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ABSTRACT

State-of-the-art automatic augmentation methods (e.g., AutoAugment and Ran-
dAugment) for visual recognition tasks diversify training data using a large set
of augmentation operations. The range of magnitudes of many augmentation op-
erations (e.g., brightness and contrast) is continuous. Therefore, to make search
computationally tractable, these methods use fixed and manually-defined mag-
nitude ranges for each operation, which may lead to sub-optimal policies. To
answer the open question on the importance of magnitude ranges for each aug-
mentation operation, we introduce RangeAugment that allows us to efficiently
learn the range of magnitudes for individual as well as composite augmentation
operations. RangeAugment uses an auxiliary loss based on image similarity as
a measure to control the range of magnitudes of augmentation operations. As a re-
sult, RangeAugment has a single scalar parameter for search, image similarity,
which we simply optimize via linear search. RangeAugment integrates seam-
lessly with any model and learns model- and task-specific augmentation policies.
With extensive experiments on the ImageNet dataset across different networks, we
show that RangeAugment achieves competitive performance to state-of-the-art
automatic augmentation methods with 4-5 times fewer augmentation operations.
Experimental results on semantic segmentation and contrastive learning further
shows RangeAugment’s effectiveness.

1 INTRODUCTION

Data augmentation is a widely used regularization method for training deep neural networks (LeCun
et al., 1998; Krizhevsky et al., 2012; Szegedy et al., 2015; Perez & Wang, 2017; Steiner et al., 2021).
These methods apply carefully designed augmentation (or image transformation) operations (e.g.,
color transforms) to increase the quantity and diversity of training data, which in turn helps improve
the generalization ability of models. However, these methods rely heavily on expert knowledge and
extensive trial-and-error experiments.

Recently, automatic augmentation methods have gained attention because of their ability to search
for augmentation policy (e.g., combinations of different augmentation operations) that maximizes
validation performance (Cubuk et al., 2019; 2020; Lim et al., 2019; Hataya et al., 2020; Zheng et al.,
2021). In general, most augmentation operations (e.g., brightness and contrast) have two parame-
ters: (1) the probability of applying them and (2) their range of magnitudes. These methods take
a set of augmentation operations with a fixed (often discretized) range of magnitudes as an input,
and produce a policy of applying some or all augmentation operations along with their parameters
(Fig. 1). As an example, AutoAugment (Cubuk et al., 2019) discretizes the range of magnitudes
and probabilities of 16 augmentation operations, and searches for sub-policies (i.e., composition of
two augmentation operations along with their probability and magnitude) in a space of about 1032
possible combinations. These methods empirically show that automatic augmentation policies help
improve performance of downstream networks. For example, AutoAugment improves the valida-
tion top-1 accuracy of ResNet-50 (He et al., 2016) by about 1.3% on the ImageNet dataset (Deng
et al., 2009). In other words, these methods underline the importance of automatic composition of
augmentation operations in improving validation performance. However, policies generated using
these networks may be sub-optimal because they use hand-crafted magnitude ranges. The impor-
tance of magnitude ranges for each augmentation operation is still an open question. An obstacle in

1



Under review as a conference paper at ICLR 2023

Search space
Set of augmentations T with their pa-
rameters
• Probability of applying augmentation

operation
• Augmentation magnitude, etc.

Search strategy

• Reinforcement learning
• Grid search
• Bayesian optimization
• Gradient matching, etc.

Performance estimation
Validation accuracy

✓ Improves generalization ability

? Model-specific policy

? Task-specific policy

✗ Manual range of magnitudes

✗ Augmentation-dependent search space

Train with a subset of augmen-
tations with their parameters S

Performance
feedback of S

(a) Standard automatic augmentation

Search space

Target image similarity ∆

Search strategy

Linear search

Performance estimation
Validation accuracy

✓ Improves generalization ability

✓ Model-specific policy

✓ Task-specific policy

✓ Learned range of magnitudes

✓ Constant search space

Train with all augmen-
tations in T for given ∆

Performance
feedback of ∆

(b) RangeAugment

Figure 1: Comparison between RangeAugment and standard automatic augmentation methods.
RangeAugment’s search space is independent of augmentation parameters, allowing us to learn
model- and task-specific policies in a constant time.
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(a) Model-specific policy
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Model: MobileNetv3 Task: Segmentation Dataset: ADE20k

(b) Task-specific policy

Figure 2: RangeAugment learns model- and task-specific policies. (a) shows the range of magni-
tudes for two different models on the same task and dataset while (b) shows the range of magnitudes
for the same model on two different tasks. All models are trained end-to-end with RangeAugment.
The target image similarity ∆ (PSNR) is annealed from 40 to 5 in (a) and from 40 to 20 in (b).

answering this question is the range of magnitudes for most augmentation operations is continuous,
which makes the search computationally intractable.

This paper introduces RangeAugment, a simple and efficient method to learn the range of magni-
tudes for each augmentation operation. Inspired by image similarity metrics (Hore & Ziou, 2010),
RangeAugment introduces an auxiliary augmentation loss that allows us to learn the range of
magnitudes for each augmentation operation. We realize this by controlling the similarity between
the input and the augmented image for a given model and task. Rather than directly specifying
the parameters for each augmentation operation, RangeAugment takes a target image similarity
value as an input. The loss function is then formulated as a combination of the empirical loss and
an augmentation loss. The objective of the augmentation loss is to match the target image sim-
ilarity value. Therefore, the search objective in RangeAugment is to find the target similarity
value that provides a good trade-off between minimizing the augmentation loss (i.e., matching the
target similarity value) and the empirical loss. As a result, the augmentation policy learning in
RangeAugment reduces to searching for a single scalar parameter, target image similarity, that
maximizes downstream model’s validation performance. We search for this target image similarity
value via linear search. Empirically, we observe that this trade-off between the augmentation and
empirical loss leads to better generalization ability of downstream model. Compared to existing
automatic augmentation methods that require a large set of augmentation operations (usually 14-16
operations), RangeAugment is able to achieve competitive performance with only three simple
operations (brightness, contrast, and additive Gaussian noise). Because RangeAugment’s search
space is independent of augmentation parameters and is fully differentiable (Fig. 1), it can be trained
end-to-end with any downstream model to learn model- and task-specific policies (Fig. 2).

We empirically demonstrate in Section 4 that RangeAugment allows us to learn model-specific
policies when trained end-to-end with downstream models on the ImageNet dataset (Fig. 2a). Im-
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portantly, RangeAugment achieves competitive performance to existing automatic augmentation
methods (e.g., AutoAugment) with 4 to 5 times fewer augmentation operations. In Section 5, we
apply RangeAugment to semantic segmentation and contrastive learning to demonstrate its sim-
plicity and seamless integration ability to different tasks. We further show that RangeAugment
learn task-specific policies (Fig. 2b). To the best of our knowledge, RangeAugment is the first au-
tomatic augmentation method that learns the range of magnitudes for each augmentation operation.

2 RELATED WORK

Data augmentation combines different augmentation operations (e.g., random brightness, random
contrast, random Gaussian noise, and data mixing) to synthesize additional training data. Traditional
augmentation methods rely heavily on expert knowledge and extensive trial-and-error experiments.
In practice, these manual augmentation methods have been used to train different models on a variety
of datasets and tasks (e.g., Szegedy et al., 2015; He et al., 2016; Zhao et al., 2017; Howard et al.,
2019). However, these policies may not be optimal for all models.

Motivated by neural architecture search (Zoph & Le, 2017), recent methods focus on finding optimal
augmentation policies automatically from data. AutoAugment formulates automatic augmentation
as a reinforcement learning problem, and uses model’s validation performance as a reward to find
an augmentation policy leading to optimal validation performance. Because AutoAugment searches
for several augmentation policy parameters, the search space is enormous and computationally in-
tractable on large datasets and models. Therefore, in practice, policies found for smaller datasets
are transferred to larger datasets. Since then, many follow-up works have focused on reducing the
search space while delivering a similar performance to AutoAugment (Ratner et al., 2017; Lemley
et al., 2017; LingChen et al., 2020; Li et al., 2020; Zheng et al., 2021; Liu et al., 2021a). The first line
of research reduces the search time by introducing different hyper-parameter optimization methods,
including population-based training (Ho et al., 2019), density matching (Lim et al., 2019; Hataya
et al., 2020), and gradient matching (Zheng et al., 2021). The second line of research reduces the
search space by making practical assumptions (Cubuk et al., 2020; Müller & Hutter, 2021). For
instance, RandAugment (Cubuk et al., 2020) applies two transforms randomly with uniform prob-
ability. With these assumptions, RandAugment reduces AutoAugment’s search space from 1032 to
102 while maintaining downstream networks performance.

One common characteristic among these different automatic augmentation methods is that they use
fixed and manually-defined range of magnitudes for different augmentation operations, and focus
on diversifying training data by using a large set of augmentation operations (e.g., 14 transforms).
This is because the range of magnitudes for most augmentation operations is continuous and large,
and searching over this large range is practically infeasible. Unlike these works, RangeAugment
focuses on learning the magnitude range of each augmentation operation (Figs. 1 and 2). We show
in Section 4 that RangeAugment is able to learn model- and task-specific policies while delivering
competitive performance to previous automatic augmentation methods across different models.

3 RANGEAUGMENT

Existing automatic augmentation methods search for composite augmentations over a large set of
augmentation operations, but each augmentation operation has a manually-defined range of magni-
tudes. This paper introduces RangeAugment, a method for learning a range of magnitude for each
augmentation operation (Fig. 3). RangeAugment uses image similarity between the input and
augmented image to learn the range of magnitudes for each augmentation operation. In the rest of
this section, we first formulate the problem (Section 3.1) and then elaborate on RangeAugment’s
policy learning method (Section 3.2), followed by implementation details ( Section 3.3).

3.1 PROBLEM FORMULATION

Let T = {T1, · · · , TN} be a set of N differentiable augmentation operations. Each augmen-
tation operation T ∈ T is parameterized by a scalar magnitude parameter m ∈ R such that
T (·;m) : X → X is defined on the image space X . Let πϕ be an augmentation policy that de-
fines a distribution over sub-policies S ∼ πϕ in RangeAugment such that S = {Ti(·;mi)}Ni=1. A
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Figure 3: RangeAugment: End-to-end learning of augmentation policy with downstream model.

sub-policy S applies augmentation operations to an input image x with uniform probability as

S(x) := x(N), x(i) = Ti(x
(i−1);mi), x(0) = x. (1)

For any given model and task, the goal of automatic augmentation is to find the augmentation pol-
icy πϕ that diversifies training data, and helps improve model’s generalization ability the most.
RangeAugment learns the range of magnitudes for each augmentation operation in T . Formally,
the policy parameters in RangeAugment are ϕ = {(ai, bi)}Ni=1 and the magnitude parameter
mi ∼ U(ai, bi) for the i-th augmentation operation in a sub-policy S = {Ti(·;mi)}Ni=1 is uni-
formly sampled, where ai ∈ R and bi ∈ R are learned parameters.

3.2 POLICY LEARNING

Diverse training data can be produced by using wider range of magnitudes, (ai, bi), for each aug-
mentation operation. However, directly searching for the optimal values of (ai, bi) for each model
and dataset is challenging because of its continuous nature. To address this, RangeAugment intro-
duces an auxiliary loss which, in conjunction with the task-specific empirical loss, enables learning
model-specific range of magnitudes for each augmentation operation in an end-to-end fashion.

Let d : X×X → R be a differentiable image similarity function that measures the similarity between
the input and the augmented image. To control the range of magnitudes for each augmentation
operation, RangeAugment minimizes the distance between the expected value of d(x,S(x)) and
a target image similarity value ∆ ∈ R using an augmentation loss function Lra (e.g., smooth L1 loss
or L2 loss). An example of d and ∆ are PSNR and target PSNR value respectively. When target
PSNR value is small, the difference between the input and augmented image obtained after applying
an augmentation operation (say brightness) will be large. In other words, for a smaller target PSNR
value, the range of magnitudes for brightness operation will be wider and vice-versa.

For a given value of ∆ and parameterized model fθ with parameters θ, the overall loss function to
learn model- and task-specific augmentation policy is a weighted sum of the augmentation loss Lra
and the task-specific empirical loss Ltask:

θ∗, ϕ∗ = argmin
θ,ϕ

E(x,y)∼Dtrain

[
ES∼πϕ

[Ltask(fθ(S(x)),y) + λLra(x,S(x);∆)]
]
, (2)

where λ and Dtrain represent weight term and training set respectively. Note that, in Eq. (2),
re-parameterization trick on uniform distributions (Kingma & Welling, 2013) is applied to back-
propagate through the expectation over S ∼ πϕ.

The ∆ in Eq. (2) allows RangeAugment to control diversity of augmented samples. Therefore, the
augmentation policy learning in RangeAugment reduces to searching a single scalar parameter,
∆, that maximizes downstream model’s validation performance. RangeAugment finds the optimal
value of ∆ using a linear search.

3.3 IMPLEMENTATION DETAILS

We use PSNR as the image similarity function d in our experiments because it is (1) a standard image
quality metric, (2) differentiable, and (3) fast to compute. Across different downstream networks,
we observe a 0.5%-3% training overhead over the empirical risk minimization baseline.

4



Under review as a conference paper at ICLR 2023

m = 0.1 m = 1.0 m = 10.0

Figure 4: Example outputs of brightness op-
eration, T (x;m) = mx, at different values
of magnitude parameter m. At extremes (i.e.,
m = 0.1 or 10), the bus is hardly identifiable.

To find an optimal value of ∆ in Eq. (2), we
study two approaches: (1) fixed target PSNR (∆ ∈
{5, 10, 20, 30}) and (2) target PSNR with a curricu-
lum, where the value of ∆ is annealed from 40 to
δ and δ ∈ {5, 10, 20, 30}. The learned ranges of
magnitudes, (a, b), can scale beyond the image space
(e.g., negative values) and result in training instabil-
ity. To prevent this, we clip the range of magnitudes
if they are beyond extreme bounds of augmentation
operations. We choose these extreme bounds such
that objects in an image are hardly identifiable at or
beyond the extreme points of the bounds (see Fig. 4).
Also, because the focus of RangeAugment is to learn the range of magnitudes for each augmen-
tation operation, we apply all augmentation operations in T with uniform probability.

To demonstrate the importance of magnitude ranges, we study RangeAugment with three basic
operations (brightness, contrast, and additive Gaussian noise), and show empirically in Section 4
that RangeAugment can achieve competitive performance to existing methods with 4 to 5 times
fewer augmentation operations.

4 EVALUATING RANGEAUGMENT ON IMAGE CLASSIFICATION

RangeAugment can learn model-specific augmentation policies. To evaluate this, we first study
the importance of single and composite augmentation operations using ResNet-50 on the ImageNet
dataset (Section 4.2). We then study model-level generalization of RangeAugment (Section 4.3).

4.1 EXPERIMENTAL SET-UP

Dataset For image classification, we use the ImageNet dataset that has 1.28M training and 50k
validation images spanning across 1000 categories. We use top-1 accuracy to measure performance.

Baseline models To evaluate the effectiveness of RangeAugment, we study different CNN- and
transformer-based models. We group these models into two categories based on their complexity:
(1) mobile: MobileNetv1 (Howard et al., 2017), MobileNetv2 (Sandler et al., 2018), MobileNetv3
(Howard et al., 2019), and MobileViT (Mehta & Rastegari, 2021) and (2) non-mobile: ResNet-
50 (He et al., 2016), ResNet-101, EfficientNet (Tan & Le, 2019), and SwinTransformer (Liu et al.,
2021b). We implement RangeAugment using the CVNets library (Mehta et al., 2022) and use their
baseline model implementations and training recipes. Additional experiments, including the effect
of individual and joint learning on RangeAugment’s performance, along with training details are
given in Appendices C and F.1 respectively.

Baseline augmentation methods For an apples to apples comparison, each baseline model is
trained with three different random seeds and the following baseline augmentation strategies: (1)
Baseline - standard Inception-style pre-processing (random resized cropping and random horizontal
flipping) (Szegedy et al., 2015), (2) RandAugment - Baseline pre-processing followed by Ran-
dAugment policy of Cubuk et al. (2020), (3) AutoAugment - Baseline pre-processing followed by
AutoAugment policy of Cubuk et al. (2019), and (4) RangeAugment - Baseline pre-processing
following by the proposed augmentation policy in Section 3.1

4.2 AUGMENTATION OPERATION CHARACTERIZATION USING RANGEAUGMENT

The quantity and diversity of training data can be increased by (1) increasing the magnitude range
of each augmentation operation and (2) composite augmentation operations. Fig. 5 characterizes the

1As noted in Section 2, most previous works have focused on reducing the search time of AutoAugment
while achieving similar performance (e.g., ResNet-50 on ImageNet: 77.6% (AutoAugment), 77.6% (RandAug-
ment), and 77.6% (Fast AutoAugment)). Also, many state-of-the-art models (e.g., EfficientNet and SwinTrans-
former) have used either RandAugment or AutoAugment for data regularization. Therefore, to demonstrate the
effectiveness of RangeAugment, we choose AutoAugment and RandAugment as baseline methods.
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Figure 5: The performance of ResNet-50 on the ImageNet dataset when data diversity is increased
by learning the range of magnitudes for single (N = 1) and composite augmentation operations
(N > 1) using RangeAugment. For curriculum learning, target PSNR value is annealed from 40
to the value mentioned in the legend.
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(c) N = 3 (with curriculum)

Figure 6: Learned range of magnitudes for different augmentation operations using
RangeAugment. In (a) and (b), the target image similarity value (PSNR; ∆) is fixed while in
(c), ∆ is annealed using cosine curriculum. The magnitude range in y-axis is in log scale.

effect of these variables on ResNet-50’s performance on the ImageNet dataset. We can make the
following observations:

1. Fig. 6a shows that single augmentation operation (N = 1) with wider magnitude ranges (e.g., the
range of magnitudes at target PSNR of 5 are wider than the ones at target PSNR of 15) helped in
improving ResNet-50’s validation accuracy and reducing training accuracy, thereby improving
its generalization capability (Fig. 5a). Particularly, increasing the magnitude range of contrast (or
brightness) operation increased ResNet-50’s validation performance over baseline by 1.0% (or
0.7%) while decreasing the training performance by 2% (or 3%). This is likely because wider
magnitude ranges of an augmentation operation increases diversity of training data. On the other
hand, the additive Gaussian noise operation with a wider magnitude range slightly dropped the
validation accuracy, but still reduces the training accuracy. In other words, it improves ResNet-
50’s generalization ability.

2. Composite augmentation operations (N > 1; Figs. 5b and 5c) reduces the training accuracy
significantly while having a validation performance similar to single augmentation operation.
This is expected as composite operations further increases training data diversity.
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3. Fig. 6c shows that progressively learning to increase the diversity of augmented samples (i.e.,
narrower to wider magnitude ranges2) using a cosine curriculum further improves the perfor-
mance (Fig. 5c). A plausible explanation is that the learned magnitude ranges of different aug-
mentation operations using RangeAugment with fixed target PSNR may get stuck near poor
solutions. Because the range of magnitudes are wider for these solutions (e.g., the range of mag-
nitudes at target PSNR value of 5 in Fig. 6a & Fig. 6b), RangeAugment samples more diverse
data from the beginning of the training, making training difficult. Gradually annealing target
PSNR from high to low (e.g., 40 to 5 in Fig. 6c) allows RangeAugment to increase the data
diversity slowly, thereby helping model to learn better representations. Importantly, it also al-
lows RangeAugment to identify useful ranges for each augmentation operation. For example,
the range of magnitudes for the additive Gaussian noise operation is relatively narrower when
optimizing with curriculum (e.g., annealing target PSNR from 40 to 5; Fig. 6c) compared to op-
timizing with a fixed target PSNR of 5 (Fig. 6b). This indicates that noise operation with narrow
magnitude range is favorable for training ResNet-50 on the ImageNet classification task. This
concurs with results in Figs. 5a and 5b where we observed that noise operation does not improve
ResNet-50’s validation performance. Moreover, our findings with progressively increasing data
diversity are consistent with previous works (e.g., Bengio et al., 2009; Tan & Le, 2021) that
shows scheduling training samples from easy to hard helps improve model’s performance.
Interestingly, ResNet-50 with RangeAugment (N = 3) achieves comparable validation accu-
racy and a smaller generalization gap as compared to state-of-the-art methods which use more
augmentation operations (N > 14) to increase data diversity during training. We conjecture
that the difference in the generalization gap between existing methods and RangeAugment is
probably caused by insufficient policy search in existing methods as they use manually-defined
magnitude ranges for each augmentation operation during search.

Observation 1: Composite augmentation operations with wider magnitude ranges is important for
improving downstream model’s generalization ability.

In the rest of experiments, we will use all three augmentations (N = 3) with cosine curriculum.

4.3 MODEL-LEVEL GENERALIZATION OF RANGEAUGMENT

Fig. 5 shows RangeAugment is effective for ResNet-50. Natural questions that arise are:

1. Can RangeAugment be applied to other vision models? RangeAugment’s seamless integra-
tion ability with little training overhead (0.5% to 3%) over the baseline model allows us to study
the generalization capability of different vision models easily. Fig. 7 shows the performance
of different models with RangeAugment. When data regularization is increased for mobile
models by decreasing the target PSNR value from 40 to 5, the training as well as validation ac-
curacy of different mobile models is decreased significantly as compared to the baseline. This is
likely because of the limited capacity of these models. On the other hand, data regularization im-
proved the performance of non-mobile models significantly. Consistent with our observations for
ResNet-50 in Fig. 5, we found that non-mobile models trained with RangeAugment are able
to achieve competitive performance to state-of-the-art automatic augmentation methods, such as
AutoAugment (N = 16), but with fewer augmentations (N = 3).

2. Does RangeAugment learn architecture-specific augmentations? Fig. 2a shows the learned
magnitude ranges for different augmentation operations for a transformer- (SwinTransformer)
and a CNN-based (EfficientNet) model. Though both of these architectures use the same cur-
riculum in RangeAugment (i.e., target PSNR is annealed from 40 to 5), they learn different
magnitude ranges for each augmentation operation. This shows that RangeAugment is capable
of learning model-specific magnitude ranges for each augmentation operation.

3. Does RangeAugment increase variance on model performance? Because of the stochas-
tic training and presence of randomness during different stages of training including
RangeAugment, there may be some variability in model’s performance. To measure the vari-
ability in model’s performance, we run each experiment with three different random seeds. For
different models, the standard deviation of model’s validation accuracy is between 0.01 and 0.2,

2Wider magnitude ranges produce diverse augmented samples and vice versa (Appendix D).
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Figure 7: Performance of different models on the ImageNet dataset using RangeAugment. Here,
the target PSNR value is annealed from 40 to the value mentioned in the legend.

and is in accordance with previous works on the ImageNet dataset (Radosavovic et al., 2020;
Wightman et al., 2021). These results show that training models with RangeAugment leads to
a stable model performance.

Observation 2: Non-mobile models benefit from data regularization. On the ImageNet dataset, we
recommend to train non-mobile models using a curriculum that anneals ∆ from high (e.g., target
PSNR=40) to low (e.g., target PSNR=5 or 10) similarity between input and augmented images.

5 TASK-LEVEL GENERALIZATION OF RANGEAUGMENT

Section 4 shows the effectiveness of RangeAugment on different downstream models on the Im-
ageNet dataset. However, one might ask whether RangeAugment can be used for tasks other
than image classification. To evaluate this, we study RangeAugment with two tasks, semantic
segmentation (Section 5.1) and contrastive image-language pre-training (Section 5.2).

5.1 SEMANTIC SEGMENTATION ON THE ADE20K DATASET

Dataset and baseline models We use ADE20k dataset (Zhou et al., 2017) that has 20k training
and 2k validation images across 150 semantic classes. We report the segmentation performance in
terms of mean intersection over union (mIoU) on the validation set.

We integrate mobile and non-mobile classification models with the Deeplabv3 segmentation head
(Chen et al., 2018a) and finetune each model for 50 epochs. See Appendix F.1 for training details.
We do not study SwinTransformer for semantic segmentation because it is not compatible with
Deeplabv3’s segmentation head design as it adjusts the atrous rate of convolutions to control the
output stride of backbone network.

Baseline augmentation methods For semantic segmentation, experts have hand-crafted augmen-
tation policies, and these manual policies are used to train state-of-the-art semantic segmentation
methods (e.g., Chen et al., 2017; Zhao et al., 2017; Xie et al., 2021; Liu et al., 2021b). For an ap-
ples to apples comparison, we train each segmentation model with three different random seeds and
compare with the following baselines: (1) Baseline - standard pre-processing (randomly resize short
image dimension, random horizontal flip, and random crop), (2) Manual - baseline pre-processing
with hand-crafted augmentation operations (color jittering using photometric distortion, random ro-
tation, and random Gaussian noise), and (3) RangeAugment - baseline pre-processing with learn-
able range of magnitudes for brightness, contrast, and noise (i.e., N = 3). For reference, we include
DeepLabv3 results (if available) from a popular segmentation library (MMSegmentation, 2020).

Results Table 1 shows that RangeAugment improves the performance of different models in
comparison to other augmentation methods. Interestingly, for semantic segmentation, the magnitude
range of additive Gaussian noise is wider compared to image classification (Fig. 2b). This concurs
with previous manual augmentation methods which also found that Gaussian noise is important for
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Backbone
Augmentation method MMSegmentation

Baseline Manual RangeAugment (Ours)
(40, 5) (40, 10) (40, 20) (40, 30) (reference)

MobileNetv1 38.77 ± 0.20 38.12 ± 0.16 36.46 ± 0.19 38.20 ± 0.26 38.96 ± 0.34 39.37 ± 0.19 –
MobileNetv2 37.74 ± 0.29 37.10 ± 0.27 35.58 ± 0.30 37.43 ± 0.73 38.06 ± 0.17 38.23 ± 0.36 34.08
MobileNetv3 37.58 ± 0.67 36.68 ± 0.34 34.80 ± 0.16 36.54 ± 0.12 37.77 ± 0.24 38.10 ± 0.13 –
MobileViT 37.69 ± 0.50 37.19 ± 0.47 35.04 ± 0.83 36.70 ± 0.19 37.94 ± 0.45 38.41 ± 0.22 –

ResNet-50 42.27 ± 0.54 43.29 ± 0.27 41.56 ± 0.21 42.95 ± 0.22 43.31 ± 0.16 43.00 ± 0.28 42.42
ResNet-101 43.29 ± 0.17 44.04 ± 0.52 43.22 ± 0.52 43.89 ± 0.43 44.77 ± 0.28 43.95 ± 0.31 44.08
EfficientNet 40.86 ± 0.55 41.15 ± 0.65 39.42 ± 0.29 40.39 ± 0.48 41.43 ± 0.36 41.08 ± 0.36 –

Table 1: Semantic segmentation on the ADE20k dataset.

Model Dataset Test resolution Top-1 Accuracy (%)

CLIP of Radford et al. (2021) Proprietary 224× 224 68.3%†

OpenCLIP of Ilharco et al. (2021) LAION-400M 224× 224 67.1%

CLIP w/ RangeAugment (Ours) LAION-400M

160× 160 65.8%
192× 192 67.4%
224× 224 68.3%
256× 256 68.8%
320× 320 69.1%

Table 2: Zero-shot performance on ImageNet. Each entry of CLIP with RangeAugment is the
same model, but evaluated at different resolutions. † Results of CLIP with the same language
prompts as OpenCLIP.

semantic segmentation (Zhao et al., 2017; Asiedu et al., 2022). Overall, these results suggest that
RangeAugment learns task-specific augmentation policies.

5.2 CONTRASTIVE IMAGE-LANGUAGE PRE-TRAINING ON THE LAION-400M DATASET

Dataset and baseline models We crawl the LAION-400M dataset (Schuhmann et al., 2021) and
download about 304M image-language pairs, which are then used for pre-training. We report zero-
shot top-1 accuracy on ImageNet’s validation set and use the same language prompts as OpenCLIP
(Ilharco et al., 2021).

We train CLIP (Radford et al., 2021) with RangeAugment from scratch (Appendix F.1). The
model uses ViT-B/16 (Dosovitskiy et al., 2020) as its image encoder and transformer as its text
encoder, and minimizes contrastive loss during training. We use multi-scale sampler of Mehta et al.
(2022) to make CLIP more robust to input scale changes. Because less data regularization is required
at a scale of 100M+ samples (Radford et al., 2021; Zhai et al., 2022), we anneal the target PSNR in
RangeAugment from 40 to 20. We compare the performance with CLIP and OpenCLIP.

Results Table 2 compares the zero-shot performance of different models. For the same training
dataset and zero-shot language prompts, RangeAugment delivers 1.2% better performance than
OpenCLIP at an inference resolution of 224× 224.

Observation 3: RangeAugment learns model- and task-specific augmentation policies.

6 CONCLUSION

This paper introduces an end-to-end method for learning model- and task-specific automatic aug-
mentation policies with a constant search time. We demonstrated that RangeAugment delivers
competitive performance to existing methods across different downstream models on the image
classification task. This is despite the fact that RangeAugment uses only three basic augmenta-
tion operations as opposed to a large set of complex augmentation operations in existing methods.
These results underline the importance of magnitude range of augmentation operations in automatic
augmentation. We also showed that RangeAugment can be seamlessly integrated with other tasks
and achieve similar or better performance than existing methods. In the future, we plan to apply
RangeAugment to learn the range of magnitudes for complex augmentation operations (e.g., geo-
metric transformations) using different image similarity functions (e.g., SSIM). In addition to learn-
ing the range of magnitudes of each augmentation operation, we plan to apply RangeAugment to
learn how to compose different augmentation operations with a constant search time.
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A COMPARISON WITH EXISTING METHODS

ImageNet classification State-of-the-art methods incorporate random erasing (Zhong et al.,
2020), mixup transforms (Zhang et al., 2017; Yun et al., 2019) in addition to automatic augmen-
tation methods (e.g., RandAugment and AutoAugment). Table 3 shows that models trained with
RangeAugment are able to achieve similar or better performance than existing automatic aug-
mentation methods with 4− 5× more augmentation operations.

Model Source Data augmentation methods Top-1

Auto aug. method Random erase Mixup accuracy

Mobile models

MobileNetV1-1.0
Orig. (Howard et al., 2017) ✗ ✗ ✗ 70.6%
Our repro. RandAugment (N = 14) ✗ ✗ 73.7%
Our repro. AutoAugment (N = 16) ✗ ✗ 73.1%
Ours RangeAugment (N = 3) ✗ ✗ 73.8%

MobileNetV2-1.0
Orig. (Sandler et al., 2018) ✗ ✗ ✗ 72.0%
Our repro. RandAugment (N = 14) ✗ ✗ 72.7%
Our repro. AutoAugment (N = 16) ✗ ✗ 72.1%
Ours RangeAugment (N = 3) ✗ ✗ 73.0%

MobileNetV3-Large
Orig. (Howard et al., 2019) ✗ ✗ ✗ 74.6%
Our repro. RandAugment (N = 14) ✗ ✗ 75.2%
Our repro. AutoAugment (N = 16) ✗ ✗ 74.9%
Ours RangeAugment (N = 3) ✗ ✗ 75.1%

MobileViT-Small
Orig. (Mehta & Rastegari, 2021) ✗ ✗ ✗ 78.4%
Our repro. RandAugment (N = 14) ✗ ✗ 77.4%
Our repro. AutoAugment (N = 16) ✗ ✗ 77.4%
Ours RangeAugment (N = 3) ✗ ✗ 78.2%

Non-mobile models

ResNet-50
Orig. (He et al., 2016) ✗ ✗ ✗ 76.2%
TIMM (Wightman et al., 2021) RandAugment (N = 14) ✗ ✓ 80.4%
Ours RangeAugment (N = 3) ✗ ✓ 80.2%

ResNet-101
Orig. (He et al., 2016) ✗ ✗ ✗ 77.4%
TIMM (Wightman et al., 2021) RandAugment (N = 14) ✗ ✓ 81.5%
Ours RangeAugment (N = 3) ✗ ✓ 82.0%

EfficientNet-B0
Orig. (Tan & Le, 2019) AutoAugment (N = 16) ✓ ✓ 77.1%
TIMM (Wightman et al., 2021) RandAugment (N = 14) ✗ ✓ 77.0%
Ours RangeAugment (N = 3) ✗ ✓ 77.3%

EfficientNet-B1
Orig. (Tan & Le, 2019) AutoAugment (N = 16) ✓ ✓ 79.1%
TIMM (Wightman et al., 2021) RandAugment (N = 14) ✗ ✓ 79.2%
Ours RangeAugment (N = 3) ✗ ✓ 79.5%

EfficientNet-B2
Orig. (Tan & Le, 2019) AutoAugment (N = 16) ✓ ✓ 80.1%
TIMM (Wightman et al., 2021) RandAugment (N = 14) ✗ ✓ 80.4%
Ours RangeAugment (N = 3) ✗ ✓ 81.3%

EfficientNet-B3
Orig. (Tan & Le, 2019) AutoAugment (N = 16) ✓ ✓ 81.6%
TIMM (Wightman et al., 2021) RandAugment (N = 14) ✗ ✓ 81.4%
Ours RangeAugment (N = 3) ✗ ✓ 81.9%

Swin-Tiny Orig. (Liu et al., 2021b) RandAugment (N = 14) ✓ ✓ 81.3%
Ours RangeAugment (N = 3) ✗ ✓ 81.1%

Swin-Small Orig. (Liu et al., 2021b) RandAugment (N = 14) ✓ ✓ 83.0%
Ours RangeAugment (N = 3) ✗ ✓ 82.8%

Table 3: Accuracy comparison of different models trained with different methods on the Ima-
geNet validation set. RangeAugment with simple and 4− 5× fewer transforms is able to deliver
similar or better performance to state-of-the-art methods with complex automatic augmentation poli-
cies. For mobile models, we decay ∆ from 40 to 30 while for non-mobile models, we decay ∆ from
40 to 5 (as per observations in Section 4.1). Methods whose performance is within the standard de-
viation range of ±0.2 of the best model are highlighted in bold. Note that RandAugment in TIMM
is a custom implementation that delivers better performance than the RandAugment of Cubuk et al.
(2020), and is widely used for training recent classification networks on the ImageNet, including
SwinTransformers. Here, N denotes the number of augmentation operations.

Semantic segmentation on ADE20k Table 4 compares the performance of different segmentation
architectures for the same backbone. Compared to highly-tuned augmentation recipes of MMSeg
(MMSegmentation, 2020) and CSAIL (Zhou et al., 2017) segmentation libraries, RangeAugment
is able to achieve better performance consistently across different backbones.

Furthermore, Table 5 shows that DeepLabv3 with ResNet-101 backbone, when trained with
RangeAugment, delivers the same performance as UPerNet (Xiao et al., 2018) with SwinTrans-
former (Liu et al., 2021b) and ConvNext (Liu et al., 2022) backbones while being 3× FLOP efficient.
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Backbone Seg. architecture Source mIOU

MobileNetv2

DeepLabv3 (Chen et al., 2017) MMSeg 34.0
PSPNet (Zhao et al., 2017) CSAIL 35.8
DeepLabv3 (Chen et al., 2017) Our repro. 37.9
DeepLabv3 (Chen et al., 2017) w/ RangeAugment (Ours) 38.6

ResNet-50

UPerNet CSAIL 40.4
UPerNet (Xiao et al., 2018) MMSeg 42.1
PSPNet (Zhao et al., 2017) MMSeg 42.5
DeepLabv3 (Chen et al., 2017) MMSeg 42.7
DeepLabv3 (Chen et al., 2017) Our repro. 43.0
DeepLabv3 (Chen et al., 2017) w/ RangeAugment (Ours) 44.0

ResNet-101

UPerNet (Xiao et al., 2018) CSAIL 42.0
PSPNet (Zhao et al., 2017) MMSeg 42.5
UPerNet (Xiao et al., 2018) MMSeg 43.8
DeepLabv3 (Chen et al., 2017) MMSeg 45.0
DeepLabv3 (Chen et al., 2017) Our repro. 45.2
DeepLabv3 (Chen et al., 2017) w/ RangeAugment (Ours) 46.5

Table 4: Comparison between different state-of-the-art segmentation method for the same back-
bone. Models trained with RangeAugment is able to deliver better performance than highly-tuned
augmentation pipelines in popular segmentation libraries (CSAIL (Zhou et al., 2017) and MMSeg
(MMSegmentation, 2020)).

Seg. model # Params. FLOPs mIOU

Swin w/ UPerNet (Liu et al., 2021b) 60 M 945 G 45.8
ConvNext w/ UPerNet (Liu et al., 2022) 60 M 939 M 46.7
ResNet-101 w/ DeepLabv3 & RangeAugment (Ours) 77 M 303 G 46.5

Table 5: DeepLabv3 with RangeAugment delivers similar performance to UPerNet while be-
ing 3× more FLOP efficient. RangeAugment improved the segmentation accuracy of ResNet-
101 with DeepLabv3 significantly; delivering competitive performance to state-of-the-art segmen-
tation model, UPerNet, with recent backbones (SwinTransformer- and ConvNext).

Overall, these segmentation results underline the effectiveness of RangeAugment.

B TRANSFERRING AUGMENTATION POLICY

Searching model- and task-specific policy may be expensive. Therefore, a common practice is to
transfer the policy found on one dataset to another. This section evaluates if the augmentation
curriculum of RangeAugment can be used across different tasks and datasets. We compare the
accuracy of RangeAugment with publicly reproduced models as there performance is often better
than those reported in the paper. For experiments in this section, we follow our observations in
Section 5 and anneal the PSNR value ∆ from 40 to 20.

Object detection on COCO Following previous works, we use ResNet-50 as a backbone and
train Mask R-CNN on the COCO dataset (Lin et al., 2014). Table 6 shows that RangeAugment
improves the detection accuracy of Mask-RCNN significantly.

Model Optim. updates BBOX mAP

Detectron2 270k 41.0
MMDetection 270k 40.9
RangeAugment (Ours) 70k 41.0
RangeAugment (Ours) 230k 42.6

Table 6: Enhanced object detection results of Mask R-CNN with RangeAugment on COCO.
Following a standard convention for reporting object detection performance of Mask R-CNN, we
also report the number of optimization updates (or schedule). We use similar hyper-parameters,
including learning rate, as Detectron2 (Wu et al., 2019) and MMDetection (Chen et al., 2019).

Semantic segmentation on PASCAL VOC 2012 Following previous segmentation methods, we
use ResNet-101 as a backbone and train DeepLabv3 on the PASCAL VOC 2012 dataset (Evering-
ham et al., 2012). Table 7 shows that DeepLabv3 with RangeAugment attains the best perfor-
mance.
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Seg. model mIoU

ANN (Zhu et al., 2019) 76.7
APCNet (He et al., 2019) 78.5
CCNet (Huang et al., 2019) 77.9
DeepLabv3 (Chen et al., 2017) 77.9
DeepLabv3+ (Chen et al., 2018b) 78.6
PSPNet (Zhao et al., 2017) 78.5
UPerNet (Xiao et al., 2018) 77.4

DeepLabv3 w/ RangeAugment (Ours) 84.0

Table 7: Comparison with state-of-the-art semantic segmentation methods with ResNet-101
backbone on the PASCAL VOC validation set. We do not use multi-scale evaluation. The results
of different segmentation models are from MMSegmentation (2020). Also, our training recipes,
including batch size and learning rate, are similar to MMSegmentation (2020).

C ABLATIONS ON THE IMAGENET DATASET

In this section, we study different components of RangeAugment using ResNet-50. For learning
augmentation policy, we anneal the target image similarity (PSNR) value ∆ from 40 to 5.

Effect of different curriculum We trained RangeAugment with two curriculum’s: (1) linear
and (2) cosine. We found that cosine curriculum delivers 0.1-0.2% better performance than linear.
Therefore, we use cosine curriculum.

Effect of λ The weight term, λ, in Eq. (2) allows RangeAugment to balance the trade-off be-
tween augmentation loss Lra and empirical loss Ltask. To study its impact, we vary the value of λ
from 0.0 to 0.15. Empirical results in Fig. 8 shows that the good range for λ is between 0.0006 and
0.002. In our experiments, we use λ = 0.0015.
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Figure 8: Effect of weight term, λ, on ResNet-50’s performance on the ImageNet dataset.

Effect of joint vs. independent optimization An expected behavior for learning model-specific
augmentation policy using RangeAugment is that task-specific loss Ltask in Eq. 2 should con-
tribute towards policy learning. To validate it, ResNet-50 is trained independently3 as well as jointly
on the ImageNet dataset. We found that the top-1 accuracy of ResNet-50 dropped by about 1% when
it is trained independently. This is likely because independent training allowed RangeAugment
to produce augmented images with more additive Gaussian noise (Fig. 9), resulting in performance
drop. This concurs with our observations in Section 4, especially Figs. 5 and 6, where we found
that sampling augmented images from wider magnitude range for additive Gaussian noise operation
dropped ResNet-50’s performance on the ImageNet dataset. A plausible explanation is that PSNR
is more sensitive to noise operation (Hore & Ziou, 2010), allowing RangeAugment to learn wider
magnitude ranges for noise operation when trained independently as compared to joint training.
Overall, these results suggest that joint training helps in learning model-specific policy.

3The augmented image is detached before feeding to the model.
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Figure 9: The effect of learning magnitude ranges by jointly optimizing the loss terms Lra and Ltask
(top row) compared to only optimizing Lra (bottom row). Training ResNet-50 with the joint loss
leads to smaller magnitudes of noise, and improves validation accuracy by approximately 1% on the
ImageNet dataset.

D VISUALIZATION OF AUGMENTED SAMPLES

Fig. 10 visualizes augmented samples produced by RangeAugment at different stages of training
ResNet-50 with curriculum. We can see that the range of magnitudes (Fig. 10a) and diversity of
augmented samples (Fig. 10b) increases as training progresses.
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Figure 10: Visualization of augmented samples. (a) Learned magnitude ranges of different aug-
mentations when ResNet-50 is trained jointly with RangeAugment using a cosine curriculum. (b)
Four image samples visualized at different epoch intervals. For illustration purposes, we visualize
four random augmented samples produced by RangeAugment for each image.

E LEARNED MAGNITUDE RANGES FOR CLIP WITH RANGEAUGMENT

Fig. 11 shows the learned magnitude ranges of different augmentation operations for training the
CLIP model with RangeAugment. Unlike image classification (Section 4) and semantic segmen-
tation (Section 5.1) results, the CLIP model uses little augmentation. This is expected because the
LAION dataset is orders of magnitude larger than classification and segmentation datasets.
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Figure 11: Learned magnitude ranges of different augmentations when the CLIP model is trained
with RangeAugment using a cosine curriculum. Target PSNR ∆ is annealed from 40 to 20.

F TRAINING DETAILS

F.1 TRAINING HYPER-PARAMETERS

Table 8 summarizes training recipe used for training different models across different tasks.

Non-mobile models Mobile models

ResNet-50 ResNet-101 EfficientNet SwinTransformer MobileViT MobileNetv1 MobileNetv2 MobileNetv3

Epochs 600 600 400 300 300 300 300 300
Batch size 1024 1024 2048 1024 1024 512 1024 2048
Data sampler MSc-VBS MSc-VBS MSc-VBS SSc-FBS MSc-VBS MSc-VBS MSc-VBS MSc-VBS

Max. LR 0.4 0.4 0.8 10−3 2× 10−3 0.4 0.4 0.8
Min. LR 2× 10−4 2× 10−4 4× 10−4 10−5 2× 10−4 2× 10−4 2× 10−4 4× 10−4

Warmup init. LR 0.05 0.05 0.1 10−6 2× 10−4 0.05 0.05 0.1
Warmup epochs 5 5 5 20 16 3 6 5
LR Annealing cosine cosine cosine cosine cosine cosine cosine cosine
Weight decay 4× 10−5 4× 10−5 4× 10−5 5× 10−2 0.01 4× 10−5 4× 10−5 4× 10−5

Optimizer SGD SGD SGD AdamW AdamW SGD SGD SGD
Momentum 0.9 0.9 0.9 ✗ ✗ 0.9 0.9 0.9

Label smoothing ϵ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Stoch. Depth ✗ ✗ ✗ 0.3 ✗ ✗ ✗ ✗
Grad. clipping ✗ ✗ ✗ 5.0 ✗ ✗ ✗ ✗

# parameters 25.6 M 44.5 M 12.3 M 49.6 M 5.6 M 4.2 M 3.5 M 5.4 M
# FLOPs 4.0 G 7.7 G 1.9 G 8.8 G 2.0 G 579 M 314 M 220 M

(a) Image classification on ImageNet
Hyperparameter Value
Epochs 50
Batch size 16
Data sampler SSc-FBS
Warm-up iterations 0
Warm-up init. LR NA
Max. LR 0.02
Min. LR 10−4

LR Annealing cosine
Weight decay 10−4

Optimizer SGD w/ momentum (0.9)

(b) Semantic segmentation on ADE20k

Hyperparameter Value
Epochs 32
Batch size 32,768
Data sampler MSc-VBS
Warm-up iterations 2000
Warm-up init. LR 10−6

Max. LR 5−4

Min. LR 10−6

LR Annealing cosine
Weight decay 0.2
Optimizer AdamW

(c) CLIP (150M parameters) training on LAION-400M

Table 8: Hyper-parameters used for training models on different tasks. Here, SSc-FBS and MSc-
VBS refers to single-scale fixed batch size and multi-scale variable batch size data samplers respec-
tively (Mehta et al., 2022).

F.2 BOUNDS FOR AUGMENTATION OPERATIONS

Table 9 shows the clipping bounds that RangeAugment uses to prevent training instability.

Operation Clipping bounds in RangeAugment Magnitude range in AutoAugment

Min. Max. (reference)

Brightness 0.1 10.0 [0.1 - 1.9]
Contrast 0.1 10.0 [0.1 - 1.9]
Noise (std. dev) 0 1.0 –

Table 9: Clipping bounds used in RangeAugment for preventing training instability. The range of
magnitudes for augmentation operations in AutoAugment is also given as a reference.
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