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ABSTRACT

Designing low-latency and high-efficiency hybrid networks for diverse low-cost
commodity edge devices is costly and tedious, thereby leading to the use of
neural architecture search (NAS) for finding optimal architectures. However, the
challenges of unifying NAS for a wide range of edge devices lay in the sheer number
of hardware designs, supported operations, and compilation optimizations. Existing
methods fix the search space of architecture choices (e.g., activation, convolution, or
self-attention) for network stages and estimate the latency with hardware-agnostic
proxies (e.g., FLOPs), which fail to achieve proclaimed latency on a wide variety of
edge devices. We address the issue and propose a unified NAS framework, termed
SCAN-Edge, which jointly searches Self-attention, Convolution, and ActivatioN
to best accommodate the diversity of Edge devices, such as CPU-, GPU-, and
hardware accelerator-based. During the search, SCAN-Edge accurately estimates
the end-to-end latency with pre-built calibrated latency lookup tables and addresses
the resulting large search space with a hardware-aware evolutionary algorithm,
which accelerates the sampling process. Experiments on large-scale datasets show
that, compared with prior art, our hybrid networks match actual MobileNetV2
latency for 224× 224 input resolution on various commodity edge devices.

1 INTRODUCTION

Automatically designing deep learning architectures for specific hardware has been an appealing
research topic and has achieved huge success in convolutional neural networks (CNNs) Yu et al.
(2020); Cai et al. (2020); Stamoulis et al. (2019). Recent approaches Gong & Wang (2022); Tang
et al. (2023) extend previous methods that train a one-shot supernet where they search subnets for
different devices to hybrid networks (convolution and transformer). However, the aforementioned
methods fix the search space of architecture choices (e.g., GELU activation, depth-wise convolution,
or self-attention layers) for network stages, which can be sub-optimal for a certain edge device, since
the optimal search space largely depends on the hardware implementation and compiler optimization.
For example, a memory-bound operator like depthwise convolution is not necessarily efficient nor
optimal for a highly parallelized device Lu et al. (2021); Zhang et al. (2020). Moreover, prior-art
Gong & Wang (2022) approximates model complexity with zero-cost proxies White et al. (2023)
such as floating-point operations (FLOPs) and number of parameters, which do not reflect the actual
latency on target edge devices and fail to generalize to a wide range of edge devices. To illustrate
this argument, in Figure 1 (and in Appendix A), we show various edge devices favor different
operations when actual hardware metrics are considered. As shown in Figure 1, the actual latency
greatly depends on the input feature map size and on the hardware platform. Although unified
feedforward networks (unified FFNs) learn spatial relationships in the feature maps by a depthwise
convolution with fewer parameters and fewer theoretical FLOPs, they are highly memory-bound with
low arithmetic intensity. Despite having more FLOPs and parameters, fused feedforward networks
(fused FFNs) that replace the expansion and depthwise convolutions with a vanilla convolution have
lower latency than MHSA layers on Nano and NCS2.

To address this issue, we propose a unified NAS framework SCAN-Edge that relies on a weight-
sharing supernet for searching hybrid networks targeted for running on edge devices. Our search

1



Published as a conference paper at ICLR 2024
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Figure 1: We profile the latency and zero-cost proxies of EfficientFormerV2 S0 on different devices. (a) shows
the latency of the first stage (FFNs only) with input size (h, w, c)=(56, 56, 28). While unified FFN has fewer
FLOPs, it is bounded by memory and has a similar latency to fused FFN. (b) shows the latency of the last stage
(FFNs and MHSAs) with input size (7, 7, 176). The stage latency is device-dependent and highly different from
the proxies. (c) Our supernet consists of three different blocks with dynamic activation layers. Each MHSA
block is followed by either a unified FFN or a fused FFN. The components, e.g., residual connections, are
simplified to avoid cluttering the figure.

space includes unified feedforward networks (unified FFNs, memory-bound), fused feedforward
networks (fused FFNs, compute-bound), and multi-head self-attention layers (MHSAs), as well as
two activation functions, GELU and ReLU, to best support a wide variety of the commodity devices.
During the search, we incorporate calibrated latency lookup tables (LUTs) profiled on target devices
and a learning-based accuracy predictor. To search for the optimal subnet from this huge search space,
our search algorithm optimizes the search space based on the hardware and the search space quality.
Our experiments show that hybrid networks found by our framework match the actual MobileNetV2
latency while providing better accuracy on a wide variety of edge devices when compared with prior
approaches.

2 ONE-SHOT SUPERNET

Dual feedforward network. We design our supernet with dual FFN to best accommodate various
edge devices. As shown in Figure 1, in each FFN block, we provide two choices for searching:
unified FFN and fused FFN with different kernel sizes (e.g., 3, 5) and expansion ratios (e.g., 2, 3,
4). We use dual feedforward networks that are composed of two sets of separate weight matrices.
Only one set of weight matrices will be activated (Unified or Fused) in a block during training (cf.
in Appendix B). During training, we sample Nffn blocks for every stage Si and randomly switch
between unified FFN and fused FFN. For each FFN block j in stage i, we sample the kernel size Kj

i ,
and expansion ratio Ej

i . In the search stage, we search the number of FFNs Nffn for every stage Si,
and the kernel size Kj

i , as well as the expansion ratios Ej
i . The full search space is shown in Table 5.

We list the detailed training parameters in the Appendix G.

Searching for multi-head self-attention. We follow the settings in Chen et al. (2021a) to design our
MHSA with weight entanglement. We allow the V matrices in each MHSA to have larger dimensions
similar to Graham et al. (2021), Tang et al. (2023). Specifically, we search the expansion ratios Ej

i for
the value matrix in every MHSA block, such that dim(V j

i ) = Nhead×dim(Q-K-V)×Ej
i , where Nhead

and dim(Q-K-V) are fixed. The dimension of the Q and K matrices are fixed to Nhead ×dim(Q-K-V)
so that the attention matrices A = QK⊺ are shared with all subnets. During subnet search, the
algorithm finds the optimal subnet by searching the number and the position of MHSA Nmhsa and
deciding their expansion ratios Ej

i for the V matrices in the last two stages (i.e., i ∈ {3, 4}).

Dynamic activation layers. The advanced activation layers such as GELU Hendrycks & Gimpel
(2016) are not well-supported by edge devices and their compilers, thereby incurring a latency
overhead during inference. We designed our supernet to support ReLU Agarap (2018), one of the
basic activation layers that are friendly to hardware implementations and compiler optimizations.
During training, we randomly switch between two activation layers for FFN and MHSA. Our search
algorithm searches for the best activation combinations to optimize latency and accuracy.
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Figure 2: Naive latency estimations from block-wised latency lookup tables (LUTs) tend to be overestimated
(blue). We additionally profile 10 end-to-end subnet latencies to calibrate the LUTs by linear regression. We
show the high quality of the calibrated latency estimations that fit y = x closely (green).

3 SEARCHING SUBNETS FOR EDGE DEVICES

(a) Sampling time (b) Search space evolution

Figure 3: (a) The subnet sampling time increases expo-
nentially as the latency constraint is reduced. (b) The
search space evolves from blue to red dots, where it
meets the constraints: 5 M parameters and 20 ms la-
tency.

Search Objective. Given a supernet archi-
tecture A = {α1, ..., αn} and its trained
weight W = {w1, ..., wn}, we denote the su-
pernet as f(A,W) and a sampled subnet as
f(αi, wi), where the architecture αi ∈ A
and the weights wi ∈ W are sampled from
the supernet. Our search objective is to find
an optimal architecture α∗ and w∗ such that
α∗, w∗ = argmaxα∈A,w∈W Acc(f(α,w))
that maximizes the accuracy while satisfying a
set of constraints ζi(α,w) < ci, i = 1, 2, ..., n
on a given device. ζi is the predictor function
for the latency or the memory footprint of the
subnet. Since evaluating the accuracy and the
latency of thousands of subnets in the search pro-
cess is not practical, we train a neural network
χ to predict the accuracy and use lookup tables
to estimate the real latency during the search.

Latency Lookup Table with Calibration. We build latency lookup tables (LUTs) for every device
and profile all possible blocks in every stage on the device. We additionally profile the end-to-end
latency of 10 subnets to calibrate the over-estimated latency with linear regression, as shown in Figure
2. During the search process, we estimate the subnet latency by summing the latency of every block
in the lookup table, such that ˜clat. = ζlat.(αi, wi) = κΣn

j=1LUT(αj
i ) + ϵ. κ and ϵ are the parameters

obtained from the linear regression algorithm.

Search space quality estimation. The sampling time increases exponentially when searching
subnets with strict constraints, as shown by the blue line in Figure 3 (a). To address the issue, inspired
by Chen et al. (2021b), we update the search space during the search. The search space evolves if the
quality of the search space Q(A∗

t ) defined by the current top k subnets A∗
t = {α1, ..., αk} is better

than the previous one, such that Q(A∗
t )−Q(A∗

t−1) > δ. The quality of the search space is evaluated
by the average predicted accuracy of the top k subnets, i.e. Q(A∗

t ) = Eα∈A∗
t
[χ(α)].

Hardware-aware Search space evolution. We update the sampling space by the moving average
of the probability: pt+1(X

j
i = x) = λpt(X

j
i = x) + (1 − λ)p∗(Xj

i = x) where λ ∈ [0, 1] is a
scalar, Xj

i is a random variable for a set of architecture choices of block j in stage i, x is a specific
architecture, and pt(X

j
i = x) is the current probability of selecting architecture x for the block. The

p∗ is a probability defined as p∗(Xj
i = x) = Σk

s=1σs(X
j
i = x)/k where σs is an indicator function

for subnet s in top k population. As shown in Figure 3 (b), by changing the sampling probabilities,
the search space evolves from blue to red dots to where it meets the constraints, i.e., red dots are
mostly inside the red dashed rectangle.
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4 MAIN RESULTS

We profile model latency on three different commodity hardware with their compilers using official
benchmark tools: (1) Edge CPU. We get the model latency on ARM Quad-core Cortex-A57 (Cortex).
Models are converted to ONNX onnx.ai format and run with the default compiler and execution
provider in full precision (FP32). (2) Edge GPU. We obtain the latency on Jetson Jetson Nano 4G
(Nano). Models are converted to ONNX format and compiled by the Cuda / TensorRT (TRT) in full
precision (FP32). (3) USB accelerator. We get the latency on Intel Neural Compute Stick 2 (NCS2).
Models are converted to OpenVINO IR (Intermediate Representation) and run with OpenVINO Intel
in half precision (FP16). All models are compiled and profiled with batch size 1.

Figure 4: Our models achieve MobileNet speed among
all hybrid counterparts across platforms while outper-
forming MobileNetV2 in accuracy. We also pivot Once-
for-all (Conv only) in grey crosses for reference.

Table 1: Joint optimization latency and model size
for Cortex-A57 with default compiler, Nano with Ten-
sorRT compiler, and NCS2 with OpenVINO compiler.
The naming follows @{lat}ms@{size}M.

Method Acc.
(%)

Size
(M)

cortex / nano / ncs2
(ms)

MBV2 72.2 3.5 95.5 / 14.2 / 20.9
EFormerV2 S0 75.7 3.6 190.3 / 21.4 / 47.0

Cortex-A57

@150ms 75.7 9.7 153.0 / - / -
@150ms@5M 75.5 5.0 152.4 / - / -

Nano TensorRT

@20ms 76.1 13.5 - / 22.5 / -
@20ms@5M 75.9 5.0 - / 22.2 / -

NCS2 OpenVINO

@45ms 78.6 47.9 - / - / 47.5
@45ms@5M 75.7 5.0 - / - / 43.0

4.1 IMAGE CLASSIFICATION WITH MOBILENET SPEED

In this experiment, we optimize the latency with 224× 224 input resolution that is widely used not
only in image classification but also in object detection and segmentation. We perform the search for
each platform and compiler with our trained supernet, accuracy predictor, and pre-built latency tables.
The details of searched architectures are listed in Appendix I. The weights of the searched subnets
are inherited from the supernet and then fine-tuned on the ImageNet with 150 additional epochs. We
test the subnet and report accuracy on the validation set. To get the latency, models are compiled with
the compilers (e.g., TensorRT and OpenVINO) and profiled with a batch size of 1 with 224× 224
resolution input †.

We show the results in Figure 4 and list the details of the comparison in Table 6. Once-for-all (OfA,
Conv only) is also shown in Table 6 and Figure 4 for reference. Prior-art Mehta & Rastegari (2021);
Pan et al. (2022); Maaz et al. (2022); Li et al. (2023) fails to reach MobileNetV2 latency with on-par
accuracy on the three hardware platforms*, although they have fewer FLOPs (EdgeNeXt) or smaller
model size (MobileViTs, EdgeNeXt) than MobileNetV2. Although ElasticViT T1‡ Tang et al. (2023)
has the lowest latency on Cortex-A57, it uses a search space specific for edge CPU (e.g., MobilenetV2
and V3 block) and thereby fails to reach MobilenetV2 on other computation platforms. Our hybrid
models outperform MobileNetV2 in accuracy (74% vs. 72.2% on Cortex-A57) while maintaining
the same level of inference latency (98.6 ms vs. 95.5 ms on Cortex-A57).

† MobileViTs Mehta & Rastegari (2021), EdgeNeXt Maaz et al. (2022) are trained and tested with 256×256
according to their original implementation

* MobileViTs Mehta & Rastegari (2021), EdgeNeXt Maaz et al. (2022), EdgeViT Pan et al. (2022), ElasticViT
Tang et al. (2023) fail to compile on Intel NCS2 due to unsupported operators.

‡We evaluate the accuracy and latency with 224× 224 inputs. The original implementation is 128× 128.
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4.2 JOINT OPTIMIZATION OF LATENCY AND MODEL SIZE

We experiment with joint optimization on ARM Cortex-A57 and Nvidia Jetson Nano platforms by
constraining the search algorithm with both latency and number of parameters. In the experiment,
we use ONNX default compiler for Cortex-A57 and TensorRT for Jetson Nano. As shown in Figure
3 (b), our search space evolves to where it meets both constraints. The searched models follow the
naming @{lat}ms@{size}M, where lat and size are the search constraints. As shown in Table 1, our
framework searches optimal models with the given constraints for Cortex-A57 and Nano with little
accuracy loss (0.2%).

5 DOWNSTREAM TASKS VIA TRANSFER LEARNING

Table 2: Our models have higher accuracy in the down-
stream classification tasks and better (lower) latency on
Cortex-A57.

Method CF10 CF100 Food Pets

MobileNetV2 91.6 72.1 71.2 83.2
MobileViT XXS† 93.1 71.2 73.1 80.7
EdgeNeXt XXS† 95.7 76.2 80.0 84.2

cortex@95ms 97.1 80.9 82.7 86.0
cortex@150ms 97.3 81.1 81.9 86.9

We perform transfer learning from the ImageNet
pre-trained weight to various downstream tasks:
CIFAR10, CIFAR100 Krizhevsky et al. (2009),
Food Bossard et al. (2014), and Pets Parkhi et al.
(2012). All models are trained for 50 epochs
with downstream datasets on an A500 GPU and
set the batch size to 256 with a 10−3 base learn-
ing rate scaled by the batch size. The results are
shown in Table 2. In general, our models outper-
form in accuracy their counterparts with similar
latency in the downstream classification tasks
on Cortex-A57. Moreover, our models match
the MobileNetV2 latency on Cortex-A57 CPU
(cf. Table 6).

6 OBJECT DETECTION

Table 3: The SSDLite with our searched model reaches
the highest mAP and lowest end-to-end latency on Nano
among all hybrid alternatives on COCO2017 object de-
tection dataset.

SSDLite Backbone mAP Lat. (ms)

MobileNetV2 20.5 54.4
MobileViT XXS 19.1 65.4
EdgeNeXt XXS 19.3 73.3

Nano_trt@13ms (Ours) 22 60.6

We integrate our searched subnets as the back-
bone to SSDLite Sandler et al. (2018). We
train the SSDLite with different backbones on
COCO2017 dataset Lin et al. (2014) by using
the MMDetection library OpenMMLab (b). We
load the ImageNet pre-trained weights of each
backbone, and train the detection models with
a resolution of 320 × 320. The learning rates
are tuned for each model. We deploy models on
the Nvidia Jetson Nano 4G by using the MMDe-
ploy library OpenMMLab (a) and profile the
latency with Nvidia TensorRT profiling tools.
As shown in Table 3, our model outperforms
MobileViT XXS and EdgeNeXt XXS in both
mAP and latency.

7 CONCLUSION

We propose a unified NAS framework that searches for hybrid networks with MobileNetV2-speed for
low-cost commodity edge devices. Our framework incorporates different device-friendly operations
for diverse edge devices with different hardware designs. To manage the large search space, we
propose a hardware-aware evolutionary search to accelerate the process. Our experiments show our
hybrid models match MobileNetV2-speed on Edge CPUs, Edge GPUs, and USB accelerators with
better accuracy than MobileNetV2. Our framework is effective, generalizes to other vision tasks, and
is applicable to various low-cost commodity devices.
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A PRELIMINARY STUDY

In our preliminary study, we use EfficientFormerV2 S0 Li et al. (2023) as our base architecture and
experiment with different FFNs, activations, and self-attention ratios (expansion of V dimension). The
feedforward networks (convolution only) have the same structure as MobilenetV2 blocks Sandler et al.
(2018) except for using GELU activation and bias in convolution layers. We follow EfficientFormerV2
and use the term, feedforward network, for convolution layers.

Zero-cost proxies vs. Latency profiling. Zero-cost proxies such as the number of parameters and
floating-point operations (FLOPs) that estimate the model complexity and latency are widely used
in NAS due to their immediate availability. However, FLOPs do not accurately capture the actual
edge device latency due to the intricacies introduced by the hardware implementation and compiler
optimization. We show, in Figure 1, the normalized latency of different operators on different devices.
Fused FFNs, despite having more FLOPs and parameters, have lower latency than MHSA layers on
Nano and NCS2. Only ARM Cortex-A57 CPU follows the zero-cost proxies. Therefore, methods
that estimate model complexity with zero-cost proxies fail to generalize to a wide range of edge
devices.

Unified FFN vs. Fused FFN. Although unified FFNs learn spatial relationships in the feature
maps by a depthwise convolution with fewer parameters and fewer theoretical FLOPs, they are
highly memory-bound with low arithmetic intensity. On the other hand, the fused FFNs use vanilla
convolutions that are compute-bound, as shown in Figure 1. The latency greatly depends on the input
feature map size and on the hardware platform. Therefore, prior work Akin et al. (2022); Tan & Le
(2021) replaces early stages with fused convolutions. In our preliminary study, the fused FFNs not
only improve the accuracy by 1.4% as shown in Table 4 but are also well supported by some edge
devices and are more suited for the early network stages. As Figure 1 shows, NCS2 favors fused
FFNs over unified FFNs. We include two operators in our supernet to support more subnet choices
for different edge devices.

Feedforward network vs. Multi-head self-attention layer. MHSA layers are the major bottleneck
in improving latency and are not well supported by most edge devices (cf. Figure 1). However,
MHSAs learn the long-range dependencies in the feature map which greatly boosts performance.
As shown in Table 4, reducing the value ratio from 4 to 2 in the self-attention layers (dim(V ) =
dim(Input)× ratio) hurts the accuracy by 2.4%. Our framework searches the number and the position
of MHSA layers along with their expansion ratios for the value matrices. For a device that is not
suitable for MHSA, our framework reduces the number of MHSA layers in the architecture. In
contrast, if a compiler or implementation improves the support on the device Dao et al. (2022);
Dao (2023), our search adaptively increases the number of MHSA layers in the model to boost the
accuracy under the same latency constraint.

Table 4: We evaluate the accuracy (Acc.) on ImageNet 1k with different variants of EfficientFormerV2 S0 and
show end-to-end latency (ms) on different devices in the last column.

FFN Act. V ratio Acc. (%) Cortext / Nano TRT / NCS2 (ms)

Unified GELU 4 75.7 190.3 / 21.4 / 47.0

Unified GELU 2 73.3 168.7 / 18.1 / 42.1

Unified ReLU 4 74.4 105.6 / 18.3 / 30.6

Fused GELU 4 77.1 237.6 / 26.2 / 36.6

Fused ReLU 4 76.6 187.7 / 22.3 / 26.6

GELU vs. ReLU. While GELU activation Hendrycks & Gimpel (2016) improves accuracy, it
is often not well supported by low-cost edge devices. In contrast, most devices and compilers
support conv-relu fusion which provides optimal latency onnx.ai; Intel. As shown in Table 4, the
latency is greatly improved by 3.1ms (14.4%) by replacing GELU with ReLU Agarap (2018) in the
EfficientFormerv2 S0. We include GELU and ReLU as the activation choices for different layers
in our supernet. Our framework searches for the optimal activation combinations in the model
architectures.
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B DUAL vs. ENTANGLED FFNS

We show two different designs of the supernet to accommodate two types of FFN in Figure 5. The
dual feedforward networks are composed of two sets of separated weight matrices, while entangled
feedforward networks share the expansion and projection weight matrices. Only one type of FFN
will be activated (unified or fused) in a block during the training time. We empirically find the dual
FFN converges slightly better than entangled FFN and has higher accuracy of the subnets, as shown
in Figure 6. We use dual FFN in the supernet for all experiments.

Figure 5: The supernet design of (a) Entangled FFN and (b)
Dual FFN.

(a) Training loss

(b) Validation accuracy

Figure 6: Dual vs. Entangled FFNs.

C ACCURACY PREDICTOR

Figure 7: The quality of the accuracy predictor

Since evaluating thousands of subnets on the val-
idation set in the search process is not practical,
we train a neural network χ to predict the accu-
racy, similar to Cai et al. (2020). Every block
is encoded with a 24-bit length binary string
where stages (4-bit), in/output width (8-bit), ex-
pansion ratios (6-bit), FFN types (2-bit), kernel
sizes (2-bit), and activation functions (2-bit) are
one-hot encoded. The binary string is stacked
as a matrix n × 24 and padded to 44 rows for
a n-block subnet resulting in a 44× 24 matrix.
The network χ is built with a sequence of 1-D
convolution followed by linear layers and it out-
puts a scalar accuracy prediction. We train the
accuracy predictor using L1 loss, such that

argmin
χ

|χ(αi, wi)− Acc(αi, wi)| .

We collect 6k subnet-accuracy pairs on ImageNet Deng et al. (2009) validation set, where the accuracy
is evaluated with the weights directly inherited from the supernet (without fine-tuning). The collected
pairs are divided into 5k for training and 1k for validation. Our goal of the accuracy predictor is to
preserve the accuracy rank of the subnets. Therefore, we use the best predictor that has the highest
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Spearman’s rank correlation as Lee et al. (2021) and Dudziak et al. (2020). Our accuracy predictor is
simple yet effective and highly preserves the ranking order, as shown in Figure 7. We use the trained
accuracy predictor as the proxy, and therefore, our objective becomes

α∗, w∗ = argmax
α∈A,w∈W

χ(αi, wi)

s.t. ζi(α,w) < ci, i = 1, 2, ..., n .

We note that the accuracy predictor is device-agnostic, and can be reused in the search process for all
devices once it is trained.

D COMPARING LUTS WITH ZERO-COST PROXIES

We compare our method with zero-cost proxies in Figure 8. The results show that the zero-cost
proxies such as the number of floating point operations (FLOPs) and the number of parameters do
not reflect the real latency on diverse devices. We profile all possible blocks on the devices and build
latency lookup tables (LUTs). However, LUTs overestimate the latency estimation since the devices
usually cache the intermediate feature maps. To this end, we additionally profile 10 random subnets
to calibrate our latency LUTs. The resulting latency estimations from the calibrated lookup tables not
only highly preserve the order of the latency (high Spearman’s rank correlation), but also accurately
estimate the subnet on-device latency (The green dots fit y = x line closely).

Figure 8: We compare the latency estimations with lookup tables (LUTs), number of floating point operations
(FLOPs), and number of parameters (Params). We calibrate the LUTs with an additional 10 subnet end-to-end
latency (Green points). Best viewed in color.

E SUPERNET TRAINING DETAILS

We apply the sandwich rule to train our supernet similar to Yu & Huang (2019) which samples
the smallest subnet, the biggest (full) subnet, and M randomly sampled subnets (M = 2 in our
experiments). Additionally, we first sample the FFN structures for the largest and smallest subnets
and use the sampled FFN in all blocks. For the M randomly sampled subnets, we randomize the
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FFN selection in every block. The smallest subnet is the one with the smallest width, depth, and
kernel size in FFNs, and not containing MHSAs in the last two layers. Only MHSA downsampling
is used in the third embedding layer in the smallest subnet. In contrast, the largest subnet has the
largest width, depth, and kernel size, and MHSAs are applied before all the FFNs in layers S3 and
S4. The FNNs and MHSAs are dropped by drop path Huang et al. (2016) with probabilities. We
scale the FFN dropping probabilities according to the stage depth so that the last FFN in the stage has
the highest probability of being dropped. All MHSAs are dropped with a constant probability so that
the number as well as the position of MHSAs in the stage can be searched.

F SEARCH SPACE

We construct our supernet based on EfficientFormerV2 backbone. The supernet consists of four
stages and three embedding layers. The embedding layers adjust the model width, i.e., the channel
dimension Ci, for the next stage. Each block in the first two stages, S1 and S2, only consists of FFNs.
Every block in the last two stages, S3 and S4, consists of a MHSA followed by a FFN. Our search
algorithm determines the width Ci, the number of FFN blocks Nffn in every stage Si, the number of
MHSA Nmhsa in the last two stages for the network, and the expansion ratios Ej

i (FFN and MHSA)
and kernel size Kj

i (FFN only) for every block j in stage i. The full search space is shown in Table 5.

Table 5: Full search space. Our search space includes fused FFN (Fused), Unified FFN (unified), and Multi-head
self-attention (MHSA). The third embedding layer (Embed 3) is an MHSA down-sampling layer (DS). We
search the number of blocks in each stage (Nffn and Nmhsa) as well as the activation (GELU (G) or ReLU (R)),
expansion ration Ej

i , and kernel size Kj
i in each block. We abbreviate output resolution (Res.), and output

channel width (Ch.). The channel width is represented in (min, max, step size).

Stage Type Res. Ch. (Ci) Ej
i Kj

i Act. #n Depth

Stem Conv 1/4 C1 = (24, 36, 4) - 3 {G, R} 8 -

Stage 1 {Fused, Unified} 1/4 C1 {2, 3, 4} {3, 5} {G, R} 96 Nffn = {2, 3}

Embed 1 Conv 1/8 C2 = (40, 64, 8) - 3 - 16 -

Stage 2 {Fused, Unfied} 1/8 C2 {2, 3, 4} {3, 5} {G, R} 96 Nffn = {2, 3}

Embed 2 Conv 1/16 C3 = (96, 132, 12) - 3 - 16 -

Stage 3 MHSA 1/16 C3 {2, 3, 4} - {G, R} 24 Nmhsa = {n|0 ≤ n ≤ Nffn}

{Fused, Unified} 1/16 C3 {2, 3, 4} {3, 5} {G, R} 96 Nffn = {6, 7, 8, 9}

Embed 3 MHSA DS 1/32 C4 = (176, 248, 24) {2, 3, 4} - {G, R} 96 -

Stage 4 MHSA 1/32 C4 {2, 3, 4} - {G, R} 24 Nmhsa = {n|0 ≤ n ≤ Nffn}

{Fused, Unified} 1/32 C4 {2, 3, 4} {3, 5} {G, R} 96 Nffn = {4, 5, 6}

G EXPERIMENTAL SETUP

We follow the setup of Li et al. (2023). Our models are implemented with PyTorch Paszke et al.
(2019) framework and Timm library Huggingface. We use 24 A5000 GPUs to train the supernet
for 300 epochs with a total batch size of 3072 and use 8 A5000 GPUs to fine-tune the searched
subnets for 150 epochs with a total batch size of 2048 on ImageNet 1k training set Deng et al. (2009).
Models are validated on the ImageNet validation set. Both training and validation are using the
standard resolution 224× 224. We also use AdamW optimizer Loshchilov & Hutter (2019), set the
initial learning rate to 10−3 × batch size/1024 to train the supernet, and use 10−4 × batch size/1024
to fine-tune the subnets. The cosine decay is applied in both training and fine-tuning. RegNetY-
16GF Radosavovic et al. (2020) with 82.9% top-1 accuracy are used in supernet training and subnet
fine-tuning as the teacher model for hard distillation, as Li et al. (2023) and Touvron et al. (2021).

H DETAILS OF THE COMPARISON

We show the results in Figure 4 and list the details of the comparison in Table 6. The details
of searched architectures are listed in Appendix I. Once-for-all (OfA, Conv only) is also shown
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in Table 6 and Figure 4 for reference. The models searched from our framework are named
ours_{platform}_{compiler}@{lat}ms where lat is the search latency constraint. For Cortex-A57,
we use only the ONNX default compiler, so we omit {compiler} in Table 6. Our hybrid models
outperform MobileNetV2 in accuracy while maintaining the same level of inference latency. Hybrid
model counterparts, while having lower FLOPs or model size, fail to achieve MobileNetV2 latency.

Table 6: The table shows the details of the model comparison. The naming follows
ours_{platform}_{compiler}@{lat}ms. We also pivot Once-for-all (OfA, Conv only) for reference. We
abbreviate the types of model as Hybrid (H) and Convolution (C).

Method Type Acc.
(%)

FLOPs
(M)

Param.
(M)

Cortex
(ms)

Nano TRT / Cuda
(ms)

NCS2
(ms)

MobileNetV2 C 72.2 307.5 3.5 95.5 14.2 / 23.7 20.9

ofa-pixel1-40 C 74.9 259.0 6.0 120.6 - / - -
ofa-pixel2-35 C 73.4 224.5 5.1 117.5 - / - -
ofa-tx2-47 C 72.9 409.5 4.9 - 16.4 / 26.8 22.1
ofa-tx2-96 C 75.8 546.7 6.2 - 23.0 / 37.3 30.4

MobileViT-XXS† H 69 414.3 1.3 141.7 17.6 / 44.0 -*

EdgeNeXt-XXS† H 71.2 259.3 1.3 118.5 26.5 / 64.4 -*

EdgeViT-XXS H 74.4 555.2 4.1 162.7 31.4 / 67.4 -*

ElasticViT T1@224‡ H 75.8 205.1 8.9 75.4 17.5 / 30.1 -*

ElasticViT S2 H 78.7 318.5 11.0 124.4 25.0 / 51.3 -*

EfficentformerV2 S0 H 75.7 402.9 3.6 190.3 21.4 / 29.0 47.0

ours_cortex@95ms H 74 441.3 4.6 98.6 - / - -
ours_cortex@150ms H 75.7 790.8 9.7 153.0 - / - -
ours_nano_trt@13ms H 73.4 806.4 7.9 - 14.7 / - -
ours_nano_trt@20ms H 76.1 1437.4 13.5 - 22.5 / - -
ours_nano_cuda@25ms H 75.6 963.0 7.0 - - / 24.3 -
ours_nano_cuda@30ms H 76.3 1061.6 8.8 - - / 28.8 -
ours_ncs2_ov@20ms H 75.4 1814.9 19.5 - - / - 19.2
ours_ncs2_ov@30ms H 77.3 2921.2 36.8 - - / - 29.2

I SEARCHED ARCHITECTURE DETAILS

We show the architecture details of searched subnets in Table 7 and Table 8. Our search algorithm
tends to adopt depthwise convolutions (unified FFNs) with large-size kernels (e.g., 5) and MHSA for
ARM Cortex-A57. In contrast, our search algorithm is in favor of vanilla convolutions (fused FFNs)
with small-size kernels (e.g., 3) over depthwise convolutions (unified FFNs) and MHSA for Nvidia
Jetson Nano 4G with TensorRT compiler. GELU and MHSA which boost accuracy are placed in the
model closer to the output with minimal latency impact. The result shows that our search optimizes
the model architecture for different hardware implementations and characteristics. Therefore, we
expect that our search algorithm can propose more competitive model architectures once the MHSA
and GELU are optimized for the target hardware.
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Table 7: Architecture details of searched subnets on ARM Cortex-A57. We abbreviate output resolution (Res.),
output channel width (Ch.), fused FFNs (Fused), Unified FFNs (unified), and Multi-head self-attention layers
(MHSA), embedding layers (Embed 3), activation layers (A), GELU (G), ReLU (R), expansion ratio (E), and
kernel size (K) in the Table.

Cortex@150ms Cortex@150ms_@5M Cortex@95ms

Stage Res. Ch. Type E / K / A Ch. Type E / K / A Ch. Type E / K / A
Conv 1/4 32 Conv - / 3 / R 32 Conv - / 3 / R 24 Conv - / 3 / R

Stage 1 1/4 32 Fused 2 / 3 / R 32 Fused 3 / 3 / R 24 Fused 2 / 3 / R
Fused 2 / 3 / R Fused 3 / 3 / R Fused 2 / 3 / R

Embed 1 1/8 40 Conv - 64 Conv - 40 Conv -

Stage 2 1/8 40 Fused 2 / 3 / R 64 Unified 2 / 3 / R 40 Unified 2 / 3 / R
Fused 2 / 3 / R Fused 2 / 3 / R Fused 2 / 3 / R

Embed 2 1/16 96 Conv - 96 Conv - 96 Conv -

Stage 3 1/16 96

Unified 3 / 3 / R

96

Unified 3 / 5 / R

96

Unified 3 / 3 / R
MHSA 2 / - / R MHSA 2 / - / R MHSA 2 / - / R
Unified 3 / 3 / R Unified 3 / 5 / R Unified 3 / 3 / R
MHSA 2 / - / R MHSA 2 / - / R MHSA 2 / - / R
Fused 2 / 3 / R Unified 3 / 5 / R Unified 3 / 3 / R

MHSA 2 / - / R MHSA 2 / - / R MHSA 2 / - / R
Unified 4 / 3 / R Unified 4 / 5 / R Unified 4 / 3 / R
Unified 2 / 5 / R Unified 4 / 5 / R Unified 2 / 3 / R
MHSA 2 / - / R MHSA 2 / - / R MHSA 2 / - / R
Unified 3 / 3 / R Unified 3 / 5 / R Unified 3 / 3 / R

Embed 3 1/32 248 MHSA DS 4 / - / R 224 MHSA DS 4 / - / R 224 MHSA DS 2 / - / R

Stage 4 1/32 248

MHSA 2 / - / R

224

MHSA 2 / - / G

224

MHSA 2 / - / R
Fused 3 / 3 / R Unified 3 / 5 / G Unified 3 / 3 / R

MHSA 2 / - / G MHSA 2 / - / G MHSA 2 / - / R
Fused 3 / 3 / G Unified 3 / 5 / G Unified 3 / 3 / R

MHSA 2 / - / R MHSA 2 / - / R MHSA 2 / - / R
Unified 3 / 3 / R Unified 4 / 5 / R Unified 3 / 3 / R
MHSA 2 / - / G MHSA 2 / - / R MHSA 2 / - / R
Fused 3 / 3 / G Unified 3 / 5 / R Unified 3 / 3 / R

Table 8: Architecture details of searched subnets on Nano with TensorRT. We abbreviate output resolution
(Res.), output channel width (Ch.), fused FFNs (Fused), Unified FFNs (unified), and Multi-head self-attention
layers (MHSA), embedding layers (Embed 3), activation layers (A), GELU (G), ReLU (R), expansion ratio (E),
and kernel size (K) in the Table.

Nano_tensorrt_@20ms Nano_tensorrt_@20ms_@5M Nano_tensorrt_@13ms

Stage Res. Ch. Type E / K / A Ch. Type E / K / A Ch. Type E / K / A
Conv 1/4 32 Conv - / 3 / R 32 Conv - / 3 / R 32 Conv - / 3 / R

Stage 1 1/4 32 Fused 3 / 3 / R 32 Fused 4 / 3 / G 32 Unified 2 / 3 / R
Fused 3 / 3 / R Fused 3 / 3 / R Fused 3 / 3 / R

Embed 1 1/8 64 Conv - 64 Conv - 64 Conv -

Stage 2 1/8 64 Fused 3 / 3 / G 64 Fused 2 / 3 / G 64 Unified 2 / 3 / R
Fused 3 / 3 / G Fused 2 / 3 / G Unified 2 / 3 / R

Embed 2 1/16 96 Conv - 120 Conv - 96 Conv -

Stage 3 1/16 96

Fused 3 / 3 / R

120

Unified 3 / 5 / R

96

Fused 3 / 3 / R
Fused 3 / 3 / R Unified 3 / 5 / R Fused 3 / 3 / R
Fused 3 / 3 / R MHSA 2 / - / G Fused 3 / 3 / R
Fused 3 / 3 / R Unified 2 / 5 / G Fused 3 / 3 / R
Fused 3 / 3 / G Unified 2 / 5 / R Fused 3 / 3 / G
Fused 3 / 3 / G MHSA 2 / - / G Fused 3 / 3 / G
Fused 3 / 3 / R Unified 3 / 5 / G

N/AFused 3 / 3 / G Unified 3 / 5 / R
Fused 3 / 3 / G N/A

Embed 3 1/32 224 MHSA DS 2 / - / G 248 MHSA DS 2 / - / R 224 MHSA DS 2 / - / R

Stage 4 1/32 224

Fused 3 / 3 / G

248

MHSA 2 / - / G

224

MHSA 2 / - / R
MHSA 2 / - / G Unified 3 / 5 / G Fused 2 / 3 / R
Fused 3 / 3 / G MHSA 2 / - / G Fused 2 / 3 / G
Fused 3 / 3 / G Unified 3 / 5 / G MHSA 2 / - / G
Fused 3 / 3 / G Unified 3 / 5 / G Fused 3 / 3 / G
Fused 3 / 3 / R MHSA 2 / - / R Fused 2 / 3 / G

MHSA 2 / - / G Unified 3 / 5 / R N/AFused 3 / 3 / G N/A
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