **Attention Score Softmax:** $3 \times \text{num_heads} \times \text{seq_len} \times \text{seq_len}$
 - 1632 – **Score @ Query:** $2 \times \text{seq_len} \times \text{seq_len} \times (\text{num_heads} \times \text{head_dim})$
 - 1633 – **Output projection:** $2 \times \text{seq_len} \times (\text{num_heads} \times \text{head_dim}) \times d_{\text{model}}$
- 1634 • **Mamba-2:**
 - 1635 – **XZ projections:** $2 \times \text{seq_len} \times d_{\text{model}} \times (2 \times \text{expand} \times d_{\text{model}})$
 - 1636 – **$BC\Delta t$ projections:** $2 \times \text{seq_len} \times d_{\text{model}} \times (2 \times d_{\text{state}} + \text{num_heads})$
 - 1637 – **SSD:** $2 \times 3 \times \text{seq_len} \times (\text{expand} \times d_{\text{model}}) \times d_{\text{state}}$
 - 1638 – **Depthwise Convolution:** $2 \times \text{seq_len} \times d_{\text{model}} \times \text{window_size}$
 - 1639 – **Gating:** $5 \times \text{seq_len} \times d_{\text{model}}$
 - 1640 – **Output projection:** $2 \times \text{seq_len} \times d_{\text{model}} \times d_{\text{model}}$
- 1641 • **Gated MLP:**
 - 1642 – **In, Gate, Out projections:** $2 \times \text{seq_len} \times (3 \times d_{\text{model}} \times \text{ffw_size})$
 - 1643 – **Gating:** $5 \times \text{seq_len} \times d_{\text{model}}$
- 1644 • **Logit Prediction Head:** $2 \times \text{seq_len} \times \text{vocab_size} \times d_{\text{model}}$

1645 We assume the backward pass consumes twice the FLOPs of the forward pass.

1646 D.2 ROBUSTNESS SCORE

1647 We introduce a metric called the *robustness score* to measure the robustness of a model’s performance to textual perturbations, defined for Hellaswag as follows:

$$1648 \text{robustness score} := 100 \cdot \frac{\text{perturbed accuracy} - 0.25}{\max(\text{unperturbed accuracy} - 0.25, 0)}.$$

1649 This score measures the percentage of original (unperturbed) performance that is captured by the 1650 model in the perturbed setting. We subtract by 0.25 as Hellaswag is multiple choice with 4 options, 1651 thus a model that scores 0.25 in the perturbed setting should be considered to have lost all of its 1652 original capability.

1653 D.3 EXPERIMENTAL SETUP FOR CHINESE AND CODE.

1654 In Section 3.2, we analyzed the performance of H-Net (2-stage) against Transformer and H-Net 1655 (space) on Chinese and on code, finding superior scaling for H-Net (2-stage) versus the other 1656 architectures. Here, we describe additional details from the experiment.

1657 On Chinese and code, we use 46B token subset from FineWeb-Edu-Chinese-V2.1 (Yu et al., 2025) 1658 and Github subset from Pile (Gao et al., 2020) to train three models at the 1.3B GPT-3 *XL* scale: 1659 H-Net (2-stage), H-Net (space), and Transformer. We maintain the same bytes per gradient step 1660 (256 batch size with 8192 `utf-8` encoded bytes per example) as the main text experiments.

1661 For model architecture, we primarily matched the settings from the GPT-3 *XL*, including d_{model} and 1662 encoder/decoder architecture for H-Net models. However, we adjusted the number of layers in the 1663 main network of each model to account for slightly different compression ratios. Specifically, the 1664 Chinese-language models used a slightly higher total training flops target than the original language 1665 models, while the code models used a lower flops target. Full architecture details and results are also 1666 in Table 5.

1674 **Table 5: Architecture details and model benchmarks for Chinese and code models.** BPIC (de-
 1675 fined in Table 2) denotes the compression between the main network and outermost stage (bytes).
 1676 Each H-Net used (3,3)-DC, targeting an inner downsampling ratio of 9. However, the resulting
 1677 BPIC was significantly different, indicating that code is much easier to compress than Chinese. In
 1678 terms of results, H-Net (2-stage) performs better than both H-Net (space) and BPE Transformer on
 1679 Chinese, which is reflected in the downstreams. On the other hand, H-Net (2-stage) achieves similar
 1680 performance to H-Net (space) on code, and both H-Net models perform significantly better than
 1681 Transformer.

MODEL	CHINESE				CODE					
	BPIC	MAIN ARCH.	VAL.	BPB ↓	XW-ZH.	ACC. ↑	BPIC	MAIN ARCH.	VAL.	BPB ↓
Transformer	3.62	T15	<u>0.7404</u>	0.599	3.58	T13	0.3376			
H-Net (space)	3.38	T19	0.7478	<u>0.629</u>	7.97	T40	<u>0.3163</u>			
H-Net (2-stage)	5.81	T30	0.7032	0.663	7.23	T28	0.3161			

1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 For the H-Net (2-stage), we use the same target downsampling ratio ($N^0 = N^1 = 3$) as the main
 experiments. Unlike BPE or spacelike-based tokenization, whose downsampling ratios can vary
 widely by dataset, H-Net allows for using similar compute budgets without much adjustment. For
 H-Net (space), we use the same definition of spacelike as the original SpaceByte paper (Slagle,
 2024), and for BPE, we use the Llama3 tokenizer (Grattafiori et al., 2024), as the GPT2 tokenizer
 attains very poor downsampling ratios on both datasets. Despite this change, both H-Net (space)
 and Transformer (BPE) still have highly varied downsampling ratios between ordinary (primarily
 English) language, Chinese, and code. On the other hand, H-Net can adhere to a target ratio regard-
 less of dataset, chunking into concepts at appropriate ratios.

1728	MODEL / ARCHITECTURE	PARAMS.	FINAL PPL. ↓
1729	Transformer (T9)	29M	2.769
1730	Mamba-2 (M10)	33M	2.757
1731	H-Net (M3T1 + T15 + M4)	64M	2.705
1732	H-Net (M3T1 + M15 + M4)	66M	2.697
1733			

1734
1735 **Table 6: Model details and final performance**
1736 **on HG38.** We trained two isotropic
1737 models and two H-Net models, varying the
1738 main network architecture (Transformer or
1739 Mamba-2). Each H-Net model outperforms
1740 the corresponding isotropic model. We em-
1741 pirically find that the $\mathcal{E}^0 = \text{M3T1}$ en-
1742 coder architecture slightly outperforms a pure
1743 Mamba-2 encoder $\mathcal{E}^0 = \text{M4}$ (Section E.3.7).

1744
1745 **Table 7: Distilling Llama 3.2 3B to a byte level model.** Average acc indicates average of the
1746 benchmarks measured in Table 2. H-Net loses performance across the board compared to the teacher,
1747 which is expected because we cannot quite replicate the exact behavior of the original model due to
1748 non-causality of BPE tokens. However, it is still much stronger than an H-Net trained from scratch
1749 on this small amount of data (189B bytes).

1750 MODEL	1751 LMB. ACC ↑	1751 HELLA. ACC_n ↑	1751 PIQA. ACC ↑	1751 ARC-E. ACC ↑	1751 ARC-C. ACC_n ↑	1751 WINO. ACC ↑	1751 OPEN. ACC_n ↑	1751 AVERAGE ACC ↑	1751 MMLU (5-SHOT) ACC ↑
1752 Llama 3.2 3B (base)	0.701	0.737	0.768	0.745	0.460	0.688	0.428	0.647	0.561
1753 Distilled H-Net (1-stage)	0.634	0.702	0.761	0.721	0.433	0.665	0.414	0.617	0.519

1754 E ADDITIONAL EXPERIMENTS

1755 E.1 DNA (HUMAN GENOME) EXPERIMENTS

1756 DNA is a setting that presents both a unique promise and challenge for hierarchical modeling. For
1757 one, handcrafted tokens do not work well on DNA, due to the lack of segmentation cues. Additionally,
1758 the same sequence of base pairs may serve different functions (e.g., depending on whether or
1759 not the pair is inside a gene or not). Consequently, a naive BPE-based approach may not work either.
1760 On the other hand, DNA *can* exhibit higher resolution structure (e.g., codons, various regulatory
1761 elements), suggesting that there is room for principled hierarchical modeling. Indeed, state-of-the-art
1762 DNA models (Brixi et al., 2025) operate directly on base pairs (A, C, G, T) with implicit hierarchical
1763 structure.

1764 Thus, we evaluated four models on DNA: two isotropic models (pure Transformer and pure Mamba-
1765 2) operating at the base-pair level, and two corresponding H-Net (1-stage) with Transformer and
1766 Mamba-2 as the main network. Each model was trained on the HG38 dataset with a learning rate of
1767 $5 \cdot 10^{-3}$ for modules at the base-pair resolution. For the H-Net models, we used a downsampling
1768 ratio of $N^0 = 3$. All models were trained with a d_{model} of 512, which was used for all isotropic
1769 modules of H-Net (including the main network).

1770 Previous work has shown that SSMs show improved DNA modeling ability compared to Trans-
1771 formers (Gu & Dao, 2024), and we find that this effect is preserved when examining Transformers
1772 vs. Mamba-2 as the main network (see Table 6). This finding suggests that existing layer selection
1773 principles can be applied when deciding main network architecture. In fact, by directly comparing
1774 the perplexity curves during the stable phase of training (Figure 5), we find that H-Net models can
1775 achieve similar performance to isotropic models with $3.6 \times$ less data, a finding that holds for both
1776 choices of main network architecture.

1777 E.2 DISTILLING TOKEN-LEVEL MODELS TO BYTE-LEVEL

1778 The role of the outer stages in H-Net is analogous to that of the tokenizer, embedding module, and
1779 LM head in a traditional BPE-based language model; together, these modules interconvert between
1780 raw text and an embedding space that the main model backbone can process. Given this similarity,

1781 **Figure 5: Scaling performance on HG38** during
1782 the stable phase of training. Each H-Net model
1783 achieves the same pre-decay perplexity of the
1784 corresponding isotropic model with approximately
1785 $3.6 \times$ less data.

Figure 6: **Auxiliary loss strategy for training the encoder** of a H-Net with pretrained main stage. In order to mimic the behavior of the tokenizer + embedding layer of a pretrained language model, we add supervision to both the routing module boundary probabilities and to the hidden states that we pass through to the main network. These losses encourage the encoder to tokenize once at the start of every token, while also passing the correct embedding into the main network near the start of the token, thus making maximal use of the next-token prediction ability.

we investigated whether it would be possible to convert a BPE-tokenized model directly into a byte level H-Net. To do this, we trained a 1-stage H-Net with frozen main network initialized from the backbone of Llama 3.2 3B (base). Our H-Net uses 4 Mamba-2 layers without MLPs for both the encoder and decoder with a hidden dimension of 1536. Because the Llama model has a hidden dimension of 3072, we add MLP adapters with hidden dimension 8192 after chunking and right before dechunking (i.e. right before and after feeding into the main stage). We train the model for 90000 gradient steps with sequence length 8192 and batch size 256, for a total of 189B bytes.

Aligning the encoder. The primary difficulty in converting a tokenized model into a byte-level one is that the encoder and DC must produce chunks that the tokenized model can produce useful output with. Thus, our training (besides using the standard next-byte prediction loss), adds the following losses (see Figure 6 for a visual).

1. A binary cross-entropy boundary-prediction loss (with equal weight as the main loss) that operates on the routing module probabilities and targets the router to pass *the start of every real token* through the main network.
2. A hidden state matching loss that matches the post-adapter hidden state with the “correct” hidden state. Here, if \hat{z}_k is the hidden representation that was passed into the main network at (byte) position t , we try to match z_k with the embedding of the token that the t th byte was part of, *except* when the t th byte is the first byte of its token, in which case we match the z_t with the *previous* token’s embedding. Embedding matching is done with an L2 loss with a weight of 0.02.

In the ideal case where both losses are zero, the router sends exactly the first byte of each token through to the main network with the right embedding. The main network would thus see exactly the representation it would see with a tokenizer + embedding setup. In practice, sending both losses to zero is literally impossible, as we discuss below. However, we still find that the boundary-prediction loss is crucial for learning a good matching, while the embedding-matching loss is helpful in speeding up training but not necessary. In fact, increasing the loss weight on the embedding-matching loss too much can harm the language-modeling loss.

Tokenization bias. We are not able to send all auxiliary losses to zero because online prediction of BPE boundaries is an impossible task. Phan et al. (2025) coined the term “tokenization bias” to represent the fact that the tokenization process implicitly contains next-byte information. For example, the Llama 3 tokenizer tokenizes the strings `_distill` and `_distinct` into `[_dist, ill]` and `[_distinct]`. Prior use of this term has been to suggest that if an autoregressive

Figure 7: **Ablation study on key H-Net components** showing validation BPB (left) and compression ratios for the first stage L^1/L^0 (center) and second stage L^2/L^1 (right) during training. Using H-Net (2-stage), we evaluate the impact of removing three components: the smoothing module (w/o smoothing), the similarity-based routing module (w/o cosine routing), and Straight-Through Estimator (w/o STE).

language model is prompted with `_dist`, the nature of its training will be that it will never complete with `inct` (this is in fact a flaw of all tokenization-based models).

For us, however, tokenization bias implies that we cannot determine whether or not the `i` in `_disti` is the start of a new word until *after* seeing the next character. In fact, the problem can be even worse—consider `_applicable` (becomes `[_app, licable]`) and `_applicant` (becomes `[_applicant]`): Determining whether `l` is the start of a token requires knowing the next two bytes as well.

While the H-Net does use the main network, it is not able to exactly match the behavior of the original tokenized model. Instead, it is finding slightly different representations of tokens to use in the main stage. Recent work has shown that tokenized language models can process tokenization sequences distinct from the “canonical” greedy tokenization (Vieira et al., 2024), so it is possible our H-Net found another alternate representation that the pretrained model could process.

Remark. One might ask if our distilled model has simply learned to tokenize on spaces (since spaces are always the start of a new token). It has not. Simply tokenizing on spaces would yield a sub-95% boundary prediction accuracy; however, our distilled model gets boundary prediction accuracy above 99.5%. This suggests that the resulting H-Net is able to recognize some, but not all, subword boundaries.

Results. The results from our distillation procedure are shown in Table 7. H-Net is able to approximately match performance across almost all benchmarks; in general, H-Net is not able to replicate the behavior of the tokenized model exactly, so it is not unexpected that the benchmarks are slightly worse. Byte-Latent Transformer (Pagnoni et al., 2024, Table 5) performs a similar experiment, and they see a greater gap among most benchmarks (particularly PiQA, Arc-Easy, and Arc-Challenge) despite using a much larger amount of data (220B *tokens* versus 189B *bytes*); it is possible that this performance difference is due to the fact that a BLT module cannot be supervised to align boundaries the way that end-to-end DC can.

E.3 ABLATION STUDIES

In this section, we provide comprehensive ablations that study individual architectural components and design choices. For ablation studies, we employ H-Net at *Large* scale following the configurations in Table 1, training on 36B tokens randomly sampled from FineWeb-Edu.

E.3.1 IMPORTANCE OF COMPONENTS IN H-NET

Figure 7 illustrates the impact of each architectural component on both model performance and compression ratio (L^{s+1}/L^s) stability during training. We conduct three targeted ablations: (i) using direct upsampling $\tilde{z}_t = \hat{z}_t$ by removing the smoothing module (w/o *smoothing*), (ii) replacing

Figure 8: **Encoder-decoder architecture ablation using raw byte inputs.** Validation BPB (left) and compression ratio L^1/L^0 (right) for H-Net (1-stage) throughout training. We evaluate four encoder-decoder ($\mathcal{E}^0 - \mathcal{D}^0$) configurations: M4-M4, M2T1-T1M2 and T1M2-M2T1, and T2-T2, where M denotes Mamba layers and T denotes Transformer layers.

the routing module that is based on scaled cosine similarity, with direct probability prediction from individual inputs (*w/o cosine routing*), and (iii) skipping the straight-through estimator in equation equation 9 (*w/o STE*).

The smoothing module proves essential for stable training dynamics. Without this module, compression ratios fluctuate severely throughout training, preventing the model from learning consistent chunking boundaries. This instability directly manifests as substantial performance degradation, confirming that smooth gradient flow through the decompression process is crucial for effective end-to-end learning. While less critical than the smoothing module, both the similarity-based routing module and STE operation exhibit importance in training stability and final performance. These components help maintain consistent compression ratios and lead to more interpretable chunking patterns. The similarity-based approach particularly enables the model to identify natural linguistic boundaries (*e.g.*, whitespaces, subwords) by comparing adjacent representations rather than making isolated predictions.

E.3.2 ENCODER & DECODER LAYER SELECTION

The composition of sequence mixing layers in H-Net’s encoders and decoders substantially influences both compression efficiency and modeling capability. We systematically evaluate different architectural combinations using H-Net (1-stage) while fixing all other configurations in Table 1 the same. Four distinct encoder-decoder ($\mathcal{E}^0 - \mathcal{D}^0$) pairings are tested: M4-M4, M2T1-T1M2, T1M2-M2T1, and T2-T2, where M denotes a Mamba-2 layer and T denotes a Transformer layer. These combinations are chosen by keeping the symmetry and replacing each Transformer layer with two Mamba-2 layers, as they contain equivalent parameter counts — $12D^2$ for Transformer ($4D^2$ for the attention mechanism and $8D^2$ for an MLP) vs. $\approx 6D^2$ per Mamba-2 layer (no MLP).

Figure 8 and Figure 9 demonstrate that Mamba layers are essential for effective byte-level sequence processing. For both H-Net and SpaceByte++, **the pure Transformer configuration (T2-T2) exhibits by far the worst performance despite using more FLOPs** (it also down-compresses sequences poorly compared to other configurations, thus using more compute in the main network). This configuration struggles to compress byte sequences effectively, resulting in both computational waste and degraded modeling performance. Performance improves monotonically with increased Mamba layer allocation, achieving optimal results with the highest compression efficiency in the pure Mamba configuration (M4-M4). These findings align with recent research demonstrating SSMs’ advantages over Transformers for fine-grained sequence modeling (Goel et al., 2022; Schiff et al., 2024), as corroborated by MambaByte’s superior performance over LlamaByte in Figure 2.

A natural question arises: does the importance of Mamba layers (i) stem specifically from **processing fine-grained byte inputs**, or (ii) because **they are better for compressing information into the next stage, even at coarser input resolutions?** To investigate these hypotheses, we train a 1-stage H-Net on top of *BPE-tokenized* inputs processed by the GPT-2 tokenizer. We then evaluate six different encoder-decoder combinations.

Figure 9: **SpaceByte++ encoder-decoder architecture ablation using raw byte inputs.** We evaluate four encoder-decoder ($\mathcal{E}^0 - \mathcal{D}^0$) configurations: M4-M4, M2T1-T1M2 and T1M2-M2T1, and T2-T2, where M denotes Mamba layers and T denotes Transformer layers.

Figure 10: **Encoder-decoder architecture ablation using BPE-tokenized inputs.** Assuming that GPT-2 tokenizer serves as the outermost encoder-decoder (*i.e.*, $\mathcal{E}^0 - \mathcal{D}^0$), we evaluate six $\mathcal{E}^1 - \mathcal{D}^1$ combinations: M6-M6, M4T1-T1M4, T1M4-M4T1, M2T2-T2M2, T2M2-M2T2, and T3-T3.

- If hypothesis (i) holds, then we would expect different combinations of Mamba/Transformer layers in the encoder/decoder to have similar performance, since it is known that they have similar performance on standard tokenized language modeling.
- If hypothesis (ii) holds, then we would expect that encoders/decoders using some Mamba layers to be better than pure Transformer layers.

As demonstrated in Figure 10, Mamba layers prove significantly important even when processing BPE tokens rather than raw bytes, providing evidence for the second hypothesis.

We hypothesize that this consistent advantage across input granularities stems from fundamental architectural differences between SSMs and Transformers. While Transformers naturally store complete key-value caches for all positions, SSMs are designed to compress information into fixed-size states. This compression-oriented architecture aligns naturally with our chunking mechanism, which requires aggregating multiple input vectors into consolidated representations. The inherent compression capability of Mamba layers makes them particularly well-suited for the encoder and decoder roles in our hierarchical architecture (Gu, 2025). Based on these findings, we employ Mamba layers throughout all encoders and decoders in our final H-Net configuration, as detailed in Table 1.

These findings transfer to more general hierarchical structures (such as a 2-stage H-Net at the byte level), in which case the outermost encoder and decoder layers (\mathcal{E}^0 and \mathcal{D}^0) serve a similar role as the GPT-2 tokenizer and the inner layers (\mathcal{E}^1 and \mathcal{D}^1) would share similar findings of benefiting from using Mamba layers.

E.3.3 VISUALIZATION OF TOKENIZED POSITIONS

In Figure 11, we provide visualizations of the boundaries dynamically drawn by H-Net (1-stage) and H-Net (2-stage). The visualization offers several insights about how the model decides boundaries.

- *Single-stage behavior:* H-Net (1-stage) predominantly places boundaries at whitespace characters, closely mirroring the delimiters used by SpaceByte. This indicates that H-Net learns that word boundaries represent natural semantic units in text. This convergence to spacelike boundaries, discovered purely through end-to-end training, conversely validates SpaceByte’s strong empirical performance.
- *Hierarchical chunking patterns:* The first stage of H-Net (2-stage) combines spacelike boundaries with first few characters of each word. This strategy helps the model because once the initial positions of a word are identified, the remaining characters become highly predictable.
- *Content-aware chunking:* One might question if H-Net’s chunking decisions follow static rules, such as drawing boundaries only at certain fixed bytes (*e.g.*, whitespace). However,

Figure 11: **Visualization of boundaries drawn by H-Net.** Numbers above indicate byte value, and the colored boxes indicate positions where $b_t = 1$. **(a)** H-Net (1-stage) tends to draw boundaries at spacelike bytes, which is very similar to SpaceByte. **(b)** The boundaries of the first stage in H-Net (2-stage) are focused on spacelike bytes, as well as starting characters of each word. The second stage of H-Net (2-stage) chunks the text into more meaningful units, such as words or numberings (i.e., '(ii)'). We can also observe that it often chunks multiple words that form one semantic group; for example, 'the backbone' and 'such as'.

as shown in the figure, H-Net often merges multiple words and spacelike characters based on content (examples include the backbone, such as, and (ii)).

- *Perturbation behavior:* Figure 12 shows the same example with textual perturbations such as removing whitespaces, which more prominently demonstrates that boundaries drawn by H-Net are based on content and context. In particular, it often still chunks in between semantic words even if the space is removed.

E.3.4 HYBRID ARCHITECTURES FOR THE MAIN NETWORK

We also aimed to understand the role of architecture selection in the main network. To this end, we compared H-Net (2-stage) with an identical model where we replaced the Transformer stack with a hybrid model containing both 20 Mamba-2 and 7 Transformer layers interleaved in a 3:1 ratio. Hybrid architectures have shown promise in isotropic (BPE) models (Waleffe et al., 2024), and similarly perform better for our choice of main network (Figure 13).

Figure 12: Visualization of boundary positions dynamically drawn by H-Net (1-stage). The given text is perturbed that some whitespaces are missing. H-Net detects word boundaries even if they are not explicitly separated by whitespaces.

Figure 13: **Hybrid main network.** Bits-per-byte during the stable phase of training, for H-Net (2-stage) with Transformer main stage and with hybrid main stage. The hybrid main stage scales better, similar to findings for standard token-based language models. This finding suggests that design principles for isotropic (tokenized) models can carry over to choices of the main network.

Figure 14: **Comparison to Mixtures-of-Experts.** Bits-per-byte comparison of H-Net (both 1-stage and 2-stage) to LlamaByte-MoE, which is a FLOPs-matched MoE model that uses a similar number of parameters as H-Net (2-stage). Both H-Nets perform much better than LlamaByte-MoE, implying that H-Net’s capabilities do not just come from sparsity.

E.3.5 COMPARISON TO MIXTURE-OF-EXPERTS

H-Net can be viewed as a form of dynamic sparsity similar to Mixture-of-Experts (MoEs), in that they are able to improve performance by using more parameters, all while keeping the total FLOPs budget constant. We were interested in understanding whether or not its performance benefits were simply due to increasing sparsity. We compare against a sparsified version of LlamaByte (byte-level isotropic Transformer model) at the *Large* scale with a standard Mixture-of-Experts recipe (Fedus et al., 2022) and similar parameter count as ours (Figure 14). While sparsity does improve LlamaByte performance, it is still far worse than either FLOPs-matched H-Net (1-stage) or H-Net (2-stage), even with similar parameter count. We interpret this result as: H-Net not only achieves sparsity, but does so in a more *semantically meaningful manner*, which allows for better scaling than even generic sparse methods.

E.3.6 DIFFERENT DOWNSAMPLING METHODS IN THE CHUNKING LAYER

Given the dynamically determined boundaries from the boundary predictor, we explore various compression strategies in the chunking layer. We compare the default Downsample operation of H-Net

Figure 15: **Compression Methods in chunking layer.** Default: H-Net’s Downsample operation (**left-a**). Max/Mean: Channel-wise max and mean pooling within boundaries (**left-b**). XAttn: Cross-attention pooling within boundaries (**left-c**). +Res: Adds boundary vector residuals to compressed outputs.

MODEL	ARCHITECTURE	PARAMS.	FINAL PPL. ↓
H-Net	M3T1 + T15 + M4	64M	2.705
H-Net	M3T1 + M15 + M4	66M	2.697
H-Net	M4 + T15 + M4	62M	2.722
H-Net	M4 + M15 + M4	64M	2.706
H-Net	M4 + T1M13T1 + M4	64M	2.706

Table 8: **Encoder architecture ablations on HG38.** Switching the encoder architecture from M3T1 to M4 leads to worse performance across the board, though the results are still better than isotropic models (Table 6). Transformers in the encoder network do not appear to be helpful for text (Figure 8), suggesting that this finding may be modality-specific.

(see Section 2.2.1) against three alternatives (see Figure 15-left): channel-wise max/mean pooling and cross-attention, all applied to vectors within the same boundary. Despite its simple design, the default compression in H-Net performs on-par with the other variants as demonstrated in Figure 15-right. This shows that the sequence mixing layers in encoder are trained to implicitly compress necessary context into vectors at boundaries, without explicit compression mechanisms such as pooling or cross-attention.

E.3.7 DNA ARCHITECTURE ABLATIONS

As shown in Figure 5, H-Net (1-stage) with an M3T1 encoder achieves $3.6\times$ the data efficiency of an isotropic architecture. As mentioned in the caption of Table 6, we found that an M3T1 encoder outperformed a pure Mamba-2 M4 encoder, which is demonstrated in Table 8. The results in Figure 8 show that putting a Transformer in the encoder network does not appear to be helpful for text. Thus, it is possible the Transformer being useful is a DNA-specific result.

Interestingly, the loss curve for the M4 encoder with a pure Mamba-2 main network was more unstable. We then also tried replacing the M15 in the main network with a T1M13T1 architecture, inspired by the finding that Transformer layers are good for dealing directly with compressed input (see Figure 10). The new, principled main network architecture improved stability greatly as shown in Figure 16.

Figure 16: **Mamba-2-only encoder loss curves** during the stable phase of training. The pure Mamba-2 model is more unstable with a loss spike. Adding Transformer layers to the main network near the DC modules can alleviate instabilities. H-Net (1-stage, principled) corresponds to the T1M13T1 main network architecture.

2160 **F LLM USAGE FOR PAPER WRITING**
2161

2162 LLMs were used only to detect typos and grammatical errors.
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213