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Abstract

Classical learning theory focuses on supervised learning of functions via empirical
risk minimization where labeled examples for a particular task are represented
by the data distribution experienced by the model during training. Recently, in-
context learning emerged as a paradigm shift in large pre-trained models. When
conditioned with few labeled examples of potentially unseen tasks in the training,
the model infers the task at hand and makes predictions on new points. Learning
to learn in-context on the other hand, aims at training models in a meta-learning
setup that generalize to new unseen tasks from only few shots of labeled examples.
We present in this paper a statistical learning framework for the problem of in-
context meta learning and define a function class that enables it. The meta-learner
is abstracted as a function defined on the cross product of the probability space
(representing “context”) and the data space. The data distribution is sampled from
a “meta distribution” on tasks. Thanks to the regularity we assume on the function
class in the Wasserstein geometry, we leverage tools from optimal transport in
order to study the generalization of the meta learner to unseen tasks. Finally, we
show that encoder transformers exhibit this type of regularity and leverage our
theory to analyze their generalization properties.

1 Introduction

Since their introduction transformer models [Vaswani et al., 2017] have reshaped the AI landscape and
unveiled the power of Large Language Models (LLMs)[Bommasani et al., 2021]. Large Languages
models such as GPT-J [Lieber et al., 2021], GPT2 [Radford et al., 2019], GPT3 [Brown et al., 2020],
are generative pretrained transformers that are trained on massive text data on the web scale. The
training objective of these models is next token prediction given previous tokens. Later these models
were extended to the multi-modal setting thanks to massive interleaved text and image datasets
for example the open source dataset [Zhu et al., 2023]. Such massive heterogeneous diverse and
multimodal datasets enabled training Flamingo [Alayrac et al., 2022], open Flamingo [Awadalla et al.,
2023] and GPT4 [OpenAI, 2023].

Brown et al. [2020] showed the emergence of in-context learning in such models. In this new
paradigm, LLMs learn a new task without fine-tuning or learning by simply conditioning on a prompt
containing a sequence of few shots of input/output pairs. For example for a sentiment analysis task,
independent “in-context examples” are concatenated (e.g. “joyful positive, bad negative”) with a test
example (“happy”), to form a prompt on which an LLM is conditioned and the next token predicted
by the LLM has high probability on the correct answer that is in this example “positive”. Multiple
works have been devoted to explaining this emergent behavior in decoder transformers and large
LLMs, for example [Xie et al., 2022] explained it as an implicit bayesian inference performed by the
LLM in discovering the latent concept of the task at hand, under the assumption of a Hidden Markov
Model (HMM); [Hahn and Goyal, 2023] explained it as an implicit induction and [Wies et al., 2023]
studied the PAC learnability of in-context learning.
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On the other hand, meta in-context learning and in-context tuning were recently introduced for
decoder transformers in [Chen et al., 2021] [Min et al., 2022] where a single model is conditioned
on in-context examples coming from different tasks and is trained to perform prediction on a test
example. In a sense the model learns to learn in-context and the task is only inferred from the few
shots presented to the model. A parallel line of works [Kirsch et al., 2022] [Müller et al., 2022]
demonstrated that encoder transformers can be general purpose in-context meta learners and can do
implicit bayesian inference. In this work we answer the following questions: How do we formalize
the problem of learning to learn in-context ? What kind of regularity on the function class considered
in meta-learning will allow an interpretable control of the generalization of in-context meta-learning
to unseen tasks?

The main contributions of this paper are: (1) We introduce in Section 3 an idealized statistical
learning framework for learning to learn in-context and relax it in Section 4 to the few shot setting
(2) We show that under regularity in the Wasserstein geometry of in-context learners, we can bound
the generalization of meta in-context learning with tools from optimal transport. Interestingly, the
batched Wasserstein introduced for computational reasons in [Sommerfeld et al., 2019] [Fatras et al.,
2020] [Fatras et al., 2021] appears in our bounds. (3) We show in Section 5 that encoder transformers
satisfy this regularity and leverage our framework to analyze their in-context meta-learning, and
their generalization properties. Our results are in line with empirical findings in [Kirsch et al., 2022]
[Müller et al., 2022].

2 Preliminaries on Optimal Transport

Let (X , dX ), and (Y, dY) be two compact metric spaces of finite diameters diam(X ) and diam(Y)
respectively. We assume X ⊂ Rdx and Y ⊂ Rdy . Let Z = X × Y , for z, z′ ∈ Z , z = (x, y) and

z′ = (x′, y′) define dZ(z, z′) =
√
d2X (x, x′) + d2Y(y, y

′) . (Z, dZ) is a compact metric space. We
denote P(Z) the set of Borel probability measures on Z . We endow P(Z) with the Wasserstein
distance of order 1 between two measures ρ, ρ′ ∈ P(Z) defined on the metric space (Z, dZ) as
follows: W1(ρ, ρ

′) = minγ∈Γ(ρ,ρ′)

∫
Z×Z dZ(z, z

′)dγ(z, z′), where the minimum is taken over the
set Γ(ρ, ρ′) of all couplings γ between ρ and ρ′. We equip P(Z) with the topology induced by W1

and denote P(P(Z)) the set of corresponding Borel probability measures on P(Z). A measure
P ∈ P(P(Z)) is a distribution of distributions, i.e ρ ∼ P is a Borel probability measure on P(Z).

3 Learning to Learn In-Context: Idealized Setting

In learning to learn in-context, or in general in meta learning we assume having access to multiple
datasets defined on the same domain and multiple tasks that we want a single model f to solve. The
task at hand will be inferred by the model f from only seeing few shots from the task it is asked to
perform predictions on. These few shots are often referred to as demonstrations or context. This
setup is different from the classical multi-task setup where a different model or a fine-tuned model is
dedicated to each task. A single model that has the capacity to perform multiple tasks at once and to
do in-context learning is referred to as a general purpose meta-learner [Kirsch et al., 2022].

Formally speaking, given k pairs of inputs/label examples of an eventually unseen task in meta-
training zi = (xi, yi) ∈ Z, i = 1 . . . k, the meta model f is asked to predict the label y ∈ Y of a
point x ∈ X . Let ρ̂k = 1

k

∑k
i=1 δzi , we formalize this problem as finding a predictor f , defined as

follows :

f : P(Z)×X −→ Y
(ρ, x) 7−→ f(ρ, x),

and the goal of the meta-training is to ensure that f(ρ̂k, x) ≈ y, even if ρ̂k does not correspond to
a task seen in training. Let P ∈ P(P(Z)), be a mother distribution of tasks. Each measure ρ ∼ P
defines a task on Z = X × Y . In practice these tasks correspond to different datasets whose input
domain is a subset of X and label or structured output domain is a subset of Y . Let V be a loss that
measures the fitness of the prediction of the meta-model f , V : Y × Y −→ R+.
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We are now ready to define the expected risk for learning to learn in-context :

EV
P (f) =

∫
P(Z)

∫
Z
V (y, f(ρ, x))dρ(x, y)dP(ρ). (1)

This expected risk is to be contrasted with the classicial expected risk in learning theory [Vapnik,
1995]:

EV
ρ (h) =

∫
Z
V (y, h(x))dρ(x, y) (2)

where a specialized function h is associated with each learning task ρ. A different setup from ours
is the setup of multi-task learning, where we are given T tasks and the goal is to learn specialized
functions ht ◦ g that share a common representation g (see for e.g [Maurer et al., 2016] and references
therein ):

EV
ρ (h ◦ g) = 1

T

T∑
t=1

∫
Z
V (y, ht ◦ g(x))dρt(x, y) (3)

And finally, we emphasize that our setup is also different from the distribution regression [Szabó et al.,
2016, Poczos et al., 2013, Christmann and Steinwart, 2010] setup that learns function f : P(X ) → Y ,
given a distribution P ∈ P(P(X )× Y):

EV
P (f) =

∫
P(X )×Y

V (y, f(ρ))dP(ρ, y). (4)

We refer to the new risk we define in Equation (1), as the lifted expected risk as it is lifted to the space
of distribution of distributions, and a single meta model f learns all tasks at once. The introduction of
the lifted risk alleviates the shortcomings of classical learning theory expected risk in i) dealing with
heterogeneous data ii) allowing a single model to learn multiple tasks. For dY being the euclidean
distance, consider V (y, y′) = ||y−y′||221, we see that the optimal function minimizing the objective in
(1) (without any restriction on the function class except integrability

∫
|f(x, ρ)|2dρX (x)dP(ρ) <∞,

where ρX is the marginalization on y of ρ ) is the regression function

f∗(ρ, x) =

∫
ydρ(y|x), ρXP almost surely, (5)

In order to estimate the regression function, a model needs to infer the right context "ρ" to perform
prediction, this is in line with the implicit bayesian inference argument explored in [Xie et al.,
2022][Müller et al., 2022].

Given a function class F of functions from P(Z)×X → Y our goal is to solve for:

min
f∈F

EV
P (f)

We make the following assumptions on the lipschitzty of V and the function class F of f :
Assumption 1. Assume that V (0, 0) < ∞ and for all (y1, y′1) and (y2, y

′
2) ∈ Y × Y , there exists

LV > 0 such that

|V (y1, y
′
1)− V (y2, y

′
2)| ≤ LV

√
d2Y(y1, y2) + d2Y(y

′
1, y

′
2)

Assumption 1 is for e.g satisfied for V (y, y′) = φ(dY(y, y
′)) for a lipschitz loss φ.

Assumption 2. The predictor f ∈ F , satisfies for all ρ, ρ′ ∈ P(Z), and x, x′ ∈ X :

dY(f(ρ, x), f(ρ
′, x′)) ≤ LF (dX (x, x′) +W1(ρ, ρ

′)) .

Assumption 2 is a classical assumption in analysing diffusion processes see for e.g [Funaki, 1984].

In the reminder of this Section we aim at answering two questions:

1. Given a model trained using the lifted expected risk defined on a pre-training or a meta-
training mother distribution P ∈ P(P(Z)), under which condition does the learning transfer
to unseen tasks modeled with another mother distribution Q ∈ P(P(Z))?

1On bounded domain Y this loss satisfies Assumption 1 with lipschitz constant 2diam(Y).
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2. What is the sample complexity of learning with the lifted risk given (ρi)1≤i≤m ∼ P⊗m, and
(zij = (xij , yij))1≤j≤n ∼ ρi?

In order to answer the first question, we need a metric on P(P(Z)) in order to compare P and Q.
Following [Carlier et al., 2023], we define the following lifted Wasserstein distance between P and Q:

WD(P,Q) = min
γ∈Γ(P,Q)

∫
P(Z)×P(Z)

D(ρ, ρ′)dγ(ρ, ρ′), (6)

where D is a metric on P(Z). In Carlier et al. [2023], D is considered to be the W2 distance as a
cost of the optimal transport in (6). We will see that different learning problems we consider in this
paper will result in different transport cost D of interest in the lifted Wasserstein distance given in
Equation (6).
Theorem 1 (Transferability of in-context Learning). For any P,Q ∈ P(P(Z)), under Assumptions
1 and 2, for all f ∈ F we have:∣∣EV

Q (f)− EV
P (f)

∣∣ ≤ LWW1(P,Q),

where L = LV (1 + LF )(1 +
√
2), and WW1

is the lifted Wasserstein distance WD, for D being the
Wasserstein 1 distance W1 on P(Z).

Let fP ∈ F be a minimizer of EV
P (f), Theorem 1 implies that the expected risk of fP on unseen tasks

sampled from a mother distribution Q is bounded by the risk of fP on the pre-training distribution
P and the lifted Wasserstein distance between P and Q. In order to ensure transfer learning to new
unseen tasks, we need to have WW1(P,Q) ≤ ε/L, so that : EV

Q (fP) ≤ EV
P (fP) + ε.

Lifted Empirical Risk Minimization We turn now to the problem of estimation of the lifted
expected risk (Equation (1)) from samples. Let (ρi)1≤i≤m ∼ P⊗m, (zij = (xij , yij))1≤j≤n ∼ ρi.
We note P̂m = 1

m

∑m
i=1 δρi , and ρ̂ni = 1

n

∑n
j=1 δzij and lastly P̂n

m = 1
m

∑m
i=1 δρ̂n

i
. The lifted

Empirical Risk is therefore:

EV
P̂n
m
(f) =

1

m

1

n

m∑
i=1

n∑
j=1

V (yij , f(ρ̂
n
i , xij)) (7)

Remark 1. This setup is not of practical interest, since the predictor sees all the empirical distribution,
including the point on which the prediction is performed. The next section will introduce a more
practical setup.

Let f̂Pn
m

be a minimizer of EV
P̂n
m

(.) that we assume exists in F . In order to derive sample complexity
bounds we need to make assumptions on the structure of the meta-distribution P, as well as a structure
that holds on all probability measures ρ, P almost surely.

For P, we use the notion of upper Wasserstein distance introduced in [Weed and Bach, 2019].
Definition 1 (Upper Wasserstein Dimension [Weed and Bach, 2019] ). Given a metric space (X, d).
Given a measure µ on X , the (ε, τ) covering number of µ in (X, d) is:

Nε(µ, τ) = inf{Nε(S) : µ(S) ≥ τ},

where Nϵ(S) is the ε covering number of S, and the (ε, τ) dimension is :

dε(µ, τ) :=
Nε(µ, τ)

− log(ε)
.

The upper Wasserstein distance is defined as follows:

d∗p(µ) = inf{s ∈ (2p,∞) : lim
ε→0

sup dε(µ, ε
sp

s−2p ) ≤ s}

Assumption 3. We assume that P satisfies in the metric space (P(P(Z)),W1) a bounded upper
Wasserstein dimension: d∗1(P) ≤ s.

For ρ ∼ P we assume that these distributions are clusterable in the following sense defined in [Weed
and Bach, 2019]:
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Definition 2 (Clusterable Distribution [Weed and Bach, 2019]). A distribution is (q,∆) if supp(µ)
lies in the union of q balls of radius at most ∆.
Assumption 4. We assume that all ρ ∼ P are (q,∆)-clusterable .
Theorem 2 (Sample complexity of in-context learning). Under Assumptions 1 and 2, the following
bound holds for the generalization of in-context learning:

E
(
EV
P (f̂Pn

m
)
)
≤ EV

P (fP) + 2L (EWW1(P,Pm) + EWW1(Pm,Pn
m)))

Under Assumptions 3 and 4, we have for any m ≥ 1 and n ≤ q(2∆)−2:

E
(
EV
P (f̂Pn

m
)
)
≲ EV

P (fP) + 2L

(
m− 1

s + 12

√
q

n

)
.

Without Assumption 4 the learning is cursed in dimension and we have instead of
√

q
n a rate of

n
− 1

dx+dy . For the squared euclidean loss, if we assume that f∗ defined in Equation 5 ∈ F , we have
fP = f∗, and we see that as n the number of in-context examples grows and the number of tasks
m grows we recover the bayesian inference regression function f∗, and hence the estimator f̂Pn

m

performs implicit bayesian inference.

4 Learning to Learn In Context: Few Shots or Batched Setting

One crucial shortcoming of the theory presented in the previous Section, is that we require in the
lifted ERM to see all samples from context distributions, whereas in practice we only see few shots,
i.e. only k shots or demonstrations. Hence we define the k- shots expected risk as follows:

RV
k,P(f) = Eρ∼PEz=(x,y)∼ρEz1,...zk∼ρV

(
y, f

(
1

k

k∑
ℓ=1

δzℓ , x

))

=

∫
P(Z)

∫
Z
V (y, f(ρ̂k, x))dρ(x, y)Π

k
ℓ=1dρ(xℓ, yℓ)dP(ρ) (8)

where ρ̂k = 1
k

∑k
ℓ=1 δzℓ , (zℓ = (xℓ, yℓ))1≤ℓ≤k ∼ ρ⊗k. Intuitively as k → ∞ , RV

k,P(f) recovers
EV
P (f).

Lemma 1. Under Assumptions 1 and 2 we have:∣∣RV
k,P(f)− EV

P (f)
∣∣ ≤ LV (1 + LF )Eρ∼PEzℓ∼ρ⊗kW1(ρ̂k, ρ) ≲ LV (1 + LF )k

− 1
dx+dy ,

and limk→∞ RV
k,P(f) = EV

P (f).

Define the batched Wasserstein [Sommerfeld et al., 2019] [Fatras et al., 2020] [Fatras et al., 2021]:

W k1,k2

1 (ρ, ρ′) = EZ1...Zk1
∼ρ

Z′
1...Z

′
k2

∼ρ′

[
W1

(
1

k1

k1∑
i=1

δZi
,
1

k2

k2∑
i=1

δZ′
i

)]
, (9)

Note that this is a not a metric, since W k1,k2

1 (ρ, ρ) ≥ 0, and this quantity is related to the notion of
k− variance of ρ introduced in [Solomon et al., 2022].

We study first transferability in this setting:
Theorem 3 (Transferability of in few shot Learning). For any P,Q ∈ P(P(Z)), under Assumptions
1 and 2, for all f ∈ F we have:∣∣RV

k1,P(f)−RV
k2,Q(f)

∣∣ ≤ √
2LV (1 + LF )WW1+W

k1,k2
1

(P,Q), (10)

where W
W1+W

k1,k2
1

is the lifted Wasserstein distance WD (defined in Equation (6)) for D being the
sum of the Wasserstein 1 distance W1 and the batched Wasserstein Wk1,k2 defined in Equation (9),
i.e. for D(ρ, ρ′) =W1(ρ, ρ

′) +W k1,k2

1 (ρ, ρ′).
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We see that the number of shots k1 and k2 goes to infinity in Theorem 3, we recover up to constants
the stability Theorem 1 of the idealized setting. In the few shot setting, the transfer learning between
two meta distributions of tasks is bounded by a stricter distance than the idealized setting since it
takes into accounts the batched Wasserstein that measures the closeness of the distribution when
seeing only few samples. It is easy to see that :

W
W1+W

k1,k2
1

(P,Q) ≥ WW1(P,Q) +W
W

k1,k2
1

(P,Q) ≥ WW1(P,Q).

This means that for transfer learning to be feasible in the few shot setting we need also a small Lifted
batched Wasserstein distance WWk1,k2

(P,Q).

Few Shots Lifted Empirical Risk Minimization Let (ρi)1≤i≤m ∼ P⊗m, and (zij =

(xij , yij))1≤j≤n ∼ ρ⊗n
i and let ρ̂ni = 1

n

∑n
j=1 δzij . Define ρ̂b,ki = 1

k

∑k
ℓ=1 δzb

iℓ
, where

(zbiℓ)ℓ=1...k,b=1...B ∼ ρ⊗kB
i . We note S =

{
ρi, ρ̂

n
i , ρ̂

b,k
i , i = 1 . . .m, b = . . . B

}
.We consider

for the simplicity the following empirical unbiased estimator :

R̂V
k,S(f) =

1

m

1

n

1

B

m∑
i=1

n∑
j=1

B∑
b=1

V (yij , f(ρ̂
b,k
i , xij))), (11)

we recover here the training cost in [Kirsch et al., 2022] and [Müller et al., 2022].
Remark 2. Note that we have decoupled all random variables in the expectation to ease the analysis
and to get interpretable geometric bounds. Other U-statistics estimators can be derived for sampling
(k + 1) tuples from n samples, and decoupling techniques involving Rademacher chaos [De la Pena
and Giné, 2012] can be used, but we decided to state the results with easier to interpret bounds in
this simplified setup.

Let fR,P be the optimal function in F minimizing the expected risk given (8) and let f̂km,n,B be the
minimizer in F of the empirical risk given in (11).
Theorem 4 (Generalization of Few Shot In-Context Meta-Learning). Let Pm = 1

m

∑m
i=1 δρi

(tasks
seen in the training) and P′

m = 1
m

∑m
i=1 δρ′

i
(unseen tasks during the training), where ρ′i ∼ P⊗m

independent from ρi. Define S′ similarly to S from points sampled from ρ′i. Under Assumptions 1
and 2 we have:

ES

(
RV

k,P(f̂
k
m,n,B)

)
≤ RV

k,P(fR,P) + 2
√
2LV (1 + LF )ESES′ŴW1+Wk,k

1
(Pm,P′

m),

where:

ŴW1+Wk,k
1

(Pm,P′
m) = min

γ∈Γ(Pm,P′
m)

m∑
i1=1

m∑
i2=1

γi1i2

W1(ρ̂
n
i1 , ρ̂

′n
i2 ) +

1

B2

B∑
b1,b2=1

W1(ρ̂
b1,k
i1

, ρ̂
′,b2,k
i2

)

 .

Note that the generalization in the few shot learning depends on the similarity of two independent
empirical samples from the meta distribution P corresponding to seen tasks in the training and unseen
tasks. If this similarity is low this leads to good generalization guarantees. This similarity is measured
by an estimate of the lifted Wasserstein for D being the sum of the Wasserstein distance and the
batched Wasserstein that assesses the few shot scenario. The first term can be seen as the variance
on unseen test samples and the second term as the variance of the context or few shots examples as
tasks change. This notion of variance is related to the k-variance notion introduced in [Solomon et al.,
2022] for measures in P(Z) and was linked to generalization in supervised learning in [Chuang et al.,
2021]. As the number of tasks m increases the “borrowing of strength” between unseen tasks in the
training (ρ̂′i) and seen tasks (ρ̂i) increases, leading to better generalization as this reduces the Lifted
Wasserstein distance. This is in line with empirical findings in [Kirsch et al., 2022] and [Müller et al.,
2022].

The generalization bound given in Theorem 4 can be evaluated empirically given seen and unseen
tasks in meta-training. We give here non-sharp quantitative bounds :
Corollary 1 (Quantitative Bound). The following bounds holds for few shot learning:

ES

(
RV

k,P(f̂
k
m,n,B)

)
≲ RV

k,P(fR,P)+2
√
2LV (1+LF )

(
2Eρ,ρ′∼PW1(ρ, ρ

′) + 2k
− 1

dx+dy + 2n
− 1

dx+dy

)
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The constant term Eρ,ρ′∼PW1(ρ, ρ
′) accounts for out of distribution tasks, and is not a sharp bound.

The learning is cursed in the dimension unless we consider Assumption 4, then the rate in n and k
are replaced by n−

1
2 and k−

1
2 . Note that m and B does not enter in the bound for the expectation

and will only reduce the variance of the estimator.

We will now relate the empirical solution of the few shot problem (11) to the idealized setting ((1)):
Corollary 2 (From Few Shots Back To the Idealized Setting). We have the following bound relating
the few shot setting to the idealized in-context learning objective:

ES

(
EV
P (f̂km,n,B)

)
≲ EV

P (fP) + 2
√
2LV (1 + LF )ESES′ŴW1+Wk,k

1
(Pm,P′

m) + 2k
− 1

(dx+dy)

+
(
EV
P (fR,P)− EV

P (fP)
)
.

When we consider the square loss and assume that the regression function f∗ given in Equation (5) is
in the function space F so that fP = f∗. Recall that f∗ performs bayesian inference, plugging f∗ in
the equation above we obtain:

ES

(
EV
P (f̂km,n,B)

)
≲ EV

P (f∗) + 2
√
2LV (1 + LF )ESES′ŴW1+Wk,k

1
(Pm,P′

m) + 2k
− 1

(dx+dy)

+ LV

∫
dP(ρ)

∫
dY(f

∗(ρ, x), fR,P(ρ, x))dρX (x).

We see that f̂km,n,B will learn to do bayesian inference, as long as the few shot numbers k is large, the
generalization bound as measured by the lifted Wasserstein distance is small, and the function space
F is large to approximate the regression function f∗. Hence we can think of f̂km,n,B as performing
implicitly a bayesian inference.

5 Meta-Learning Transformers and Implicit Bayesian Inference

[Kirsch et al., 2022] and [Müller et al., 2022] showed emprically that meta-learning transformers
within a few shot in-context learning setup (same setup as ours in Section 4) enable general purpose
in-context learning [Kirsch et al., 2022] or implicit bayesian inference [Müller et al., 2022]. The
central assumption in our theory is the regularity of the function class in terms of its Lipschitzness
given in Assumption 2 with respect to measures (in ρ) and points (in x). Note that in the few shot
setting it is enough to have regularity on empirical measures only. Hence in order to apply the results
of the previous section to transformers, we need to understand the regularity of transformers and
attention models. This question was addressed recently in two concurrent works: [Kim et al., 2021]
studied the regularity of attention in the euclidean geometry and [Vuckovic et al., 2021] studied it in
the Wasserstein geometry.

Regularity of Self-Attention In Encoder Transformers We start here by reviewing the trans-
former architecture and focus on the setup considered in [Müller et al., 2022] i.e encoder only
models (no masking) and without positional encoding (to ensure permutation invariance). Given
an input the sequence x = (x1 . . . xT ) ∈ X ⊂ B(R,Rd), following [Vuckovic et al., 2021]
and [Sander et al., 2022] we think of attention as a push forward map applied to the empirical
measure m(x) = 1

t

∑T
t=1 δxt . A self-attention block 2 acts on m as follows: for t = 1 . . . T

Tm(x)(xt) =
∑T

s=1
exp(a(WQxt,WKxs))∑T

s′=1
exp(a(WQxt,Wkxs′ ))

WV xs, where WQ,WK and WV are matrices in

Rd×d with bounded spectral norms. For u, v ∈ X , a in the original transformer is the dot prod-
uct a(u, v) = ⟨u, v⟩. If X is convex and compact, [Vuckovic et al., 2021] showed that the self-
attention with a being the dot product, has Lipschitz regularity in the Wasserstein geometry. For
unbounded domains, this Wasserstein regularity is satisfied only for a(u, v) = −∥u− v∥2. We set
here some notations that will be used in the remainder of the paper. Let µ = 1

T

∑T
t=1 δbt we note

(Tµ)♯(µ) = 1
T

∑T
t=1 δTµ(bt), the point cloud that result after applying self attention. Denote by ψ(µ)

the inverse map from a measure to a sequence ψ(µ) = (b1, . . . bT ). It follows that the resulting
sequence after self-attention is : ψ(Tµ)♯(µ)) = (Tµ(b1), . . . Tµ(bT )).
We summarize in the following proposition results implied by the work in [Vuckovic et al., 2021]:

2We present it here with a single head
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Proposition 1 ((Informal)). Consider two sequences x = (x1, . . . , xT ) and y = (y1 . . . yT ). There
exist constants L and L′ that depends on d, T spectral norms of WQ,WK , and WV (in the bounded
case for a being dot product and in the unbounded case for a(u, v) = −∥u− v∥2) such that:

1. W1

(
(Tm(x))♯(m(x)), (Tm(y))♯(m(y))

)
≤ L W1(m(x),m(y))

2. For all t = 1 . . . T we have:

dX (Tm(x)(xt), Tm(y)(yt)) ≤ L′ (dX (xt, yt) +W1(m(x),m(y)))
Note that in the transformer architecture, Self-Attention blocks (T j

µj
, j = 1 . . . D ) are followed

by residual feedforward networks (FNj , j = . . . D) that preserve the Lipschitz regularity. Iterating
through multiple layers of attentions results therefore in a Lipschtiz constant that is the multiplication
of Lipschitz constant of the consecutive blocks.

Using Transformers in-context Learning For learning to learn using transformers, given k
in-context examples {(xℓ, yℓ)1≤ℓ≤k}and a point x, we define f( 1k

∑k
ℓ=1 δ(xℓ,yℓ), x), as follows:

1. For the case (X ≠ Y), for example x is an image and y is the label encoded as one hot,
define a sequence a = (z1 = (x1, y1), . . . zk = (xk, yk), (x, 0)) of length T = k + 1, this
is the setup considered in [Kirsch et al., 2022]. For the case X = Y , this is the case in
natural language define the sequence a = (x1, y1 . . . xk, yk, x) of length T = 2k + 1, this
is the setup considered in in-context-learning in [Brown et al., 2020]3. Let m(a) be the
corresponding empirical measure to the sequence a in both cases.

2. Define a deep transformer by iterating for j = 0 . . . D − 1, µj+1 = (FNj)♯

[
(T j

µj
)♯(µj)

]
,

where µ0 = m(a). We obtain a sequence from the µj+1 by using the operator ψ(µj+1) =

(hj+1
1 . . . hj+1

T ).

3. Extract hDT from µD and define f(ρ, x) =WOh
D
T (WO is a linear map to the output space

Y that has bounded spectral norm).

The following proposition uses the regularity of self-attention in the Wasserstein geometry (propo-
sition 1) and shows that encoder transformers satisfy the regularity assumptions we considered in
Section 4.
Proposition 2. f defined above by an encoder transformer satisfies Assumption 2 in both cases for
X ̸= Y and and for X = Y .

We conclude that encoder transformers are meta in-context learners thanks to their regularity in the
Wasserstein geometry and their generalization properties are given in Section 4. The generalization
to unseen tasks is governed by the lifted Wasserstein distance with a cost involving the Wasserstein
distance and the batched Wasserstein. Proposition 3 in the Appendix gives generalization bounds
in the attention feature space, that further links generalization of ICL to the cluster-ability of the
contexts in the lifted wasserstein geometry.

6 Conclusion

We presented in this paper a statistical learning framework for learning to learn in-context and showed
that encoder transformers are in-context meta learners and they can infer the task at hand from few
shots and perform in a way an implicit bayesian inference. We based our analysis on the regularity of
self-attention in the Wasserstein geometry [Vuckovic et al., 2021].

We leave for future work the study of decoder transformers and their emergent in-context learning
[Brown et al., 2020] when pre-trained for next token prediction. We conjecture that their emergent
in-context learning is also due to some form of regularity. The main challenge is reconciling the
sequential regularity of decoder models and the permutation invariance of in-context examples, a
problem that was alluded to in [Xie et al., 2022]. Another venue for future work is the analysis of the
complexity of encoder transformers using coverings in the Wasserstein geometry, this would lead to a
tighter analysis of the generalization of in-context learning.

3[Brown et al., 2020] consider a decoder transformer and our analysis does not apply to their results.
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A.1 Related Work: Discussion of Meta-Learning

We discuss our work in the context of the learning to learn framework of [Baxter, 2000]. Baxter
[2000] introduces also the notion of an environment that is a meta distribution on tasks η. For a task
t ∼ η , we draw an iid training set xt = (xt1 . . . x

t
n) ∼ µn

t , and one wants to learn a function f ◦ h,
where h is a feature map. The meta learning problem can be written as follows (see for e.g [Maurer,
2016] ):

ψt(h) = min
f

1

n

n∑
i=1

V (yti , f(h(x
t
i)))

h = argmin
h∈H

1

T

T∑
t=1

ψt(h)

The feature map is meta learned across all tasks.

Black-Box Meta-Learning Our setting does not fall within this category of bi-level optimization
and is in line with works on black-box meta learning methods, where a single model is jointly learned
on all environments: RNNs were considered in [Santoro et al., 2016], conditional neural process in
[Garnelo et al., 2018], meta networks in [Munkhdalai and Yu, 2017] and attention in [Mishra et al.,
2017]. Our work can be seen as a study of black-box meta learning with transformers.

Gradient Based Meta Learning The bilevel optimization problem in meta learning is expensive
as it appeals to computing hessians and this lead many advances via unrolled optimization pioneered
by the MAML approach [Finn et al., 2017] and other gradient based approaches studied in [Finn and
Levine, 2017, Balcan et al., 2019, Bullins et al., 2019, Denevi et al., 2019, Finn et al., 2019].

A.2 Proofs of Section 3

Proof of Theorem 1. Assume without loss of generality that all measures have densities. Let γ be the
optimal coupling between P and Q, i.e the minimizer of (6), γ satisifies:∫

γ(ρ, ρ′)dρ′ = P(ρ) and
∫
γ(ρ, ρ′)dρ = Q(ρ′).

For ρ, ρ′ ∈ P(Z), let γ̃ρ,ρ′ be the optimal coupling in Γ(ρ, ρ′) i.e the minimizer of wasserstein
distance between ρ and ρ′:∫

Z
γ̃ρ,ρ′(x, y, x′, y′)dx′dy′ = ρ(x, y)and

∫
Z
γ̃ρ,ρ′(x, y, x′, y′)dz = ρ′(x′, y′).

From Assumption 1 and the compactness of Y , we deduce that the loss V is bounded : |V (y, y′)| ≤
V (0, 0) + LV

√
2 diam(Y) and hence using Fubini’s Theorem we obtain:

EV
P (f) =

∫
P(Z)

P(ρ)dρ
∫
Z
V (y, f(ρ, x))ρ(x, y)dxdy

=

∫
P(Z)

dρ

(∫
P(Z)

γ(ρ, ρ′)dρ′

)∫
Z
V (y, f(ρ, x))

(∫
Z
γρ,ρ′(x, y, x′, y′)dx′dy′

)
dxdy

=

∫
P(Z)

∫
P(Z)

∫
Z

∫
Z
V (y, f(ρ, x))γ(ρ, ρ′)γ̃ρ,ρ′(x, y, x′, y′)dρdρ′dxdydx′dy′,
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the last equality is another application of Fubini’s theorem. A similar expression holds for EV
Q (f):

EV
Q (f) =

∫
P(Z)

∫
P(Z)

∫
Z

∫
Z
V (y′, f(ρ′, x′))γ(ρ, ρ′)γ̃ρ,ρ′(x, y, x′, y′)dρdρ′dxdydx′dy′

Hence we have:

EV
Q (f)− EV

P (f)

=

∫
P(Z)

∫
P(Z)

∫
Z

∫
Z

(
V (y′, f(ρ′, x′))− V (y, f(ρ, x))

)
γ(ρ, ρ′)γ̃ρ,ρ′(x, y, x′, y′)dρdρ′dxdydx′dy′

(12)

Turning now to :

|V (y′, f(ρ′, x′))− V (y, f(ρ, x)| ≤ LV

√
d2Y(y, y

′) + d2Y(f(ρ, x), f(ρ
′, x′))

≤ LV (dY(y, y
′) + dY(f(ρ, x), f(ρ

′, x′)))

≤ LV (dY(y, y
′) + LF (dX (x, x′) +W1(ρ, ρ

′)))

≤ LV (1 + LF ) (dX (x, x′) + dY(y, y
′) +W1(ρ, ρ

′))

≤ LV (1 + LF )

(√
2
√
d2X (x, x′) + d2Y(y, y

′) +W1(ρ, ρ
′)

)
(13)

where in the first inequality we used Assumption 1; in the second inequality we used that for
a, b > 0,

√
a2 + b2 ≤ a+ b; in the third inequality we used Assumption 2; and in the last inequality

we used the fact that |a+ b| ≤
√
2(a2 + b2). It follows from equations (12) and (13) that:∣∣EV

Q (f)− EV
P (f)

∣∣ ≤ LV (1 + LF )(A+B), (14)

where :

A =
√
2

∫
P(Z)

∫
P(Z)

∫
Z

∫
Z

√
d2X (x, x′) + d2Y(y, y

′)γ(ρ, ρ′)γ̃ρ,ρ′(x, y, x′, y′)dρdρ′dxdydx′dy′

=
√
2

∫
P(Z)

∫
P(Z)

γ(ρ, ρ′)

(∫
Z

∫
Z

√
d2X (x, x′) + d2Y(y, y

′)γ̃ρ,ρ′(x, y, x′, y′)dxdx′dydy′
)
dρdρ′

=
√
2

∫
P(Z)

∫
P(Z)

γ(ρ, ρ′)W1(ρ, ρ
′)dρdρ′

=
√
2WW1(P,Q),

in the second equality we used Fubini Theorem, in the third and last equality we used the optimality
of γ̃ρ,ρ′ and γ respectively. And,

B =

∫
P(Z)

∫
P(Z)

∫
Z

∫
Z
W1(ρ, ρ

′)γ(ρ, ρ′)γ̃ρ,ρ′(x, y, x′, y′)dρdρ′dxdydx′dy′

=

∫
P(Z)

∫
P(Z)

W1(ρ, ρ
′)γ(ρ, ρ′)

(∫
Z

∫
Z
γ̃ρ,ρ′(x, y, x′, y′)dρdρ′dxdydx′dy′

)
︸ ︷︷ ︸

=1

dρdρ′

=

∫
P(Z)

∫
P(Z)

W1(ρ, ρ
′)γ(ρ, ρ′)dρdρ′

= WW1
(P,Q),

where we used Fubini and the fact that
∫
Z
∫
Z γ̃ρ,ρ′(x, y, x′, y′)dρdρ′dxdydx′dy′ = 1 since γρ,ρ′ is a

coupling and the optimality of γ in the last equality. Finally,∣∣EV
Q (f)− EV

P (f)
∣∣ ≤ LV (1 + LF )(1 +

√
2)WW1(P,Q). (15)
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Proof of Theorem 2. Our goal is to bound:

EV
P (f̂Pn

m
)− EV

P (fP) =
(
EV
P (f̂Pn

m
)− EV

Pn
m
(f̂Pn

m
)
)
+
(
EV
Pn
m
(f̂Pn

m
)− EV

Pn
m
(fP)

)
+
(
EV
Pn
m
(fP)− EV

P (fP)
)

≤
(
EV
P (f̂Pn

m
)− EV

Pn
m
(f̂Pn

m
)
)
+
(
EV
Pn
m
(fP)− EV

P (fP)
)

≤ 2LWW1
(P,Pn

m),

where we used in the first inequality EV
Pn
m
(f̂Pn

m
) ≤ EV

Pn
m
(fP), since f̂Pn

m
is a minimizer of EV

Pn
m
(.) and

the last inequality is a direct application of the stability Theorem 1. Taking the expectation on the
randomness in both P̂m and P̂n

m we obtain by applying the triangle inequality:

E
(
EV
P (f̂Pn

m
)− EV

P (fP)
)
≤ 2L EWW1

(P,Pn
m) ≤ 2L (EWW1

(P,Pm) + EWW1
(Pm,Pn

m)))

(16)

Under Assumption 3, we have by Theorem 1 in [Weed and Bach, 2019]:

EWW1
(P,Pm) ≲ m− 1

s . (17)

Note that WW1
(Pm,Pn

m)) =
∑

ij γ
∗
ijW1(ρi, ρ̂

n
j ), where γ∗ is the optimal coupling in Γ(Pm,Pn

m).
Let γuii =

1
m for i = 1 . . .m and γuij = 0 for i ̸= j. By optimality of γ∗ we have:

WW1
(Pm,Pn

m)) ≤
∑
ij

γuijW1(ρi, ρ̂
n
j ) =

1

m

m∑
i=1

W1(ρi, ρ̂
n
i )

Hence taking expectations we obtain:

EWW1
(Pm,Pn

m)) ≤ 1

m

m∑
i=1

EW1(ρi, ρ̂
n
i ),

without further assumptions W1 is cursed in dimension and we have:

EW1(ρi, ρ̂
n
i ) ≲ n

− 1
dx+dy .

Under Assumption 4, by proposition 13 in [Weed and Bach, 2019] we have for n ≤ q(2∆)−2, for all
i = 1 . . .m:

EW1(ρi, ρ̂
n
i ) ≤ 12

√
q

n
. (18)

Hence under Assumptions 3 and 4, combining Equations (16), (17) and (18) we have for n ≤
q(2∆)−2:

E
(
EV
P (f̂Pn

m
)− EV

P (fP)
)
≲ 2L

(
m− 1

s + 12

√
q

n

)
.

A.3 Proofs of Section 4

Proof of Lemma 1.

RV
k,P(f)− EV

P (f) = Eρ∼PE(x,y)∼ρE(xℓ,yℓ)∼ρ⊗kV (y, f(ρ̂k, x)− V (y, f(ρ, x))) (19)

It follows from Equation (13) in proof of Theorem 1 that:

|V (y, f(ρ̂k, x)− V (y, f(ρ, x)))| ≤ LV (LF + 1)W1(ρ̂k, ρ)

Taking expectation, absolute values and using Jensen inequality we get the results, using classical
bounds on W1, see for example [Weed and Bach, 2019].
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Proof of Theorem 3. The proof is similar to the proof of Theorem 1. Let γ be a coupling between P
and Q. For ρ ∼ P and ρ′ ∼ Q, γ̃ρ,ρ′ is optimal W1 coupling between ρ and ρ′.

RV
k1,P(f)−RV

k2,Q(f)

= E(ρ,ρ′)∼γE((x,y),(x′,y′))∼γ̃ρ,ρ′
EZ1...Zk1

∼ρ

Z′
1...Z

′
k2

∼ρ′

[
V

(
y, f

(
1

k1

k1∑
ℓ=1

δZℓ
, x

))
− V

(
y′, f

(
1

k2

k2∑
ℓ=1

δZ′
ℓ
, x′

))]
(20)

Under assumptions Assumption 1 and Assumption 2 by equation (13), we have:∣∣∣∣∣V
(
y, f

(
1

k1

k1∑
ℓ=1

δZℓ
, x

))
− V

(
y′, f

(
1

k2

k2∑
ℓ=1

δZ′
ℓ
, x′

))]

≤ LV (1 + LF )

(√
2
√
d2X (x, x′) + d2Y(y, y

′) +W1(ρ̂k1
, ρ̂′k2

)

)
Hence taking absolute value in Equation (20), using Jensen inequality and the above bound on the
loss, we have:∣∣RV

k1,P(f)−RV
k2,Q(f)

∣∣ ≤ LV (1 + LF )
{√

2E(ρ,ρ′)∼γE((x,y),(x′,y′))∼γ̃ρ,ρ′

√
d2X (x, x′) + d2Y(y, y

′)

....+ E(ρ,ρ′)∼γEZ1...Zk1
∼ρ

Z′
1...Z

′
k2

∼ρ′

[
W1

(
1

k1

k1∑
i=1

δZi
,
1

k2

k2∑
i=1

δZ′
i

)]}
= LV (1 + LF )

(√
2E(ρ,ρ′)∼γW1(ρ, ρ

′) + E(ρ,ρ′)∼γW
k1,k2

1 (ρ, ρ′)
)

≤ LV (1 + LF )
√
2E(ρ,ρ′)∼γ

(
W1(ρ, ρ

′) +W k1,k2

1 (ρ, ρ′)
)

(21)

where we used that γ̃ρ,ρ′ is the W1 optimal coupling, i.e W1(ρ, ρ
′) =

E((x,y),(x′,y′))∼γ̃ρ,ρ′

√
d2X (x, x′) + d2Y(y, y

′), and the definition of the batched Wasserstein
distance given in Equation (9).

Now choosing γ to be the optimal coupling γ∗ of WD, for

D(ρ, ρ′) =W1(ρ, ρ
′) +W k1,k2

1 (ρ, ρ′)

we obtain:∣∣RV
k1,P(f)−RV

k2,Q(f)
∣∣ ≤ LV (1 + LF )

√
2E(ρ,ρ′)∼γ∗

(
W1(ρ, ρ

′) +W k1,k2

1 (ρ, ρ′)
)

= LV (1 + LF )
√
2W

W1+W
k1,k2
1

(P,Q).

Note that :
WW1(P,Q) +W

W
k1,k2
1

(P,Q) ≤ W
W1+W

k1,k2
1

(P,Q).

Proof of Theorem 4.

RV
k,P(f̂

k
m,n,B)−RV

k,P(fP) ≤ RV
k,P(f̂

k
m,n,B)− R̂V

k,S(f̂
k
m,n,B) + R̂V

k,S(fP)−RV
k,P(fP)

Taking expectations on (ρi)1≤i≤m ∼ P⊗m, ((xij , yij))1≤j≤n) ∼ ρ⊗n
i and (zbiℓ)ℓ=1...k,b=1...B ∼

ρ⊗kB
i , we denote all those random variables on which expectation is taken by S =

{
ρi, ρ̂

n
i , ρ̂

b,k
i , i =

1 . . .m, b = . . . B
}

:
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ESRV
k,P(f̂

k
m,n,B)−RV

k,P(fP) ≤ ES

(
RV

k,P(f̂
k
m,n,B)− R̂V

k,S(f̂
k
m,n,B)

)
+ ES

(
R̂V

k,S(fP)−RV
k,P(fP)

)
≤ 2 sup

f∈F
ES

∣∣∣RV
k,P(f)− R̂V

k,S(f)
∣∣∣

≤ 2ES sup
f∈F

∣∣∣RV
k,P(f)− R̂V

k,S(f)
∣∣∣

Note that:

RV
k,P(f) = Eρ∼PE(x,y)∼ρE(zℓ=(xℓ,yℓ)1≤ℓ≤k)∼ρ⊗(k)V

(
y, f

(
1

k

k∑
ℓ=1

δzℓ , x

))

= Eρ′
i∼P⊗mE

(x′
ij ,y

′
ij)1≤j≤n∼ρ

′⊗n
i

E
(z

′b
iℓ )ℓ=1...k,b=1...B∼ρ

′⊗kB
i

1

m

1

n

1

B

m∑
i=1

n∑
j=1

B∑
b=1

V

(
y′ij , f

(
1

k

k∑
ℓ=1

δz′b
iℓ
, x′ij

))
= ES′R̂V

k,S′(f),

where S′ is an iid set of random variables constructed similar to S, S′ =
{
ρ′i ∼ P⊗m, ρ̂

′n
i =

1
N

∑n
j=1 δ(x′

ij ,y
′
ij)
, ρ̂

′,b,k
i = 1

k

∑k
ℓ=1 δz′b

iℓ
, i = 1 . . . n, b = . . . B

}
.

Now:

RV
k,P(f)− R̂V

k,S(f) = ES′

(
R̂V

k,S′(f)− R̂V
k,S(f)

)
(22)

It follows that:

ES

(
RV

k,P(f̂
k
m,n,B)−RV

k,P(fP)
)
≤ 2ES sup

f∈F

∣∣∣ES′

(
R̂V

k,S′(f)− R̂V
k,S(f)

)∣∣∣
≤ 2ES sup

f∈F
ES′

∣∣∣R̂V
k,S′(f)− R̂V

k,S(f)
∣∣∣ Jensen inequality convexity of absolute value

≤ 2ESES′ sup
f∈F

∣∣∣R̂V
k,S′(f)− R̂V

k,S(f)
∣∣∣ (23)

Let γ ∈ R+m×m be a coupling between Pm = 1
m

∑m
i1=1 δρi1

and P′
m = 1

m

∑m
i2=1 δρ′

i2

, and let

γ̃i1i2 ∈ R+n×n be an optimal coupling (in W1) between ρ̂ni1 and ρ̂
′n
i2

.

R̂V
k,S(f)− R̂V

k,S′(f)

=
1

m

1

n

1

B

m∑
i1=1

n∑
j1=1

B∑
b1=1

V (yi1j1 , f(ρ̂
b1,k
i1

, xi1j1)))−
1

m

1

n

1

B

m∑
i2=1

n∑
j2=1

B∑
b2=1

V (y′i2j2 , f(ρ̂
′,b2,k
i2

, x′i2j2)))

=

m∑
i1=1

m∑
i2=1

γi1,i2

n∑
j1=1

n∑
j2=1

γ̃i1i2j1j2

1

B2

B∑
b1,b2=1

(
V (yi1j1 , f(ρ̂

b1,k
i1

, xi1j1)))− V (y′i2j2 , f(ρ̂
′,b2,k
i2

, x′i2j2)))
)
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Hence using Equation (13) we have∣∣∣R̂V
k,S′(f)− R̂V

k,S(f)
∣∣∣

≤ LV (1 + LF )

 m∑
i1=1

m∑
i2=1

γi1,i2

n∑
j1=1

n∑
j2=1

γ̃i1i2j1j2

1

B2

B∑
b1,b2=1

√
2
√
d2X (xi1j1 , x

′
i2j2

) + d2Y(yi1j1 , y
′
i2j2

) +W1(ρ̂
b1,k
i1

, ρ̂
′,b2,k
i2

)


= LV (1 + LF )

{√
2

m∑
i1=1

m∑
i2=1

γi1,i2

n∑
j1=1

n∑
j2=1

γ̃i1i2j1j2

√
d2X (xi1j1 , x

′
i2j2

) + d2Y(yi1j1 , y
′
i2j2

)

+

m∑
i1=1

m∑
i2=1

γi1,i2

n∑
j1=1

n∑
j2=1

γ̃i1i2j1j2︸ ︷︷ ︸
=1

1

B2

B∑
b1,b2=1

W1(ρ̂
b1,k
i1

, ρ̂
′,b2,k
i2

)
}

= LV (1 + LF )
{√

2

m∑
i1=1

m∑
i2=1

γi1,i2W1(ρ̂
n
i1 , ρ̂

′n
i2 ) +

m∑
i1=1

m∑
i2=1

γi1,i2
1

B2

B∑
b1,b2=1

W1(ρ̂
b1,k
i1

, ρ̂
′,b2,k
i2

)
}

(by optimality of γ̃i1i2 )

≤ LV (1 + LF )
√
2
{ m∑
i1=1

m∑
i2=1

γi1i2

W1(ρ̂
n
i1 , ρ̂

′n
i2 ) +

1

B2

B∑
b1,b2=1

W1(ρ̂
b1,k
i1

, ρ̂
′,b2,k
i2

)

} A

Let Pm = 1
m

∑m
i=1 δρi

and P′
m = 1

m

∑m
i=1 δρ′

i
, define:

ŴW1+Wk,k
1

(Pm,P′
m) = min

γ∈Γ(Pm,P′
m)

m∑
i1=1

m∑
i2=1

γi1i2

W1(ρ̂
n
i1 , ρ̂

′n
i2 ) +

1

B2

B∑
b1,b2=1

W1(ρ̂
b1,k
i1

, ρ̂
′,b2,k
i2

)

 ,

Choosing γ to be the optimal coupling to the above problem we have combining Equations (23) and
the bound in A :

ES

(
RV

k,P(f̂
k
m,n,B)−RV

k,P(fP)
)
≤ 2ESES′ sup

f∈F

∣∣∣R̂V
k,S′(f)− R̂V

k,S(f)
∣∣∣

≤ 2
√
2LV (1 + LF )ESES′ŴW1+Wk,k

1
(Pm,P′

m).

Proof of Corollary 1. By reverse triangle inequality we have:

|W1(ρ̂
n
i1 , ρ̂

′n
i2 )−W1(ρi1 , ρ

′
i2)| ≤W1(ρ̂

n
i1 , ρi1) +W1(ρ̂

′n
i2 , ρ

′
i2) ≲ 2n−1/(dx+dy)

Writing:

ŴW1+Wk,k
1

(Pm,P′
m)

=

m∑
i1=1

m∑
i2=1

γ∗i1i2

2W1(ρi1 , ρ
′
i2) + (W1(ρ̂

n
i1 , ρ̂

′n
i2 )−W1(ρi1 , ρ

′
i2)) +

1

B2

B∑
b1,b2=1

(W1(ρ̂
b1,k
i1

, ρ̂
′,b2,k
i2

)−W1(ρi1 , ρ
′
i2))


≲ 2

m∑
i1=1

m∑
i2=1

γ∗i1i2W1(ρi1 , ρ
′
i2) + 2n−1/(dx+dy) + 2k−1/(dx+dy)

≲ 2
1

m

m∑
i=1

W1(ρi, ρ
′
i) + 2n−1/(dx+dy) + 2k−1/(dx+dy)

where the last inequality follows from suboptimality of coupling with 0 off diagonal and 1/m on
diagonal. Taking expectation we obtain:

2

m

m∑
i=1

ES,S′W1(ρi, ρ
′
i) + 2k

− 1
dx+dy + 2n

− 1
dx+dy

= 2Eρ,ρ′∼PW1(ρ, ρ
′) + 2k

− 1
dx+dy + 2n

− 1
dx+dy
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Proof of Corollary 2.

EV
P (f̂km,n,B)− EV

P (fP) = (EV
P (f̂km,n,B)−RV,k

P (f̂km,n,B)) + (RV,k
P (f̂km,n,B)−RV

P (f
R
P ))

+ (RV
P (f

R
P )− EV

P (fRP )) + (EV
P (fRP )− EV

P (fP)

≲ k
− 1

dx+dy + (RV,k
P (f̂km,n,B)−RV

P (f
R
P )) + k

− 1
dx+dy + (EV

P (fRP )− EV
P (fP))

where we used Lemma 1. Taking expectation gives the result. To bound we use the lipschitzty of V
and get :

EV
P (fRP )− EV

P (fP) ≤ LV Eρ∼PEx∼ρdY(fP, f
R
P ).

A.4 Proofs of Section 5

Proof of Proposition 1. Point 1) is proved in [Vuckovic et al., 2021]. For point 2) We use the same
notations as in [Vuckovic et al., 2021] (attention kernel defined in Definition 7 in [Vuckovic et al.,
2021] ):

dX (Tm(x)(xt), Tm(y)(yt)) =W1(δxt
Am(x), δyt

Am(y))

=W1(Π[ΨG(xt,.)(m(x))]L], (Π[ΨG(yt,.)(m(y))]L])

≤ τ1(Π)τ1(L)W1(ΨG(xt,.)(m(x)),ΨG(yt,.)(m(y)))

where τ1(Π) = d, and τ1(L) = ||WV ||2. By proposition 27 in [Vuckovic et al., 2021] we have:

W1(ΨG(xt,.)(m(x)),ΨG(yt,.)(m(y))) ≤ [
√
d

√
log T +

1

2e
||G||lip + ||G||∞ +

√
d+ 2](dX (xt, yt)+W1(m(x),m(y)))

it follows that there exists a constant L′ such that:

dX (Tm(x)(xt), Tm(y)(yt)) ≤ L′(dX (xt, yt) +W1(m(x),m(y)))

Proof of Proposition 2. We consider here euclidean distances. Define ψT (
1
T

∑T
j=1 δaj

) = aT .
Consider a and a′ are two sequences constructed as in step 1 (a = (x1, y1, . . . xk, yk, x) and
a′ = (x′1, y

′
1, . . . x

′
k, y

′
k, x

′) ) in the case X = Y .

By iterating Lipschitzity of the push forward maps (we ignored in the computation of lipchitz constant
the residual and feedforward that will result in multiplicative lipchitz constant on each layer ) we
have :

|f(ρ, x)− f(ρ′, x′)| = |WO(h
D
T − h′DT )|

≤ ||WO||2
∥∥hDT − h′DT

∥∥
≤ ||WO||2L′

D

(
dX (ψT (µD−1), ψT (µ

′
D−1)) +W1(µD−1, µ

′
D−1)

)
≤ ||WO||2L′

D

(
L′
D−1(dX (ψT (µD−2), ψT (µ

′
D−2)) +W1(µD−2, µ

′
D−2)) + LD−1W (µD−2, µ

′
D−2)

)
≤ ||WO||2L′

D2max(LD−1, L
′
D−1)

(
dX (ψT (µD−2), ψT (µ

′
D−2)) +W (µD−2, µ

′
D−2)

)
Hence we obtain a recurrence:(

dX (ψT (µD−1), ψT (µ
′
D−1)) +W1(µD−1, µ

′
D−1)

)
≤ 2max(LD−1, L

′
D−1)

(
dX (ψT (µD−2), ψT (µ

′
D−2)) +W (µD−2, µ

′
D−2)

)
Note that residual connection and feedforward networks will result with a multiplicative Lipschitz
constant:(

dX (FND−1[ψT (µD−1)],FND−1[ψT (µ
′
D−1)]) +W1((FND−1)♯µD−1, (FND−1)♯µ

′
D−1)

)
≤ 2LD−1

FN max(LD−1, L
′
D−1)

(
dX (ψT (µD−2), ψT (µ

′
D−2)) +W (µD−2, µ

′
D−2)

)
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We can iterate this recurrence up to µ0 = m(a) and µ′
0 = m(a′), and ψT (µ0) = x and ψT (µ

′
0) = x′.

Hence there exists L = ||WO||2L′
D2D−1ΠD−1

j=1 L
j
FN max(Lj , L

′
j) such that:

|f(ρ, x)− f(ρ′, x′)| ≤ L (d(x, x′) +W1(m(a),m(a′))) ,

Let γ∗ optimal coupling between ρ and ρ′:

√
2

k

2k + 1
W1(ρ, ρ

′) +
1

2k + 1
dX (x, x′)

=
√
2

k

2k + 1

∑
i,j

γ∗ij

√
(d2X (xi, x′j) + d2(yi, y′j) +

1

2k + 1
dX (x, x′)

≥
∑
i,j

k

2k + 1
γ∗ij(dX (xi, x

′
j) + dX (yi, y

′
j)) +

1

2k + 1
dX (x, x′)

Define for i = 1 . . . k, j = 1 . . . k: γ̃2i−1,2j−1 = k
2k+1γ

∗
ij and γ̃2i−1,2j = 0 and γ̃2i,2j−1 = 0 and

γ̃2i,2j =
k

2k+1γ
∗
ij , γ̃2k+1,ℓ = 0 and γ̃ℓ,2k+1 = 0 for ℓ = 1 . . . 2k and γ̃2k+1,2k+1 = 1

2k+1 . It is easy
to see that γ̃ is coupling between m(a) and m(a′):

γ̃ =



x′1 y′1 x′2 y′2 · · · x′k y′k x′

x1
k

2k+1γ
∗
11 0 k

2k+1γ
∗
12 0 · · · k

2k+1γ
∗
1k 0 0

y1 0 k
2k+1γ

∗
11 0 k

2k+1γ
∗
12 · · · 0 k

2k+1γ
∗
1k 0

x2
k

2k+1γ
∗
21 0 k

2k+1γ
∗
22 0 · · · k

2k+1γ
∗
2k 0 0

y2 0 k
2k+1γ

∗
21 0 k

2k+1γ
∗
22 · · · 0 k

2k+1γ
∗
2k 0

...
...

...
...

... · · ·
...

...
...

xk
k

2k+1γ
∗
k1 0 k

2k+1γ
∗
k2 0 · · · k

2k+1γ
∗
kk 0 0

yk 0 k
2k+1γ

∗
k1 0 k

2k+1γ
∗
k2 · · · 0 k

2k+1γ
∗
kk 0

x 0 0 0 0 · · · 0 0 1
2k+1


Rows and columns of γ̃ sum to 1

2k+1 . It follows that:

√
2

k

2k + 1
W1(ρ, ρ

′) +
1

2k + 1
dX (x, x′) ≥

2k+1∑
ℓ,ℓ′=1

γ̃ℓ,ℓ′dX (aℓ, a
′
ℓ′) ≥W1(m(a),m(a′))

and therefore we have:

W1(m(a),m(a′)) ≤
√
2

k

2k + 1
W1(ρ, ρ

′) +
1

2k + 1
dX (x, x′) ≤W1(ρ, ρ

′) + dX (x, x′)

and hence :

|f(ρ, x)−f(ρ′, x′)| ≤ Ld(x, x′)+W1(m(a),m(a′)) ≤ L(2dX (x, x′)+W1(ρ, ρ
′)) ≤ 2L(dX (x, x′)+W1(ρ, ρ

′))

it follows that f is lipschitz in both argument. for the case X ≠ Y , a similar proof relates
W1(m(a),m(a′)) to W1(ρ, ρ

′).

Proposition 3. For two independent samples from the meta distributions Pm = 1
m

∑m
i=1 δρi

and
P′
m = 1

m

∑m
i=1 δρ′

i
. Let ρ̂ = 1

k

∑k
i=1 δ(xi,yi) and x ∈ X define a = (x1, y1 . . . xk, yk, x). De-

fine attention blocks Aj(µj) = (FNj)♯

[
(T j

µj
)♯(µj)

]
and ψT (

1
T

∑T
j=1 δaj

) = aT . The encoder
transformer for few shot learning can be written as:

f(ρ̂, x) = g ◦ ψT ◦ AD ◦ . . .Ar−1︸ ︷︷ ︸
h

◦Ar ◦ . . .A1︸ ︷︷ ︸
A

(m(a))
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we have:

RV
k,P(f̂

k
m,n,B) ≤ ESR̂V

k,S(f̂
k
m,n,B) +

√
2LV (1 + LF )Ŵ(A♯Pm,A♯P′

m),

Where

Ŵ(A♯Pm,A♯P′
m)

= min
γ∈Γ(Pm,P′

m)

m∑
i1=1

m∑
i2=1

γi1i2

 1

B2

B∑
b1,b2=1

(
WA,k(ρ̂ni1 , ρ̂

n
i2) +W1(A♯ρ̂

b1,k
i1

,A♯ρ̂
′,b2,k
i2

)
) , (24)

and:

WA,k(ρ̂ni1 , ρ̂
n
i2) = inf

γ̃∈Γ(ρ̂n
i1

,ρ̂n
i2

)

n∑
j1=1

n∑
j2=1

γ̃i1i2j1j2

1

B2

B∑
b1,b2=1

c(xi1j1 , x
′
i2,j2 , yi1j1 , y

′
i2j2 , ρ̂

′,b2,k
i2

, ρ̂b1,ki1
)

where:

c(xi1j1 , x
′
i2,j2 , yi1j1 , y

′
i2j2 , ρ̂

′,b2,k
i2

, ρ̂b1,ki1
)

=
√
d2X (ψT (A♯(m(ψ(ρ̂b1,ki1

)⊕ xi1j1)), ψT (A♯(m(ψ(ρ̂b2,ki2
)⊕ x′i2j2))) + d2Y(yi1j1 , y

′
i2j2

)

For a sequence a = (a1, . . . , aT ), we define a ⊕ x = (a1, . . . , aT , x), and ψ maps the empirical
measure to a sequence.

Note that the lifted wasserstein is evaluated in the hidden space following an intermediate self
attention block. Note that in (25) the test points are now not contributing to the generalization
independent of the context since WA,k depends on the context. The generalization bound given in
the attention latent space can be much smaller then the one in the input domain , by lipschitzity the
input domain bound is an upper bound. Note that this type of bounds is not uniform on the function
class and hold only for a given function. The input space bound is uniform on the function class.

Proof of Proposition 3. Let a = (x1, y1 . . . xk, yk, x) , Aj(µj) = (FNj)♯

[
(T j

µj
)♯(µj)

]
and

ψT (
1
T

∑T
j=1 δaj ) = aT .

f(ρ̂, x) = g ◦ ψT ◦ AD ◦ . . .Ar−1︸ ︷︷ ︸
h

◦Ar ◦ . . .A1︸ ︷︷ ︸
A

(m(a))

Note that is h lipschitz in A(m(a)) in the sense that there exists LF :

|h(A(m(a)))−h(A(m(b)))| ≤ LF (W1(A(m(a)),A(m(b)) + dX (ψT (A(m(a))), ψT (A(m(b)))))

The proof follows from the proof of Theorem 4. The main difference with theorem 4 is that the
lipchiizity is not in the input xi1j1 but in ψT (A♯(m(ψ(ρ̂b1,ki1

) ⊕ xi1j1) that is the last output in the
tensor output of the attention block at layer r. The lipschitzty is also in the empirical measure of
output of the attention block A♯ρ̂

b1,k
i1

and not in ρ̂b1,ki1
. Note that in the test points xi1j1 and the

contexts don’t appear any more in independent contributions.

ES

(
RV

k,P(f̂
k
m,n,B)− R̂V

k,S(f̂
k
m,n,B)

)
≤ ESES′ sup

h∈{h|f=h◦A}

∣∣∣R̂V
k,S′(f)− R̂V

k,S(f)
∣∣∣

≤
√
2LV (1 + LF )Ŵ(A♯Pm,A♯P′

m)

Ŵ(A♯Pm,A♯P′
m)

= min
γ∈Γ(Pm,P′

m)

m∑
i1=1

m∑
i2=1

γi1i2

 1

B2

B∑
b1,b2=1

(
WA,k(ρ̂ni1 , ρ̂

n
i2) +W1(A♯ρ̂

b1,k
i1

,A♯ρ̂
′,b2,k
i2

)
) , (25)
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where:

WA,k(ρ̂ni1 , ρ̂
n
i2) = inf

γ̃∈Γ(ρ̂n
i1

,ρ̂n
i2

)

n∑
j1=1

n∑
j2=1

γ̃i1i2j1j2

1

B2

B∑
b1,b2=1

c(xi1j1 , x
′
i2,j2 , yi1j1 , y

′
i2j2 , ρ̂

′,b2,k
i2

, ρ̂b1,ki1
)

where:

c(xi1j1 , x
′
i2,j2 , yi1j1 , y

′
i2j2 , ρ̂

′,b2,k
i2

, ρ̂b1,ki1
)

=
√
d2X (ψT (A♯(m(ψ(ρ̂b1,ki1

)⊕ xi1j1)), ψT (A♯(m(ψ(ρ̂b2,ki2
)⊕ x′i2j2))) + d2Y(yi1j1 , y

′
i2j2

)

For a sequence a = (a1, . . . , aT ), we define a⊕ x = (a1, . . . , aT , x).

Hence we have for encoder attention:

ES

(
RV

k,P(f̂
k
m,n,B)− R̂V

k,S(f̂
k
m,n,B)

)
≤

√
2LV (1 + LF )Ŵ(A♯Pm,A♯P′

m).
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