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Abstract

As LLMs are deployed in knowledge-intensive settings (e.g., surgery, astronomy,
therapy), users expect not just answers, but also meaningful explanations for
those answers. In these settings, users are often domain experts (e.g., doctors,
astrophysicists, psychologists) who require confidence that a model’s explanation
reflects expert-level reasoning. However, current evaluation schemes primarily
emphasize plausibility or internal faithfulness of the explanation, often neglecting
whether the content of the explanation truly aligns with expert intuition. We
formalize expert alignment as a criterion for evaluating explanations with T-FIX, a
benchmark spanning seven knowledge-intensive domains. T-FIX includes datasets
and novel alignment metrics developed in collaboration with domain experts, so an
LLM'’s explanations can be scored directly against expert judgmentm

1 Introduction

LLMs are increasingly used for domain-specific tasks, which require substantial background knowl-
edge from specialized fields. It is foreseeable that LLM-powered systems will soon assist in high-
stakes environments such as operating rooms, astronomical observatories, and therapeutic settings.
For LLMs to be trustworthy and reliable in these critical applications, users require not only correct
answers but also good explanations [1] 2].

What constitutes a “good explanation”? This largely depends on the explanation’s target audience
[3,4]. As LLMs are increasingly adopted for specialized tasks like surgical assistance or supernova
analysis, the primary users are often domain experts, such as doctors and astrophysicists. Conse-
quently, a “good explanation” in these specialized contexts must offer insights that are valuable and
interpretable to these domain experts.

Existing evaluations of LLM explanations predominantly focus on two dimensions: (1) plausibility,
ensuring that the answer logically follows from the provided explanation; and (2) faithfulness,
verifying that the answer accurately reflects the LLM’s actual reasoning process. [SH7]. While
these dimensions are necessary, they are not sufficient for knowledge-intensive applications. Domain
experts often need highly specific information regarding how a prediction was derived [8]], particularly
whether the LLM considered aspects of the input that they themselves deem critical.

To address this, we propose a third dimension for evaluating LLM-generated explanations: Expert
Alignment. This dimension measures the extent to which an LLM-generated explanation for a given
input and prediction focuses on criteria that a domain expert would deem important when making the
same prediction.
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Figure 1: Most current evaluations for LLM explanations consider two dimensions: the overall
plausibility and the faithfulness to the reasoning process. However, a crucial third dimension, expert
alignment, asks: Does the LLM reason like a domain expert would? For example, an LLM correctly
predicts sepsis risk with a plausible, faithful explanation, but because the explanation emphasizes
features that clinicians rarely use for sepsis diagnosis, the expert alignment score is low.

An LLM can generate a correct answer with a plausible and faithful explanation, yet still rely on
features that domain experts consider irrelevant or low-priority, as shown in Figure[T} Such misaligned
reasoning can undermine trust in the model, even when the output is technically correct.

While alignment with domain expert reasoning has been explored in machine learning, for example,
by identifying meaningful feature groups [9]], such approaches are primarily suited for interpreting
traditional, non-generative neural networks. Modern LLMs typically generate free-form text explana-
tions that are not directly based on these explicit feature groups. To our knowledge, no benchmark
currently exists to evaluate the expert alignment of such free-form textual explanations.

To fill this gap, we introduce the T-FIX benchmark: a collection of datasets spanning seven distinct
domains, accompanied by an evaluation framework. Designed in collaboration with domain experts,
T-FIX assesses the expert alignment of LLM-generated explanations within each domain. Our
contributions are as follows:

* We introduce expert alignment as a desired attribute of LLM-generated explanations and create
T-FIX, the first benchmark designed to evaluate this.

» We release a pipeline to evaluate how well any LLM “thinks like an expert,” designed to be easily
extendable to new domains.

* We demonstrate that current LLMs often struggle to generate explanations that align with expert
intuition, highlighting this as a significant area for their future improvement.

* We find that LLMs generally perform better when they reason over multiple expert criteria, yet
modern high-performing LLMs do not appear to rely on expert reasoning.

2 Expert Alignment Criteria

The development of the T-FIX benchmark was a highly collaborative and interdisciplinary process.
For each of our seven domains (see Figure ), our first step was to identify the expert criteria most
relevant to making a prediction, detailed in the left of Figure[2]

When answering knowledge-intensive questions like “Will this patient develop sepsis in the next
12 hours?” or “What kind of supernova produced these wavelengths?”, doctors and astrophysicists
rely on domain-specific heuristics, prioritizing certain features over others based on training and
experience. For instance, in sepsis classification, an experienced clinician would typically emphasize
features like advanced age and hypotension, while assigning lower importance to signals like glucose
levels or patient demeanor, which are less directly indicative of sepsis risk.

Thus, an LLM that makes the correct prediction by attending to age and hypotension is more expert-
aligned than one that arrives at the same answer by focusing on glucose and demeanor. We define
the subset of features that experts prioritize most highly when performing a task as the task’s expert
alignment criteria.
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Figure 2: An overview of the T-FIX construction process. For each dataset, we first establish expert
alignment criteria — features deemed important by domain experts for a specific task — through
collaboration with these experts and LLM-based deep research tools. These criteria form the basis of
the T-FIX evaluation pipeline, which processes an LLM-generated explanation to output an expert
alignment score. A high score suggests the explanation reflects reasoning aligned with domain
experts (i.e., the LLM “thinks like an expert”), while a low score indicates the explanation may rely
on aspects that experts would deem irrelevant.
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develop sepsis?
<PATIENT EHR DATA>
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Figure 3: Our T-FIX pipeline. To evaluate an LLM-generated explanation, we first decompose it into
atomic claims. Next, we filter out irrelevant claims, such as unsupported or speculative statements.
Each remaining claim is then scored against the domain-specific expert alignment criteria on a 0—1
scale: a score of 1 indicates perfect overlap with at least one criterion, while 0 indicates no overlap.
Filtered-out claims are automatically assigned a score of 0. We compute the final expert-alignment
score for the explanation by averaging across all claim scores.

Step 1: Surveying the Field. To seed our initial list of expert criteria, we prompt OpenAl’s 03
model to perform a comprehensive literature review of the relevant field. Each prompt includes a task
description, example input-output pairs from the dataset, and instructions to generate a list of criteria
considered important for performing the task — accompanied by reputable citations.

We begin with this deep research approach to avoid over-reliance on any single expert’s perspective.
Our goal is to synthesize insights from a broad array of books, journals, and academic publications to
produce as comprehensive a list as possible.

Step 2: Iteration with Domain Experts. To validate and improve the output from Step 1, we present
the preliminary criteria list to a domain expert (see Figure [ for details on each expert per domain).
We ask the expert to (1) remove any incorrect or irrelevant criteria, (2) add any important ones that
were missed, and (3) ensure that the list reflects a consensus that their peers would agree with. The
expert then refines the list until it accurately captures the field’s knowledge.

An example criterion for sepsis classification is as follows: Advanced age (over 65 years)
markedly increases susceptibility to rapid sepsis progression and higher mortality
after infection.
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Figure 4: Overview of datasets and domains in T-FIX. We evaluate LLM expert alignment across
seven diverse domains, spanning cosmology, psychology, and medicine. For each dataset, we
highlight the motivating task, input—output format, representative example, and the expert responsible
for validating alignment criteria. The final row summarizes the expert alignment criteria used for
scoring explanations in each domain. The column colors reflect dataset modality: blue indicates
vision, yellow indicates language, and pink indicates time-series.

All Deep Research prompt templates and final expert alignment criteria lists for all domains are
available in our GitHub repository.

3 T-FIX Pipeline

LLM-generated explanations contain a mix of reasoning steps — some aligned with expert judgment,
and others based on irrelevant information. To systematically evaluate such complex explanations, we
first break them down into atomic claims, or standalone “features” that can be individually assessed
for expert alignment. By scoring each feature separately and then aggregating these scores, we can
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compute an overall expert alignment score for the full explanation. See Figure [3|for an example of
this multi-step process.

Our T-FIX pipeline for evaluating expert alignment consists of three main components:
1. Claim Extraction: Decomposing a free-form explanation into standalone, atomic claims.

2. Relevancy Filtering: Removing claims that are unsupported, speculative, or otherwise irrelevant
to the model’s prediction.

3. Alignment Scoring: Measuring the degree of overlap between each remaining claim and domain
expert criteria on a 0—1 scale.

We build our pipeline using GPT-40, as it is both fast and cost-effective.

3.1 Stage 1: Atomic Claim Extraction

Given a free-form text explanation accompanying an LLM’s prediction, our first goal is to identify and
extract the distinct reasoning steps, i.e. “features”, used by the LLM. We achieve this by decomposing
the explanation into atomic claims.

An atomic claim is defined as a self-contained, indivisible statement that conveys a single verifiable
fact, and can be fully understood without reference to the surrounding context.

To extract atomic claims, we adapt prompting techniques from the claim decomposition literature
[LO,[11] and prompt GPT-40 to transform a free-form explanation into a list of fully decontextualized
atomic claims. We treat each claim as representing a single “feature” in the LLM’s explanation.

3.2 Stage 2: Relevancy Filtering

Not all extracted claims contribute meaningfully to expert reasoning. Some may be unsupported (i.e.,
references to content not present in the input), speculative (i.e., unfounded hypotheses), or otherwise
irrelevant (e.g., repeating the model’s final prediction or citing unrelated information).

Given that domain experts heavily prefer succinct, informative explanations, we prompt GPT-40 to
remove such noisy claims by evaluating each atomic claim based on the original input. A claim is
retained if it satisfies the following two criteria: (1) Clearly grounded in and supported by the input
(i.e., not unfounded or speculative); (2) Directly contributes to explaining why the model made its
prediction. On average, 72% of the claims generated in Stage 1 pass this relevancy filter and are
carried forward for alignment scoring.

3.3 Stage 3: Alignment Scoring

In the final stage of our pipeline, we evaluate each retained atomic claim by comparing it to the
domain-specific expert alignment criteria (see Section [J). This step quantifies how closely the
reasoning in the LLM’s explanation reflects expert judgment.

Given an atomic claim and a list of expert criteria, we prompt GPT-40 to measure the claim’s expert
alignment in two steps:

1. Identify the most aligned expert criterion. The model selects the criterion whose focus and
intent best match the core idea of the atomic claim. The model may also indicate that no criteria
align with the claim.

2. Assign an alignment score (0-1). The model scores how well the claim aligns with the chosen
criterion: 1 for complete overlap, and O for no alignment. Intermediate scores reflect partial
alignment, such as when the claim touches on a relevant concept but lacks specificity. See Table/[I]
for details on intermediate scores.

For example, consider the expert criterion for sepsis classification: Advanced age (over 65 years).
The claim ¢‘The patient is at risk as they are 72 years old’’ would receive an alignment
score of 1.0, as it directly and fully supports the criterion. In contrast, the claim ¢“The patient is
at risk as they are 37’ may receive a score of 0.2: while it discusses patient age, the specific
value does not align with the expert threshold for elevated risk. In contrast, the claim ¢‘The patient
is NOT at risk as they are 37’ would also receive a score of 1.0. Examples of claims with high
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Table 1: Interpretation of alignment score ranges used in scoring atomic claims against expert criteria.

Score Meaning

(0, 0.25] The claim references an unrelated or misleading feature, or misinterprets the criterion’s meaning

(0.25,0.5]  The claim loosely refers to the correct concept but lacks key details, thresholds, or uses vague
language

(0.5,0.75] The claim references a relevant feature but only partially reflects the criterion (e.g., omits
thresholds, is overly general, contains noise)

(0.75,1] The claim is specific, directly relevant, and fully captures the meaning and intent of the expert
criterion

Table 2: Pipeline validation: Accuracy averaged across all T-FIX domains and annotator agreement —
Cohen’s « for each stage in our pipeline. Domain-specific statistics are provided in Table[A2]

Pipeline Stage N Accuracy Cohen’s
Claim Extraction 35 0.943 0.717
Relevancy Filtering 295 0.871 0.402
Expert Alignment 211 0.923 0.405

and low alignment for each domain, along with rationale for why those scores were assigned, are
provided in Table

3.4 Final Aggregation

We assign an alignment score of O to the claims that were filtered out or did not align with any criteria.
This ensures LLM-generated explanations are penalized for unsupported or speculative statements,
irrelevant information, and misaligned reasoning. We then average the alignment scores across all
claims to produce a final expert alignment score for the explanation. The prompts for all three stages
can be found in Appendix [D|and in our Github repository.

4 Pipeline Validation

Given our pipeline relies on multiple curated GPT-4o0 prompts, we want to ensure that the extracted
and filtered claims are accurate, and that the final alignment scores match domain expert intuition. To
validate the outputs at each stage, we conduct an annotation study for 35 examples (5 per domain).
This includes 295 extracted claims and 211 aligned claims. We recruit a total of six annotators, with
two annotators per exampl

Validating atomic claim extraction. Annotators receive the original explanation and its extracted
atomic claims from Stage 1. They classify each extraction as: (A) Perfect — all claims correctly
extracted, (B) Partially accurate — 1-3 claims missing or incorrect, or (C) Incorrect — 3+ claims
missing or incorrect. We convert these labels to accuracy scores: A = 1.0, B = 0.5, C = 0.0.

Validating relevancy filtering. Annotators review the explanation, extracted claims, and filtered
claims from Stage 2. For each claim, they assess whether: (A) It was correctly kept or filtered, (B) It
was incorrectly kept or filtered, or (C) It is ambiguous or borderline. These are scored as: A = 1.0,
B=0.0,C=0.5.

Validating expert alignment scoring. Annotators are shown the alignment criteria and the filtered,
scored claims from Stage 2. We define direction as the alignment score category (high, neutral, low),
and magnitude as the exact score (e.g., 0.1 vs. 0.3 for low alignment).

Annotators evaluate each score as: (A) Fully accurate — an expert would agree with the score; correct
direction and magnitude, (B) Partially accurate — correct direction, but magnitude off by <0.2, or
(C) Incorrect — wrong direction and magnitude off by >0.2. These are scored as: A = 1.0, B = 0.5,
C =0.0.

2Annotators are PhD students who study machine learning at an American university and are previously
familiar with evaluating LLM outputs for given criteria.
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Table 3: Evaluating top LLMs on T-FIX. We report the average expert alignment score across all
examples in the dataset. Corresponding accuracies are in Table[AT|and baseline prompting strategies
are described in Section

Cosmology Psychology Medicine
Baseline Mass Maps Supernova Politeness Emotion Cholec Cardiac Sepsis
GPT-4o0
Vanilla 0.421 0.877 0.629 0.597 0.295 0.533 0.545
CoT 0.390 0.859 0.625 0.639 0.338 0.564  0.532
Socratic 0.412 0.859 0.596 0.612 0.369 0.569 0.539
SubQ Decomp 0.354 0.881 0.596 0.531 0.358 0.519 0.563
ol
Vanilla 0.616 0.778 0.615 0.609 0.443 0.501 0.515
CoT 0.595 0.766 0.620 0.658 0.473 0.481 0.552
Socratic 0.503 0.782 0.555 0.467 0.456 0.449 0.578
SubQ Decomp 0.491 0.805 0.536 0.545 0.409 0.473 0.576
Gemini-2.0-Flash
Vanilla 0.515 0.811 0.618 0.600 0.407 0.529 0.566
CoT 0.507 0.815 0.569 0.566 0.376 0.553 0.578
Socratic 0.281 0.815 0.559 0.554 0.394 0.475 0.581
SubQ Decomp 0.405 0.789 0.566 0.520 0.393 0.494  0.584
Claude-3.5-Sonnet
Vanilla 0.710 0.761 0.634 0.642 0.264 0.565 0.611
CoT 0.688 0.776 0.639 0.622 0.286 0.538 0.584
Socratic 0.698 0.764 0.590 0.580 0.292 0.549 0.592
SubQ Decomp 0.628 0.754 0.631 0.617 0.271 0.555 0.584

Results & agreement. Table[2]reports average accuracy at each stage across all seven T-FIX domains,
along with Cohen’s « for inter-annotator agreement. The « scores fall in the moderate-to-substantial
agreement range, suggesting consistent annotator judgments and supporting the validity of our T-FIX
pipeline. Domain-specific metrics are shown in Table [A2]

5 Included Datasets

T-FIX contains seven open-source datasets, spanning the fields of cosmology, psychology, and
medicine. To assess LLM explanations across multiple modalities, we include text, vision, and
time-series datasets. We select these seven datasets due to the availability of domain experts willing
to work with us for these tasks.

As running T-FIX requires querying LLMs, many of which follow a pay-as-you-go API structure,
we keep the total size of our benchmark to 700 (100 per dataset) in order for T-FIX to be accessible
to as many researchers as possible.

We select a subset of 100 examples from the test set of each open-source dataset in T-FIX, and
balance this sampling across classes when possible. We provide an overview of the included open-
source datasets in Figure [ See Appendix [E]for additional details about the motivation, task, and
prompting procedure for each dataset.

6 Experiments

After building a pipeline to evaluate the expert alignment of an LLM explanation, we evaluate a suite
of today’s top LLMs on T-FIX to determine how expert-aligned these models are on domain-specific
tasks. We use the following prompting techniques as baselines to generate explanations for each
dataset in T-FIX.

1. Vanilla: The LLM is prompted to generate an explanation along with its answer, without any
additional guidance or reasoning structure.
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Figure 5: Shannon Entropy of expert alignment criteria for GPT-40. For each prompting baseline, we
show coverage of each domain’s explanations across all expert criteria — a high value indicates the
LLM considers many criteria across examples, while a low value indicates the LLM focuses on the
same criteria repeatedly.

2. Chain-of-Thought (CoT): The LLM is prompted to reason step-by-step through intermediate
steps before answering, supporting more accurate responses on complex, multi-step tasks.

3. Socratic Prompting: The LLM is instructed to question its own reasoning, encouraging reflection
and the surfacing of uncertainties or assumptions.

4. Subquestion Decomposition: The LLM is guided to break down a complex task into simpler
subquestions, answer them individually, and then synthesize a final response.

Domain-specific prompts are detailed in Appendix [E| with templates for the above prompting
strategies in Figure Results for GPT-40, GPT-01, Gemini-2.0-Flash, and Claude-3.5-Sonnet’| are
shown in Table[3]

7 Analysis

In this section, we analyze how LLMs distribute reasoning across expert criteria and whether higher
task accuracy indicates better expert alignment.

Expert Alignment vs Accuracy

Mass Maps 0.058 0.09 0.072 0.078 I
Supernova 0.0026 0.00053 0.027 0.03 -0 g?
Politeness -0.006 -0.0063 -0.041 -0.0038 -0.2 g
Emotion 0.13 0.04 0.046 0.095 01 g
Cholecystectomy 0.32 0.22 0.27 0.37 3
Cardiac -0.12 -0.11 -0.11 -0.076 - 0.0 %‘
Sepsis -0.00074 0.0015 -0.017 -0.021 I_ —01 i
Chain-of- Socratic SubQ Vanilla
Thought Prompting Decomp

Figure 6: Expert-Alignment vs. Accuracy Correlation Heatmap, averaged across GPT-40, o1, Gemini-
2.0-Flash, and Claude-3.5-Sonnet. Red indicates positive correlation, blue is negative, gray is no
correlation.

7.1 Coverage of Expert Alignment Criteria

Section [3] describes our pipeline for measuring the proportion of expert-aligned claims in LLM
explanations. We now examine a complementary question: How many expert alignment criteria does
an LLM consider across its explanations?

3We only select LLMs with vision support and context windows long enough to accommodate our time-series
datasets. All models are accessed in May 2025.
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A single gold-standard explanation rarely requires reasoning over all expert criteria; most high-quality
explanations reference only 3-5. Thus, assessing coverage at the question level is not meaningful.
Instead, we analyze coverage at the dataset level — whether different prompting strategies lead to a
broader utilization of expert criteria across all questions within a domain.

Figure [5] presents the Shannon entropy of GPT-40’s covered expert criteria in each domain. We
observe a correlation between entropy and performance: domains where GPT-40 underperforms (e.g.,
Cholecystectomy, Supernova) show lower entropy, indicating limited criteria coverage. In contrast,
well-performing domains (e.g., Politeness, Sepsis) exhibit more uniform coverage, equally taking
into account all expert criteria.

This suggests that LLLMs that reason uniformly over expert alignment criteria perform better —
a promising insight for future work in prompting or training models to incorporate a broader range of
expert reasoning.

7.2 Expert-Alignment vs. Accuracy

T-FIX focuses on evaluating explanation quality, but we are also interested in understanding the
relationship between expert alignment and prediction accuracy. Specifically, we ask: Does higher
answer accuracy correspond to stronger expert alignment?

Figure [6] shows the Pearson correlation of expert alignment (see Table [A3) with accuracy (see
Table[Al) for each domain, averaged across models. In some domains with higher performance, like
Cholecystectomy and Emotion, we do observe higher expert alignment as well. However, the overall
correlation is weak across domains.

The heatmap suggests today’s high-performing LLMs do not appear to rely on expert reasoning.
Future research is needed to explore whether aligning model reasoning with expert criteria — via
training objectives or prompting — can improve downstream performance.

8 Related Work

Evaluating LLM Explanations. Common explanation methods for LLMs include feature attribution
(e.g., LIME, SHAP [12,13]), counterfactuals, and self-generated explanations [[14,[15]]. Some models
are also trained to produce human-readable justifications [[16]. To assess explanation quality and
utility, recent work highlights criteria such as faithfulness (alignment with the model’s reasoning)
and plausibility (how convincing it is to humans) [[17}15}6]. Human studies show mixed outcomes:
explanations sometimes aid understanding [[18 [19]], but can also offer little value or cause over-trust
[20]. A promising alternative is to use LLMs as automatic judges of explanation quality [21 22],
providing a scalable substitute for expensive human evaluation; we adopt this approach in T-FIX.

Domain & Expert Alignment Concept-based models constrain parts of the network to predict high-
level, human-defined concepts, enabling incorporation of domain knowledge into final predictions
[23]. Extensions of concept bottlenecks and related methods aim to align latent representations with
semantically meaningful features [24-26], potentially grouped for expert interpretability [9]. In NLP,
integrating human knowledge has included collecting human-written explanation datasets to train
models [16] and using learned explanations to guide predictions [27]. To our knowledge, no prior
work explicitly evaluates text explanations for expert alignment like T-FIX.

9 Conclusion

We introduce T-FIX, the first benchmark designed to evaluate LLM explanations for expert alignment
across seven knowledge-intensive domains. Our analysis reveals that today’s models struggle to
generate explanations that experts would rely on, highlighting a critical area for improvement.

Future work may include exploring instruction-tuning LLMs to generate explanations with strong
expert alignment, extending T-FIX to additional domains, and Human-Computer Interaction studies
exploring how expert-aligned explanations affect real-world decision-making by practitioners.
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A Limitations

As with any LLM-based system, the quality of the outputs is dependent on the input prompt. T-FIX is
no exception — though we spend a significant amount of time analyzing outputs and prompt iterating,
we do a finite amount of prompt iteration. There is a chance our benchmark could be marginally
improved with additional prompt iteration. We hope the issue of prompt dependency diminishes with
future models that are more robust and less susceptible to tiny prompt ablations.

While our evaluation pipeline currently uses GPT-4o for scoring, it is model-agnostic by design, and
we encourage future work to apply or adapt the pipeline with other LLMs to improve robustness and
reduce evaluator-model entanglement.

For pipeline validation, we conduct a user study where we annotate 35 examples. Though the
annotation results on this subset suggest our pipeline is accurate, this work could have benefited from
a larger and more robust annotation study. Future work should also involve domain experts vetting
the pipeline in addition to recruited annotators.

In addition, we only have one expert to validate the expert alignment criteria for each domain. Though
our usage of a deep research LLM minimizes over-reliance on a single domain expert, multiple
experts would have been better to create the expert criteria. We were constrained by domain experts
eager and available to collaborate with us.

Our experiments focus on a set of four models and four prompting strategies, and including additional
models and strategies could provide a more comprehensive set of baseline results. Though many
other high-performing LLMs and prompting techniques exist as of May 2025, we are conscious of
budget and the environmental impact of running multiple experiments using T-FIX.

B Ethical Considerations

Using LLMs in the domains we describe in T-FIX, especially those relating to medicine, poses a
unique set of risks and challenges. We do not advocate that LLMs should replace domain experts in
these tasks; rather, T-FIX should serve as a step towards experts being able to use LLMs in a reliable
and trustworthy way.

Additionally, LLMs are constantly changing, especially those that are company-owned and not
open-source. This poses potential issues relating to the reproducibility of our baseline results as time
progresses and advances are made.

Lastly, nearly all LLMs contain biases — some harmful — that may propagate up in a system built off
of these models. All users of T-FIX must be conscious of this risk.

C Extending T-FIX to a New Domain

Though T-FIX covers a wide range of knowledge-intensive settings, it can easily be extended to
additional domains.

A key contribution of the T-FIX benchmark is the framework: we create a pipeline to score any
free-form text explanation for expert alignment given a set of expert criteria. Additionally, we iterate
extensively on all our prompt templates to ensure all T-FIX users need to do is input their task-specific
details and perform no additional prompt engineering for good results.

To add a new domain to T-FIX, we advise you to follow these steps:

1. Generate criteria: Use the deep research prompt template shown in Figure[A4]to generate
a list of expert alignment criteria for your domain. Optionally, have a domain expert vet the
generated criteria.

2. Modify prompts: Modify the prompt templates outlined in Figure Figure and
Figure [A3| with your task description, few-shot examples, and generated expert criteria.

3. Run T-FIX: Plug in your prompts for each stage of the pipeline and run T-FIX on your
dataset!
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507
508

Cosmology

Psychology

Medicine

Baseline Mass Maps Supernova Politeness Emotion Cholecystectomy Cardiac Sepsis
GPT-4o

Vanilla 0.039* 0.103 0.916 0.259 0.075* 0.567  0.657
Chain-of-Thought 0.044* 0.093 0.824* 0.286 0.103* 0.460  0.714
Socratic Prompting 0.044" 0.127 0.829* 0.277 0.115* 0462  0.657
SubQ Decomposition 0.049* 0.118 0.837* 0.304 0.115* 0.485  0.657
ol

Vanilla 0.044* 0.170 0.784* 0.304 0.194* 0.656  0.752
Chain-of-Thought 0.045™ 0.146 0.818™ 0.339 0.177* 0.685  0.750
Socratic Prompting 0.042* 0.155 0.793* 0.348 0.155* 0.646  0.755
SubQ Decomposition 0.044* 0.147 0.818™ 0.321 0.138* 0.695  0.780
Gemini-2.0-Flash

Vanilla 0.045" 0.145 0.831* 0.223 0.253* 0.577  0.654
Chain-of-Thought 0.042* 0.118 0.837* 0.232 0.255* 0.558 0.663
Socratic Prompting 0.041* 0.118 0.809* 0.232 0.159* 0.592  0.661
SubQ Decomposition 0.053" 0.109 0.773* 0.241 0.249* 0.562  0.688
Claude-3.5-Sonnet

Vanilla 0.053* 0.127 0.962* 0.241 0.146* 0.485 0.709
Chain-of-Thought 0.050* 0.118 1.012* 0.268 0.150* 0.538  0.735
Socratic Prompting 0.044" 0.118 0.998™ 0.232 0.145* 0.508 0.748
SubQ Decomposition 0.050* 0.136 0.990* 0.259 0.149* 0.485 0.741

Table Al: Evaluating top LLMs on T-FIX. We report the average performance of the LLM across all
examples in the dataset. We report accuracy for classification tasks, and MSE for regression tasks — a
(*) indicates that the score reported is MSE. Baseline implementations are described in Section [6]

We encourage you to contact the authors of this work if you need additional assistance setting up

your custom domain.

You will be given a paragraph that explains <task description>. Your task is to <«
decompose this explanation into individual claims that are:

Atomic: Each claim should express only one clear idea or judgment.

Standalone: Each claim should be self-contained and understandable without needing <«
to refer back to the paragraph.

Faithful: The claims must preserve the original meaning, nuance, and tone.

Format your output as a list of claims separated by new lines. Do not include any <+«
additional text or explanations.

Here is an example of how to format your output:
INPUT: [example]
OUTPUT: [example]

Now decompose the following paragraph into atomic, standalone claims:
INPUT:

Figure Al: Prompt Template for Stage 1: Atomic Claim Extraction

s0o D Prompts for T-FIX Pipeline

sto We show the prompts for Stage 1, 2, and 3 in Figure [AT] Figure[A2] and Figure [AJ] respectively.

511

These prompts show a high-level template that was used by all domains. In practice, authors iterated
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513

514

515

516
517
518

520
521

N N Claim Relevance Expert

Domain generated aligned Decomposition Filtering  Alignment Cohen’s
claims  claims Accuracy  Accuracy  Accuracy

Cosmology

Mass Maps 66 48 0.900 0.826 0.979 0.4059
Supernova 74 62 0.950 0.892 0.903 0.4946
Psychology

Politeness 72 58 0.950 0.931 0914 0.6604
Emotion 70 44 1.000 0.929 0.943 0.6233
Medicine

Cholecystectomy 134 92 1.000 0.851 0.902 0.4396
Cardiac 66 52 0.900 0.841 0.962 0.4845
Sepsis 108 66 0.900 0.852 0.894 0.3500

Table A2: Pipeline validation by domain. We report the mean accuracy for each stage of the pipeline
and annotator agreement — Cohen’s .

You will be given [description of input, output, and claim]

A claim is relevant if and only if:

(1) It is supported by the content of the input (i.e., it does not hallucinate or <«
speculate beyond what is said).

(2) It helps explain why <task description>.

Return your answer as:

Relevance: <Yes/No>

Reasoning: <A brief explanation of your judgment, pointing to specific support or +«
lack thereof >

Here are some examples:

[Example 1]
[Example 2]
[Example 3]

Now, determine whether the following claim is relevant to the given XXX:
Input:
Output:
Claim:

Figure A2: Prompt Template for Stage 2: Relevancy Filtering

multiple times on each domain’s prompts, experimenting with the instruction wording and few-shot
examples that yielded the best possible results.

E T-FIX Datasets: Additional Details

E.1 Mass Maps

Task. The goal is to predict two cosmological parameters—2,,, and ocg—from a weak lensing map
(or known as mass maps) [28]]. These parameters characterize the early state of the universe. Weak
lensing maps can be obtained through precise measurement of galaxies [29] [30], but it is not yet
known how to characterize €2,, and og. There are machine learning models trained to predict €2,
and og [31H33], as well as interpretable models that attempt to find relations between interpretable
features voids and clusters and Q,,, and og [34]. We use data from CosmoGrid [33]], where inputs are
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524
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529
530

You will be given <task description + expert categories description>

Your task is as follows:

1. Determine which expert category is most aligned with the claim.

2. Rate how strongly the category aligns with the claim on a scale of 0-1 (0 being «
lowest, 1 being highest. Use increments of 0.1).

Return your answer as:

Category: <category>

Category Alignment Rating: <rating>

Reasoning: <A brief explanation of why you selected the chosen category and why you«
judged the alignment rating as you did.>

Expert categories:
[list of categories and their descriptions]

Here are some examples:
[Example 1]
[Example 2]
[Example 3]

Now, determine the category and alignment rating for the following claim:
Claim:

Figure A3: Prompt Template for Stage 3: Alignment Scoring

You are an expert in <domain name>. You have a deep understanding of this subject.
Your task is to behave like an <domain expert> and identify which criteria are <«
important to consider for the following task:

Task description:
Input:
Output:

Here are some examples:
[Example 1]
[Example 2]
[Example 3]

Study these examples and fully understand the task. Now, research the field of <«
domain name> in order to determine a list of criteria that an expert <domain <«
expert> would utilize if they were performing the above task.

Your output should be a list of expert criteria, each 1 sentence long, and «
citations from reputable academic sources to support each criteria. Feel free <«
to have as many expert criteria as you deem necessary. The criteria should be <«
clear, succinct and non-overlapping with each other. [Include any domain-«
specific information about the expert criterial

Figure A4: Deep Research Prompt Template.

single-channel, noiseless weak lensing maps of size (66, 66), and outputs are two continuous values
corresponding to €2,,, and og.

Data Selection & Preprocessing. We randomly sampled 100 examples from the MassMaps test
set. To ensure compatibility with LLMs like GPT-40, which operate on a 32x32 patch size, we
upsampled each image by a factor of 11 to preserve spatial detail and avoid patch-level compression.
Instead of raw pixel values, we applied a colormap based on expert-defined intensity thresholds used
to identify key cosmological features such as voids and clusters. Pixel intensities were scaled by
standard deviations to emphasize meaningful variation. We found that larger, visually enhanced
inputs reduced refusal rates from LLMs and encouraged more consistent responses.

18



531
532
533
534
535

536

537
538
539
540
541
542
543

544

545
546
547
548

549
550
551
552
553

555
556
557
558

VANILLA
In addition to the answer, please provide 3-5 sentences explaining why you gave the<«
answer you did.

CHAIN -OF - THOUGHT
To come up with the correct answer, think step-by-step. You should walk through «
each step in your reasoning process and explain how you arrived at the answer.<«
Describe your step-by-step reasoning in 3-5 sentences. This paragraph will <«
serve as the explanation for your answer.

SOCRATIC

To come up with the correct answer, have a conversation with yourself. Pinpoint <«
what you need to know, ask critical questions, and constantly challenge your <«
understanding of the field. Describe this question-and-answer journey in 3-5 <
sentences. This paragraph will serve as the explanation for your answer.

SUBQUESTION DECOMPOSITION

To come up with the correct answer, determine all of the subquestions you must <
answer . Start with the easiest subquestion, answer it, and then use that +«
subquestion and answer to tackle the next subquestion. Describe your «
subquestion decomposition and answers in 3-5 sentences. This paragraph will <«
serve as the explanation for your answer.

Figure AS: Baseline Prompting Strategies.

Explanation Prompt. Figure[A6]shows the prompt used to generate LLM explanations for predict-
ing ,, and og. We replace [BASELINE_PROMPT] with one of four prompting strategies shown in
Figure[A3] The prompt includes a description of how pixel values are mapped to colors, as well as
the valid ranges for €,,, and og. Without this range, models tend to default to common values (e.g.,
0.3 for €2,,,, 0.8 for og), reducing response variability.

Expert Criteria. The expert-validated criteria for expert alignment calculation are listed below:

. Lensing Peak (Cluster) Abundance: High peak count — higher og; clumpy halos more common.
. Void Size and Frequency: Large, frequent voids — lower €2,,,; less overall matter.

. Filament Thickness and Sharpness: Thick, sharp filaments track higher og; thin indicates lower.
. Fine-Scale Clumpiness: Fine graininess signifies high os; smooth map implies lower.

. Connectivity of the Cosmic Web: Interconnected web suggests higher 2., ; isolated clumps imply
lower.

whn A W N =

6. Density Contrast Extremes: Strong density contrast denotes high os; muted contrast lower.

E.2 Supernova

Task. The objective is to classify astrophysical objects using time-series data comprising obser-
vation times (Modified Julian Dates), wavelengths (filters), flux values, and corresponding flux
uncertainties. We use data from the PLAsTiCC challenge [36], where the model must predict one of
14 astrophysical classes.

Data Selection & Preprocessing. We sampled 100 examples across the Supernova train, validation,
and test sets, aiming for 7-8 instances per class to mitigate class imbalance. For rare classes with
only one test set instance, we included all available examples from the validation and test sets,
supplementing with training samples to meet the target count. For LLM input, we converted each raw
time series into a multivariate time-series plot: time is on the x-axis, flux on the y-axis, error bars
denote flux uncertainty, and point colors indicate different wavelengths.

Explanation Prompt. Figure[A7|shows the prompt used to generate explanations for classifying
astronomical objects. We replace [BASELINE_PROMPT] with one of four prompting strategies shown
in Figure[A3] The prompt includes a description of the input plot as a multivariate time series and
provides the full list of possible class labels to guide the model’s predictions.
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You are an expert cosmologist.
You will be provided with a simulated noisless weak lensing map,

Your task is to analyze the weak lensing map given, identify relevant cosmological <«
structures, and make predictions for Omega_m and sigma_8.
Each weak lensing map contains spatial distribution of matter density in a universe<«
The weak lensing map provided is simulated and noiseless.
Omega_m captures the average energy density of all matter in the universe (relative+
to the total energy density which includes radiation and dark energy).
sigma_8 describes the fluctuation of matter distribution.

When you analyze the weak lensing map image, note that the number is below 0 if it <«
shows up as between gray and blue, and O is gray, and between O and 2.9 is <«
between gray and red, and above 2.9 is yellow. The numbers are in standard <«
deviations of the mass map.

Omega_m’s value can be between 0.1 ~ 0.5, and sigma_8’s value can be between 0.4 ~
1.4.

Note that the weak lensing map given is a simulated weak lensing map, which can «
have Omega_m and sigma_8 values of all kinds.

[BASELINE_PROMPT]

The provided image is the weak lensing mass map for you to predict the cosmological«
parameters for.
Your response should be 2 lines, formatted as follows (without extra information):
Explanation: <explanation and reasoning, as described above, 3-5 sentences>
Prediction: Omega_m: <prediction for Omega_m, between 0.1 ~ 0.5, based on this weak<«
lensing map>, sigma_8: <prediction for sigma_8, between 0.4 ~ 1.4, based on «
this weak lensing map>

Figure A6: MassMaps Explanation Prompt

Expert Criteria. The expert-validated criteria for expert alignment calculation are listed below:

1. Contiguous non-zero flux: Contiguous non-zero flux segments confirm genuine astrophysical activity
and define the time windows from which transient features should be extracted.

2. Rise-decline rates: Characteristic rise-and-decline rates—such as the fast-rise/slow-fade morphology
of many supernovae—encode energy-release physics and serve as strong class discriminators.

3. Photometric amplitude: Peak-to-trough photometric amplitude separates high-energy explosive
events (multi-magnitude outbursts) from low-amplitude periodic or stochastic variables.

4. Event duration: Total event duration, measured from first detection to return to baseline, distinguishes
short-lived kilonovae and superluminous SNe from longer plateau or AGN variability phases.

5. Periodic light curves: Periodic light curves with stable periods and distinctive Fourier amplitude- and
phase-ratios flag pulsators and eclipsing binaries rather than one-off transients.

6. Secondary maxima: Filter-specific secondary maxima or shoulders in red/near-IR bands—prominent
in SNela—are morphological features absent in most core-collapse SNe.

7. Monotonic flux trends: Locally smooth, monotonic flux trends across one or multiple bands (plateaus,
linear decays) capture physical evolution stages and help distinguish SNII-P, SNII-L, and related
classes.

E.3 Politeness

Task. Understanding how linguistic styles, like politeness, vary across cultures is necessary for
building better communication, translation, and conversation-focused systems. [37, [38]]. Today’s
LLMs exhibit large amounts of cultural bias [39]], and understanding nuances in cultural differences
can help encourage cultural adaptation in models. We use the holistic politeness dataset from Havaldar
et al. [40], which consists of conversational utterances between editors from Wikipedia talk pages,
annotated by native speakers from four distinct cultures.

Data Selection & Preprocessing. We sample 100 examples from the data, balanced equally across
classes (rude, slightly rude, neutral, slightly polite, polite) and languages (English, Spanish, Japanese,
Chinese).
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What is the astrophysical classification of the following time series? Here are the«
possible labels you can use: RR-Lyrae (RRL), peculiar type Ia supernova (SNIa+«
-91bg), type Ia supernova (SNIa), superluminous supernova (SLSN-I), type II «
supernova (SNII), microlens-single (mu-Lens-Single), eclipsing binary (EB), M-+
dwarf, kilonova (KN), tidal disruption event (TDE), peculiar type Ia supernova+«
(SNIax), type Ibc supernova (SNIbc), Mira variable, and active galactic «
nuclei (AGN).

Each input is a multivariate time series visualized as a scatter plot image. The x-+
axis represents time, and the y-axis represents the flux measurement value. <
Each point corresponds to an observation at a specific timestamp and <«
wavelength. Different wavelengths are color-coded, and observational <«
uncertainty is shown using vertical error bars.

Even if the classification is uncertain or ambiguous, select the most likely label <«
based on the observed visual patterns and provide a brief explanation that <«
justifies your choice.

[BASELINE_PROMPT]

Your response should be 2 lines, formatted as follows:

Label: <astrophysical classification label>

Explanation: <explanation, as described above>

Here is the time series data for you to classify.

Figure A7: Supernova Explanation Prompt

What is the politeness of the following utterance on a scale of 1-57 Use the <+
following scale:

extremely rude

somewhat rude

neutral

somewhat polite

extremely polite

G W N

[BASELINE_PROMPT]
Your response should be 2 lines, formatted as follows:
Rating: <politeness rating>

Explanation: <explanation, as described above>

Utterance:

Figure A8: Politeness Explanation Prompt

Explanation Prompt. We show the prompt in Figure We replace ¢ [BASELINE_PROMPT] with
one of four prompting strategies shown in Figure[A3]

Expert Criteria. The expert-validated criteria for expert alignment calculation are listed below:

”

1. Honorifics and Formal Address: The presence of respectful or formal address forms (e.g., “sir,
“usted,”) signals politeness by expressing deference to the hearer’s status or social distance.

2. Courteous Politeness Markers: Words such as “please,” “kindly,” or their multilingual variants
soften requests and reflect courteous intent.

3. Gratitude Expressions: Use of expressions like “thank you,” “thanks,” or “I appreciate it” signals
recognition of the other’s contribution and positive face.

4. Apologies and Acknowledgment of Fault: Phrases such as “sorry” or “I apologize” express humility
and repair social breaches, marking a clear politeness strategy.

5. Indirect and Modal Requests: Requests using modal verbs (“could you,” “would you™) or softening
cues like “by the way” reduce imposition and signal respect for the hearer’s autonomy.

2 <
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6. Hedging and Tentative Language: Words like “I think,” “maybe,” or “usually” lower assertion
strength and make statements more negotiable, reflecting interpersonal sensitivity.

7. Inclusive Pronouns and Group-Oriented Phrasing: Use of “we,” *
solidarity and reduces hierarchical distance in requests or critiques.

our,” or “together” expresses

8. Greeting and Interaction Initiation: Opening with a salutation (*hi,” “hello”) creates a cooperative
tone and frames the conversation positively.
9. Compliments and Praise: Positive evaluations (“great,” “awesome,” “neat”) attend to the hearer’s

positive face and foster a friendly environment.

10. Softened Disagreement or Face-Saving Critique: When disagreeing, the use of softeners, partial
agreements, or concern for clarity preserves the hearer’s dignity.

11. Urgency or Immediacy of Language: Utterances emphasizing emergency or speed (“asap,” “imme-
diately”) can heighten perceived imposition and reduce politeness if not softened.

12. Avoidance of Profanity or Negative Emotion: The presence of strong negative words or swearing is
a key indicator of rudeness and face threat.

13. Bluntness and Direct Commands: Requests lacking modal verbs or mitigation (“Do this”) are
perceived as less polite due to their imperative structure.

14. Empathy or Emotional Support: Recognizing the hearer’s emotional context or challenges is a
politeness strategy of concern and goodwill.

15. First-Person Subjectivity Markers: Statements that begin with “I think,” “I feel,” or “In my view”
convey humility and subjectivity, reducing imposition.

16. Second Person Responsibility or Engagement: Sentences starting with “you” or directly addressing
the hearer can either signal engagement or come across as accusatory, depending on context and tone.

17. Questions as Indirect Strategies: Questions (“what do you think?” or “could you clarify?”’) reduce
imposition by inviting rather than demanding input.

18. Discourse Management with Markers: Use of discourse markers like “so,” “then,” “but” organizes
conversation flow and may help manage face needs in conflict or negotiation.

19. Ingroup Language and Informality: Use of group-identifying slang or casual expressions (“mate,”
“dude,” “bro”) may foster solidarity or seem disrespectful, depending on relational norms.

E.4 Emotion

Task. Understanding and classifying emotion is important for tasks like therapy, mental health
diagnoses, etc. [41]. Emotion is often expressed implicitly, and understanding such cues can
also aid in building LLM systems that handle implied language understanding well [42]. We use
the GoEmotions dataset from Demszky et al. [43]], consisting of Reddit comments that have been
human-annotated for one of 27 emotions (or neutral, if no emotion is present).

Data Selection & Preprocessing. We sample 100 examples from the data, balanced equally across
28 emotion classes, including neutral. We additionally ensure the comment is over 20 characters,
to remove noisy data points and ensure each comment contains enough information for the LLM to
make an accurate classification.

What is the emotion of the following text? Here are the possible labels you could <«
use: admiration, amusement, anger, annoyance, approval, caring, confusion, <«
curiosity, desire, disappointment, disapproval, disgust, embarrassment, <«
excitement, fear, gratitude, grief, joy, love, nervousness, optimism, pride, <«
realization, relief, remorse, sadness, surprise, or neutral.

[BASELINE_PROMPT]

Your response should be 2 lines, formatted as follows:
Label: <emotion label>
Explanation: <explanation, as described above>

Here is the text for you to classify. Please ensure the emotion label is in the <«
given list.
Text:

Figure A9: Emotion Explanation Prompt
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Explanation Prompt. We show the prompt in Figure We replace ¢ [BASELINE_PROMPT] with
one of four prompting strategies shown in Figure

Expert Criteria. The expert-validated criteria for expert alignment calculation are listed below:

1. Valence: Decide if the overall tone is pleasant or unpleasant; positive tones suggest joy or admiration,
negative tones suggest sadness or anger.

2. Arousal: Gauge how energized the wording is—calm phrasing implies low arousal emotions, intense
phrasing implies high arousal emotions.

3. Emotion Words & Emojis: Look for direct emotion terms or emoticons that explicitly name the
feeling.

4. Expressive Punctuation: Multiple exclamation marks, ALL-CAPS, or stretched spellings signal
higher emotional intensity.

5. Humor/Laughter Markers: Tokens like “haha,” “lol,” or laughing emojis reliably indicate amuse-
ment.

6. Confusion Phrases: Statements such as “I don’t get it” clearly mark confusion.

LEITS

7. Curiosity Questions: Genuine information-seeking phrases (“I wonder...”, “why is...?”) point to
curiosity.
8. Surprise Exclamations: Reactions of astonishment (“No way!”, “I can’t believe it!”’) denote surprise.

9. Threat/Worry Language: References to danger or fear (“I’'m scared,” “terrifying”) signal fear or
nervousness.

10. Loss or Let-Down Words: Mentions of loss or disappointment cue sadness, disappointment, or grief.

11. Other-Blame Statements: Assigning fault to someone else for a bad outcome suggests anger or
disapproval.
12. Self-Blame & Apologies: Admitting fault and saying “I’m sorry” marks remorse.

9

13. Aversion Terms: Words like “gross,” “nasty,” or “disgusting” point to disgust.
14. Praise & Compliments: Positive evaluations of someone’s actions show admiration or approval.
15. Gratitude Expressions: Phrases such as “thanks” or “much appreciated” indicate gratitude.

29 <

16. Affection & Care Words: Loving or nurturing language (“love this,” “sending hugs”) signals love or
caring.
17. Self-Credit Statements: Boasting about one’s own success (“I nailed it”) signals pride.

18. Relief Indicators: Release phrases like “phew,” “finally over,” or “what a relief” mark relief after
stress ends.

E.5 Laparoscopic Cholecystectomy Surgery.

Task. The task is to identify the safe and unsafe regions for incision. We used the open-source
subset of data from [44], which consists of surgeon-annotated images taken from video frames
from the M2CAI16 workflow challenge [45] and Cholec80 [46] datasets. This consists of 1015
surgeon-annotated images.

Data Selection & Preprocessing. We selected the first 100 items from the test set where the safe
and unsafe regions were of nontrivial area. Each item has three components: an image of dimensions
640 pixels wide by 360 pixels high, a binary mask of the safe regions of the same dimensions, and a
binary mask of the unsafe regions of the same dimensions.

To convert the task into a form easily solvable by the available APIs, our objective was to have the
LLM output a small list of numbers that identify the safe and unsafe regions. This is achieved by
using square grids of size 40 to discretize each of the safe and unsafe masks, separating them into
144 = (640/40) x (360/40) disjoint regions. One can then use an integer inclusively ranging from 0
to 143 to uniquely identify these patches. The LLM was to then output two lists with numbers from
this range: a “safe list” that denotes its prediction of the safe region, and an “unsafe list” predicting
the unsafe region.

Explanation Prompt. We show the prompt in Figure We replace [BASELINE_PROMPT] with
one of four prompting strategies shown in Figure
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Expert Criteria. The expert-validated criteria for expert alignment calculation are listed below:

1. Calot’s triangle cleared - Hepatocystic triangle must be fully cleared of fat/fibrosis so that its boundaries
are unmistakable.

2. Cystic plate exposed - The lower third of the gallbladder must be dissected off the liver to reveal the
shiny cystic plate and ensure the correct dissection plane.

3. Only two structures visible - Only the cystic duct and cystic artery should be seen entering the
gallbladder before any clipping or cutting.

4. Above the R4U line - Dissection must remain cephalad to an imaginary line from Rouviere’s sulcus to
liver segment IV to avoid the common bile duct.

5. Safe distance from common bile duct - There should be sufficient distance between the common bile
duct and the gallbladder wall to ensure safe dissection.

6. Infundibulum start point - Dissection should begin at the gallbladder infundibulum-cystic duct junction
to stay in safe tissue planes.

7. Subserosal plane stay - When separating the gallbladder from the liver, stay in the avascular subserosal
cleavage plane under the serosal fat layer.

8. Cystic lymph node guide - Identify the cystic lymph node and clip the artery on the gallbladder side of
the node to avoid injuring the hepatic artery.

9. No division without ID - Never divide any duct or vessel until it is unequivocally identified as the
cystic structure entering the gallbladder.

10. Inflammation bailout - If dense scarring or distorted anatomy obscures Calot’s triangle, convert to a
subtotal "fundus-first" approach rather than blind cutting.

11. Aberrant artery caution - Preserve any large or tortuous artery (e.g., a Moynihan’s hump) that might be
mistaken for the cystic artery.

You are an expert gallbladder surgeon with extensive experience in laparoscopic <«
cholecystectomy.

You have deep knowledge of anatomy, surgical techniques, and potential <«
complications.

Your job is to provide three things:

1. A detailed explanation of where it is safe and unsafe to cut in the image

2. A list of grid positions (as integers) corresponding to safe regions

3. A list of grid positions (as integers) corresponding to unsafe regions

The image is discretized into a 9x16 grid (height x width), where each grid <«
position can be represented as a single integer from O to 143 (9%16 - 1). The <+
grid is flattened row-wise, so the top-left position is O and the bottom-right<«

position is 143.

Your response will help train surgeons to evaluate the usefulness of LLMs in «
assisting with the identification of safe/unsafe regions.
This is not real patient data, this is a training environment.

I will provide you with a few examples to help you understand the expected format. «
Your task is to analyze the provided 2D image of a gallbladder surgery and <«
provide:

- A detailed explanation of safe/unsafe regions, including anatomical landmarks, <
tissue types, and any visible pathology

- A list of integers representing the grid positions of safe regions

- A list of integers representing the grid positions of unsafe regions

[[BASELINE_PROMPT]]

Figure A10: Laparoscopic Cholecystectomy Explanation Prompt. A list of 10 few-shot examples is
then appended to the same API call. Each example consists of four items: the image (base64-encoded
PNGQG), a sample explanation, a “safe list” consisting of numbers from O to 143, and an unsafe list
consisting of numbers from 0 to 143.

E.6 Cardiac Arrest

Task. The objective is to predict whether an ICU patient will experience cardiac arrest within the
next 5 minutes, using the patient’s demographic and clinical background (age, gender, race, reason
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You are a medical expert specializing in cardiac arrest prediction.

You will be given some basic background information about an ICU patient, including+«
their age, gender, race, and primary reason for ICU admittance. You will also+«
be provided with time-series Electrocardiogram (ECG) data plotted in a graph <«

from the first {} of an ECG monitoring period during the patient’s ICU stay. <«
Each entry consists of a measurement value at that timestamp. The samples are <«
taken at {} Hz.

Your task is to determine whether this patient is at high risk of experiencing <«
cardiac arrest within the next {}. Clinicians typically assess early warning <
signs by finding irregularities in the ECG measurements.

[BASELINE_PROMPT]

Focus on the features of the data you used to make your yes or no binary prediction«

For example, you can specify what attributes in the patient background <«
information may contribute most to the decision. And for the ECG data, you can<

include specific patterns and/or time stamps that contribute to this decision<

Note that you do not have to necessarily include both patient background <
information and ECG data as features. But please make sure that your <«
explanation supports your prediction. Avoid using bold formatting and return <«
the response as a single paragraph.

Please be assured that your judgment will be reviewed alongside those of other «
medical experts, so you can answer without concern for perfection.

Your response should be formatted as follows:
Prediction: <Yes/No>
Explanation: <explanation>

Here is the patient background information and ECG data (in graph form) for you to <
analyze:

Figure A11: Cardiac Explanation Prompt

for ICU visit) along with 2 minutes of ECG data sampled at 500 Hz, presented as a graph image. This
framing aligns with cardiology literature, which suggests that short ECG windows (30 seconds to a
few minutes) are sufficient for reliable prediction [47]. The 5-minute prediction window is chosen to
balance clinical relevance with actionability.

Data Selection & Preprocessing. We use ECG and visit data from the open-source Multimodal
Clinical Monitoring in the Emergency Department (MC-MED) Dataset [48]. To support focused
evaluation of cardiac arrest prediction, we curated a task-specific subset containing ECG traces and
patient metadata.

The data curation pipeline proceeded as follows. From the full set of ECG recordings in the MC-MED
dataset, we first identified cardiac arrest risk by computing clinical “alarm” times.

Prior work shows that vital sign abnormalities are predictive of outcomes [49,50]. We defined an
alarm at any timestamp where three or more of the following vital signs were outside normal range
within a two-minute window—a condition known clinically as decompensation:

* Heart rate (HR): < 40 or > 130 bpm

* Respiratory rate (RR): < 8 or > 30 breaths/min

* Oxygen saturation (Sp02): < 90%

* Mean arterial pressure (MAP): < 65 or > 120 mmHg

Each example was labeled *Yes’ if an alarm was present, and "No’ otherwise. For positive cases, we
sampled a random cutoff time 1-300 seconds before the alarm and extracted the preceding 2 minutes
of ECG data. For negative cases, we used the first 2 minutes of ECG data. We also added patient
metadata—age, gender, race, and ICU admission reason—using information from the MC-MED visit
records. To ensure diversity, each example came from a unique patient; for positives, we only used
the visit containing the alarm.

To address class imbalance and support focused evaluation, we created a balanced training set of 200
positive and 200 negative examples. The validation and test sets each contain 50 examples.
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Explanation Prompt. Figure shows the prompt used to generate explanations for predicting
whether an ICU patient will experience cardiac arrest within 5 minutes, based on 2 minutes of ECG
data along with age, gender, race, and ICU admission reason. We replace [BASELINE_PROMPT] with
one of four prompting strategies shown in Figure [A5] The ECG is provided as a graph image of
p-signal values sampled at 500 Hz over a 2-minute window, with labeled axes. While we considered
supplying the raw signal as text, the input token limits of current LLMs made this infeasible.

Expert Criteria. The expert-validated criteria for expert alignment calculation are listed below:

. Ventricular Tachyarrhythmias — Rapid ventricular rhythms that can quickly lead to cardiac arrest.
. Ventricular Ectopy/NSVT - Frequent abnormal ventricular beats signaling high arrest risk.
Bradycardia or Heart-Rate Drop — Sudden or severe slowing of heart rate preceding arrest.

. Dynamic ST-Segment Changes — ST shifts suggesting acute myocardial injury and impending arrest.
. Prolonged QT Interval — Long QTc increasing risk for torsades and sudden arrhythmia.

. Severe Hyperkalemia Signs — ECG changes from high potassium predicting arrest, especially among
patients on dialysis / end stage renal disease.

. Advanced Age — Older age strongly correlates with higher arrest likelihood.
. Male Sex — Males have a higher overall risk of cardiac arrest.
9. Underlying Cardiac Disease — Preexisting heart disease increases arrest susceptibility.

10. Critical Illness (Sepsis/Shock) — Severe infections or shock states elevate arrest risk through systemic
instability.

What is the sepsis risk prediction for the following time series? Here are the +«
possible labels you can use: Yes (the patient is at high risk of developing <«
sepsis within 12 hours) or No (the patient is not at high risk of developing <+
sepsis within 12 hours).

The time series consists of Electronic Health Record (EHR) data collected during <«
the first 2 hours of the patient’s emergency department (ED) admission. Each +«
entry includes a timestamp, the name of a measurement or medication, and its <«
corresponding value.

LA W~

[ BN

[BASELINE_PROMPT]
Your response should be 2 lines, formatted as follows:
Label: <prediction label>

Explanation: <explanation, as described above>

Here is the text for you to classify.

Figure A12: Sepsis Explanation Prompt

E.7 Sepsis

Task. The goal is to predict whether an emergency department (ED) patient is at high risk of
developing sepsis within 12 hours, using Electronic Health Record (EHR) data collected during the
first 2 hours of their visit. Each input is a time series of records containing a timestamp, the name of
a physiological measurement or medication, and its value.

Data Selection & Preprocessing. We used data from the publicly available MC-MED dataset [48]]
and curated a task-specific subset for sepsis prediction.

To label a patient as high risk for sepsis, we followed standard clinical definitions requiring three
conditions: (1) evidence of infection, indicated by either a blood culture being drawn or at least
two hours of antibiotic administration; (2) signs of organ dysfunction, defined by a SOFA score
>2 within 48 hours of suspected infection, based on abnormalities in respiratory, coagulation, liver,
cardiovascular, neurological, or renal function; and (3) presence of fever, with a recorded temperature
>38.0°C (100.4°F). Patients meeting all three criteria were labeled as high risk. Labels were validated
with a Sepsis clinician.
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Due to class imbalance (10% positive), we created a balanced evaluation set of 100 samples (50
positive, 50 negative) drawn from the validation and test splits.

Explanation Prompt. Figure[AT2]shows the prompt used to generate LLM explanations for sepsis
risk prediction. We substitute [BASELINE_PROMPT] with one of four prompting strategies shown
in Figure The prompt includes a description of the EHR input format: each time-series record
consists of a timestamp, a measurement or medication name, and its value.

Expert Criteria. The expert-validated criteria for expert alignment calculation are listed below:

1.

Elderly Susceptibility (Age >65 years): Advanced age (>65 years) markedly increases susceptibility
to rapid sepsis progression and higher mortality after infection.

SIRS Positivity (>2 Criteria): Presence of >2 SIRS criteria—temperature >38°C or <36°C,
heart rate >90 bpm, respiratory rate >20/min or PaCO2 <32 mmHg, or WBC >12,000/uL or
<4,000/puL—identifies systemic inflammation consistent with early sepsis.

High qSOFA Score (>2): A qSOFA score >2 (respiratory rate >22/min, systolic BP <100 mmHg,
or altered mentation) flags high risk of sepsis-related organ dysfunction and mortality.

. Elevated NEWS Score (>5 points): A National Early Warning Score (NEWS) of >5-7 derived from

deranged vitals predicts imminent clinical deterioration compatible with sepsis.

Elevated Serum Lactate (>2 mmol/L): Serum lactate >2 mmol/L within the first 2 hours signals
tissue hypoperfusion and markedly elevates sepsis mortality risk.

Elevated Shock Index (>1.0): Shock index (heart rate -+ systolic BP) >1.0—or a rise >0.3 from
baseline—denotes haemodynamic instability and a high probability of severe sepsis.
Sepsis-Associated Hypotension (SBP <90 mmHg or MAP <70 mmHg, or >40 mmHg drop):
Sepsis-associated hypotension, defined as SBP <90 mmHg, MAP <70 mmHg, or a >40 mmHg drop
from baseline, indicates progression toward septic shock.

. SOFA Score Increase (>2 points): An increase of >2 points in any SOFA component—e.g.,

PaO2/FiO2 <300, platelets <100x 10°/L, bilirubin >2 mg/dL, creatinine >2 mg/dL, or GCS
<12—confirms new organ dysfunction and high sepsis risk.

Early Antibiotic/Culture Orders (within 2 hours): Administration of broad-spectrum antibiotics or
drawing of blood cultures within the first 2 hours signifies clinician suspicion of serious infection and
should anchor sepsis risk assessment.
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Domain

Claim

Score (Category)

Reasoning

Cosmology

Mass Maps

Supernova

[Good] The prominence of red and
yellow suggests a universe with sig-
nificant matter fluctuations.

[Bad] The mix of colors, with sig-
nificant gray areas but noticeable
reds and yellows, suggests a moder-
ate Omega_m.

[Good] A prominent peak followed
by a gradual decline in flux is char-
acteristic of a type la supernova
light curve.

[Bad] The variability does not dis-
play a clear periodicity.

0.9 (Density Contrast
Extremes)

0.3 (Connectivity of the
Cosmic Web)

1.0 (Rise—decline rates)

Aligns well with the Density Con-
trast Extremes category, describing pro-
nounced contrasts between dense and
void regions, signaling high sigma_8.

Discusses both underdense and over-
dense regions, but doesn’t specifically
discuss connectivity or the degree of
fragmentation or interconnection of the
network.

Describes a classic feature of type la su-
pernovae, perfectly aligning with expert
criteria on rise-and-decline rates.

Contradicts key characteristics of peri-
odic light curves; highlights absence of
periodic behavior.

Psychology

Politeness

Emotion

[Good] The use of the phrase
“seems defective” introduces uncer-
tainty and avoids definitiveness.

[Bad] The utterance is a straight-
forward description of information
from a biology textbook.

[Good] This choice of description
is likely intended to evoke a reac-
tion of fear or caution.

[Bad] The text conveys an objective
statement.

0.1  (Periodic light
curves)

0.9 (hedging & tentative
language)

0.2 (First-Person Sub-
Jjectivity Markers)

0.9 (Threat/Worry Lan-
guage)

0.0 (Valence)

The phrase utilizes tentative language
and is a clear example of hedging to
reduce the assertive strength of a state-
ment.

Weakly aligns as it describes objective
reporting without the personal tone cen-
tral to first-person subjectivity.

The claim centers around evoking fear
or caution, which directly maps to this
category.

The claim highlights an absence of emo-
tional content, which does not align with
the Valence category or any other expert
emotion categories.

Medicine

Cholecys-
tectomy

Cardiac

Sepsis

[Good] The fat and fibrous tissue
overlying Calot’s triangle has been
fully excised, exposing only two
tubular structures.

[Bad] The cystic plate is not visible
due to dense adhesions, making the
gallbladder-liver plane indistinct.
[Good] The irregularity in the ECG
could indicate a dangerous arrhyth-
mia, such as ventricular tachycardia
or fibrillation.

[Bad] A skin lesion of the scalp is
a condition not directly related to
cardiac function.

[Good] Fever and high heart rate
are potential signs of sepsis.

[Bad] The patient’s lab results show
an increased platelet count.

High (Complete Trian-
gle Clearance)

Low (Cystic Plate Visi-
bility)

0.9 (Ventricular Tach-
yarrhythmias)

0.2 (Critical Illness —
Sepsis/Shock)

1.0 (SIRS Positivity)

0.2 (SOFA Score In-
crease)

Precisely describes complete clearance
of Calot’s triangle, perfectly matching
expert criteria.

Describes failure to visualize the cystic
plate, opposite of the criterion, leading
to low alignment.

Directly references hallmark arrhyth-
mias like ventricular tachycardia/fibril-
lation, key indicators in the category.

Potential weak connection if interpreted
as infection, but lacks explicit signs of
sepsis/shock.

References two SIRS criteria; strong and
direct alignment with early sepsis identi-
fication guidelines.

SOFA score focuses on low platelet
counts; increased count contradicts the
criterion.

Table A3: Expert-aligned claims (good and bad) across all T-FIX domains, with corresponding
alignment scores and provided reasoning.
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