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Abstract

Layer normalization has demonstrated remarkable effectiveness at preventing
plasticity loss in continual and reinforcement learning (RL), though the precise
reasons for this effectiveness remain mysterious. In this work, we identify new
mechanisms by which layer normalization can help – and hinder – training in
neural networks, and leverage these insights to improve the robustness of gradient-
based optimization algorithms to nonstationarity. Our analysis reveals a surprising
ability of layer normalization to revive dormant ReLU units, along with an under-
appreciated vulnerability to unconstrained decay of the effective learning rate
(ELR), which can drive loss of plasticity in long-running nonstationary tasks.
Motivated by these findings, we propose Normalize-and-Project (NaP), a simple
protocol designed to provide the numerous benefits of normalization while ensuring
that the effective learning rate remains constant throughout training. To do so, NaP
couples the insertion of normalization layers with weight projection. This technique
mitigates loss of plasticity in two challenging continual learning problems: a
sequential supervised learning task, and a continual variant of the Arcade Learning
Environment. Further, by using NaP to explicitly control the effective learning rate
in deep RL agents, we find that in fact the implicit ELR decay induced by parameter
norm growth in these agents is critical to their ability to achieve competitive
performance, suggesting the common practice of using constant learning rates in
deep RL may be far from optimal.

1 Introduction

Many of the most promising application areas of deep learning, in particular deep reinforcement
learning (RL), require training on a problem which is in some way nonstationary. In order to
perform well on a nonstationary problem, the neural network must maintain its ability to adapt to new
information, i.e. it must remain plastic. Several recent works have shown that loss of plasticity can
present a major barrier to performance improvement in RL and in continual learning [Dohare et al.,
2021, Lyle et al., 2021, Nikishin et al., 2022]. These works have proposed a variety of explanations
for plasticity loss such as the accumulation of saturated ReLU units and increased sharpness of the
loss landscape [Lyle et al., 2023], along with mitigation strategies, such as resetting dead units [Sokar
et al., 2023] and regularizing the parameters towards their initial values [Kumar et al., 2023]. Many
of these explanations and their corresponding mitigation strategies center around reducing drift in the
distribution of pre-activations [Lyle et al., 2024], a problem which has historically been resolved in
the supervised learning setting, and more recently in continual learning and RL [Hussing et al., 2024,
Ball et al., 2023], by incorporating normalization layers into the network architecture.
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While effective, normalization on its own is insufficient to avoid loss of plasticity [Lee et al., 2023].
Part of the reason for this lies in a subtle property of normalization: a normalization layer causes the
subnetwork preceding it to become scale-invariant, which means that the layer’s effective learning
rate (ELR) now depends on the norm of its parameters [Van Laarhoven, 2017]. In particular, when the
norm of the parameters grows, as it typically does in neural networks trained without regularization,
the effective learning rate shrinks. Weight decay can address this problem, but runs the risk of either
failing to fully mitigate the norm growth or over-regularizing the model to the point of slowing down
learning and thus requires careful tuning, adding additional complexity to the training protocol.

The aim of this work is to provide a principled strategy for the use of layer normalization in non-
stationary learning problems. To do so, we first identify two critical properties of layer normalization:
its ability to facilitate the revival of dormant neurons, and its vulnerability to vanishing gradients as
the parameter norm grows. In particular, we show that layer normalization buffers against dormant
neurons due to its effect of mixing gradient signal between units. This analysis motivates Normalize-
and-Project (NaP), a method which inserts normalization layers prior to each nonlinearity in a
network architecture and maintains constant per-layer parameter norm. A network trained with
the NaP protocol stands to benefit from the increased robustness to unit saturation provided by
LayerNorm’s gradient-mixing property, while also avoiding its vulnerability to vanishing gradients
under growing parameter norms. Indeed, we observe empirically that NaP virtually eliminates loss of
plasticity in multiple challenging non-stationary learning problems, including sequential training on
games from the Arcade Learning Environment (ALE) [Bellemare et al., 2013, Abbas et al., 2023].
We further confirm that NaP can be seamlessly integrated into standard computer vision and sequence
modeling baselines from standard benchmarks without hindering performance.

We further leverage Normalize-and-Project as an analytical tool to explain the dramatic performance
degradations induced by weight decay in deep RL agents. By making the effective learning rate
explicit, NaP reveals that the implicit learning rate decay induced by parameter norm growth in
Rainbow [Hessel et al., 2018] agents is in fact critical to their performance in the ALE benchmark:
certain components of the value function require a sufficiently small ELR in order to be learned, and
an optimization process which does not reach this value will therefore underfit the value function
in ways that can inhibit performance improvement. Indeed, while we demonstrate that the implicit
schedule induced by parameter norm growth outperforms a constant effective learning rate, an
explicit schedule with more aggressive learning rate decay outperforms the implicit one on the ALE
benchmark. These findings are at odds the common folk wisdom that the continual nature of RL
makes it unsuitable for learning rate decay, and demonstrate the untapped potential of step size
schedules to accelerate deep reinforcement learning.

2 Background and related work

We begin by providing background on trainability and its loss in nonstationary learning problems.
We additionally give an overview of neural network training dynamics and effective learning rates.

2.1 Training dynamics and plasticity in neural networks

Early work on neural network initialization centered around the idea of controlling the norm of the
activation vectors [LeCun et al., 2002, Glorot and Bengio, 2010, He et al., 2015] using informal
arguments. More recently, this perspective has been formalized and expanded [Poole et al., 2016,
Daniely et al., 2016, Martens et al., 2021] to include the inner-products between pairs of activation
vectors (for different inputs to the network). The function that describes the evolution of these
inner-products determines the network’s gradients at initialization up to rotation, and this in turn
determines trainability (which was shown formally in the Neural Tangent Kernel regime by Xiao
et al. [2020] and Martens et al. [2021]). A variety of initialization methods have been developed to
ensure the network avoids “shattering” [Balduzzi et al., 2017] or collapsing gradients [Poole et al.,
2016, Martens et al., 2021, Zhang et al., 2021b].

Once training begins, learning dynamics can be well-characterized in the infinite-width limit by the
neural tangent kernel and related quantities [Jacot et al., 2018, Yang, 2019], although in practice
optimization dynamics diverge significantly from this limit [Fort et al., 2020]. A number of beneficial
phenomena emerge in the finite-width, finite-step-size regime, such as the self-stabilization of
gradient descent [Lewkowycz et al., 2020, Cohen et al., 2021, Agarwala et al., 2022] and implicit
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regularization [Barrett and Dherin, 2020, Smith et al., 2020] as a result of the non-linear training
dynamics. However, particularly in non-stationary learning problems, neural networks can also be
vulnerable to loss of plasticity [Sodhani et al., 2020, Dohare et al., 2021, Nikishin et al., 2022, Abbas
et al., 2023, Lyle et al., 2024] as they drift away from the initial parameters. This phenomenon has
been shown to present a limiting factor to performance in a number of RL tasks [Igl et al., 2021, Lyle
et al., 2021, Nikishin et al., 2023], along with continual learning and warm-starting neural network
training [Berariu et al., 2021, Ash and Adams, 2020].

A variety of architectural choices can accelerate the training of extremely deep networks, including
residual connections [He et al., 2016] and normalization layers [Ioffe and Szegedy, 2015, Ba et al.,
2016]; these methods have also been demonstrated to help networks maintain plasticity in reinforce-
ment [Ball et al., 2023, Lyle et al., 2023] and continual [Kumar et al., 2023] learning. Some additional
works have aimed to replicate the benefits of normalization layers via normalization of the network
parameters [Salimans and Kingma, 2016, Arpit et al., 2016], though layer normalization (LayerNorm)
remains standard practice in most domains. A variety of analyses highlight LayerNorm’s effect on
gradient moments as a critical factor in its efficacy [Xu et al., 2019, Xiong et al., 2020].

2.2 Effective learning rates

As noted by several prior works [Van Laarhoven, 2017, Li and Arora, 2020, Li et al., 2020b],
normalization of the type performed by BatchNorm and LayerNorm introduces scale-invariance into
the layers to which it is applied, where by a scale-invariant function f we mean f(cθ,x) = f(θ,x)
for any positive scalar c > 0. This leads to the gradient scaling inversely with the parameter norm, i.e.
∇f(cθ) = 1

c∇f(θ). The intuition behind this property is simple: changing the direction of a large
vector requires a greater perturbation than changing the direction of a small vector. This motivates the
concept of an ‘effective learning rate’, which provides a scale-invariant notion of optimizer step size.
In the following definition, we take the approach of Kodryan et al. [2022] and assume an implicit
‘reference norm’ of size 1 for the parameters.
Definition 1 (Effective learning rate). Consider a scale-invariant function f , parameters θ and
update function θt+1 ← θt + ηg(θt) for some update function g. Letting ρ = 1

∥θ∥ , we then define the
effective learning rate η̃ as follows:

η̃ =

{
ηρ2, if g(θt) = ∇θf(θt)

ηρ, if g(θt) =
∇θf(θt)

∥∇θf(θt)∥
(1)

where, letting θ̃ = θ 1
∥θ∥ we then have f(θ̃ + η̃g(θ̃)) = f(θ + ηg(θ))

Thus by reducing the parameter norm, weight decay can have the dual effect of increasing the effective
learning rate [Van Laarhoven, 2017, Hoffer et al., 2018], a property which has been extensively
analyzed [Arora et al., 2018, Li and Arora, 2020, Li et al., 2020a]. This perspective justifies the
decoupling of weight decay and gradient accumulation in AdamW [Loshchilov and Hutter, 2019],
along with the application of learning rate schedules to the weight decay parameter [Xie et al., 2024].
It also motivates scaling the norm of the updates to be proportional to the parameter norm in a variety
of optimizers [Liu et al., 2021, You et al., 2017, 2020]. The perspective of updates as rotations of the
parameters has been applied by recent analyses of the equilibrium dynamics of optimization in scale-
invariant networks trained with weight decay [Wan et al., 2021, Kosson et al., 2024]. More recently,
the work of Lobacheva et al. [2021] and Kodryan et al. [2022] has studied the training properties of
scale-invariant networks trained with parameters constrained to the unit sphere, a training regime
we expand upon in this work. A similar approach, referred to as weight standardization, has been
demonstrated to reduce the need for normalization layers in diffusion models [Karras et al., 2024].

3 Analysis of normalization layers and plasticity

Although widely used and studied, the precise reasons behind the effectiveness of layer normalization
remain mysterious. In this section, we provide some new insights into how normalization can
help neural networks to maintain plasticity by facilitating the recovery of saturated nonlinearities,
and highlight the importance of controlling the parameter norm in networks which incorporate
normalization layers. We leverage these insights to propose Normalize-and-Project, a simple training
protocol to maintain important statistics of the layers and gradients throughout training.
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Figure 1: Accumulation of dead units in an iterated random label memorization task. The network is trained to
memorize random labels of the MNIST dataset which are re-randomized every 1000 optimizer steps. Networks
with normalization layers are able to recover from spikes in the number of dead units.

3.1 Normalization and ReLU revival

It is widely accepted that achieving approximately mean-zero, unit-variance pre-activations (assuming
suitable choices of activation functions) is useful to ensure a network is trainable at initialization [e.g
Martens et al., 2021], and many neural network initialization schemes aim to maintain this property
as the depth of the network grows. Indeed, it is easy to show that in extreme cases large deviations
of these statistics from their initial values can lead to a variety of network pathologies including
saturated units and low numerical rank of the empirical neural tangent kernel [Xiao et al., 2020].
Layer normalization not only guarantees that activations are unit-norm, mean-zero at initialization,
but also that they stay that way over the course of training even if the data distribution changes,
assuming no scale or offset parameters.

Beyond re-normalizing the pre-activation statistics, layer normalization also introduces a dependency
between units in a given layer via the mean subtraction and division by standard deviation transfor-
mations, which translates to correlations in the gradients of their corresponding weights. This mixing
step allows gradients to propagate through a pre-activation even if the unit is saturated, provided layer
normalization is applied prior to the nonlinearity, a property we highlight in Proposition 1. We will
use the notation fRMS(h) =

h
∥h∥ to specify the RMSNorm transform, and let f ′(x) = ∂

∂xf(x) refer
to the scalar derivative of any f at scalar x.

Proposition 1. Consider two indices i and j of a feature embedding ϕ(fRMS(h)) such that
ϕ′(fRMS(h)j) ̸= 0, and hi, hj ̸= 0. Then we have

d

dhi
ϕ(fRMS(h))j = −ϕ′(fRMS(h)j)

1

∥h∥3
hihj ̸= 0 .

In contrast, for post-activation normalization the gradient is zero whenever ϕ′(hi) = 0, i.e.

ϕ′(hi) = 0 =⇒ d

dhi
fRMS(ϕ(h))j = −ϕ′(hi)

1

∥ϕ(h)∥3
ϕ(hi)ϕ(hj) = 0. (2)

In other words, normalization effectively gives dead ReLU units a second chance at life – rather
than immediately decaying to zero, the gradients propagated to the incoming weights of a saturated
ReLU will take on non-zero values, which depend on the gradients of the mean and variance of that
particular layer. These gradients will be much smaller than those that would typically backpropagate
to the unit, but if an optimizer such as Adam or RMSProp is used to correct for the gradient norm,
then the unit may still be able to take nontrivial steps, which have a chance at propelling it back into
the activated regime. This property is also naturally inherited by layer normalization, which can be
viewed as the composition of RMSNorm with a centering transform. An illustration of normalization
allowing the network to revive dead units is given in Figure 1. We include the full derivation of
Proposition 1 in Appendix A.2, and we demonstrate the effect this can have on a theoretical model of
neural network training in Appendix C.4. However, while layer normalization can help the network
to recover from saturated nonlinearities, it introduces a new source of potential saturation which must
be carefully considered, which is something we will do in the next section.
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Figure 2: Continual random-labels CIFAR training: simple feedforward network architecture (No Norm)
exhibits rapid growth in its parameter norm and the norm of its gradients, whereas the otherwise-identical
network with layer normalization sees parameter norm growth coupled with a reduction in the norm of its
gradients and reduced performance on later tasks. Constraining the parameter norm of this network maintains
the performance of a random initialization.

3.2 Parameter norm and effective learning rate decay

While the output of a scale-invariant function is insensitive to scalar multiplication of the parameters,
its gradient magnitude scales inversely with the parameter norm. Consequently, growth in the norm
of the parameters corresponds to a decline in the network’s sensitivity to changes in these parameters.
In a sense this is preferable, as the glacially slow but stable regime of vanishing gradients is easier to
recover from than the unstable exploding gradient regime. However, if the parameter norm grows
indefinitely then the corresponding reduction in the effective learning rate will eventually cause
noticeable slowdowns in learning – indeed, we show in Figure 2 that it is quite easy to induce this
type of situation. To do so, we take a small base convolutional neural network architecture (detailed
in Appendix B.4) and train it on random labels of the CIFAR-10 dataset, akin to the classic setting of
Zhang et al. [2021a]. We then re-randomize these labels and continue training, repeating this process
500 times. When we apply this process to a network without normalization layers, the Jacobian norm
grows to unstable values as the parameter norm increases; in contrast, an equivalent architecture with
normalization layers sees a sharp decline in the Jacobian norm as the parameter norm increases. In
both cases, the end result is similar: increased parameter norm accompanies reduced performance on
new tasks.

While this particular problem is artificial, it is a real and widely observed underlying phenomenon that
the magnitudes of neural network parameters tend to increase over the course of training [Nikishin
et al., 2022, Abbas et al., 2023]. In a supervised learning problem, where one is using a fixed training
budget, the ELR decay induced by growing parameter norms might be desirable and help to protect
against too-large learning rates [Arora et al., 2018, Salimans and Kingma, 2016]. Allowed to continue
to extremes, however, ELR decay becomes problematic [Lyle et al., 2024]. Fortunately, this problem
admits an obvious solution: re-scaling the parameters to have nontrivial ELR. Since LayerNorm
induces scale-invariance, this will not change the function computed by the network, but will change
its training dynamics. We demonstrate the utility of this strategy in Figure 2.

3.3 Normalize-and-Project

We conclude from the above investigation that normalizing a network’s pre-activations and fixing
the parameter norm presents a simple but effective defense against loss of plasticity. In this section,
we propose a principled approach to combine these two steps which we call Normalize-and-Project.
Our goal for NaP is to provide a flexible recipe which can be applied to essentially any architecture,
and which improves the stability of training, motivated by but not limited to non-stationary problems.
Our approach can be decomposed into two steps: the insertion of normalization layers prior to
nonlinearities in the network architecture, and the periodic projection of the network’s weights onto
a fixed-norm radius throughout training, along with a corresponding update to the per-layer learning
rates into the optimization process. Algorithm 1 provides an overview of NaP.

Layer normalization. in order to benefit from the robustness to saturated nonlinearities outlined
in Proposition 1, we propose adding layer normalization prior to every nonlinearity in the network.
While it might seem extreme, this proposal is not too far removed from standard practice. For
example, Vaswani et al. [2017] apply normalization after every two fully-connected layers, and recent
results suggesting that adding normalization to the key and query matrices in attention heads [Henry
et al., 2020] can improve performance and the robustness of optimization [Wortsman et al., 2023].
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Algorithm 1 NaP: Normalize-and-Project
Input: network N , input x
for nonlinearity ϕl in network do

if ϕl not already normalized then
ϕl ← ϕl ◦ LayerNorm

end if
end for
compute θ′ = update(θ)
for parameter Wl in network do

compute Wl ←WeightProject(Wl)
end for

WeightProject(Wl, ρl) :
if Wl is a weight parameter then

Wl ← ρlWl

∥W;∥
else

σl, µl ←Wl, d← len(σl)

σl ← σl

√
d

∥σl∥2+∥µl∥2

µl ← µl

√
d

∥σl∥2+∥µl∥2

end if

Weight projection. As discussed in Section 3.2, once we have incorporated layer normalization
we must take care to ensure that these normalization layers will not saturate, i.e. that the network’s
effective learning rate will not decay to zero over the course of training due to growth of the parameters.
We propose disentangling the parameter norm from the effective learning rate by enforcing a constant
norm on the weight parameters of the network, allowing scaling of the layer outputs to depend only on
the learnable scale and offset parameters. This approach is similar to that proposed by Kodryan et al.
[2022], but importantly takes care to treat the scale and offset parameters separately from weights.
For simplicity, we remove bias terms as these are made redundant by the learnable offset parameters.
In order to maintain constant parameter norm, we rescale the parameters of each layer to match their
initial norm periodically throughout training – the precise frequency is not important as long as the
parameter norm does not meaningfully grow to a point of slowing optimization between projections.
For example, we find that in Rainbow agents an interval of 1000 steps and 1 step produce nearly
identical empirical results. In principle we could constrain the parameter norm to any arbitrary value,
but the choice of fixing the initial norm makes learning rate transfer easier when adapting an existing
architecture. We do not project the final linear output layer, as it is not scale-invariant.

Scale and offset parameters. We find it is absolutely critical to normalize the weight parameters,
as these represent the bulk of trainable parameters in the network. The learnable scale and offset
parameters, assuming they are included in the network3, must be dealt with differently. Whereas
rescaling the parameters of a linear map that immediately precedes a LayerNorm transform does
not change the output of the function, the scale and offset terms will be first passed through a
nonlinearity before entering the next LayerNorm and so will not necessarily share this property. For
these parameters, we can proceed in one of three ways. In the case of homogeneous activations such
as ReLUs, we can normalize the concatenated scale-offset vector as described in in Appendix D. This
can require some effort to implement due to the dependency between the scale and offset parameters
and may not be worthwhile for small training runs – indeed, most of our empirical results did not
require this step, though we include it in our analysis of smaller networks in Figure 3.

A more general solution which requires less implementation overhead and which applies equally
to non-ReLU activations is to regularize the scale and offset parameters to their initial values, a
strategy which we employ in our continual learning evaluations in Section 5. Assuming suitable
initial values, this approach encourages the mean and variance of the pre-activations toward values
where the nonlinearity does not saturate. Finally, they can be allowed to drift unconstrained from
their initialization, a choice we find unproblematic in standard benchmarks for supervised learning.
For a more detailed discussion on this choice, we refer to Appendix D.

3We observed in many of our experiments that removing trainable scale and offset parameters often has little
effect on network performance. In Rainbow agents, for example, removing the trainable offset parameter even
improves performance in several environments.
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Figure 3: We run a ‘coupled networks’ experiment as described in the text. All networks exhibit similar
learning curves, as seen by the rightmost subplot, however there is small but visible gap between the learning
curves obtained by NaP and an unconstrained network with fixed learning rates. Using a global learning rate
schedule almost entirely closes this gap, but does not induce a precise equivalence in the dynamics as obtained
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4 Understanding effective learning rate dynamics

NaP constrains the network’s effective learning rate to follow an explicit rather than implicit schedule.
In this section, we explore how this property affects network training dynamics, demonstrating how
implicit learning rate schedules due to parameter norm growth can be made explicit and be leveraged
to improve the performance of NaP in deep RL domains.

4.1 Learning rate and parameter norm equivalence

We begin our study of effective learning rates by illustrating how the implicit learning rate schedule
induced by the evolution of the parameter norm can be translated to an explicit schedule in NaP. We
study a small CNN described in Appendix B.4 with layer normalization prior to each nonlinearity
trained on CIFAR-10 with the usual label set. We train two ‘twin’ scale-invariant networks with
the Adam optimizer in tandem: both networks see the exact same data stream and start from the
same initialization, but the per-layer weights of one are projected after every gradient step to have
constant norm, while the other is allowed to vary the norms of the weights. We then consider three
experimental settings: in the first, we re-scale the per-layer learning rates of the projected network
so that the explicit learning rate is equal to the effective learning rate of its twin. In the second, we
re-scale the global learning rate based on the ratio of parameter norms between the projected and
unprojected network, but do not tune per-layer. In the third, we do no learning rate re-scaling. We
see in Figure 3 that the shapes of the learning curves for all networks except for the constant-ELR
variant are quite similar, with the global learning rate scaling strategy producing a smaller gap than
the no-rescaling strategy. By construction, the dynamics of the per-layer rescaling network and its
twin are identical. Because global learning rate schedules are standard practice and induce dynamics
that are quite close to those obtained by parameter norm growth in Figure 3, we take this approach in
the remainder of the paper, leaving layer-specific learning rates and schedules for future work.

4.2 Implicit learning rate schedules in deep RL

When taken to extremes, learning rate decay will eventually prevent the network from making
nontrivial learning progress. However, learning rate decay plays an integral role in the training of
many modern architectures, and is required to achieve convergence for stochastic training objectives
(unless the interpolation applies or Polyak averaging is employed). In this section we will show that,
perhaps unsurprisingly, naive application of NaP with a constant effective learning rate can sometimes
harm performance in settings where the implicit learning rate schedule induced by parameter norm
growth was in fact critical to the optimization process. More surprising is that the domain where
this phenomenon is most apparent is one where common wisdom would suggest learning rate decay
would be undesirable: value-based deep reinforcement learning.

RL involves a high degree of nonstationarity. As a result algorithms such as DQN and Rainbow often
use a constant learning rate schedule. Given that layer normalization has been widely observed to
improve performance in these algorithms, and that parameter norm tends to increase significantly
in deep RL tasks, one might at first believe that the performance improvement offered by layer
normalization is happening in spite of the resulting implicit learning rate decay. A wider view of the
literature, however, reveals that several well-known algorithms such as AlphaZero [Schrittwieser
et al., 2020], along with many implementations of popular methods such as Proximal Policy Opti-
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Figure 4: Without an explicit learning rate schedule, a Rainbow trained with NaP may fail to make any
performance improvement; while the implicit schedule induced by the parameter norm is clearly important to
performance, in several games this is significantly outperformed by a simple linear schedule terminating halfway
through training. Intriguingly, we see a characteristic sharp improvement near the end of the decay schedule in
several (though not all, e.g. fishing derby) games.

mization [Schulman et al., 2017], incorporate some form of learning rate decay, suggesting that a
constant learning rate is not always desirable. Indeed, Figure 4 shows that constraining the parameter
norm to induce a fixed ELR in the Rainbow agent frequently results in worse performance compared
to unconstrained parameters. This is particularly striking given that many of the benefits supposedly
provided by layer normalization, such as better conditioning of the loss landscape [Lyle et al., 2023]
and mitigation of overestimation bias [Ball et al., 2023], should be independent of the effective
learning rate. Instead, these properties appear to either be irrelevant for optimization or dependent on
reductions in the effective learning rate to materialize.

We can close this gap by introducing a learning rate schedule (linear decay from the default 6.25·10−5

to 10−6, roughly proportional to the average parameter norm growth across games). We further
observe in Appendix C.1 that when we vary the endpoint of the learning rate schedule, we often obtain
a corresponding x-axis shift in the learning curves, suggesting that reaching a particular learning rate
was necessary to master some aspect of the game. We conclude that, while beneficial, the implicit
schedule induced by the parameter norm is not necessarily optimal for deep RL agents, and it is
possible that a more principled adaptive approach could provide still further improvements.

5 Empirical Evaluations

We now validate the utility of NaP empirically. Our goal in this section is to validate two key
properties: first, that NaP does not hurt performance on stationary tasks; second, that NaP can
mitigate plasticity loss under a variety of both synthetic and natural nonstationarities.

5.1 Robustness to nonstationarity

We begin with a continual classification problem which has been widely used in works studying
loss of plasticity: memorization of iteratively re-randomized labels of an image dataset. In this
task, each input from the dataset is assigned a uniform random label; the network is then trained
on this set of labels for a fixed duration, after which a new set of random labels are generated and
optimization begins again. Full details can be found in Appendix B.4. There is no shared structure
between tasks in this problem setting, so performance is solely determined by trainability and not
transfer between tasks. We evaluate our approach on a variety of sources of nonstationarity, using two
architectures: a small CNN, and a fully-connected MLP (see Appendix B.4. for details). We consider
a number of methods designed to maintain plasticity including Regenerative regularization [Kumar
et al., 2023], Shrink and Perturb [Ash and Adams, 2020], ReDo [Sokar et al., 2023], leaky ReLU units
(inspired by the success of concatenated ReLU activations [Abbas et al., 2023]), L2 regularization,
and random Gaussian perturbations to the optimizer update, a heuristic form of Langevin Dynamics.
We track the average online accuracy over the course of training for 20M steps, equivalent to 200 data
relabelings, using a constant learning rate. We find varying degrees of efficacy in these approaches,
with regenerative regularization and ReDO tending to perform the best. When we apply NaP on top of
the same suite of methods in Figure 5, we observe near-monotonic improvements (with the exception
of ReDO, where the reset mechanism does not take normalization into account) in performance and
a significant reduction in the gaps between methods, with the performance curves of the different
methods nearly indistinguishable in the MLP. Further, we observe constant or increasing slopes in
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Figure 5: Robustness to nonstationarity: we see that without NaP, there is a wide spread in the effectiveness
of various plasticity-preserving methods across two architectures. Once we incorporate NaP, however, the gaps
between these methods shrink significantly and almost uniformly improves over the unconstrained baseline.

CIFAR-10 ImageNet-1k C4 Pile WikiText Lambada SIQA PIQA
NaP 94.64 77.26 45.7 47.9 45.4 56.6 44.2 68.8
Baseline 94.65 77.08 44.8 47.4 44.2 54.1 43.5 67.3
Norm only 94.47 77.45 44.9 47.6 44.3 53.6 43.8 67.1

Table 1: Left: Top-1 prediction accuracy on the test sets of CIFAR-10 and ImageNet-1k. Right: per-token
accuracy of a 400M transformer model pretrained on the C4 dataset, evaluated on a variety of language
benchmarks. See Appendix C.5 for more results with variation measures.

the online accuracy, suggesting that the difference between methods has more to do with their effect
on within-task performance than on plasticity loss once the parameter and layer norms have been
constrained.

5.2 Stationary supervised benchmarks

Having observed remarkable improvements in synthetic tasks, we now confirm that NaP does not
interfere with learning on more widely-studied, natural datasets.

Large-scale image classification. We begin by studying the effect of NaP on two well-established
benchmarks: a VGG16-like network [Simonyan and Zisserman, 2014] on CIFAR-10, and a ResNet-
50 [He et al., 2016] on the ImageNet-1k dataset. We provide full details in Appendix B.4. In Table 1
we obtain comparable performance in both cases using the same learning rate schedule as the baseline.

Natural language: we evaluate the effect of NaP on a 400M-parameter transformer architecture
(details in Appendix B.3) trained on the C4 dataset [Raffel et al., 2020]. Table 1 shows that our
approach does not interfere with performance on this task, where we match final per-token accuracy
of the baseline. When evaluating the pre-trained network on a variety of other datasets, we find that
NaP slightly outperforms baselines in terms of performance on a variety of benchmarks, including
WikiText-103, Lambada [Paperno et al., 2016], PIQA [Bisk et al., 2020], SocialIQA [Sap et al., 2019],
and Pile [Gao et al., 2020].

5.3 Deep reinforcement learning

Finally, we evaluate our approach on a setting where maintaining plasticity is critical to performance:
RL on the Arcade Learning Environment. We conduct a full sweep over 57 Atari 2600 games
comparing the effects of normalization, weight projection, and learning rate schedules on a Rainbow
agent [Hessel et al., 2018]. In the RHS of Figure 6 we plot the spread of scores, along with estimates
of the Mean and IQM of four agents: standard Rainbow, Rainbow + LayerNorm, Rainbow + NaP
without an explicit LR schedule, and Rainbow + NaP with the LR schedule described in Section 4.2.
We find that NaP with a linear schedule outperforms the other methods.

We also consider the sequential setting of Abbas et al. [2023]. In this case, we consider an idealized
setup where we reset the optimizer state and schedule every time the environment changes, using a
cosine schedule with warmup described in Appendix B.2. To evaluate NaP on this regime, we train
on each of 10 games for 20M frames, going through this cycle twice. We do not reset parameters
of the continual agents between games, but do reset the optimizer. We plot learning curves for the
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Figure 6: Left: We visualize the learning curves of continual atari agents on sequential ALE training (i.e. 200M
frames). Each game is played for 20M frames, and agents pass sequentially from one to another, repeating all
ten games twice for a total of 400M training frames. Solid lines indicate performance on the second visit to
each game, and dotted lines indicate performance of a randomly initialized network on the game. Even in its
second visit to each game, NaP performs comparably the randomly initialized networks, whereas the standard
rainbow agent exhibits poor performance on all games in the sequential training regime. Right: aggregate effects
of normalization on single-task atari, computed via the approach of Agarwal et al. [2021]. Bars indicate 95%
confidence intervals over 4 seeds and 57 environments.

second round of games in the LHS of Figure 6, finding that NaP significantly outperforms a baseline
Rainbow agent with and without layer normalization. Indeed, even after 200M steps the networks
trained with NaP make similar learning progress to a random initialization.

6 Discussion

This paper has demonstrated that maintaining plasticity in the face of nonstationary training objectives
can be achieved through careful normalization of the network’s features and parameters. While there
are many factors contributing to the efficacy of normalization in maintaining plasticity, we identified
two non-obvious factors: the effect of normalization on the network’s ability to revive saturated
units, and role of the parameter norm in determining the effective learning rate of networks with
normalization layers. With these insights in hand, we proposed Normalize-and-Project, a simple
protocol which consists of adding layer normalization prior to nonlinearities in the network and
periodically re-scaling the per-layer weights back to their initial norms.

Beyond improving performance in non-stationary supervised learning problems, NaP also presents
a powerful tool for understanding the role of the effective learning rate on training dynamics. By
applying NaP to reinforcement learning problems, we revealed the crucial importance of ELR decay
to the ability of value-based deep RL agents to improve their performance on Atari tasks, explaining
why approaches such as weight decay so often struggle to provide the same performance benefits
in reinforcement learning as they do in supervised problems. This finding opens the door to a
number of further questions: why is ELR decay so critical to performance RL? What features of
the environments require a sufficiently low ELR to learn, and why? In what settings is the implicit
learning rate schedule yielded by the parameter norm sub-optimal for learning progress, and can better
schedules be determined automatically, rather than being proscribed prior to the start of training?

The development of even more effective normalization strategies is a further promising avenue for
future work. While we did not observe pathological behaviour in the unnormalized and unregularized
scale and offset parameters of networks trained on single tasks, regularization of these parameters was
critical to maintain performance in the sequential Atari domain and suggests that these parameters
can interfere with learning if left unconstrained. Further, while layer normalization is not observed
to impede network expressivity in visual domains, where the scale of the input does not usually
carry task-relevant information, in proprioceptive domains normalization of features may increase
the difficulty of learning, as it removes valuable spatial information from the input. Applying NaP to
these domains will require careful design of feature embedding layers or an alternate normalization
strategy which does not remove information about the Euclidean distance between inputs.
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A Derivations

A.1 Notation

Analysis of a network’s training dynamics depends on characterizing the evolution of (pre-)activations
and gradients in the forward and backward passes respectively. We lay out basic notation for fully-
connected layers first, and then note additional details which must be considered for convolutional,
skip connection, and attention layers. We will write the parameters of a layer as θl, and use f to
denote a neural network.

Fully-connected layers: We write the forward pass through a network f : Rd0 → RdL as a
composition of layer-wise computations f l : Rdl−1 → Rdl of the form:

al = f l(al−1) = ϕ(σlfLN(h
l) + µl), hl = W lal−1 W l = θl (3)

where ϕ denotes a nonlinearity and fLN is a (possibly absent) normalization operator. We let a0
denote the network inputs. We will refer to a forward pass through a subset of a network with the
notation f l1:l2 = f l2 ◦ · · · ◦ f l1 , and use interchangeably f = f1:L. We will refer to the full set of
network parameters by θ = vec({θl}Ll=1).

Convolutional layers: since a convolution can be viewed as a parameterization of a matrix with a
particular symmetry, we express these layers identically to the fully-connected layers, with a change
in semantics such that W l is the matrix representation of the convolutional parameters θl, where
we write the embedding of θl into a matrix as Wconv(θl). For simplicity, we ignore the choice of
padding.

ϕ(σlfLN(h
l) + µl), hl = W lal−1 and W l = Wconv(θl) (4)

Skip-connect layers: in some network architectures, a nonlinearity is placed on the outputs of two
subnetworks to produce a function of the form

f l = ϕ

( ∑
li∈L

ali

)
or f l = ϕ

(
fLN

( ∑
li∈L

ali

))
(5)

for some index set L. The choice of whether to apply normalization to the sum of the subnetwork
outputs or to each output individually depends on the desired signal propagation properties of the
network [De and Smith, 2020].

A.2 Derivation of Proposition 1

The result described in proposition 1 follows straightforwardly from the chain rule. For pre-activation
RMSNorm we have

d

dhi
ϕ(fRMS(h))j = ϕ′(fRMS(h))j

d

dhi
fRMS(h)j (6)

d

dhi
fRMS(h)j =

d

dhi

hj(∑
h2
k

)1/2
(7)

= −1

2

hj(∑
h2
k

)3/2

d

dhi

∑
h2
k (8)

= − hj(∑
h2
k

)3/2
hi (9)

d

dhi
ϕ(fRMS(h))j = −

ϕ′(fRMS(h))jhjhi

∥h∥3
(10)
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A.3 Gradients and signal propagation

One perspective which can provide some additional insight into our approach is to consider the
following decomposition of the gradient being backpropagated through a layer.

∇Wk
L(θ) = ∂ak

L(θ) · ∂Wk
ϕ(fLN(Wkak−1)) (11)

= ∂ak
L(θ)·Dϕ̇∇hk

fLN(hk))a
⊤
k−1 (12)

With this decomposition, we obtain the following interpretation of some common pathologies.

Saturated nonlinearities: a saturated nonlinearity implies that Dϕ̇, and the gradient is exactly (in
the case of ReLU) or very close to (e.g. tanh) zero. As a result, ut will be zero for the affected
coordinates and the corresponding parameters will remain frozen. NaP addresses this problem by
using Layer or RMSNorm prior to any nonlinearity in the network.

Saturated normalization layers: the normalization transformation x 7→ x
∥x∥ is vulnerable to

saturation as ∥x∥ grows, in the sense that for a fixed-norm update u we will have

lim
∥x∥→∞

x+ u

∥x+ u∥
− x

∥x∥
= 0 (13)

and so the term ∇hk
fLN(hk)) will vanish. In this case, while the optimizer will be able to update the

parameters, these updates will have a diminishing effect on the network’s output.

Vanishing and exploding gradients: divergence and disappearance of the activations ak−1 and
backpropagated gradients ∂ak

L(θ) are well-known pathologies which can make networks untrainable.
However, even networks which start training from a well-tuned initialization may still encounter
exploding gradients due to parameter norm growth over time [Dohare et al., 2021, Wortsman et al.,
2023], or vanishing gradients and activations, such as in the case of saturated (i.e. dead/dormant)
ReLU units [Sokar et al., 2023].

A.4 Details of NaP

Guiding principles: in general, the goal of NaP is to avoid dramatic distribution shifts in the pre-
activation and parameter norms, and to ensure that the network can perform updates to parameters
even if a nonlinearity is saturated. With these in mind, there are two key properties that a network
designer should aim to maintain:

1. All parametric functions entering a nonlinearity should have a normalization layer that
at ensures the gradients of all units’ parameters are correlated. If there are no parameters
between nonlinearities (as is sometimes the case in e.g. resnets) normalization is not
essential.

2. Based on our investigations in Appendix C.4, L2 normalization of the pre-activations is
crucial to obtain the positive benefits of layer normalization, while centering does not have
noticeable effects on the network’s robustness to unit saturation. As a result, applying at least
RMSNorm is crucial prior to nonlinearities, but the choice of whether or not to incorporate
centering is up to the designer’s discretion.

Batch normalization layers: by default, we put layer normalization prior to batch normalization if
an architecture already incorporates batch normalization prior to a nonlinearity. This preserves the
property of batch norm that individual units have mean zero across the batch, which may not be the
case if layer normalization is applied after. We also always omit offset parameters if layernorm is
succeeded by batchnorm, as these offset parameters will be zeroed out by batchnorm.

Skip-connect layers: provided that layer normalization is applied to the outputs of a linear transfor-
mation prior to a nonlinearity, NaP is agnostic to whether normalization is applied prior to or after a
residual connection’s outputs are added to the output of a layer. In particular, if we have a layer of the
form ϕ(a1 + a2) and a1 and a2 are the outputs of some subnetwork of the form ϕ1(fLN(h1)) and
ϕ2(fLN(h2)) where ϕ1 and ϕ2 are (possibly trivial) activation functions, then the relevant parameters
will already benefit from Proposition 1 and it is not necessary to add an additional normalization
layer prior to the activation ϕ.
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Attention layers: unlike linear layers, attention layers do not typically include bias terms. To
analogize this common practice in NaP, we omit the offset and mean subtraction components of the
LayerNorm transform, obtaining

MHA(WQX,WKX) 7→ MHA(σQfRMS(WQX), σKfRMS(WKX)) (14)

where crucially fRMS is not applied along the token axis as this can lead to leakage of information
during training on next-token-prediction objectives. A similar problem also prevents us from using
normalization directly on the QK product matrix, along with the observation that the intuition of
normalizing vectors so that their dot product is equal to the cosine similarity is lost once the dot
products have already occurred [Henry et al., 2020]. Empirically, we find that the scale parameters
σQ and σK don’t seem to be strictly necessary for expressivity, and that networks can even form
selective attention masks for in-context learning without using these parameters to further saturate
the softmax.

A.5 Dynamics of NaP

Weight projection non-interference: NaP incorporates a projection onto the ball of constant norm
after each update step. A natural question is whether this projection step might simply be the inverse
of the update step, leaving the parameters of the network constant. Fortunately, we note that the
normalization layers have the effect of projecting gradients onto a subspace which is orthogonal to
the current parameter values, i.e. (

∇xfRMS(x)

)
(x) = 0 . (15)

We also note that except for extreme situations such as Neural Collapse [Papyan et al., 2020], real-
world gradient updates are almost never colinear with the parameters, meaning that even without
normalization layers this problem would be unlikely.

Another concern that arises from the constraints we place on the weights and features is the possibility
that these constraints will limit the network’s expressivity. Normalization does remove the ability
to distinguish colinear inputs of differing norms, meaning that the inputs x and αx will map to the
same output for all α; however, since many data preprocessing pipelines already normalize inputs,
we argue this is not a significant limitation. Indeed, under a more widely-used notion of expressivity,
the number of activation patterns [Raghu et al., 2017], NaP does not limit expressivity at all. While
straightforward, we provide a formal statement and proof of this claim in Appendix A.7.

Layer normalization and parameter growth: In fact, if we incorporate normalization layers
into the network we might expect an even more aggressive decay schedule. Recall that in a scale
invariant network, we have ⟨∇θf(θ), θ⟩ = 0. Thus we know that the gradient at each time step
will be orthogonal to the current parameters. In an idealized setting where we use the update
rule θt+1 ← θt + α ∇θℓ(θt)

∥∇θℓ(θt)∥ , this would result in the parameter norm growing at a rate Θ(t),
corresponding to an effectively linear learning rate decay.

A.6 Scale-invariance and layer-wise gradient norms

One benefit of NaP is that, because we normalize layer outputs, we limit the extent to which divergence
in the norm of one layer’s parameters can propagate to the gradients of other layers. For e.g. linear
homogeneous activations such as ReLUs, the gradient of some objective function for some input with
respect to the parameters of a particular layer contains a sum of matrix products whose norm will
depend multilinearly on the norm of each matrix. In particular, in the simplified setting of a deep
linear network where f(θ,x) =

∏
W lx, we recall Saxe et al. [2013]

∇W lf(θ;x) =

[∏
k>l

W k

]⊤
x⊤

[∏
k<l

W k

]⊤
(16)

In particular, with θ′ = W 1, . . . , cW k, . . . ,WL, for k ̸= l we would have

=⇒ ∇W lf(θ′;x) = c∇W lf(θ;x) (17)
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The situation changes little if we add ReLU nonlinearities to the network. In this case, we use the
notation Dϕl

(x) to denote the diagonal matrix indicating whether al[i] > 0

∇W lf(θ;x) =

[∏
k>l

Dϕk
(x)W k

]⊤
x⊤

[∏
k<l

Dϕk
(x)W k

]⊤
(18)

=⇒ ∇W lf(θ′;x) = c∇W lf(θ;x) (19)

If we incorporate a normalization layer at the end of the network (for simplicity we consider
RMSNorm here, but a similar argument applies to standard LayerNorm), the scale-invariance of the
resulting output means that the norms of each layer’s gradients are independent of the norms of the
other layers’ parameters, i.e.

∇W lfRMS ◦ f(θ;x) = ∇W lfRMS ◦ f(θ′;x) whenever θ′ = (W1, . . . , cWk, . . . ,WL), k ̸= l
(20)

This property is appealing as it means that growth or decay of the norm of a single layer will not
interfere with the dynamics of the others. However, it does mean that a layer’s effective learning rate
will still be sensitive to scaling, which motivates our use of renormalization. It also does not help to
avoid saturated units, motivating our use of layer normalization prior to nonlinearities.

A.7 Expressivity of NaP

Finally, we discuss the effect of normalization and weight projection on a notion of expressivity
known as the number of activation patterns [Raghu et al., 2017] exhibited by a neural network. This
quantity relates to the complexity of the function class a network can compute, giving the following
result the corollary that NaP doesn’t interfere with this notion of expressivity.

Proposition 2. Let f be a fully-connected network with ReLU nonlinearities. Let f̃ be the function
computed by f after applying NaP. Then the activation pattern of a particular architecture f and
parameter θ be Aθ, we have

Af (θ,x) = Af̃ (N(θ),x) . (21)

Further, the decision boundary maxi∈dout fi(x) is preserved under NaP.

Proof. We apply an inductive argument on each layer. In particular, when ϕ is a ReLU nonlinearity
we have

A(ϕ(h)) = A(ϕ(fRMS(h)))

ϕ(fRMS(h)) =
ϕ(h)

∥h∥

f̃(x) =
1

ΠL
l=1∥hl(x)∥

f(x)

which trivially results in identical activation patterns in the normalized and unnormalized networks.
It is worth noting that one distinguishing factor from a standard ReLU network is that the resulting
scaling factor will be different for each x. Thus while the activation patterns will be the same, the two
different inputs x y might have different scaling factors, which will be a nonlinear function of the
input. NaP networks, even with ReLU activations, thus do not have the property of being piecewise
linear.

A.8 Rescaling scale/offset parameters (linear homogeneous networks)

We observe that for any c > 0, letting ϕ(x) = max(x, 0) we have:

fLN(ϕ(Wσx+ µ)) = fLN(cϕ(Wσx+ µ)) (22)
= fLN(ϕ(cW (σx+ µ))) by homogeneity of ReLU (23)
= fLN(ϕ(W (cσx+ cµ))) (24)
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Then we obtain analogous effective learning rates, letting

gcµ = ∇µf(cσ, cµ;x) gcσ = ∇σf(cσ, cµ;x) (25)

we then have equivalent updates for ∥σ2 + µ2∥ = 1 and ηc = c2

fLN((cσ + ηcgcσ)x+ cµ+ ηcgcµ) = fLN((cσ + c2gcσ)x+ cµ+ c2gcµ) (26)

= fLN((cσ + c2
1

c
gσ + cµ+ c2

1

c
gµ) (27)

= fLN(c((σ + gσ)x+ µ+ gµ) = fLN((σ + gσ)x+ µ+ gµ)
(28)

Finally, we note that the above also holds if we apply a linear transformation W to the output of the
scale-offset transform, since

fLN(W (cσx+ cµ)) = fLN(cW (σx+ µ)) = fLN(W (σx+ µ)) (29)

and so the effective learning rate scales precisely as we had previously for linear layers, but now with
respect to the joint norm of the scale and offset parameters µ, σ.

B Experiment details

B.1 Toy experiment details

We conduct a variety of illustrative experiments on toy problem settings and small networks.

Network: in Figures 1 and 2, we use a DQN-style network which consists of two sets of two
convolutional layers with 32 and 64 channels respectively. We then apply max pooling and flatten
the output, feeding through a 512-unit hidden linear layer before applying a final linear transform to
obtain the output logits. The network uses ReLU nonlinearities. When NaP is applied, we add layer
normalization prior to each nonlinearity.

B.2 RL details

Single-task atari: We base our RL experiments off of the publicly available implementation of
the Rainbow agent [Hessel et al., 2018] in DQN Zoo [Quan and Ostrovski, 2020]. We follow the
default hyperparameters detailed in this codebase. In our implementation, we add normalization
layers prior to each nonlinearity except for the final softmax. We train for 200M frames on the Atari
57 suite [Bellemare et al., 2013]. We also allow for a learning rate schedule, which we explicitly
detail in cases where non-constant learning rates are used.

Sequential ALE: we use the same rainbow implementation as for the single-task results, using a
cosine decay learning rate for all variants. We restart the cosine decay schedule at every task change
for all agents. Our cosine decay schedule uses an init value of 10−8, a peak value of the default LR
for Rainbow (0.000625), 1000 warmup steps after the optimizer is reset, and end-value equal to 10−6

as in the single-task settings. We choose cosine decay due to its popularity in supervised learning,
and to highlight the versatility of NaP to different LR schedules. We follow the game sequence used
by Abbas et al. [2023], training for 20M frames per game.

B.3 Language details

Sequence memorization: we set a dataset size of 1024 and a sequence length of 512. We use a
vocabulary size of 256, equivalent to ASCII tokenization. We use the adam optimizer, and train all
networks for a minimum of 10 000 steps. We reset the dataset every 1000 optimizer steps, generating
a new set of 1024 random strings of length 512. We use as a baseline a transformer architecture
[Vaswani et al., 2017, Raffel et al., 2020] consisting of 4 attention blocks, with 8 heads and dmodel

equal to 256. We use a batch size of 128.

In-context learning: our in-context learning experiments use the same overall setup as the sequence
memorization experiments, with identical architectures and baseline optimization algorithm. In this
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case we train on a dataset consisting of 4096 randomly generated strings, in which the final 100
tokens are a contiguous subsequence of the first 412, selected uniformly at random from indices in [1,
312].

Natural language: we run our natural language experiments on a 400M parameter transformer
architecture based on the same backbone as the previous two tasks, this time consisting of 12 blocks
with 12 heads and model dimension 1536. We use the standard practice of learning rate warmup
followed by cosine decay, setting a peak learning rate of 2 · 10−4 which is reached after a linear
warmup of 1000 steps. We use a batch size of 128 and train for 30,000 steps. We use a weight decay
parameter of 0.1 with the adamw optimizer.

B.4 Vision details

CIFAR-10 Memorization: We consider three classes of network architecture: a fully-connected
multilayer perceptron (MLP), for which we default to a width of 512 and depth of 4 in our evaluations;
a convolutional network with k convolutional layers followed by two fully connected layers, for
which we default to depth four, 32 channels, and fully-connected hidden layer width of 256. In all
networks, we apply layer normalization before batch normalization if both are used at the same time.
By default, we typically do not use batch normalization. We use ReLU activations

Our continual supervised learning domain is constructed from the CIFAR-10 dataset, from which
we construct a family of continual classification problems. Each continual classification problem
is characterized by a transformation function on the labels. For label transformations, we permute
classes (for example, all images with the label 5 will be re-assigned the label 2), and random label
assignment, where each input is uniformly at random assigned a new label independent of its class in
the underlying classification dataset. Figures in the main paper concern random label assignments, as
this is a more challenging task which produces more pronounced effects.

In our figures in the main paper, we run a total of 20M steps and a total of 200 random target resets.
All networks are trained using the Adam optimizer. We conducted a sweep over learning rates for the
different architectures, settling on 10−4 as this provided a reasonable balance between convergence
speed and stability in all architectures, to ensure that all networks could at least solve the single-task
version of each label and target transformation.

VGGNet and ResNet-50 baselines: we use the standard data augmentation policies for the CIFAR-
10 and ImageNet-1k experiments. In our ImageNet-1k experiments, we use the ResNetv2 architecture
variant, with a label smoothing parameter of 0.1, weight decay 10−4, and as an optimizer we use
SGD with a cosine annealing learning rate schedule, and Nesterov momentum with decay rate 0.9.
We use a batch size of 256. Our CIFAR-10 experiments use a VGG-Net architecture. We use the sgd
optimizer with a batch size of 32, and set a learning rate schedule which starts at 0.025 and decays by
a factor of 0.1 iteratively through training. We use Nesterov momentum with decay rate 0.9. We train
for a total of 400 000 steps.

C Additional experimental results

C.1 Arcade learning environment

Our choice of learning rate schedule in the paper is motivated by an attempt to roughly approximate
the shape of the implicit schedule obtained by parameter growth on average across games in the suite,
with a slightly smaller terminal point than would typically be achieved by the parameter norm alone.
We consider learning rate schedules which linearly interpolate between the initial learning rate of
0.000625 and a learning rate of 10−6, which is roughly equivalent to increasing the parameter norm by
a factor of 60. We explore the importance of the duration of this decay in Figure 7, where we conduct
a sweep over a subset of the full Atari 57 suite (selected by sorting alphabetically and selecting every
third environment). We observe that faster decay schedules result in better performance initially,
but often plateau at a lower value. Decaying linearly over the entire course of training, in contrast,
exhibits slow initial progress but often picks up significantly towards the end of training. We conclude
that in many games, reducing the learning rate is necessary for performance improvements in this
agent, and the linear decay over the entire training period doesn’t give the agent sufficien time to take
advantage of the finer-grained updates to its predictions that a lower learning rate affords.
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Figure 7: We see that faster LR decays typically accompany fast initial progress followed by plateaus. Termi-
nating the linear schedule halfway through training strikes the best balance of the four settings considered for
overall progress.

C.2 Non-stationary MNIST

We include additional network statistics from the experiments shown in Figure 5 in Figure 8.

Linearized units: given a large batch, what fraction of the ReLU units in the penultimate layer are
either 0 for all units or nonzero for all units. This gives a slightly more nuanced take on the amount
of computation performed in the penultimate layer than the feature rank.

Feature rank: we compute the numerical rank of the penultimate layer features by sampling a batch
of data and computing the singular values of the b × d matrix of d−dimensional feature vectors.
σ1, . . . , σd. We then compute the numerical rank as

∑
1(σi/σ1 > 0.01).

Parameter and gradient norm: these are both computed in the standard way by flattening out the
set of parameters / per-parameter gradients and computing the 2-norm of this vector.

C.3 Non-stationary sequence modeling

We find additionally that NaP is capable of improving the robustness of sequence models to nonstation-
arities, while also not interfering with the formation of in-context learning circuits. We demonstrate
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Figure 8: We plot a variety of additional network statistics in the continual CIFAR-10 experiment shown in
Figure 5

the latter point in Figure 9, where we train a small transformer model on a dataset of the form sp⊕ ss,
where sp is a prefix string of length 100 and ss is a suffix string of length 50 which is a contiguous
subset of the prefix string. We use a fixed dataset, such that in theory the network could memorize all
strings, though we use a sufficiently large dataset that this is not possible to achieve within the training
budget. We train four protocols using next-token prediction: with and without weight projection,
and with and without normalization (the networks are small enough that normalization is not critical
for training stability). We evaluate accuracy on the final 48 tokens of ss as training progresses, and
observe that all networks very quickly learn to identify the starting point of the suffix string and
copy the relevant subset of the prefix. We observe that normalization accelerates learning of both the
retrieval component of the accuracy and the memorization component of the accuracy, and that the
weight projection step in fact also accelerates this process.

In Figure 10, we see that normalization and weight projection can also help to improve robustness
in a nonstationary random string memorization task, a sequence-modelling analogue of random
label memorization in CIFAR-10. We observe that in this case, allowing a learnable scale to evolve
unregularized can somewhat slow down learning compared to omitting this parameter, and that weight
projection recovers similar dynamics to learning with a large weight decay factor.
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Figure 9: Demonstration that applying normalization and removing the learnable scale parameter does not
prevent the network from learning to copy previously-observed subsequences.
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Figure 10: Random string memorization: unregularized networks exhibit plasticity loss when trained to
memorize a sequence of random strings, while weight projection and weight decay improve robustness to this
nonstationarity.

C.4 ReLU revival experiments

Many previous works have noted that adaptive optimizers are particularly damaging to network
plasticity [Dohare et al., 2021, Lyle et al., 2023, Dohare et al., 2023]. The primary mechanism
underlying this is due to the sudden distribution shift in gradient moments due to changes in the
learning objective – when the gradient norm increases, adaptive optimizers are slow to catch up and
can take enormous update steps when this occurs. Layer normalization mitigates this effect due to
two facts: first, the gradients of negative preactivations are nonzero, and second, all nonzero gradients
are treated essentially the same by adaptive optimizers (up to ϵ). As a result, networks with layer
norm can still perform significant updates to parameters feeding into ‘dead’ units, meaning that these
networks have a good chance of turning on again later.

We illustrate this with a simple experimental setting, where we model optimizer updates with isotropic
Gaussian-distributed gradient signals and perform a (truncated at zero) random walk. Formally we
look at the time evolution of the system:

vt = vt−1 +max(v,0)⊙ zt, zt ∼ N (0, I) (30)

to model the evolution of features under a gradient descent trajectory. To simulate the steps taken by
an adaptive optimizer like RMSProp or Adam, where updates to each parameter have fixed norm, we
modify this process slightly as follows:

vt = vt−1 + sign (max(v,0)⊙ zt) , zt ∼ N (0, I) . (31)

To simulate layer normalization, we compute the dot product between zt and the Jacobian ∇v
v

∥v∥ to
simulate gradient descent:

vt = vt−1 + z⊤t ∇v max

(
v

∥v∥
,0

)
, zt ∼ N (0, I) (32)

and analogously compute the sign of this update to model RMSProp-style optimizers:

vt = vt−1 + sign

(
z⊤t ∇v max

(
v

∥v∥
,0

))
, zt ∼ N (0, I) (33)

In Figure 11 we simulate each of these processes for 1000 steps, and track the number of negative (i.e.
‘dead’) indices. We observe that layer normalization doesn’t avoid dead units in GD, but does reduce
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Figure 11: Simple MLP model with dead unit recovery after sudden changes in the classification task. We
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Figure 12: Accumulation of gradients in a random walk model: backpropagated ‘gradients’ are isotropic random
Gaussian vectors and updates are computed by taking the product of these vectors with the layer jacobian. We
see that the centering transform actually does relatively little to reduce the risk of dead units, and can in fact
produce a ‘winner-take-all’ effect wherein one large

the rate at which they accumulate. We also observe that layer normalization does avoid monotonic
increases in the number of dead units in a model of RMSProp. Intuitively, this makes sense: rather
than freezing once they reach a negative value, parameters continue updating once they become
negative with equally large steps as they did before, making escape from the dead zone more probable.
One visualization of a few trajectories in each setting is shown in Figure 12.

C.5 Stationary supervised benchmarks

We provide the results with standard deviations in Table 2 and Table 3.

CIFAR-10 ImageNet-1k
NaP 94.64 (0.12) 77.26 (0.04)
Baseline 94.65 (0.08) 77.08 (0.11)
Norm only 94.47 (0.18) 77.45 (0.08)

Table 2: Top-1 prediction accuracy on the test sets of CIFAR-10 and ImageNet-1k. Numbers in parentheses are
standard deviations.
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C4 Pile WikiText Lambada SIQA PIQA
NaP 45.7 (0.0) 47.9 (0.1) 45.4 (0.1) 56.6 (0.4) 44.2 (0.2) 68.8 (0.7)
Baseline 44.8 (0.0) 47.4 (0.1) 44.2 (0.0) 54.1 (0.2) 43.5 (0.6) 67.3 (0.2)
Norm only 44.9 (0.0) 47.6 (0.1) 44.3 (0.0) 53.6 (0.3) 43.8 (0.6) 67.1 (0.4)

Table 3: Per-token accuracy of a 400M transformer model pretrained on the C4 dataset, evaluated on a variety
of language benchmarks. Numbers in parentheses are standard deviations.

D A note on scale and offset parameters

One loose end from our presentation of NaP is what to do with the learnable scale and offset terms,
which are not by default projected and so may drift from their initial values. Most supervised tasks are
too short for this drift to present problems, and adding layer-specific regularization or normalization
adds additional engineering overhead to an experiment. However, in deep RL or in the synthetic
continual tasks we present in Figure 5, this is a real concern. In the case of homogeneous activations
such as ReLU, the scale and offset parameters can be viewed identically to the weight and bias terms
and normalized accordingly, noting that now all that matters is the relative ratio of the scale and the
offset. To account for this, we propose to treat the joint set σ, µ as a single parameter to be normalized.
This resolves the issues involved with normalizing a parameter to an initial value of zero, and can
be shown not to change the network output (see Appendix A.8 for a derivation of this fact). With
non-homogeneous nonlinearities, however, this property will not hold, and we suggest in the general
case to use mild weight decay towards a the initial values of 1 and 0 for the scale and offset terms
respectively. These two approaches can be summarized in the following two update rules:

Unorm(σ, µ) =
(σ, µ)√
∥σ∥2 + ∥µ∥2

and Uα
decay(σ, µ) = (ασ + (1− α)1, αµ) . (34)

Most of our evaluations on single tasks do not use any regularization or projection of the scale
and offset parameters, but we do include a regularization-based approach in our evaluations on the
sequential ALE in Section 5. In general, if it did not appear that the scale/offset drift was causing
problems, we did not introduce additional complexity by adding regularization or normalization.
Indeed, in many cases a simpler solution was to omit these parameters entirely; for example we
observed that removing offsets was beneficial in several, though not all, games in the Arcade Learning
Environment.

E Additional RL Experiments

E.1 Actor-critic algorithms

We additionally investigate the effect of NaP on actor-critic methods, using the Brax implementations
of SAC and PPO to evaluate the effects of the different design choices which contributed to the
best-performing Rainbow agent in continuous control domains.

Experiment details: we base our experiments on the Brax [Freeman et al., 2021], using the im-
plementation available at https://github.com/google/brax. We use networks of depth 4 with width
1024. When layer normalization is added to the architecture, we add it after each hidden layer’s
outputs in the actor and after all but the final two layer’s outputs for the critic (we observe reduced
performance when adding normalization to the penultimate layer as well, which we conjecture is due
to the importance of euclidean distance in the final layer outputs in the continuous control tasks). All
normalization layers have learnable scale and bias terms, which are not regularized or normalized in
our experiments. We used either a constant learning rate schedule, or a linear schedule which decayed
over 90% of the training budget to a final value of 1e-6. For each agent we considered two learning
rates (1e-3 and 1e-4) and plotted whichever achieved the highest final performance.

Effect of normalization and learning rate decay on performance: we observe an environment-
dependent ranking of the relative benefits from different design choices in Figure 13. In ant (leftmost
figure), the linear learning rate schedule accounted for most of the improvement experienced by the
full NaP approach. In combination with learning rate decay, layer normalization also tended to induce
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on mujoco environments.

2 4
Steps 1e6

0.00

0.02

0.04

De
ad

 u
ni

ts

Hidden layer 0

2 4
Steps 1e6

0.0

0.1

0.2

0.3

0.4

Hidden layer 1

2 4
Steps 1e6

0.0

0.2

0.4

0.6

Hidden layer 2

2 4
Steps 1e6

0.0

0.2

0.4

0.6

0.8

Hidden layer 3
  Constant LR
  Linear LR
 Project |  Constant LR
 Project |  Linear LR
LayerNorm |   Constant LR
LayerNorm |   Linear LR
LayerNorm |  Project |  Constant LR
LayerNorm |  Project |  Linear LR

Effect of NaP ablations on dead units in SAC

Figure 14: A closer look at the effect of NaP on dead units in a SAC agent trained on the Ant environment.

some improvement whether or not weight projection was used, but the effect size of this was much
smaller than was observed in Atari. Weight projection had relatively little effect on performance,
though the combination of layer norm, projection, and linear learning rate decay was consistently
among the top-performing methods across environments.

Effect of normalization and learning rate decay on dead units: in Figure 14, track the accumulation
of dead units across layers in the network of a SAC agent. We observe that weight projection has
virtually no effect on dead units, with linear learning rate decay slowing the accumulation but layer
normalization providing the greatest benefit, a finding consistent with observations from prior works.

E.2 Detailed learning curves on Atari

For completeness, we include learning curves for all Rainbow variants in Figure 15.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: we don’t have an explicit limitations section, but we do highlight several
examples where our method under-performs baselines, particularly without appropriate LR
schedules.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We include as many details of the experiments as we can, but have not obtained
permission to open-source the code itself yet. While the descriptions should be sufficient
to reproduce the smaller-scale results and the RL results, which apply small modifications
to otherwise open-source or easy-to-implement models, it is possible that replicating the
transformer results precisely would be challenging due to the many minor implementation
details that can slightly change results in these models.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: where relevant we include details and standard deviations (e.g. on the inter-
quartile mean and mean of deep RL agents), however many experiments are more illustrative
(e.g. the twin experiments in Figure 2), and are not amenable to error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: We will add these for the camera-ready but it was difficult to locate precise
details of all experiments prior to the deadline.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: we include a broader impact statement.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: we train small models on standard benchmarks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]
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human subjects.
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