Watch and Match: Supercharging Imitation with
Regularized Optimal Transport

Siddhant Haldar* Vaibhav Mathur Denis Yarats Lerrel Pinto
New York University

rot-robot.github.io

Abstract:

Imitation learning holds tremendous promise in learning policies efficiently for
complex decision making problems. Current state-of-the-art algorithms often use
inverse reinforcement learning (IRL), where given a set of expert demonstrations,
an agent alternatively infers a reward function and the associated optimal policy.
However, such IRL approaches often require substantial online interactions for
complex control problems. In this work, we present Regularized Optimal Transport
(ROT), a new imitation learning algorithm that builds on recent advances in optimal
transport based trajectory-matching. Our key technical insight is that adaptively
combining trajectory-matching rewards with behavior cloning can significantly
accelerate imitation even with only a few demonstrations. Our experiments on 20
visual control tasks across the DeepMind Control Suite, the OpenAl Robotics Suite,
and the Meta-World Benchmark demonstrate an average of 7.8 x faster imitation
to reach 90% of expert performance compared to prior state-of-the-art methods.
On real-world robotic manipulation, with just one demonstration and an hour of
online training, ROT achieves an average success rate of 90.1% across 14 tasks.

Keywords: Imitation Learning, Manipulation, Robotics

1 Introduction

Imitation Learning (IL) [1, 2, 3] has a rich history that can be categorized across two broad paradigms,
Behavior Cloning (BC) [1] and Inverse Reinforcement Learning (IRL) [4]. BC uses supervised
learning to obtain a policy that maximizes the likelihood of taking the demonstrated action given an
observation in the demonstration. While this allows for training without online interactions, it suffers
from distributional mismatch during online rollouts [5]. IRL, on the other hand, infers the underlying
reward function from the demonstrated trajectories before employing RL to optimize a policy through
online environment rollouts. This results in a policy that can robustly solve demonstrated tasks even
in the absence of task-specific rewards [6, 7].

Although powerful, IRL methods suffer from a significant drawback — they require numerous
expensive online interactions with the environment. There are three reasons for this: (a) the inferred
reward function is often highly non-stationary, which compromises the learning of the associated
behavior policy [7]; (b) even when the rewards are stationary, policy learning still requires effective
exploration to maximize rewards [8]; and (c) when strong priors such as pretraining with BC are
applied to accelerate policy learning, ensuing updates to the policy cause a distribution shift that
destabilizes training [9, 10]. Combined, these issues manifest themselves on empirical benchmarks,
where IRL methods have poor efficiency compared to vanilla RL methods on hard control tasks [11].

In this work, we present Regularized Optimal Transport (ROT) for imitation learning, a new method
that is conceptually simple, compatible with high-dimensional observations, and requires minimal
additional hyperparameters compared to standard IRL approaches. To demonstrate the effectiveness
of ROT, we run extensive experiments on 20 simulated tasks across DM Control [12], OpenAl
Robotics [13], and Meta-world [14], and 14 robotic manipulation tasks on an xArm (see Fig. 3). Our
main findings are summarized below.

*Correspondence to: siddhanthaldar@nyu.edu

CoRL 2022 Workshop on Pre-training Robot Learning, Auckland, New Zealand.

https://rot-robot.github.io/

1. ROT outperforms prior state-of-the-art imitation methods, reaching 90% of expert performance
7.8 x faster than our strongest baselines on simulated visual control benchmarks.

2. On real-world tasks, with a single human demonstration and an hour of training, ROT achieves an
average success rate of 90.1% with randomized robot initialization and image observations. This
is significantly higher than behavior cloning (36.1%) and adversarial IRL (14.6%).

3. ROT exceeds the performance of state-of-the-art RL trained with rewards, while coming close
to methods that augment RL with demonstrations (Appendix 1.3). Unlike standard RL methods,
ROT does not require hand-specification of the reward function.

4. Ablation studies demonstrate the importance of every component in ROT, particularly the role
that soft Q-filtering plays in stabilizing training and the need for OT-based rewards during online
learning (Appendix 1.2 & Appendix [.4).

Open-source code and demonstration data will be publicly released on our project website. Videos of
our trained policies can be seen here: rot-robot.github.io.

2 Regularized Optimal Transport

A fundamental challenge in imitation learning is to balance the ability to mimic demonstrated
actions along with the ability to recover from states outside the distribution of demonstrated states.
Behavior Cloning (BC) specializes in mimicking demonstrated actions through supervised learning,
while Inverse Reinforcement Learning (IRL) specializes in obtaining policies that can recover from
arbitrary states. Regularized Optimal Transport (ROT) combines the best of both worlds by adaptively
combining the two objectives. This is done in two phases. In the first phase, a randomly initialized
policy is trained using the BC objective on expert demonstrated data. This ‘BC-pretrained’ policy
then serves as an initialization for the second phase. In the second phase, the policy is allowed access
to the environment where it can train using an IRL objective. To accelerate the IRL training, the
BC loss is added to the objective with an adaptive weight. Details of each component are described
below, with additional algorithmic details in Appendix D.

2.1 Phase 1: BC Pretraining

BC corresponds to solving the maximum likelihood problem shown in Eq. 1. Here 7 refers to expert
demonstrations. When parameterized by a normal distribution with fixed variance, the objective can
be framed as a regression problem where, given inputs s¢, 75 needs to output a°.

LPC =E(se geyntella® — 75 (s%)]? (1)

After training, it enables 72¢ to mimic the actions corresponding to the observations seen in the
demonstrations. However, during rollouts in an environment, small errors in action prediction can
lead to the agent visiting states not seen in the demonstrations [5]. This distributional mismatch often
causes 72 to fail on empirical benchmarks [15, 11] (see Fig. 4 (a) in Appendix C).

2.2 Phase 2: Online Finetuning with IRL

Given a pretrained 7%¢ model, we now begin online “finetuning’ of the policy 7 = 777 in
the environment. Since we are operating without explicit task rewards, we use rewards obtained
through OT-based trajectory matching, which is described in Appendix A. These OT-based rewards
rOT enable the use of standard RL optimizers to maximize cumulative reward from 7° = 70T
In this work we use n-step DDPG [16], a deterministic actor-critic based method that provides
high-performance in continuous control [8].

Finetuning with Regularization 75 is susceptible to distribution shift due to accumulation of
errors during online rollouts [5] and directly finetuning 72 also leads to subpar performance (refer
to Fig. 4 in Appendix C). To address this, we build upon prior work in guided RL [15] and offline
RL [9], and regularize the training of 77*°T by combining it with a BC loss as seen in Eq. 2.

7TROT = argmax [(]— -)\(T‘—)))E(s,a)’\‘DB [Q(Sv CL)] - a)‘(ﬂ—)E(sﬁ,ae)’\‘TE ”ae - W(Se)”2] (2)

T

rot-robot.github.io

dmc_walker_run fetch_pick_and_place metaworld_door_open

=3
o
=3
=

>
=)

~

success rate
o o
»

episode_reward
IS
S
8
success rate
o o

)
=1
1S3
=3
N
o
)

M

0.0 0.5 1.0 1.5 2.0 000 025 050 075 100 125 150 0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6 frame 1e6 frame 1e6

M Expert MBC HOT HDAC EROT (Ours)

o
o
o
o
o

Figure 1: Pixel-based continuous control learning on 3 selected environments. Shaded region
represents 1 standard deviation across 5 seeds. We notice that ROT is significantly more sample
efficient compared to prior work.

Here, (s, a) represents the Q-value from the critic which is optimized using OT-based rewards
during the actor-critic policy optimization. « is a fixed weight, while () is a policy-dependent
adaptive weight that controls the contributions of the two loss terms. Dy refers to the replay buffer
for online rollouts.

Adaptive Regularization with Soft Q-filtering While prior work [15, 17] use hand-tuned sched-
ules for A(7), we propose a new adaptive scheme that removes the need for tuning. This is done by
comparing the performance of the current policy 777 and the pretrained policy 72 on a batch of
data sampled from the replay buffer for online rollouts Dg. More precisely, given a behavior policy
B¢ (s), the current policy 7797 (s), the Q-function Q(s, a) and the replay buffer D,, we set \ as:

)\(WROT) = E(s,-)ND[s [HQ(S77rBC(s))>Q(s,7TROT(S))] ®)

The strength of the BC regularization hence depends on the performance of the current policy with
respect to the behavior policy. This filtering strategy is inspired by Nair et al. [18], where instead of a
binary hard assignment we use a soft continuous weight. Experimental comparisons with hand-tuned
decay strategies are presented in Appendix [.2.

Considerations for image-based observations Since we are interested in using ROT with high-
dimensional visual observations, additional machinery is required to ensure compatibility. Following
prior work in image-based RL and imitation [8, 11], we perform data augmentations on visual
observations and then feed it into a CNN encoder. Similar to Cohen et al. [11], we use a target
encoder with Polyak averaging to obtain representations for OT reward computation. This is necessary
to reduce the non-stationarity caused by learning the encoder alongside the ROT imitation process.
Further implementation details and the training procedure can be found in Appendix D.

3 Experiments

Our experiments are designed to answer the following questions: (a) How efficient is ROT for
imitation learning? (b) How does ROT perform on real-world tasks? Additional results and details
about simulated and robot tasks have been provided in Appendix I.

3.1 How efficient is ROT for imitation learning?

Performance of ROT for image-based imitation is depicted on select environments in Fig. 1. To reach
90% of expert performance, ROT is on average 8.7 x faster on DeepMind Control tasks, 2.1 x faster
on OpenAl Robotics tasks, and 8.9 faster on Meta-world tasks. We also find that the improvements
of ROT are most apparent on the harder tasks, which are shown in Fig. 1. Appendix I.1 shows results
on all 20 simulated tasks, along with experiments that exhibit similar improvements in state-based
settings.

Close a door Hang a hanger Erasing a board Reach Hanging a mug Hanging a tote bag Turn a knob

Stacking cups Pressing a switch Peg in a box (Easy) Peg in a box (Hard)

N

=]
'S

success rate

o
()

0.
. | |I - L1 L II Il II I‘ II II I-I A

Close Hang Erase Reach Hang Hang Turn Stack Press Peg Peg Peg Open Pour
Door Hanger Board Mug Bag Knob Cups Switch (Easy) (Med) (Hard) Box

B BC W RDAC M ROT (Ours)

Figure 2: (Top) ROT is evaluated on a set of 14 robotic manipulation tasks. (Bottom) Success rates
for each task is computed by running 20 trajectories from varying initial conditions on the robot.

3.2 How does ROT perform on real-world tasks?

We devise a set of 14 manipulation tasks on our xArm robot to compare the performance of ROT
with BC and our strongest baseline RDAC, an adversarial IRL method that combines DAC [7] with
our pretraining and regularization scheme. The BC policy is trained using supervised learning on a
single expert demonstration collected by a human operator. ROT and RDAC finetune the pretrained
BC policy through 1 hour of online training, which amounts to ~ 6k environment steps. Since
there is just one demonstration, our tasks are designed to have random initializations but fixed goals.
Note that a single demonstration only demonstrates solving the tasks from one initial condition.
Evaluation results across 20 different initial conditions can be seen in Fig. 2. We observe that ROT
has an average success rate of 90.1% over 20 evaluation trajectories across all tasks as compared to
36.1% for BC and 14.6% for RDAC. The poor performance of BC can be attributed to distributional
mismatch due to accumulation of error in online rollouts and different initial conditions. The poor
performance of RDAC can be attributed to slow learning during the initial phase of training. More
detailed evaluations of RDAC on simulated environments is present in Appendix [.4.

4 Conclusion and Limitations

In this work, we have proposed a new imitation learning algorithm, ROT, that demonstrates improved
performance compared to prior state-of-the-art work on a variety of simulated and robotic domains.
However, we recognize a few limitations in this work: (a) Since our OT-based approach aligns agents
with demonstrations without task-specific rewards, it relies on the demonstrator being an ‘expert’.
Extending ROT to suboptimal, noisy and multimodal demonstrations would be an exciting problem to
tackle. (b) Performing BC pretraining and BC-based regularization requires access to expert actions,
which may not be present in some real-world scenarios particularly when learning from humans.
Recent work on using inverse models to infer actions given observational data could alleviate this
challenge [19]. (c) On robotic tasks such as Peg in box (hard) and Pressing a switch from Fig. 2, we
find that ROT’s performance drops substantially compared to other tasks. This might be due to the
lack of visual features corresponding to the task success. For example, in the ‘Peg’ task, it is visually
difficult to discriminate if the peg is in the box or behind the box. Similarly for the ‘Switch’ task, it is
difficult to discern if the button was pressed or not. This limitation can be addressed by integrating
more sensory modalities such as additional cameras, and tactile sensors in the observation space.

Acknowledgments

We thank Ben Evans, Anthony Chen, Ulyana Piterbarg and Abitha Thankaraj for valuable feedback
and discussions. This work was supported by grants from Honda, Amazon, and ONR awards
N00014-21-1-2404 and NO00O14-21-1-2758.

References

[1] D.Pomerleau. An autonomous land vehicle in a neural network. Advances in Neural Information
Processing Systems, 1, 1998.

[2] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki, A. Petron,
M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation. The Interna-
tional Journal of Robotics Research, 39(1):3-20, 2020.

[3] P.N. Kolm and G. Ritter. Modern perspectives on reinforcement learning in finance. Modern
Perspectives on Reinforcement Learning in Finance (September 6, 2019). The Journal of
Machine Learning in Finance, 1(1), 2020.

[4] A.Y.Ng, S.J. Russell, et al. Algorithms for inverse reinforcement learning. In Icml, volume 1,
page 2, 2000.

[5] S.Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction
to no-regret online learning. In Proceedings of the fourteenth international conference on artifi-
cial intelligence and statistics, pages 627-635. JMLR Workshop and Conference Proceedings,
2011.

[6] J. Ho and S. Ermon. Generative adversarial imitation learning. Advances in neural information
processing systems, 29, 2016.

[7] 1. Kostrikov, K. K. Agrawal, D. Dwibedi, S. Levine, and J. Tompson. Discriminator-actor-critic:
Addressing sample inefficiency and reward bias in adversarial imitation learning. arXiv preprint
arXiv:1809.02925, 2018.

[8] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto. Mastering visual continuous control: Improved
data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021.

[9] A. Nair, A. Gupta, M. Dalal, and S. Levine. Awac: Accelerating online reinforcement learning
with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

[10] I. Uchendu, T. Xiao, Y. Lu, B. Zhu, M. Yan, J. Simon, M. Bennice, C. Fu, C. Ma, J. Jiao, et al.
Jump-start reinforcement learning. arXiv preprint arXiv:2204.02372, 2022.

[11] S. Cohen, B. Amos, M. P. Deisenroth, M. Henaff, E. Vinitsky, and D. Yarats. Imitation learning
from pixel observations for continuous control, 2022. URL https://openreview.net/
forum?id=JLbXkHkKLCG6.

[12] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden, A. Abdolmaleki,
J. Merel, A. Lefrancq, et al. Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.

[13] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[14] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on
Robot Learning, pages 1094-1100. PMLR, 2020.

[15] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine.
Learning complex dexterous manipulation with deep reinforcement learning and demonstrations.
arXiv preprint arXiv:1709.10087, 2017.

[16] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

https://openreview.net/forum?id=JLbXkHkLCG6
https://openreview.net/forum?id=JLbXkHkLCG6

[17] R. Jena, C. Liu, and K. Sycara. Augmenting gail with bc for sample efficient imitation learning.
arXiv preprint arXiv:2001.07798, 2020.

[18] A.Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel. Overcoming exploration in
reinforcement learning with demonstrations. In 2018 IEEE international conference on robotics
and automation (ICRA), pages 6292-6299. IEEE, 2018.

[19] 1. Radosavovic, X. Wang, L. Pinto, and J. Malik. State-only imitation learning for dexterous
manipulation. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 7865-7871. IEEE, 2020.

[20] R. Bellman. A markovian decision process. Journal of mathematics and mechanics, pages
679-684, 1957.

[21] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. nature, 518(7540):529-533, 2015.

[23] F. Torabi, G. Warnell, and P. Stone. Recent advances in imitation learning from observation.
arXiv preprint arXiv:1905.13566, 2019.

[24] A. Zhan, P. Zhao, L. Pinto, P. Abbeel, and M. Laskin. A framework for efficient robotic
manipulation. arXiv preprint arXiv:2012.07975, 2020.

[25] S. Young, D. Gandhi, S. Tulsiani, A. Gupta, P. Abbeel, and L. Pinto. Visual imitation made
easy. arXiv preprint arXiv:2008.04899, 2020.

[26] R. Dadashi, L. Hussenot, M. Geist, and O. Pietquin. Primal wasserstein imitation learning.
arXiv preprint arXiv:2006.04678, 2020.

[27] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, page 1, 2004.

[28] G. Papagiannis and Y. Li. Imitation learning with sinkhorn distances. arXiv preprint
arXiv:2008.09167, 2020.

[29] P. A. Knight. The sinkhorn—knopp algorithm: convergence and applications. SIAM Journal on
Matrix Analysis and Applications, 30(1):261-275, 2008.

[30] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne. Imitation learning: A survey of learning
methods. ACM Computing Surveys (CSUR), 50(2):1-35, 2017.

[31] 1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. Advances in neural information processing systems, 27,
2014.

[32] C. Villani. Optimal transport: old and new, volume 338. Springer, 2009.

[33] G. Peyré, M. Cuturi, et al. Computational optimal transport: With applications to data science.
Foundations and Trends® in Machine Learning, 11(5-6):355-607, 2019.

[34] B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey, et al. Maximum entropy inverse reinforce-
ment learning. In Aaai, volume 8, pages 1433—1438. Chicago, IL, USA, 2008.

[35] J. Fu, K. Luo, and S. Levine. Learning robust rewards with adversarial inverse reinforcement
learning. arXiv preprint arXiv:1710.11248, 2017.

[36] H. Xiao, M. Herman, J. Wagner, S. Ziesche, J. Etesami, and T. H. Linh. Wasserstein adversarial
imitation learning. arXiv preprint arXiv:1906.08113, 2019.

[37] F. Torabi, G. Warnell, and P. Stone. Generative adversarial imitation from observation. arXiv
preprint arXiv:1807.06158, 2018.

[38] E. Cetin and O. Celiktutan. Domain-robust visual imitation learning with mutual information
constraints. arXiv preprint arXiv:2103.05079, 2021.

[39] S. Toyer, R. Shah, A. Critch, and S. Russell. The magical benchmark for robust imitation.
Advances in Neural Information Processing Systems, 33:18284—-18295, 2020.

[40] R. Rafailov, T. Yu, A. Rajeswaran, and C. Finn. Visual adversarial imitation learning using
variational models. Advances in Neural Information Processing Systems, 34, 2021.

[41] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in
neural information processing systems, 26, 2013.

[42] G. Peyré, M. Cuturi, and J. Solomon. Gromov-wasserstein averaging of kernel and distance
matrices. In International Conference on Machine Learning, pages 2664-2672. PMLR, 2016.

[43] S. Cohen, G. Luise, A. Terenin, B. Amos, and M. Deisenroth. Aligning time series on incom-
parable spaces. In International Conference on Artificial Intelligence and Statistics, pages

1036-1044. PMLR, 2021.

[44] 1. Redko, T. Vayer, R. Flamary, and N. Courty. Co-optimal transport. arXiv preprint
arXiv:2002.03731, 2020.

[45] M. Cuturi and M. Blondel. Soft-dtw: a differentiable loss function for time-series. In Interna-
tional conference on machine learning, pages 894-903. PMLR, 2017.

[46] A. Fickinger, S. Cohen, S. Russell, and B. Amos. Cross-domain imitation learning via optimal
transport. arXiv preprint arXiv:2110.03684, 2021.

[47] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[48] S. Fujimoto and S. S. Gu. A minimalist approach to offline reinforcement learning. Advances
in Neural Information Processing Systems, 34, 2021.

[49] Y. Wu, G. Tucker, and O. Nachum. Behavior regularized offline reinforcement learning. arXiv
preprint arXiv:1911.11361, 2019.

[50] A. Ajay, A. Kumar, P. Agrawal, S. Levine, and O. Nachum. {OPAL}: Offline primitive discovery
for accelerating offline reinforcement learning. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=V69LGwJOLIN.

[51] A. Kumar, J. Fu, M. Soh, G. Tucker, and S. Levine. Stabilizing off-policy g-learning via
bootstrapping error reduction. Advances in Neural Information Processing Systems, 32, 2019.

[52] N. Y. Siegel, J. T. Springenberg, F. Berkenkamp, A. Abdolmaleki, M. Neunert, T. Lampe,
R. Hafner, N. Heess, and M. Riedmiller. Keep doing what worked: Behavioral modelling priors
for offline reinforcement learning. arXiv preprint arXiv:2002.08396, 2020.

[53] S. Fujimoto, D. Meger, and D. Precup. Off-policy deep reinforcement learning without explo-
ration. In International Conference on Machine Learning, pages 2052-2062. PMLR, 2019.

[54] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic policy
gradient algorithms. In International conference on machine learning, pages 387-395. PMLR,
2014.

[55] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2072
IEEE/RSJ international conference on intelligent robots and systems, pages 5026-5033. IEEE,
2012.

[56] M. Plappert, M. Andrychowicz, A. Ray, B. McGrew, B. Baker, G. Powell, J. Schneider, J. Tobin,
M. Chociej, P. Welinder, et al. Multi-goal reinforcement learning: Challenging robotics
environments and request for research. arXiv preprint arXiv:1802.09464, 2018.

https://openreview.net/forum?id=V69LGwJ0lIN

[57]1 T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on
Robot Learning (CoRL), 2019. URL https://arxiv.org/abs/1910.10897.

[58] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
O. Pieter Abbeel, and W. Zaremba. Hindsight experience replay. Advances in neural information
processing systems, 30, 2017.

[59] S.K.S. Ghasemipour, R. Zemel, and S. Gu. A divergence minimization perspective on imitation
learning methods. In Conference on Robot Learning, pages 1259—1277. PMLR, 2020.

[60] R. Sinkhorn and P. Knopp. Concerning nonnegative matrices and doubly stochastic matrices.
Pacific Journal of Mathematics, 21(2):343-348, 1967.

https://arxiv.org/abs/1910.10897

Environments

Adaptive
--.. Regularization

7 A

Environment

"
ROT
n Interactions
——
oT

Rewards

OT Computatio!

-0 1A

Opening a box

Figure 3: (Top) Regularized Optimal Transport (ROT) is a new imitation learning algorithm that
adaptively combines offline behavior cloning with online trajectory-matching based rewards. This
enables significantly faster imitation across a variety of simulated and real robotics tasks, while being
compatible with high-dimensional visual observation. (Bottom) On our xArm robot, ROT can learn
visual policies with only a single human demonstration and under an hour of online training.

A Background

Reinforcement Learning (RL) We study RL as a discounted infinite-horizon Markov Decision
Process (MDP) [20, 21]. For pixel observations, the agent’s state is approximated as a stack of
consecutive RGB frames [22]. The MDP is of the form (O, A, P, R, ~, dy) where O is the observation
space, A is the action space, P : O x A — A(O) is the transition function that defines the probability
distribution over the next state given the current state and action, R : O x A — R is the reward
function, -y is the discount factor and dj is the initial state distribution. The goal is to find a policy
7 : O — A(A) that maximizes the expected discount sum of rewards E[X9° v R(o¢, a;)], where
0o ~ dy, az ~ m(0¢) and 041 ~ P(.|oy, ay).

Imitation Learning (IL) The goal of imitation learning is to learn a behavior policy 7° given
access to either the expert policy 7€ or trajectories derived from the expert policy 7 ¢. While there
are a multitude of settings with differing levels of access to the expert [23], this work operates in the
setting where the agent only has access to observation-based trajectories, i.e. 7¢ = {(0s, a;)L_o}_,.
Here N and T denotes the number of trajectory rollouts and episode timesteps respectively. We
choose this specific setting since obtaining observations and actions from expert or near-expert
demonstrators is feasible in real-world settings [24, 25] and falls in line with recent work in this
area [26, 6, 7].

Inverse Reinforcement Learning (IRL) IRL [4, 27] tackles the IL problem by inferring the reward
function ¢ based on expert trajectories 7 ¢. Then given the inferred reward ¢, policy optimization
is used to derive the behavior policy 7°. Prominent algorithms in IRL [7, 6] requires alternating
the inference of reward and optimization of policy in an iterative manner, which is practical for
restricted model classes [27]. For compatibility with more expressive deep networks, techniques such
as adversarial learning [6, 7] or optimal-transport [28, 26, 11] are needed. Adversarial learning based
approaches tackle this problem by learning a discriminator that models the gap between the expert
trajectories 7¢ and behavior trajectories 7. The behavior policy 7* is then optimized to minimize
this gap through gap-minimizing rewards °. Such a training procedure is prone to instabilities since
¢ is updated at every iteration and is hence non-stationary for the optimization of 7°.

Optimal Transport for Imitation Learning (OT) To alleviate the non-stationary reward problem
with adversarial IRL frameworks, a new line of OT-based approaches have been recently proposed [28,
26, 11]. Intuitively, the closeness between expert trajectories 7 ¢ and behavior trajectories 7° can be
computed by measuring the optimal transport of probability mass from 7% — 7¢. During policy
learning, the policy 4 encompasses a feature preprocessor fs which transforms observations into
informative state representations. Some examples of a preprocessor function f are an identity
function, a mean-variance scaling function and a parametric neural network. In this work, we use a
parametric neural network as f4. Given a cost function ¢ : O x O — R defined in the preprocessor’s
output space and an OT objective g, the optimal alignment between an expert trajectory 0o® and a
behavior trajectory o can be computed as

p* € arg min g(p, f4(0"), f4(0%), c) (4)
neM

where M = {p € RT>*T : 1 = 71 = %1} is the set of coupling matrices and the cost ¢ can be
the Euclidean or Cosine distance. In this work, inspired by [11], we use the entropic Wasserstein
distance with cosine cost as our OT metric, which is given by the equation

9(k, fo(0°), f5(0%),¢) = W2(£5(0"), f4(0%))

T
)
Z Ct,t'l‘t,t’

tt'=1

where the cost matrix C, ,» = ¢(f4(0%), f5(0°)). Using Eq. 5 and the optimal alignment * obtained
by optimizing Eq. 4, a reward signal can be computed for each observation using the equation

T
rOT (o) ==Y Cppniy ©®)

t'=1

Intuitively, maximizing this reward encourages the imitating agent to produce trajectories that closely
match demonstrated trajectories. Since solving Eq. 4 is computationally expensive, approximate
solutions such as the Sinkhorn algorithm [29, 28] are used instead.

Actor-Critic based reward maximization Given rewards obtained through OT computation, effi-
cient maximization of the reward can be achieved through off-policy learning [7]. In this work, we use
Deep Deterministic Policy Gradient (DDPG) [16] as our base RL optimizer which is an actor-critic
algorithm that concurrently learns a deterministic policy 74 and a Q-function Q). However, instead
of minimizing a one step Bellman residual in vanilla DDPG, we use the recent n-step version of
DDPG from Yarats et al. [8] that achieves high performance on visual control problems.

B Related Work

Imitation Learning (IL) IL [30] refers to the setting where agents learn from demonstrations
without access to environment rewards. IL can be broadly categorized into Behavior Cloning
(BO) [1, 23] and Inverse Reinforcement Learning (IRL) [4, 27]. BC solely learns from offline
demonstrations but suffers on out-of-distributions samples [5] whereas IRL focuses on learning a
robust reward function through online interactions but suffers from sample inefficiency [7]. Deep IRL
methods can be further divided into two categories: (1) adversarial learning [31] based methods, and
(2) state-matching [32, 33] based methods. GAIL [6] is an adversarial learning based formulation
inspired by maximum entropy IRL [34] and GANs [31]. There has been a significant body of work
built up on GAIL proposing alternative losses [35, 36, 37], and enhancing its sample efficiency by
porting it to an off-policy setting [7]. There have also been visual extensions of these adversarial
learning approaches [38, 39, 40, 11]. However, although adversarial methods produce competent
policies, they are inefficient due to the non-stationarity associated with iterative reward inference [11].

Optimal Transport (OT) OT [32, 33] is a tool for comparing probability measures while including
the geometry of the space. In the context of IL, OT computes an alignment between a set of agent

10

(a) Task: Particle Reach (b) IRL Finetune w/o Reg. () ROT (d) ROT + random init.

—_
f=3
(=1
~

timesteps —

0

----- Expert trajectory —— BC trajectory M Start location B Goal location

Figure 4: Given a single demonstration to avoid the grey obstacle and reach the goal location, BC is
unable to solve the task (a). Finetuning from this BC policy with OT-based reward also fails to solve
the task (b). ROT, with adaptive regularization of OT-based IRL with BC successfully solves the task
(c). Even when the ROT agent is initialized randomly, it is able to solve the task (d).

and expert observations using distance metrics such as Sinkhorn [41], Gromov-Wasserstein [42],
GDTW [43], CO-OT [44] and Soft-DTW [45]. For many of these distance measures, there is
an associated IL algorithm, with SIL [28] using Sinkhorn, PWIL [26] using greedy Wasserstein,
GDTW-IL [43] using GDTW, and GWIL [46] using Gromov-Wasserstein. Recent work from Cohen
et al. [11] demonstrates that the Sinkhorn distance [28] produces the most efficient learning among
the discussed metrics. They further show that SIL is compatible with high-dimensional visual
observations and encoded representations. Inspired by this, ROT adopts the Sinkhorn metric for its
OT reward computation, and improves upon SIL through adaptive behavior regularization.

Behavior Regularized Control Behavior regularization is a widely used technique in offline
RL [47] where explicit constraints are added to the policy improvement update to avoid bootstrapping
on out-of-distribution actions [48, 49, 50, 51, 52, 53]. In an online setting with access to environment
rewards, prior work [15, 10] has shown that behavior regularization can be used to boost sample
efficiency by finetuning a pretrained policy via online interactions. For instance, Jena et al. [17]
demonstrates the effectiveness of behavior regularization to enhance sample efficiency in the context
of adversarial IL. ROT builds upon this idea by extending to visual observations, OT-based IL, and
adaptive regularization, which leads to improved performance (see Appendix 1.4). We also note that
the idea of using adaptive regularization has been previously explored in RL [18]. However, ROT
uses a soft, continuous adaptive scheme, which on initial experiments provided significantly faster
learning compared to hard assignments.

C Challenges in Online Finetuning from a Pretrained Policy

In this section, we study the challenges with finetuning a pretrained policy with online interactions in
the environment. Fig. 4 illustrates a task where an agent is supposed to navigate the environment
from the top left to the bottom right, while dodging obstacles in between. The agent has access to a
single expert demonstration, which is used to learn a BC policy for the task. Fig. 4 (a) shows that this
BC policy, though close to the expert demonstration, performs suboptimally due to accumulating
errors on out-of-distribution states during online rollouts [5]. Further, Fig. 4 (b) uses this BC policy
as an initialization and naively finetunes it with OT rewards (described in Section ??). Such naive
finetuning of a pretrained policy (or actor) with an untrained critic in an actor-critic framework
exhibits a forgetting behavior in the actor, resulting in performance degradation as compared to
the pretrained policy. This phenomenon has also been reported by Nair et al. [9] and we provide
a detailed discussion in Appendix C.1. In this paper, we propose ROT which addresses this issue
by adaptively keeping the policy close to the behavior data during the initial phase of finetuning
and reduces this dependence over time. Fig. 4 (c) demonstrates the performance of our approach on
such finetuning. It can be clearly seen that even though the BC policy is suboptimal, our proposed
adaptive regularization scheme quickly improves and solves the task by driving it closer to the expert
demonstration. In Fig. 4 (d), we demonstrate that even if the agent was initialized at points outside
the expert trajectory, the agent is still able to learn quickly and complete the task. This generalization
to starting states would not be possible with regular BC.

11

C.1 Issue with Fine-tuning Actor-Critic Frameworks

In this paper, we use n-step DDPG proposed by Yarats et al. [8] as our RL optimizer for actor-
critic based reward maximization. DDPG [16] concurrently learns a deterministic policy 7, using
deterministic policy gradients (DPG) [54] and a Q-function Q9 by minimizing a n-step Bellman
residual (for n-step DDPG). For a parameterized actor network 74 (s) and a critic function Qg (s, a),
the deterministic policy gradients (DPG) for updating the actor weights is given by

Vo & By [V Q0(5,0)|s—yy (o0

(N

= ESU\‘PB |:V‘1 QG(S’ Cl) |s:st,a:7r¢(st) V¢ 7T¢(S) |s:s,,:|
Here, pg refers to the state visitation distribution of the data present in the replay buffer at time ¢.
From Eq. 7, it is clear that the policy gradients in this framework depend on the gradients with respect
to the critic value. Hence, as mentioned in [9, 10], naively initializing the actor with a pretrained
policy while using a randomly initialized critic results in the untrained critic providing an exceedingly
poor signal to the actor network during training. As a result, the actor performance drops immediately
and the good behavior of the informed initialization of the policy gets forgotten. In this paper, we
propose an adaptive regularization scheme that permits finetuning a pretrained actor policy in an
actor-critic framework. As opposed to Rajeswaran et al. [15], Jena et al. [17] which employ on-policy
learning, our method is off-policy and aims to leverage the sample efficient characteristic of off-policy
learning as compared to on-policy learning [7].

D Algorithmic Details

Algorithm 1 ROT: Regularized Optimal Transport

Require:

Expert Demonstrations 7°¢ = { (o, a;)i_o}2_,

Pretrained policy w2¢

Replay buffer D, Training steps 7', Episode Length L

Task environment env

Parametric networks for RL backbone (e.g., the encoder, policy and critic function for DrQ-v2)
A discriminator D for adversarial baselines

Algorithm:
TROT . - BC
for each timestep t = 1...7" do
if done then
r1.1, = rewarderor(episode) > OT-based reward computation
Update episode with 1., and add (o, a;, 0,41,7¢) to D
o; = env.reset(), done = False, episode = []
end if
a, = 7.‘.ROT (Ot)
0:+1, done = env.step(a;)
episode.append([o¢, a;, 0,1])
Update backbone-specific networks and reward-specific networks using D
end for

> Initialize with pretrained policy

D.1 Implementation

Algorithm 1 describes our proposed algorithm, Regularized Optimal Transport (ROT), for sample
efficient imitation learning for continuous control tasks. Further implementation details are as follows:

Algorithm and training procedure Our model consists of 3 primary neural networks - the encoder,
the actor and the critic. During the BC pretraining phase, the encoder and the actor are trained using
a mean squared error (MSE) on the expert demonstrations. Next, for finetuning, weights of the

12

pretrained encoder and actor are loaded from memory and the critic is initialized randomly. We
observed that the performance of the algorithm is not very sensitive to the value of o and we set it
to 0.03 for all experiments in this paper. A copy of the pretrained encoder and actor are stored with
fixed weights to be used for computing \(7) for soft Q-filtering.

Actor-critic based reward maximization We use a recent n-step DDPG proposed by Yarats et al.
[8] as our RL backbone. The deterministic actor is trained using deterministic policy gradients
(DPG) [54] given by Eq. 7. The critic is trained using clipped double Q-learning similar to Yarats
et al. [8] in order to reduce the overestimation bias in the target value. This is done using two
Q-functions, Qg and Q2. The critic loss for each critic is given by the equation

Lo, = E(s.a~n, [(Qo.(s,0) —9)*] V& € {1,2} ®)
where Dy is the replay buffer for online rollouts and y is the target value for n-step DDPG given by

n—1

y = z; Vrewi + " krgzlnz Qp, (St+n> Atin) ©)
1=

Here, 7 is the discount factor, r is the reward obtained using OT-based reward computation and 61,
0 are the slow moving weights of target Q-networks.

Target feature processor to stabilize OT rewards The OT rewards are computed on the output
of the feature processor f, which is initialized with a parametric neural network. Hence, as the
weights of f, change during training, the rewards become non-stationary resulting in unstable training.
In order to increase the stability of training, the OT rewards are computed using a target feature
processor f¢/ [11] which is updated with the weights of fy every T',pdqate €nvironment steps. For
state-based observations, fg corresponds to a ’trunk’ network which is a single layer neural network.
For pixel-based observations, fy4 includes DrQ-v2’s encoder followed by the ’trunk’ network.

D.2 Hyperparameters

The complete list of hyperparameters is provided in Table 1. Similar to Yarats et al. [8], there is
a slight deviation from the given setting for the Walker Stand/Walk/Run task from the DeepMind
Control suite where we use a mini-batch size of 512 and a n-step return of 1.

E Environments

Table 2 lists the different tasks that we experiment with from the DeepMind Control suite [12, 55],
OpenAl Robotics suite [56] and the Meta-world suite [57] along with the number of training steps
and the number of demonstrations used. For the tasks in the OpenAl Robotics suite, we fix the goal
while keeping the initial state randomized. No modifications are made in case of the DeepMind
Control suite and the Meta-world suite. The episode length for all tasks in DeepMind Control is 1000
steps, for OpenAl Robotics is 50 steps and Meta-world is 125 steps (except bin picking which runs
for 175 steps).

F Demonstrations

For DeepMind Control tasks, we train expert policies using pixel-based DrQ-v2 [8] and collect 10
demonstrations for each task using this expert policy. The expert policy is trained using a stack
of 3 consecutive RGB frames of size 84 x 84 with random crop augmentation. Each action in the
environment is repeated 2 times. For OpenAl Robotics tasks, we train a state-based DrQ-v2 with
hindsight experience replay [58] and collect 50 demonstrations for each task. The state representation
comprises the observation from the environment appended with the desired goal location. For this, we
did not do frame stacking and action repeat was set to 2. For Meta-World tasks, we use a single expert
demonstration obtained using the task-specific hard-coded policies provided in their open-source
implementation [57].

13

Method Parameter Value

Common Replay buffer size 150000
Learning rate le
Discount ~y 0.99
n-step returns 3
Action repeat 2
Seed frames 12000
Mini-batch size 256
Agent update frequency 2
Critic soft-update rate 0.01
Feature dim 50
Hidden dim 1024
Optimizer Adam
ROT Exploration steps 0
DDPG exploration schedule 0.1
Target feature processor update frequency(steps) 20000
Reward scale factor 10
Fixed weight o 0.03
Linear decay schedule for A(7) linear(1,0.1,20000)
oT Exploration steps 2000
DDPG exploration schedule linear(1,0.1,500000)
Target feature processor update frequency(steps) 20000
Reward scale factor 10
DAC Exploration steps 2000
DDPG exploration schedule linear(1,0.1,500000)
Gradient penalty coefficient 10

Table 1: List of hyperparameters.

G Robot Tasks

In this section, we describe the suite of manipulation experiments carried out on a xArm robot in this
paper.
(a) Door Close: Here, the robot arm is supposed to close an open door by pushing it to the target.

(b) Hang Hanger: While holding a hanger between the grippers, the robot arm is initialized at a
random position and is tasked with putting the hanger at a goal region on a closet rod.

(c) Erase Board: While holding a board duster between the grippers, the robot arm is tasked with
erasing markings drawn on the board while being initialized at a random position.

(d) Reach: The robot arm is required to reach a specific goal after being initialized at a random
position.

(e) Hang Mug: While holding a mug between the grippers, the robot arm is initialized at a random
position and is tasked with hanging the mug on a specific hook.

14

Suite Tasks Allowed Steps # Demonstrations
DeepMind Control Acrobot Swingup 2 x 106 10

Cartpole Swingup

Cheetah Run
Finger Spin

Hopper Stand

Hopper Hop

Quadruped Run

Walker Stand

Walker Walk

Walker Run

OpenAl Robotics Fetch Reach 1.5 x 106

50
Fetch Push

Fetch Pick and Place
Meta-World Hammer 1 x 10

Drawer Close
Door Open
Bin Picking
Button Press Topdown
Door Unlock.
xArm Robot Close Door 6 x 103

Hang Hanger
Erase Board
Reach
Hang Mug
Hang Bag
Turn Knob
Stack Cups
Press Switch
Peg (Easy)
Peg (Medium)
Peg (Hard)
Open Box

Pour

Table 2: List of tasks used for evaluation.

(f) Hang Bag: While holding a tote between the grippers, the robot arm is initialized at a random
position and is tasked with hanging the tote bag on a specific hook.

(g) Tuarn Knob: The robot arm is tasked with rotating a knob placed on the table by a certain angle
after being initialized at a random position. We consider a 90 degree rotation as success.

15

” Erase Board ” Hang Hanger” Close Door I

Reach

Pour

” Open Box ” Peg (Hard) ” Peg (Med) ” Peg (Easy) ”Press Switch” Stack Cups ” Turn Knob ” Hang Bag ” Hang Mug ”

Figure 5: Examples of randomized initializations for the real robot tasks.

16

AR R S W]
PP S S S RIS
e L A AL A A A A

ng Bag || Erase Board

s

H:

ﬂ
E
&

Open Box || Peg (Hard)

Figure 6: An example of trajectories for selected real robot tasks.

(h) Stack Cups: While holding a cup between the gripper, the robot arm is required with stacking
it on another cup placed on the table.

(i) Press Switch: With the gripper kept closed, the robot arm is required to press a switch (with an
LED light) placed on the table.

(j) Peg (Easy, Medium, Hard): The robot arm is tasked with inserting a peg, hanging by a wire,
into a bucket placed on the table. This task has 3 variants - Easy, Medium, Hard - with the size
of the bucket decreasing from Easy to Hard.

(k) Box Open: In this task, the robot arm is supposed to open the lid of a box placed on the table by
lifting a handle provided in the front of the box.

(1) Pour: While holding a cup containing some item (in our case, almonds), the robot arm is
supposed to move towards another cup placed on the table and pour the item into this cup.

Evaluation procedure For each task, we obtained a set of 20 random initializations and evaluate
all of the methods (BC, RDAC and ROT) over 20 trajectories from the same set of initializations.
These initializations are different for each task based on the limits of the observation space for the
task.

H Baselines

Throughout the paper, we compare ROT with several prominent imitation learning and reinforcement
learning methods. Here, we give a brief description of each of the baseline models that have been
used.

(a) Expert: For each task, the expert refers to the expert policy used to generate the demonstrations
for the task (described in Appendix F).

(b) Behavior Cloning (BC): This refers to the behavior cloned policy trained on expert demonstra-
tions.

(¢c) Adversarial IRL (DAC): Discriminator Actor Critic [7] is a state-of-the-art adversarial imi-
tation learning method [6, 37, 7]. Since DAC outperforms prior work such as GAIL[6] and
AIRL[35], it serves as our primary adversarial imitation baseline.

(d) State-matching IRL (OT): Sinkhorn Imitation Learning [28, 26] is a state-of-the-art state-
matching imitation learning method [59] that approximates OT matching through the Sinkhorn
Knopp algorithm. Since ROT is derived from similar OT-based foundations, we use SIL as our
primary state-matching imitation baseline.

(e) RDAC: This is the same as ROT, but instead of using state-matching IRL (OT), adversarial IRL
(DAC) is used.

(f) Finetune with fixed weight: This is similar to ROT where instead of using a time-varying
adaptive weight A(4), only the fixed weight)¢ is used.)\ is set to a fixed value of 0.03.

17

(g) Finetune with fixed schedule: This is similar to ROT that uses both the fixed weight \g and
the time-varying adaptive weight \; (¢). However, instead of using Soft Q-filtering to compute
A1(i), a hand-coded linear decay schedule is used.

(h) DrQ-v2 (RL): DrQ-v2 [8] is a state-of-the-art algorithm for pixel-based RL. DrQ-v2 is assumed
to have access to environment rewards as opposed to ROT which computes the reward using
OT-based techniques.

(i) Demo-DrQ-v2: This refers to DrQ-v2 but with access to both environment rewards and expert
demonstrations. The model is initialized with a pretrained BC policy followed by RL finetuning
with an adaptive regularization scheme like ROT. During RL finetuning, this baseline has access
to environment rewards.

(j) BC+OT: This is the same as the OT baseline but the policy is initialized with a pretrained BC
policy. No adaptive regularization scheme is used while finetuning the pretrained policy.

(k) OT+BC Reg.: This is the same as the OT baseline with randomly initialized networks but
during training, the adaptive regularization scheme is added to the objective function.

I Experimental Results

Our experiments are designed to answer the following questions: (a) How efficient is ROT for
imitation learning? (b) How does ROT perform on real-world tasks? (c) How important is the choice
of IRL method in ROT? (d) Does soft Q-filtering improve imitation? (¢) How does ROT compare to
standard reward-based RL?

Simulated tasks We experiment with 10 tasks from the DeepMind Control suite [12, 55], 3 tasks
from the OpenAl Robotics suite [56], and 7 tasks from the Meta-world suite [57]. For DeepMind
Control tasks, we train expert policies using DrQ-v2 [8] and collect 10 demonstrations for each
task using this policy. For OpenAl Robotics tasks, we train a state-based DrQ-v2 with hindsight
experience replay [58] and collect 50 demonstrations for each task. For Meta-world tasks, we
use a single hard-coded expert demonstration from their open-source implementation [57]. Full
environment details can be found in Appendix E and details about the variations in demonstrations
and initialization conditions can be found in Appendix F.

Robot tasks Our real world setup for each of the 14 manipulation tasks can be seen in Fig. 2.
We use an Ufactory xArm 7 robot with a xArm Gripper as the robot platform for our real world
experiments. However, our method is agnostic to the specific robot hardware. The observations
are RGB images from a fixed camera. In this setup, we only use a single expert demonstration
collected by a human operator with a joystick and limit the online training to a fixed period of 1 hour.
Descriptions of each task and the evaluation procedure is in Appendix G.

Primary baselines We compare ROT with baselines against several prominent imitation learning
methods. While a full description of our baselines are in Appendix H, a brief description of the two
strongest ones are as follows:

1. Adversarial IRL (DAC): Discriminator Actor Critic [7] is a state-of-the-art adversarial imitation
learning method [6, 37, 7]. DAC outperforms prior work such as GAIL [6] and AIRL [35], and
thus it serves as our primary adversarial imitation baseline.

2. Trajectory-matching IRL (OT): Sinkhorn Imitation Learning [28, 26] is a state-of-the-art
trajectory-matching imitation learning method [59] that approximates OT matching through
the Sinkhorn Knopp algorithm [60, 41]. Since ROT is derived from similar OT-based foundations,
we use SIL as our primary state-matching imitation baseline.

I.1 How efficient is ROT for imitation learning?

In addition to the results provided in Sec. 3.1, Fig. 7 and Fig. 8 shows the performance of ROT
for pixel-based imitation on 10 tasks from the DeepMind Control suite, 3 tasks from the OpenAl
Robotics suite and 7 tasks from the Meta-world suite. On all but one task, ROT is significantly
more sample efficient than prior work. Finally, the improvements from ROT hold on state-based

18

dmc_acrobot_swingup dmc_cartpole_swingup dmc_finger_spin

_____________________ 1000 1200
400
-= 1000 —
e T 800 I e T r A ™
© © ©
2 300 2 = 800
g £, e 2 600
Q [<D
3 200 8 400 g V
2 2 8 400
2100 200 M & 200
0 0 0
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
frame le6 frame le6 frame le6
dmc_cheetah_run dmc_hopper_stand dmc_hopper_hop
1000 EEmmeeEEEL L LSS S IR 0 s e m———
_____________________ 1000 _ 300
T 800 T 800 ©
g g g
] 600 & 600 g 200
< 400 3 400 3
o o o
2 @ 200 2 100
S 200 < o &
0 -200 0
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0
frame 1le6 frame le6 frame le6
dmc_walker_stand dmc_walker_walk dmc_walker_run
1000 __ _ _
1000 —— 42 ‘ \— /,,PWW 800 e e L &
e © e
5 800 5 800 7 5
2 2 = 600
[[600 [
1 600 \ o o
g 3 w00 400
& 400 2 b
) & 200 @ 200
200
0 0
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
frame le6 frame le6 frame le6
dmc_quadruped_run
600
el
4
E
g 200
OJI
°
2 200
a
[

0.0 0.5 1.0 15 2.0
frame le6

M Expert @BC W OT HDAC M ROT (Ours)

Figure 7: Pixel-based continuous control learning on 10 DMC environments. Shaded region represents
41 standard deviation across 5 seeds. We notice that ROT is significantly more sample efficient
compared to prior work.

observations as well(see Fig. 9). Table 3 provides a comparison between the factor of speedup of
ROT to reach 90% of expert performance compared to prior state-of-the-art [7, 11] methods.

L2 Does soft Q-filtering improve imitation?

To understand the importance of soft Q-filtering, we compare ROT against two variants of our
proposed regularization scheme: (a) A tuned fixed BC regularization weight (ignoring A(7) in Eq. 2);
(b) A carefully designed linear-decay schedule for A(7), where it varies from 1.0 to 0.0 in the first
20k environment steps [15]. As demonstrated in Fig. 10, ROT is on par and in some cases exceeds the
efficiency of a hand-tuned decay schedule, while not having to hand-tune its regularization weights.
We hypothesize this improvement is primarily due to the better stability of adaptive weighing as seen
in the significantly smaller standard deviation on the Meta-world tasks.

19

fetch_reach fetch_push fetch_pick_and_place

1.25 1.25
% g 1o)
8 8 & 100 ———=—=t gt - 2 Bk & -
c c 0.8 c
g S g o
2 3 2 os
") n 0.4)
]] ¢ 025
v} 0 0.2 5 Ai
a 2 3 000
—025 00 -025
0.00 0.25 050 0.75 1.00 125 1.0 0.00 0.25 0.50 0.75 1.00 1.25 1.50 0.00 0.25 0.50 0.75 1.00 1.25 1.50
frame le6 frame leb frame le6
metaworld_hammer metaworld_drawer_close metaworld_drawer_open
1.25 \
) g 1-°"m*'*—W‘ g 10
1.00 |
£ g os £ os
o 075 [} M A A DA [}
8 o 06 MM VA Se ALV g 4 O 06
[[[
g 0% 2 04 2 04
n wn wn
g 025 3 02 3 02
S 000 S S
a 3 00 2 00
-0.25 _02 “o2
00 02 04 06 08 10 0.0 02 04 06 08 1.0 00 02 04 06 08 1.0
frame le6 frame le6 frame le6
metaworld_door_open metaworld_bin_picking metaworld_button_press_topdowr
10 == —
o 100 ——@Sdasdlnol =AF- 0 o
g g g os
2 0.75 = =
[7) [7) o 0.6
2 950 =4 =
g \’ g g o
n 0.25 n wn
g V"l g o A om/!‘:vg_'
AA
S 0.00 A A S 00
n n "
-0.25 —0.25 -0.2
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
frame le6 frame le6 frame le6

metaworld_door_unlock

o
o

e 9o
> o

success_percentage
o
o

%

0.0 0.2 0.4 0.6 0.8 1.0
frame 1le6

M Expert @BC W OT HDAC M ROT (Ours)

Figure 8: Pixel-based continuous control learning on 3 OpenAl Gym Robotics and 7 Meta-World
tasks. Shaded region represents +1 standard deviation across 5 seeds. We notice that ROT is
significantly more sample efficient compared to prior work.

I.3 How does ROT compare to standard reward-based RL?

We compare the performance of ROT against DrQ-v2 [8], a state-of-the-art algorithm for image-based
RL. As opposed to the reward-free setting ROT operates in, DrQ-v2 has access to environments
rewards. The results in Fig. 11 show that ROT handily outperforms DrQ-v2. This clearly demonstrates
the usefulness of imitation learning in domains where expert demonstrations are available over
reward-based RL. We also compare against a demo-assisted variant of DrQ-v2 agent using the
same pretraining and regularization scheme as ROT. Interestingly, we find that our soft Q-filtering
based regularization can accelerate learning of RL with task rewards, which can be seen in the high
performance of the demo-assisted variant of DrQ-v2.

1.4 How important are the design choices in ROT?
Importance of pretraining and regularizing the IRL policy Fig. 12 compares the following

variants of ROT on set of pixel-based tasks: (a) Training the IRL policy from scratch (OT); (b)
Finetuning a pretrained BC policy without BC regularization (BC+OT); (c) Training the IRL policy

20

dmc_acrobot_swingup

[
=3
S

I
o
S

w
o
S

N
=3
S

episode_reward

—
15
S

1.0
frame

15

dmc_hopper_stand

episode_reward

0.0 0.5 1.0

frame

15 2.0

le6

dmc_walker_walk

1000
T 800
©
B
g 600
]
S 400
2
Q
@ 200 [[4
0
0.0 0.5 1.0 15 2.0
frame le6
metaworld_hammer
1.25
[
o
©
8
=4
[
I~
[
o
lnl
a
[
o
1=
=1
wn

0.0 0.2 0.4 0.6

frame

0.8

metaworld_drawer_open

0.0

0.2 0.4 0.6

frame

0.8 1.0

le6

dmc_cartpole_swingup

1000
T 800
©
2
gl 600
3
S 400
@2
& 200
0
0.0 0.5 1.0 15 2.0
frame le6
dmc_hopper_hop
300
e
g \
g 200 W
[}
ke
o
v 100
Q
[

1.0
frame

dmc_walker_run

dmc_finger_spin

episode_reward

0.5 1.0

frame

1.5 2.0

1le6

dmc_walker_stand
1200 = =

1000

e_reward
(= (=]
o o
o o

I
o
S

episod

N
=3
S

M

0.0

o

0.5 1.0

frame

1.5 2.0

le6

dmc_quadruped_run

e e
<4 o
© ©
H H
[2
llJI LU‘
e e
o o
o o
Q Q
))
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0
frame le6 frame le6
metaworld_drawer_close metaworld_door_open
© 1.00 ® 100 - v
g g 0.75 Ty
g 075 g o
5 5 os0
g 0.50 g 0
i i A
3 025 g 025
[
8 g o000
2 0.00 2
-0.25
0.0 02 04 06 08 10 00 02 04 06 08 10
frame le6 frame le6
metaworld_button_press_topdown metaworld_door_unlock
g 1.0 %1.0 === -V \"Znwn anw =
it it
2 0.8 2 0.8
[(9]
E 0.6 % 0.6
o o
' 0.4 ' 0.4
¢ ¢
o2 502
3 3
o 0.0 2 0.0
00 02 04 06 08 1.0 00 02 04 06 08 10
frame 1le6 frame le6

M Expert MBC HOT HDAC EROT (Ours)

Figure 9: State-based continuous control learning on DMC and Meta-World tasks. We notice that
ROT is significantly more sample efficient compared to prior work.

from scratch with BC regularization (OT+BC Reg.). We observe that pretraining the IRL policy
(BC+OT) does not provide a significant difference without regularization. This can be attributed to
the ‘forgetting behavior’ of pre-trained policies, studied in Nair et al. [9]. Interestingly, we see that
even without BC pretraining, keeping the policy close to a behavior distribution (OT+BC Reg.) can
yield improvements in efficiency over vanilla training from scratch. Our key takeaway from these
experiments is that both pretraining and BC regularization are required to obtain sample-efficient

imitation learning.

21

Suite Tasks ROT 2nd Best Model Speedup Factor

DeepMind Control Acrobot Swingup 200k 600k (OT) 3
Cartpole Swingup 100k 350k (OT) 35
Finger Spin 20k 700k (OT) 35
Cheetah Run 400k 2M (DAC) 5
Hopper Stand 60k. 750k (OT) 12.5
Hopper Hop 200k >2M (DAC) 10
Walker Stand 80k 400k (DAC) 5
Walker Walk 200k 750k (DAC) 3.75
Walker Run 320k >2M (OT) 6.25
Quadruped Run 400k >2M (DAC) 5
OpenAl Robotics Fetch Reach 300k 1.1M (DAC) 3.67
Fetch Push 1.IM 600k (DAC) 0.54
Fetch Pick and Place ~ 750k >1.5M (OT) 2
Meta-World Hammer 200k >1M (DAC) 5
Drawer Close 20k >1M (OT) 50
Drawer Open >1M >1M (OT) 1
Door Open 400k >1M (OT) 2.5
Bin Picking 700k >1M (OT) 1.43
Button Press Topdown >1M >1M (OT) 1
Door Unlock M >1M (OT) 1

Table 3: Task-wise comparison between environment steps required to reach 90% of expert perfor-
mance for pixel-based ROT compared to the strongest baseline for each task.

Choice of IRL method In ROT, we build on OT-based IRL instead of adversarial IRL. This is
because adversarial IRL methods require iterative reward learning, which produces a highly non-
stationary reward function for policy optimization. In Fig. 13, we compare ROT with adversarial
IRL methods that use our pretraining and adaptive BC regularization technique (RDAC). We find
that our soft Q-filtering method does improve prior state-of-the-art adversarial IRL (RDAC vs. DAC
in Fig. 13). However, our OT-based approach (ROT) is more stable and on average leads to more
efficient learning.

Choice of Q-filtering method In ROT, we adopt a soft Q-filtering method as opposed to the
hard assignment strategy proposed by Nair et al. [18]. Fig. 14 shows a comparison between the
performance of soft Q-filtering and hard Q-filtering. We observe that though the two strategies have
comparable performance in most cases, soft Q-filtering exhibits better sample efficiency and more
stable training in some tasks. This justifies our choice of opting for soft Q-filtering as opposed to
hard assignment.

22

dmc_cheetah_run dmc_hopper_hop dmc_quadruped_run

0
800 300
B 2
E S
g 600 8 200
3 3
g 400 8
a ‘a 100
@ 200 ‘ @
0 0
0.0 05 1.0 15 2,0 0.0 0.5 1.0 15 2.0 0.0 05 1.0 15 2.0
frame 1e6 frame 1e6 frame 1e6
fetch_reach fetch_push fetch_pick_and_place
12 1.25
[(9] (9]
j} oD o
g g k|
c c c
g 8 8
g g g
(I)I j m‘
3 3 3
Q Q Q
o o o
=3 =] =1
[z (2] n
-0.25
000 025 050 075 1.00 1.25 150 000 025 050 075 100 125 150 000 025 050 075 100 1.25 1.50
frame 1e6 frame 1e6 frame 1e6
metaworld_door_open metaworld_hammer metaworld_drawer_close
1.0
23 23 2 10
@© © o
£ 08 € €
8 8 8
@ 06 3 3 08
5 5 5
g g g
06
8 02 g : V
3 3 =3
2} 2] Iz
0.0
-0.25 0.4
0.0 0.2 0.4 06 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6 frame 1e6 frame 1e6

M Expert M BC M Finetune with fixed weight M Finetune with fixed schedule M ROT (Ours)

Figure 10: Pixel-based ablation analysis on the effect of varying BC regularization schemes. We
observe that our adaptive soft-Q filtering regularization is more stable compared to prior hand-tuned
regularization schemes.

23

dmc_finger_spin dmc_cheetah_run
1000 ~ -]
T 800 T °
2 2 2
9. 600 Ql El
£ 400 3 3
o o o
w wn wn
‘a 200 a a
d) v Q
0
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0
frame le6 frame le6
fetch_reach fetch_push
1.25 1.25
g () ()
2 100 - - 2 100 =
€ = =
o 0.75 o 0.75 [}
=4 = =
“Q_’I 0.50 gl 0.50 gl
w n n
g 025 g 025 2
S] S
S 0.00 S 0.00 S
w n n
-0.25 -0.25
0.00 025 050 0.75 1.00 1.25 1.50 0.00 025 0.50 0.75 1.00 1.25 1.50
frame 1le6 frame le6
metaworld_door_open metaworld_bin_picking
1.25 1.25
% [[
2 100 - © 1.00 2
€ € =
@ 075 @ 075 @
= = =
g oo g os0 a
w n wn
n 0.25 v 0.25 o
8 NI~ ¢ g
S 0.00 S 0.00 5
" n [l
-0.25 -0.25
00 02 04 06 08 10 00 02 04 06 08 10
frame le6 frame le6

dmc_walker_run

L~

0.0 0.5 1.0 1.5 2.0
frame le6

fetch_pick_and_place

0.50
0.25

0.00

0.25
0.00 0.25 0.50 0.75 1.00 1.25 1.50

frame le6

metaworld_hammer

0.75

0.50

0.25

0.00

-0.25
00 02 04 06 08 1.0
frame le6

B Expert MBC HOT HDrQ-v2(RL) H Demo-DrQ-v2 B ROT (Ours)

Figure 11: Pixel-based ablation analysis on the performance comparison of ROT against DrQ-v2,

a reward-based RL method. Here we see that ROT can outperform

plain RL that requires explicit

task-reward. However, we also observe that this RL method combined with our regularization scheme

provides strong results.

24

episode_reward
[
N A O ® O N
o O © O ©o o
o o o o o o o

=
N
a

1.00

success_percentage
o o o o

v

o

=
=
S

e
N
a

o
N
o

success_percentage
o =3
o o
S =]

-0.25

dmc_finger_spin

0.0

0.5

1.0

1.

frame

fetch_reach

5

Vi
A
',m"m

2.0
1le6

0.00 025 0.50 0.75 1.00 125 1.50
frame

metaworld_door_open

0.0

0.2

0.4
frame

0.6

0.8

le6

dmc_cheetah_run

episode_reward

0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0
frame le6 frame 1le6
fetch_push fetch_pick_and_place
) 1.25
e 1.0 e
1.00 h I+ = L
Zos g ! Y
9 g 075 | L7
= 0.6 = | Y
g g os0 | Wy oy
g'04 a 0.25 l‘
o o Y v ! /
S 02 S lmﬂlm AL VU
E] S 0.0
w w
0.0 _025
0.00 0.25 050 0.75 1.00 1.25 1.50 0.00 025 050 0.75 1.00 1.25 1.50
frame le6 frame 1le6

metaworld_hammer N 2gnetaworld_button_press_topdowr

success_percentage
success_percentage
o
w
o

0.0 0.2 0.4 0.6 0.8 1.0
frame 1le6

B BC BOT EBC+OT ®MOT+BCReg. M ROT (Ours)

Figure 12: Pixel-based ablation analysis on the importance of pretraining and regularizing the IRL
policy. The key takeaway from these experiments is that both pretraining and BC regularization are
required to obtain sample-efficient imitation learning.

25

dmc_finger_spin

1250
ha
1000 - - . - TS
B y TR RNY T
g 750 m" N“W-m'
g M il “L‘ Al
s 500 ¥ ' "r |‘;‘
3 250 I
2 1)
QJ 0 v
—250
0.0 0.5 1.0 1.5 2.0
frame 1le6
fetch_reach
Q
o
8
c
(‘D
I~
L
Q
ml
w
Q
o
o
3
w
-0.25 .
0.00 025 050 075 1.00 125 1.50
frame le6
metaworld_door_open
o 100
o
£
£ 075
8
o 0.50
S
@025
CD
S 000
S o
w
-0.25
0.0 0.2 0.4 0.6 0.8 1.0
frame 1le6

episode_reward

success_percentage

dmc_cheetah_run

-
o
=3
S

0.0 0.5 1.0 1.5 2.0
frame le6
fetch_push
1.2
1.0

success_percentage
° 2 2 9 ©
o N » 0 ®

0.00 0.25 0.50 0.75 1.00 1.25 1.50
frame 1le6

metaworld_hammer

dmc_walker_run

1000

@
=3
=1

600

400

200

episode_reward

0.0 0.5 1.0

frame
fetch_pick_and_place

15 2.0

le6

success_percentage

0.00 0.25 0.50 0.75 1.00 1.25 1.50
frame le6

metaworld_button_press_topdowr
1.0

M Expert @ BC M DAC B OT EMRDAC M ROT (Ours)

Figure 13: Pixel-based ablation analysis on the choice of base IRL method. We find that although
adversarial methods benefit from regularized BC, the gains seen are smaller compared to ROT.

26

dmc_cheetah_run dmc_hopper_hop

@
=1
=]

@

S

=3

el el

§ g 250
5 600 H

| | 200
8 8

g 400 S 150
5 3

200 100

50

0 1 2 3 4 5 0 1 2 3 4 5
frame 1e5 frame
fetch_reach fetch_push

success rate
success rate

000 025 050 075 100 125 1.50 000 025 050 075 100 1.25
frame 1e6 frame
metaworld_drawer_close metaworld_bin_picking
10 = -
008 o
© ©
% 06 «
173 0w
8 8
o 04 o
=3 =3
" Iz
0.2
0.0
0 1 2 3 4 5 0.0 02 0.4 06 08
frame 1e5 frame

1.50
1e6

1.0
1e6

dmc_walker_run

episode_reward

frame 1es

fetch_pick_and_place

success rate

Ll] A
000 025 050 075 1.00 125 1.50
frame 1e6

metaworld_door_open

success rate

0.0 0.2 0.4 0.6 0.8 1.0
frame 1e6

M Expert M BC M ROT with Hard Q-Filtering B ROT with Soft Q-Filtering

Figure 14: Pixel-based ablation analysis on the choice of Q-filtering method. We find that although
the two strategies have comparable performance in most cases, soft Q-filtering exhibits better sample

efficiency and more stable training in some tasks.

27

	Introduction
	Regularized Optimal Transport
	Phase 1: BC Pretraining
	Phase 2: Online Finetuning with IRL

	Experiments
	How efficient is ROT for imitation learning?
	How does ROT perform on real-world tasks?

	Conclusion and Limitations
	Background
	Related Work
	Challenges in Online Finetuning from a Pretrained Policy
	Issue with Fine-tuning Actor-Critic Frameworks

	Algorithmic Details
	Implementation
	Hyperparameters

	Environments
	Demonstrations
	Robot Tasks
	Baselines
	Experimental Results
	How efficient is ROT for imitation learning?
	Does soft Q-filtering improve imitation?
	How does ROT compare to standard reward-based RL?
	How important are the design choices in ROT?

