
T-FIX: Text-Based Explanations with Features Interpretable to eXperts

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 As LLMs are deployed in knowledge-intensive settings (e.g., surgery, astronomy,
2 therapy), users expect not just answers, but also meaningful explanations for
3 those answers. In these settings, users are often domain experts (e.g., doctors,
4 astrophysicists, psychologists) who require confidence that a model’s explanation
5 reflects expert-level reasoning. However, current evaluation schemes primarily
6 emphasize plausibility or internal faithfulness of the explanation, often neglecting
7 whether the content of the explanation truly aligns with expert intuition. We
8 formalize *expert alignment* as a criterion for evaluating explanations with T-FIX, a
9 benchmark spanning seven knowledge-intensive domains. T-FIX includes datasets
10 and novel alignment metrics developed in collaboration with domain experts, so an
11 LLM’s explanations can be scored directly against expert judgment.¹

12 1 Introduction

13 LLMs are increasingly used for domain-specific tasks, which require substantial background knowl-
14 edge from specialized fields. It is foreseeable that LLM-powered systems will soon assist in high-
15 stakes environments such as operating rooms, astronomical observatories, and therapeutic settings.
16 For LLMs to be trustworthy and reliable in these critical applications, users require not only correct
17 answers but also **good explanations** [1, 2].

18 What constitutes a “good explanation”? This largely depends on *the explanation’s target audience*
19 [3, 4]. As LLMs are increasingly adopted for specialized tasks like surgical assistance or supernova
20 analysis, the primary users are often domain experts, such as doctors and astrophysicists. Conse-
21 quently, a “good explanation” in these specialized contexts must *offer insights that are valuable and*
22 *interpretable to these domain experts*.

23 Existing evaluations of LLM explanations predominantly focus on two dimensions: (1) plausibility,
24 ensuring that the answer logically follows from the provided explanation; and (2) faithfulness,
25 verifying that the answer accurately reflects the LLM’s actual reasoning process. [5–7]. While
26 these dimensions are necessary, they are not sufficient for knowledge-intensive applications. Domain
27 experts often need highly specific information regarding how a prediction was derived [8], particularly
28 whether **the LLM considered aspects of the input that they themselves deem critical**.

29 To address this, we propose a third dimension for evaluating LLM-generated explanations: **Expert**
30 **Alignment**. This dimension measures the extent to which an LLM-generated explanation for a given
31 input and prediction focuses on criteria that a domain expert would deem important when making the
32 same prediction.

¹<https://anonymous.4open.science/r/FIX-2-BE33/>

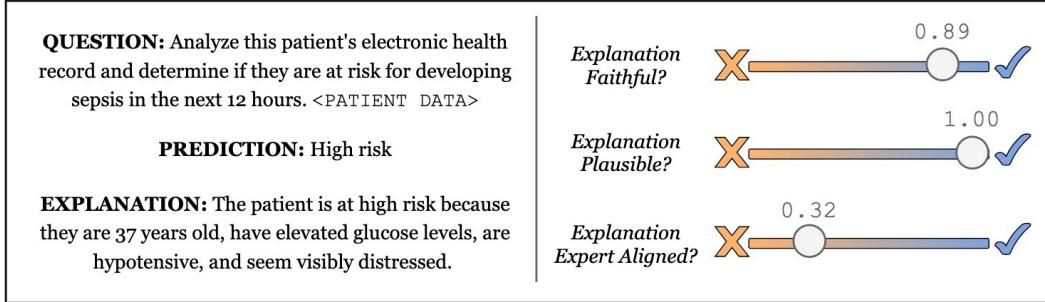


Figure 1: Most current evaluations for LLM explanations consider two dimensions: the overall plausibility and the faithfulness to the reasoning process. However, a crucial third dimension, **expert alignment**, asks: Does the LLM reason like a domain expert would? For example, an LLM correctly predicts sepsis risk with a plausible, faithful explanation, but because the explanation emphasizes features that clinicians rarely use for sepsis diagnosis, the expert alignment score is low.

- 33 An LLM can generate a correct answer with a plausible and faithful explanation, yet still rely on
 34 features that domain experts consider irrelevant or low-priority, as shown in Figure 1. Such misaligned
 35 reasoning can undermine trust in the model, even when the output is technically correct.
- 36 While alignment with domain expert reasoning has been explored in machine learning, for example,
 37 by identifying meaningful feature groups [9], such approaches are primarily suited for interpreting
 38 traditional, non-generative neural networks. Modern LLMs typically generate free-form text expla-
 39 nations that are not directly based on these explicit feature groups. To our knowledge, no benchmark
 40 currently exists to evaluate the expert alignment of such free-form textual explanations.
- 41 To fill this gap, we introduce the T-FIX benchmark: a collection of datasets spanning seven distinct
 42 domains, accompanied by an evaluation framework. Designed in collaboration with domain experts,
 43 T-FIX assesses the expert alignment of LLM-generated explanations within each domain. Our
 44 contributions are as follows:
- 45 • We introduce *expert alignment as a desired attribute of LLM-generated explanations* and create
 46 T-FIX, the first benchmark designed to evaluate this.
- 47 • We release a pipeline to *evaluate how well any LLM “thinks like an expert,”* designed to be easily
 48 extendable to new domains.
- 49 • We demonstrate that current LLMs often *struggle to generate explanations that align with expert*
 50 *intuition*, highlighting this as a significant area for their future improvement.
- 51 • We find that LLMs generally perform better when they reason over multiple expert criteria, yet
 52 modern high-performing LLMs *do not appear to rely on expert reasoning*.

53 2 Expert Alignment Criteria

- 54 The development of the T-FIX benchmark was a highly collaborative and interdisciplinary process.
 55 For each of our seven domains (see Figure 4), our first step was to identify the **expert criteria most**
 56 **relevant to making a prediction**, detailed in the left of Figure 2.
- 57 When answering knowledge-intensive questions like “Will this patient develop sepsis in the next
 58 12 hours?” or “What kind of supernova produced these wavelengths?”, doctors and astrophysicists
 59 rely on domain-specific heuristics, prioritizing certain features over others based on training and
 60 experience. For instance, in sepsis classification, an experienced clinician would typically emphasize
 61 features like advanced age and hypotension, while assigning lower importance to signals like glucose
 62 levels or patient demeanor, which are less directly indicative of sepsis risk.
- 63 Thus, an LLM that makes the correct prediction by attending to age and hypotension is *more expert-*
 64 *aligned* than one that arrives at the same answer by focusing on glucose and demeanor. We define
 65 the subset of features that experts prioritize most highly when performing a task as the task’s **expert**
 66 **alignment criteria**.

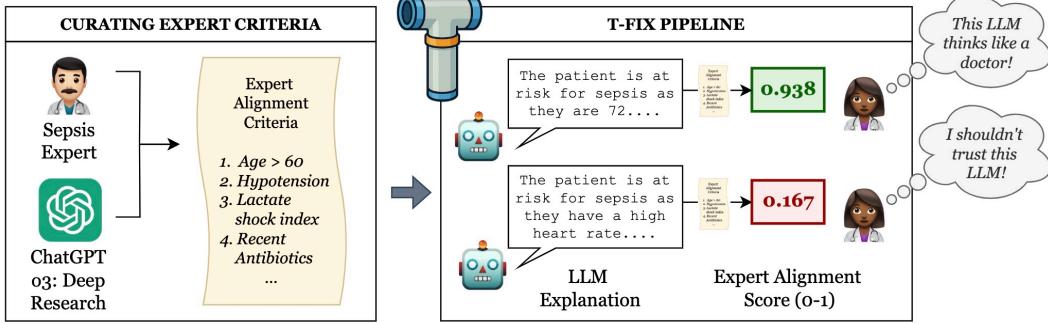


Figure 2: An overview of the T-FIX construction process. For each dataset, we first establish expert alignment criteria – features deemed important by domain experts for a specific task – through collaboration with these experts and LLM-based deep research tools. These criteria form the basis of the T-FIX evaluation pipeline, which processes an LLM-generated explanation to output an expert alignment score. A high score suggests the explanation reflects reasoning aligned with domain experts (i.e., the LLM “thinks like an expert”), while a low score indicates the explanation may rely on aspects that experts would deem irrelevant.

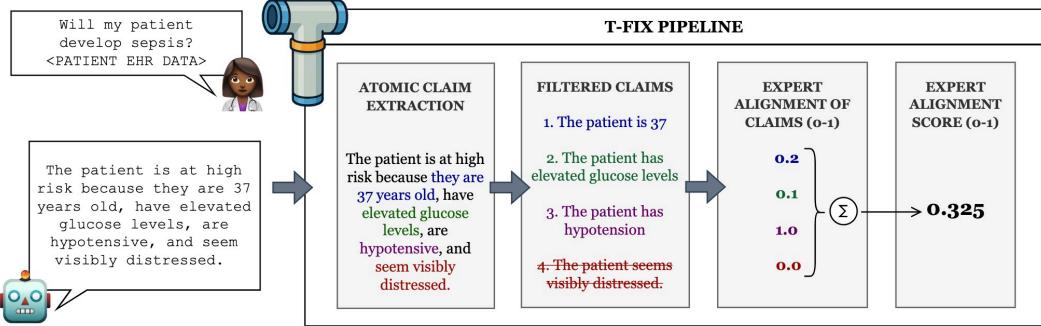


Figure 3: Our T-FIX pipeline. To evaluate an LLM-generated explanation, we first decompose it into atomic claims. Next, we filter out irrelevant claims, such as unsupported or speculative statements. Each remaining claim is then scored against the domain-specific expert alignment criteria on a 0–1 scale: a score of 1 indicates perfect overlap with at least one criterion, while 0 indicates no overlap. Filtered-out claims are automatically assigned a score of 0. We compute the final expert-alignment score for the explanation by averaging across all claim scores.

67 **Step 1: Surveying the Field.** To seed our initial list of expert criteria, we prompt OpenAI’s o3
 68 model to perform a comprehensive literature review of the relevant field. Each prompt includes a task
 69 description, example input-output pairs from the dataset, and instructions to generate a list of criteria
 70 considered important for performing the task – accompanied by reputable citations.

71 We begin with this deep research approach to *avoid over-reliance on any single expert’s perspective*.
 72 Our goal is to synthesize insights from a broad array of books, journals, and academic publications to
 73 produce as comprehensive a list as possible.

74 **Step 2: Iteration with Domain Experts.** To validate and improve the output from Step 1, we present
 75 the preliminary criteria list to a domain expert (see Figure 4 for details on each expert per domain).
 76 We ask the expert to (1) remove any incorrect or irrelevant criteria, (2) add any important ones that
 77 were missed, and (3) ensure that the list reflects a consensus that their peers would agree with. The
 78 expert then refines the list until it accurately captures the field’s knowledge.

79 An example criterion for sepsis classification is as follows: Advanced age (over 65 years)
 80 markedly increases susceptibility to rapid sepsis progression and higher mortality
 81 after infection.

DOMAIN	Cosmology		Psychology		Medical		
DATASET	Mass Maps	Supernova	Politeness	Emotion	Cholecystectomy	Cardiac	Sepsis
ADAPTED FROM	[Kacprzak et al., 2023]	[Team et al., 2018]	[Havaldar et al., 2023a]	[Demszky et al., 2020]	[Madani et al., 2022]	[Kansal et al., 2025]	[Kansal et al., 2025]
MOTIVATION	Discovering relationships between cosmological structures and the initial state of the universe	Identifying time periods with high astronomical signal to optimize telescope observations	Understanding differences in politeness expression to improve cross-cultural communication.	Understanding the nuances of emotion expression in online settings.	Helping surgeons identify which incisions optimize patient safety while operating	Helping clinicians identify patients who are risk of cardiac arrest during ER admission	Helping clinicians identify which variables contribute to sepsis development
TASK	Predicting cosmological parameters Ω_m and σ_8 given an image representing weak lensing maps data.	Classifying the type of astronomical object (SNIa, TDE, etc.) given time-series flux measurements across multiple wavelengths	Classifying the politeness of a text conversation snippet in English, Japanese, Chinese, or Spanish.	Detecting which of 28 core emotions is most reflected by the speaker of a text Reddit comment.	Determining safe/unsafe organ regions to cut into during cholecystectomy surgery given a laparoscopic image of a patient's abdomen.	Determining whether a patient is at high risk of soon experiencing cardiac arrest given time-series ECG data.	Determining whether a patient is at high risk of developing sepsis in the near future given time-series Electronic Health Record (EHR) data.
INPUT → OUTPUT	Weak lensing map image $\rightarrow \Omega_m, \sigma_8$ values	Multiband time series data \rightarrow astronomical object class	Conversation snippet \rightarrow politeness level on a 1-5 scale	Reddit comment \rightarrow emotion label	Image from laparoscopic camera \rightarrow description of safe and unsafe regions	ECG time series data \rightarrow Yes/No cardiac arrest classification	EHR time series data \rightarrow Yes/No sepsis risk prediction
INPUT EXAMPLE			<p>"I totally didn't realize this was a vandalized page. Please accept my apology"</p>	<p>"Thanks for your reply:) until then hubby and I will anxiously wait"</p>			
DOMAIN EXPERT	Astronomy professor at an American university	Astrophysics professor at an American university	Psychology professor at an American university	Psychology professor at an American university	Gastrointestinal surgeon in an American hospital	Professor of cardiovascular medicine at an American university	Pulmonary care physician at an American hospital
EXPERT ALIGNMENT CRITERIA	A set of cosmological lensing features such as cluster peaks, voids, filaments, clumpiness, connectivity, and contrast — used to infer parameters through matter distribution patterns.	A classification framework for astrophysical transients based on flux continuity, light curve shape, amplitude, duration, periodicity, spectral features, and photometric evolution trends.	A taxonomy of politeness strategies including honorifics, apologies, indirectness, and discourse cues across social, emotional, and linguistic contexts.	A taxonomy of emotional cues from valence, arousal, and direct emotion markers to signals of confusion, blame, praise, and relief — used to infer nuanced affective states.	A checklist of expert surgical safety criteria for cholecystectomy, emphasizing precise anatomical identification, dissection landmarks, and caution in high-risk variations.	A set of ECG indicators including HR deceleration, ST changes, QRS abnormalities, atrial arrhythmias, and conduction delays — signaling imminent arrest risk.	A sepsis risk framework combining age, vital sign criteria (SIRS, qSOFA, NEWS), lactate, shock index, hypotension, SOFA changes, and early clinical actions to flag severity.

Figure 4: Overview of datasets and domains in T-FIX. We evaluate LLM expert alignment across seven diverse domains, spanning cosmology, psychology, and medicine. For each dataset, we highlight the motivating task, input–output format, representative example, and the expert responsible for validating alignment criteria. The final row summarizes the expert alignment criteria used for scoring explanations in each domain. The column colors reflect dataset modality: blue indicates vision, yellow indicates language, and pink indicates time-series.

82 All Deep Research prompt templates and final expert alignment criteria lists for all domains are
83 available in our GitHub repository.

84 3 T-FIX Pipeline

85 LLM-generated explanations contain a mix of reasoning steps — some aligned with expert judgment,
86 and others based on irrelevant information. To systematically evaluate such complex explanations, we
87 first break them down into atomic claims, or standalone “features” that can be individually assessed
88 for expert alignment. By scoring each feature separately and then aggregating these scores, we can

89 compute an overall expert alignment score for the full explanation. See Figure 3 for an example of
90 this multi-step process.
91 Our T-FIX pipeline for evaluating expert alignment consists of three main components:
92 1. **Claim Extraction:** Decomposing a free-form explanation into standalone, atomic claims.
93 2. **Relevancy Filtering:** Removing claims that are unsupported, speculative, or otherwise irrelevant
94 to the model’s prediction.
95 3. **Alignment Scoring:** Measuring the degree of overlap between each remaining claim and domain
96 expert criteria on a 0–1 scale.
97 We build our pipeline using GPT-4o, as it is both fast and cost-effective.

98 3.1 Stage 1: Atomic Claim Extraction

99 Given a free-form text explanation accompanying an LLM’s prediction, our first goal is to identify and
100 extract the distinct reasoning steps, i.e. “features”, used by the LLM. We achieve this by decomposing
101 the explanation into *atomic claims*.
102 An atomic claim is defined as a self-contained, indivisible statement that conveys a single verifiable
103 fact, and can be fully understood without reference to the surrounding context.
104 To extract atomic claims, we adapt prompting techniques from the claim decomposition literature
105 [10, 11] and prompt GPT-4o to transform a free-form explanation into a list of fully decontextualized
106 atomic claims. We treat each claim as representing a single “feature” in the LLM’s explanation.

107 3.2 Stage 2: Relevancy Filtering

108 Not all extracted claims contribute meaningfully to expert reasoning. Some may be unsupported (i.e.,
109 references to content not present in the input), speculative (i.e., unfounded hypotheses), or otherwise
110 irrelevant (e.g., repeating the model’s final prediction or citing unrelated information).
111 Given that domain experts heavily prefer succinct, informative explanations, we prompt GPT-4o to
112 remove such noisy claims by evaluating each atomic claim based on the original input. A claim is
113 retained if it satisfies the following two criteria: (1) Clearly grounded in and supported by the input
114 (i.e., not unfounded or speculative); (2) Directly contributes to explaining *why* the model made its
115 prediction. On average, 72% of the claims generated in Stage 1 pass this relevancy filter and are
116 carried forward for alignment scoring.

117 3.3 Stage 3: Alignment Scoring

118 In the final stage of our pipeline, we evaluate each retained atomic claim by comparing it to the
119 domain-specific expert alignment criteria (see Section 2). This step quantifies how closely the
120 reasoning in the LLM’s explanation reflects expert judgment.

121 Given an atomic claim and a list of expert criteria, we prompt GPT-4o to measure the claim’s expert
122 alignment in two steps:

- 123 1. **Identify the most aligned expert criterion.** The model selects the criterion whose focus and
124 intent best match the core idea of the atomic claim. The model may also indicate that no criteria
125 align with the claim.
- 126 2. **Assign an alignment score (0-1).** The model scores how well the claim aligns with the chosen
127 criterion: 1 for complete overlap, and 0 for no alignment. Intermediate scores reflect partial
128 alignment, such as when the claim touches on a relevant concept but lacks specificity. See Table 1
129 for details on intermediate scores.

130 For example, consider the expert criterion for sepsis classification: Advanced age (over 65 years).
131 The claim “The patient is at risk as they are 72 years old” would receive an alignment
132 score of 1.0, as it directly and fully supports the criterion. In contrast, the claim “The patient is
133 at risk as they are 37” may receive a score of 0.2: while it discusses patient age, the specific
134 value does not align with the expert threshold for elevated risk. In contrast, the claim “The patient
135 is NOT at risk as they are 37” would also receive a score of 1.0. Examples of claims with high

Table 1: Interpretation of alignment score ranges used in scoring atomic claims against expert criteria.

Score	Meaning
(0, 0.25]	The claim references an unrelated or misleading feature, or misinterprets the criterion’s meaning
(0.25, 0.5]	The claim loosely refers to the correct concept but lacks key details, thresholds, or uses vague language
(0.5, 0.75]	The claim references a relevant feature but only partially reflects the criterion (e.g., omits thresholds, is overly general, contains noise)
(0.75, 1]	The claim is specific, directly relevant, and fully captures the meaning and intent of the expert criterion

Table 2: Pipeline validation: Accuracy averaged across all T-FIX domains and annotator agreement – Cohen’s κ for each stage in our pipeline. Domain-specific statistics are provided in Table A2.

Pipeline Stage	\mathcal{N}	Accuracy	Cohen’s κ
Claim Extraction	35	0.943	0.717
Relevancy Filtering	295	0.871	0.402
Expert Alignment	211	0.923	0.405

136 and low alignment for each domain, along with rationale for why those scores were assigned, are
137 provided in Table A3.

138 3.4 Final Aggregation

139 We assign an alignment score of 0 to the claims that were filtered out or did not align with any criteria.
140 This ensures *LLM-generated explanations are penalized for unsupported or speculative statements,*
141 *irrelevant information, and misaligned reasoning*. We then average the alignment scores across all
142 claims to produce a final expert alignment score for the explanation. The prompts for all three stages
143 can be found in Appendix D and in our Github repository.

144 4 Pipeline Validation

145 Given our pipeline relies on multiple curated GPT-4o prompts, we want to ensure that the extracted
146 and filtered claims are accurate, and that the final alignment scores match domain expert intuition. To
147 validate the outputs at each stage, we conduct an annotation study for 35 examples (5 per domain).
148 This includes 295 extracted claims and 211 aligned claims. We recruit a total of six annotators, with
149 two annotators per example².

150 **Validating atomic claim extraction.** Annotators receive the original explanation and its extracted
151 atomic claims from Stage 1. They classify each extraction as: (A) Perfect – all claims correctly
152 extracted, (B) Partially accurate – 1–3 claims missing or incorrect, or (C) Incorrect – 3+ claims
153 missing or incorrect. We convert these labels to accuracy scores: A = 1.0, B = 0.5, C = 0.0.

154 **Validating relevancy filtering.** Annotators review the explanation, extracted claims, and filtered
155 claims from Stage 2. For each claim, they assess whether: (A) It was correctly kept or filtered, (B) It
156 was incorrectly kept or filtered, or (C) It is ambiguous or borderline. These are scored as: A = 1.0,
157 B = 0.0, C = 0.5.

158 **Validating expert alignment scoring.** Annotators are shown the alignment criteria and the filtered,
159 scored claims from Stage 2. We define *direction* as the alignment score category (high, neutral, low),
160 and *magnitude* as the exact score (e.g., 0.1 vs. 0.3 for low alignment).

161 Annotators evaluate each score as: (A) Fully accurate – an expert would agree with the score; correct
162 direction and magnitude, (B) Partially accurate – correct direction, but magnitude off by ≤ 0.2 , or
163 (C) Incorrect – wrong direction and magnitude off by > 0.2 . These are scored as: A = 1.0, B = 0.5,
164 C = 0.0.

²Annotators are PhD students who study machine learning at an American university and are previously familiar with evaluating LLM outputs for given criteria.

Table 3: Evaluating top LLMs on T-FIX. We report the average expert alignment score across all examples in the dataset. Corresponding accuracies are in Table A1 and baseline prompting strategies are described in Section 6.

Baseline	Cosmology		Psychology		Medicine			
	Mass	Maps	Supernova	Politeness	Emotion	Cholec	Cardiac	Sepsis
<i>GPT-4o</i>								
Vanilla	0.421	0.877	0.629	0.597	0.295	0.533	0.545	
CoT	0.390	0.859	0.625	0.639	0.338	0.564	0.532	
Socratic	0.412	0.859	0.596	0.612	0.369	0.569	0.539	
SubQ Decom	0.354	0.881	0.596	0.531	0.358	0.519	0.563	
<i>o1</i>								
Vanilla	0.616	0.778	0.615	0.609	0.443	0.501	0.515	
CoT	0.595	0.766	0.620	0.658	0.473	0.481	0.552	
Socratic	0.503	0.782	0.555	0.467	0.456	0.449	0.578	
SubQ Decom	0.491	0.805	0.536	0.545	0.409	0.473	0.576	
<i>Gemini-2.0-Flash</i>								
Vanilla	0.515	0.811	0.618	0.600	0.407	0.529	0.566	
CoT	0.507	0.815	0.569	0.566	0.376	0.553	0.578	
Socratic	0.281	0.815	0.559	0.554	0.394	0.475	0.581	
SubQ Decom	0.405	0.789	0.566	0.520	0.393	0.494	0.584	
<i>Claude-3.5-Sonnet</i>								
Vanilla	0.710	0.761	0.634	0.642	0.264	0.565	0.611	
CoT	0.688	0.776	0.639	0.622	0.286	0.538	0.584	
Socratic	0.698	0.764	0.590	0.580	0.292	0.549	0.592	
SubQ Decom	0.628	0.754	0.631	0.617	0.271	0.555	0.584	

165 **Results & agreement.** Table 2 reports average accuracy at each stage across all seven T-FIX domains,
166 along with Cohen’s κ for inter-annotator agreement. The κ scores fall in the moderate-to-substantial
167 agreement range, suggesting consistent annotator judgments and supporting the validity of our T-FIX
168 pipeline. Domain-specific metrics are shown in Table A2.

169 5 Included Datasets

170 T-FIX contains seven open-source datasets, spanning the fields of cosmology, psychology, and
171 medicine. To assess LLM explanations across multiple modalities, we include text, vision, and
172 time-series datasets. We select these seven datasets due to the availability of domain experts willing
173 to work with us for these tasks.

174 As running T-FIX requires querying LLMs, many of which follow a pay-as-you-go API structure,
175 we keep the total size of our benchmark to 700 (100 per dataset) in order for T-FIX to be accessible
176 to as many researchers as possible.

177 We select a subset of 100 examples from the test set of each open-source dataset in T-FIX, and
178 balance this sampling across classes when possible. We provide an overview of the included open-
179 source datasets in Figure 4. See Appendix E for additional details about the motivation, task, and
180 prompting procedure for each dataset.

181 6 Experiments

182 After building a pipeline to evaluate the expert alignment of an LLM explanation, we evaluate a suite
183 of today’s top LLMs on T-FIX to determine how expert-aligned these models are on domain-specific
184 tasks. We use the following prompting techniques as baselines to generate explanations for each
185 dataset in T-FIX.

186 1. **Vanilla:** The LLM is prompted to generate an explanation along with its answer, without any
187 additional guidance or reasoning structure.

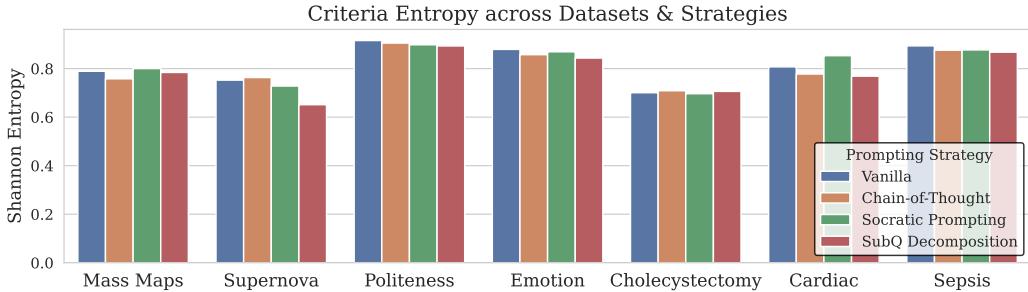


Figure 5: Shannon Entropy of expert alignment criteria for GPT-4o. For each prompting baseline, we show coverage of each domain’s explanations across all expert criteria – a high value indicates the LLM considers *many criteria across examples*, while a low value indicates the LLM *focuses on the same criteria repeatedly*.

- 188 2. **Chain-of-Thought (CoT):** The LLM is prompted to reason step-by-step through intermediate
 189 steps before answering, supporting more accurate responses on complex, multi-step tasks.
 190 3. **Socratic Prompting:** The LLM is instructed to question its own reasoning, encouraging reflection
 191 and the surfacing of uncertainties or assumptions.
 192 4. **Subquestion Decomposition:** The LLM is guided to break down a complex task into simpler
 193 subquestions, answer them individually, and then synthesize a final response.
- 194 Domain-specific prompts are detailed in Appendix E, with templates for the above prompting
 195 strategies in Figure A5. Results for GPT-4o, GPT-01, Gemini-2.0-Flash, and Claude-3.5-Sonnet³ are
 196 shown in Table 3.

197 7 Analysis

198 In this section, we analyze how LLMs distribute reasoning across expert criteria and whether higher
 199 task accuracy indicates better expert alignment.

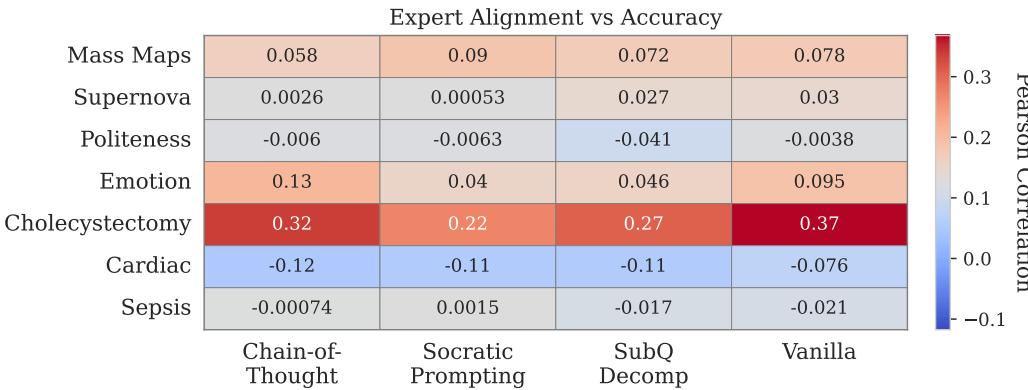


Figure 6: Expert-Alignment vs. Accuracy Correlation Heatmap, averaged across GPT-4o, o1, Gemini-2.0-Flash, and Claude-3.5-Sonnet. Red indicates positive correlation, blue is negative, gray is no correlation.

200 7.1 Coverage of Expert Alignment Criteria

201 Section 3 describes our pipeline for measuring the proportion of expert-aligned claims in LLM
 202 explanations. We now examine a complementary question: *How many expert alignment criteria does
 203 an LLM consider across its explanations?*

³We only select LLMs with vision support and context windows long enough to accommodate our time-series datasets. All models are accessed in May 2025.

204 A single gold-standard explanation rarely requires reasoning over *all* expert criteria; most high-quality
205 explanations reference only 3–5. Thus, assessing coverage at the question level is not meaningful.
206 Instead, we analyze coverage at the dataset level – whether different prompting strategies lead to a
207 broader utilization of expert criteria across all questions within a domain.
208 Figure 5 presents the Shannon entropy of GPT-4o’s covered expert criteria in each domain. We
209 observe a correlation between entropy and performance: domains where GPT-4o underperforms (e.g.,
210 Cholecystectomy, Supernova) show lower entropy, indicating limited criteria coverage. In contrast,
211 well-performing domains (e.g., Politeness, Sepsis) exhibit more uniform coverage, equally taking
212 into account all expert criteria.
213 This suggests that **LLMs that reason uniformly over expert alignment criteria perform better** –
214 a promising insight for future work in prompting or training models to incorporate a broader range of
215 expert reasoning.

216 7.2 Expert-Alignment vs. Accuracy

217 T-FIX focuses on evaluating explanation quality, but we are also interested in understanding the
218 relationship between expert alignment and prediction accuracy. Specifically, we ask: *Does higher*
219 *answer accuracy correspond to stronger expert alignment?*
220 Figure 6 shows the Pearson correlation of expert alignment (see Table A3) with accuracy (see
221 Table A1) for each domain, averaged across models. In some domains with higher performance, like
222 Cholecystectomy and Emotion, we do observe higher expert alignment as well. However, the overall
223 correlation is weak across domains.
224 The heatmap suggests **today’s high-performing LLMs do not appear to rely on expert reasoning**.
225 Future research is needed to explore whether aligning model reasoning with expert criteria – via
226 training objectives or prompting – can improve downstream performance.

227 8 Related Work

228 **Evaluating LLM Explanations.** Common explanation methods for LLMs include feature attribution
229 (e.g., LIME, SHAP [12, 13]), counterfactuals, and self-generated explanations [14, 15]. Some models
230 are also trained to produce human-readable justifications [16]. To assess explanation quality and
231 utility, recent work highlights criteria such as faithfulness (alignment with the model’s reasoning)
232 and plausibility (how convincing it is to humans) [17, 5, 6]. Human studies show mixed outcomes:
233 explanations sometimes aid understanding [18, 19], but can also offer little value or cause over-trust
234 [20]. A promising alternative is to use LLMs as automatic judges of explanation quality [21, 22],
235 providing a scalable substitute for expensive human evaluation; we adopt this approach in T-FIX.
236 **Domain & Expert Alignment** Concept-based models constrain parts of the network to predict high-
237 level, human-defined concepts, enabling incorporation of domain knowledge into final predictions
238 [23]. Extensions of concept bottlenecks and related methods aim to align latent representations with
239 semantically meaningful features [24–26], potentially grouped for expert interpretability [9]. In NLP,
240 integrating human knowledge has included collecting human-written explanation datasets to train
241 models [16] and using learned explanations to guide predictions [27]. To our knowledge, no prior
242 work explicitly evaluates text explanations for expert alignment like T-FIX.

243 9 Conclusion

244 We introduce T-FIX, the first benchmark designed to evaluate LLM explanations for expert alignment
245 across seven knowledge-intensive domains. Our analysis reveals that today’s models struggle to
246 generate explanations that experts would rely on, highlighting a critical area for improvement.
247 Future work may include exploring instruction-tuning LLMs to generate explanations with strong
248 expert alignment, extending T-FIX to additional domains, and Human-Computer Interaction studies
249 exploring how expert-aligned explanations affect real-world decision-making by practitioners.

250 **References**

- 251 [1] Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions
252 and use interpretable models instead. *Nature machine intelligence*, 1(5):206–215, 2019.
- 253 [2] Dino Pedreschi, Fosca Giannotti, Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, and
254 Franco Turini. Meaningful explanations of black box ai decision systems. In *Proceedings of the
255 AAAI conference on artificial intelligence*, volume 33, pages 9780–9784, 2019.
- 256 [3] Mireia Ribera and Agata Lapedriza. Can we do better explanations? a proposal of user-centered
257 explainable ai. *CEUR Workshop Proceedings*, 2019.
- 258 [4] Kacper Sokol and Peter Flach. One explanation does not fit all: The promise of interactive
259 explanations for machine learning transparency. *KI-Künstliche Intelligenz*, 34(2):235–250,
260 2020.
- 261 [5] Jianlong Zhou, Amir H Gandomi, Fang Chen, and Andreas Holzinger. Evaluating the quality of
262 machine learning explanations: A survey on methods and metrics. *Electronics*, 10(5):593, 2021.
- 263 [6] Chirag Agarwal, Sree Harsha Tanneru, and Himabindu Lakkaraju. Faithfulness vs. plausi-
264 bility: On the (un) reliability of explanations from large language models. *arXiv preprint
265 arXiv:2402.04614*, 2024.
- 266 [7] Letitia Parcalabescu and Anette Frank. On measuring faithfulness or self-consistency of natural
267 language explanations. *arXiv preprint arXiv:2311.07466*, 2023.
- 268 [8] Xinru Wang and Ming Yin. Are explanations helpful? a comparative study of the effects of
269 explanations in ai-assisted decision-making. In *Proceedings of the 26th International Conference
270 on Intelligent User Interfaces*, pages 318–328, 2021.
- 271 [9] Helen Jin, Shreya Havaldar, Chaehyeon Kim, Anton Xue, Weiqiu You, Helen Qu, Marco Gatti,
272 Daniel Hashimoto, Bhuvnesh Jain, Amin Madani, Masao Sako, Lyle Ungar, and Eric Wong. The
273 fix benchmark: Extracting features interpretable to experts. *arXiv preprint arXiv:2409.13684*,
274 2024.
- 275 [10] Miriam Wanner, Seth Ebner, Zhengping Jiang, Mark Dredze, and Benjamin Van Durme. A
276 closer look at claim decomposition. *arXiv preprint arXiv:2403.11903*, 2024.
- 277 [11] Anisha Gunjal and Greg Durrett. Molecular facts: Desiderata for decontextualization in llm fact
278 verification, 2024. URL <https://arxiv.org/abs/2406.20079>.
- 279 [12] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i trust you?: Explaining
280 the predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD International
281 Conference on Knowledge Discovery and Data Mining (KDD)*, pages 1135–1144, 2016.
- 282 [13] Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
283 *Advances in Neural Information Processing Systems*, volume 30, 2017.
- 284 [14] Shawn Im, Jacob Andreas, and Yilun Zhou. Evaluating the utility of model explanations for
285 model development, 2023. URL <https://arxiv.org/abs/2312.06032>.
- 286 [15] Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu, Huiqi Deng, Hengyi Cai, Shuaiqiang Wang,
287 Dawei Yin, and Mengnan Du. Explainability for large language models: A survey, 2023. URL
288 <https://arxiv.org/abs/2309.01029>.
- 289 [16] Oana-Maria Camburu, Tim Rocktäschel, Johannes Welbl, Sebastian Riedel, and Thomas
290 Dumitru. e-SNLI: Natural language inference with natural language explanations. In *Advances
291 in Neural Information Processing Systems 31 (NeurIPS 2018)*, pages 9690–9701, 2018.
- 292 [17] Alon Jacovi and Yoav Goldberg. Towards faithfully interpretable nlp systems: How should we
293 define and evaluate faithfulness? In *Proceedings of the 58th Annual Meeting of the Association
294 for Computational Linguistics (ACL)*, pages 4198–4205, 2020.

- 295 [18] Peter Hase and Mohit Bansal. Evaluating explainable AI: Which algorithmic explanations help
 296 users predict model behavior? In *Proceedings of the 58th Annual Meeting of the Association*
 297 *for Computational Linguistics (ACL)*, pages 5540–5552, 2020.
- 298 [19] Gagan Bansal, Tongshuang Wu, Joyce Zhou, Raymond Fok, Besmira Nushi, Ece Kamar,
 299 Marco Tulio Ribeiro, and Daniel S. Weld. Does the whole exceed its parts? the effect of AI
 300 explanations on complementary team performance. In *Proceedings of the 2021 CHI Conference*
 301 *on Human Factors in Computing Systems (CHI)*, pages 1–16, 2021. doi: 10.1145/3411764.
 302 3445717.
- 303 [20] Xidong Wang, Guiming Hardy Chen, Dingjie Song, Zhiyi Zhang, Zhihong Chen, Qingying
 304 Xiao, Feng Jiang, and Hongbo Zhang. Large language models are not fair evaluators. *arXiv*
 305 preprint *arXiv:2301.XXXX*, 2023.
- 306 [21] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 307 Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
 308 Judging llm-as-a-judge with MT-bench and chatbot arena. In *Advances in Neural Information*
 309 *Processing Systems 36 (NeurIPS 2023), Datasets and Benchmarks Track*, 2023.
- 310 [22] Guiming Hardy Chen, Shunian Chen, Ziche Liu, Feng Jiang, and Benyou Wang. Humans or
 311 LLMs as the judge? a study on judgement bias. In *Proceedings of the 2024 Conference on*
 312 *Empirical Methods in Natural Language Processing (EMNLP)*, 2024.
- 313 [23] Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been
 314 Kim, and Percy Liang. Concept bottleneck models. In *Proceedings of the 37th International*
 315 *Conference on Machine Learning (ICML)*, pages 5338–5348, 2020.
- 316 [24] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie J. Cai, James Wexler, Fernanda Viégas,
 317 and Rory Sayres. Interpretability beyond feature attribution: Quantitative testing with concept
 318 activation vectors (tcav). In *Proceedings of the 35th International Conference on Machine*
 319 *Learning (ICML)*, pages 2668–2677, 2018.
- 320 [25] Zhi Chen, Yijie Bei, and Cynthia Rudin. Concept whitening for interpretable image recognition.
 321 *Nature Machine Intelligence*, 2(12):772–782, 2020.
- 322 [26] Amirata Ghorbani, James Wexler, James Zou, and Been Kim. Towards automatic concept-based
 323 explanations. In *Advances in Neural Information Processing Systems 32 (NeurIPS 2019)*, pages
 324 9277–9286, 2019.
- 325 [27] Umang Bhatt, Alice Xiang, Shubham Sharma, Adrian Weller, Ankur Taly, Ying Jia, Joydeep
 326 Ghosh, Rajiv Puri, José M. F. Moura, and Peter Eckersley. Explainable machine learning
 327 in deployment. In *Proceedings of the 2020 Conference on Fairness, Accountability, and*
 328 *Transparency (FAT*)*, pages 648–657, 2020.
- 329 [28] T. M. C. Abbott, M. Aguena, A. Alarcon, S. Allam, O. Alves, A. Amon, F. Andrade-Oliveira,
 330 J. Annis, S. Avila, D. Bacon, E. Baxter, K. Bechtol, M. R. Becker, G. M. Bernstein, S. Bhargava,
 331 S. Birrer, J. Blazek, A. Brandao-Souza, S. L. Bridle, D. Brooks, E. Buckley-Geer, D. L. Burke,
 332 H. Camacho, A. Campos, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, F. J. Castander,
 333 R. Cawthon, C. Chang, A. Chen, R. Chen, A. Choi, C. Conselice, J. Cordero, M. Costanzi,
 334 M. Crocce, L. N. da Costa, M. E. da Silva Pereira, C. Davis, T. M. Davis, J. De Vicente,
 335 J. DeRose, S. Desai, E. Di Valentino, H. T. Diehl, J. P. Dietrich, S. Dodelson, P. Doel, C. Doux,
 336 A. Drlica-Wagner, K. Eckert, T. F. Eifler, F. Elsner, J. Elvin-Poole, S. Everett, A. E. Evrard,
 337 X. Fang, A. Farahi, E. Fernandez, I. Ferrero, A. Ferté, P. Fosalba, O. Friedrich, J. Frieman,
 338 J. García-Bellido, M. Gatti, E. Gaztanaga, D. W. Gerdes, T. Giannantonio, G. Giannini, D. Gruen,
 339 R. A. Gruendl, J. Gschwend, G. Gutierrez, I. Harrison, W. G. Hartley, K. Herner, S. R. Hinton, D.
 340 L. Hollowood, K. Honscheid, B. Hoyle, E. M. Huff, D. Huterer, B. Jain, D. J. James, M. Jarvis,
 341 N. Jeffrey, T. Jeltema, A. Kovacs, E. Krause, R. Kron, K. Kuehn, N. Kuropatkin, O. Lahav, P.-F.
 342 Leget, P. Lemos, A. R. Liddle, C. Lidman, M. Lima, H. Lin, N. MacCrann, M. A. G. Maia, J. L.
 343 Marshall, P. Martini, J. McCullough, P. Melchior, J. Mena-Fernández, F. Menanteau, R. Miquel,
 344 J. J. Mohr, R. Morgan, J. Muir, J. Myles, S. Nadathur, A. Navarro-Alsina, R. C. Nichol, R. L. C.
 345 Ogando, Y. Omori, A. Palmese, S. Pandey, Y. Park, F. Paz-Chinchón, D. Petravick, A. Pieres,
 346 A. A. Plazas Malagón, A. Porredon, J. Prat, M. Raveri, M. Rodriguez-Monroy, R. P. Rollins,

- 347 A. K. Romer, A. Roodman, R. Rosenfeld, A. J. Ross, E. S. Rykoff, S. Samuroff, C. Sánchez,
 348 E. Sanchez, J. Sanchez, D. Sanchez Cid, V. Scarpine, M. Schubnell, D. Scolnic, L. F. Secco,
 349 S. Serrano, I. Sevilla-Noarbe, E. Sheldon, T. Shin, M. Smith, M. Soares-Santos, E. Suchyta, M.
 350 E. C. Swanson, M. Tabbutt, G. Tarle, D. Thomas, C. To, A. Troja, M. A. Troxel, D. L. Tucker,
 351 I. Tutzusaus, T. N. Varga, A. R. Walker, N. Weaverdyck, R. Wechsler, J. Weller, B. Yanny, B. Yin,
 352 Y. Zhang, and J. Zuntz and. Dark energy survey year 3 results: Cosmological constraints from
 353 galaxy clustering and weak lensing. *Physical Review D*, 105(2), 2022. doi: 10.1103/physrevd.105.023520. URL <https://doi.org/10.1103/physrevd.105.023520>.
- 355 [29] N. Jeffrey, M. Gatti, C. Chang, L. Whiteway, U. Demirbozan, A. Kovacs, G. Pollina, D. Bacon,
 356 N. Hamaus, T. Kacprzak, O. Lahav, F. Lanusse, B. Mawdsley, S. Nadathur, J. L. Starck,
 357 P. Vielzeuf, D. Zeurcher, A. Alarcon, A. Amon, K. Bechtol, G. M. Bernstein, A. Campos,
 358 A. Carnero Rosell, M. Carrasco Kind, R. Cawthon, R. Chen, A. Choi, J. Cordero, C. Davis,
 359 J. DeRose, C. Doux, A. Drlica-Wagner, K. Eckert, F. Elsner, J. Elvin-Poole, S. Everett, A. Ferté,
 360 G. Giannini, D. Gruen, R. A. Gruendl, I. Harrison, W. G. Hartley, K. Herner, E. M. Huff,
 361 D. Huterer, N. Kuropatkin, M. Jarvis, P. F. Leget, N. MacCrann, J. McCullough, J. Muir,
 362 J. Myles, A. Navarro-Alsina, S. Pandey, J. Prat, M. Raveri, R. P. Rollins, A. J. Ross, E. S.
 363 Rykoff, C. Sánchez, L. F. Secco, I. Sevilla-Noarbe, E. Sheldon, T. Shin, M. A. Troxel, I. Tutzusaus,
 364 T. N. Varga, B. Yanny, B. Yin, Y. Zhang, J. Zuntz, T. M. C. Abbott, M. Aguena, S. Allam,
 365 F. Andrade-Oliveira, M. R. Becker, E. Bertin, S. Bhargava, D. Brooks, D. L. Burke, J. Carretero,
 366 F. J. Castander, C. Conselice, M. Costanzi, M. Crocce, L. N. da Costa, M. E. S. Pereira, J. De
 367 Vicente, S. Desai, H. T. Diehl, J. P. Dietrich, P. Doel, I. Ferrero, B. Flaugher, P. Fosalba, J. García-
 368 Bellido, E. Gaztanaga, D. W. Gerdes, T. Giannantonio, J. Gschwend, G. Gutierrez, S. R. Hinton,
 369 D. L. Hollowood, B. Hoyle, B. Jain, D. J. James, M. Lima, M. A. G. Maia, M. March, J. L.
 370 Marshall, P. Melchior, F. Menanteau, R. Miquel, J. J. Mohr, R. Morgan, R. L. C. Ogando,
 371 A. Palmese, F. Paz-Chinchón, A. A. Plazas, M. Rodriguez-Monroy, A. Roodman, E. Sanchez,
 372 V. Scarpine, S. Serrano, M. Smith, M. Soares-Santos, E. Suchyta, G. Tarle, D. Thomas, C. To,
 373 J. Weller, and DES Collaboration. Dark Energy Survey Year 3 results: Curved-sky weak lensing
 374 mass map reconstruction. *MNRAS*, 505(3):4626–4645, 2021. doi: 10.1093/mnras/stab1495.
- 375 [30] M. Gatti, E. Sheldon, A. Amon, M. Becker, M. Troxel, A. Choi, C. Doux, N. MacCrann,
 376 A. Navarro-Alsina, I. Harrison, D. Gruen, G. Bernstein, M. Jarvis, L. F. Secco, A. Ferté, T. Shin,
 377 J. McCullough, R. P. Rollins, R. Chen, C. Chang, S. Pandey, I. Tutzusaus, J. Prat, J. Elvin-Poole,
 378 C. Sanchez, A. A. Plazas, A. Roodman, J. Zuntz, T. M. C. Abbott, M. Aguena, S. Allam,
 379 J. Annis, S. Avila, D. Bacon, E. Bertin, S. Bhargava, D. Brooks, D. L. Burke, A. Carnero Rosell,
 380 M. Carrasco Kind, J. Carretero, F. J. Castander, C. Conselice, M. Costanzi, M. Crocce, L. N. da
 381 Costa, T. M. Davis, J. De Vicente, S. Desai, H. T. Diehl, J. P. Dietrich, P. Doel, A. Drlica-Wagner,
 382 K. Eckert, S. Everett, I. Ferrero, J. Frieman, J. García-Bellido, D. W. Gerdes, T. Giannantonio,
 383 R. A. Gruendl, J. Gschwend, G. Gutierrez, W. G. Hartley, S. R. Hinton, D. L. Hollowood,
 384 K. Honscheid, B. Hoyle, E. M. Huff, D. Huterer, B. Jain, D. J. James, T. Jeltema, E. Krause,
 385 R. Kron, N. Kuropatkin, M. Lima, M. A. G. Maia, J. L. Marshall, R. Miquel, R. Morgan,
 386 J. Myles, A. Palmese, F. Paz-Chinchón, E. S. Rykoff, S. Samuroff, E. Sanchez, V. Scarpine,
 387 M. Schubnell, S. Serrano, I. Sevilla-Noarbe, M. Smith, M. Soares-Santos, E. Suchyta, M. E. C.
 388 Swanson, G. Tarle, D. Thomas, C. To, D. L. Tucker, T. N. Varga, R. H. Wechsler, J. Weller,
 389 W. Wester, and R. D. Wilkinson. Dark energy survey year 3 results: weak lensing shape
 390 catalogue. *MNRAS*, 504(3):4312–4336, 2021. doi: 10.1093/mnras/stab918.
- 391 [31] Dezső Ribli, Bálint Ármin Pataki, José Manuel Zorrilla Matilla, Daniel Hsu, Zoltán Haiman,
 392 and István Csabai. Weak lensing cosmology with convolutional neural networks on noisy data.
 393 *Monthly Notices of the Royal Astronomical Society*, 490(2):1843–1860, 2019. ISSN 0035-8711.
 394 doi: 10.1093/mnras/stz2610. URL <https://doi.org/10.1093/mnras/stz2610>.
- 395 [32] José Manuel Zorrilla Matilla, Manasi Sharma, Daniel Hsu, and Zoltán Haiman. Interpreting
 396 deep learning models for weak lensing. *Physical Review D*, 102(12), 2020. ISSN 2470-0029.
 397 doi: 10.1103/physrevd.102.123506. URL <http://dx.doi.org/10.1103/physrevd.102.123506>.
- 399 [33] Janis Fluri, Tomasz Kacprzak, Aurelien Lucchi, Aurel Schneider, Alexandre Refregier, and
 400 Thomas Hofmann. Full w CDM analysis of KiDS-1000 weak lensing maps using deep learning.
 401 *Physical Review D*, 105(8), 2022. doi: 10.1103/physrevd.105.083518. URL <https://doi.org/10.1103/physrevd.105.083518>.

- 403 [34] Weiqiu You, Helen Qu, Marco Gatti, Bhuvnesh Jain, and Eric Wong. Sum-of-parts: Self-
 404 attributing neural networks with end-to-end learning of feature groups, 2025.
- 405 [35] Tomasz Kacprzak, Janis Fluri, Aurel Schneider, Alexandre Refregier, and Joachim Stadel. Cos-
 406 moGridV1: a simulated LambdaCDM theory prediction for map-level cosmological inference.
 407 *JCAP*, 2023(2):050, 2023. doi: 10.1088/1475-7516/2023/02/050.
- 408 [36] The PLAsTiCC Team, Tarek Allam Jr. au2, Anita Bahmanyar, Rahul Biswas, Mi Dai, Lluís
 409 Galbany, Renée Hložek, Emille E. O. Ishida, Saurabh W. Jha, David O. Jones, Richard
 410 Kessler, Michelle Lochner, Ashish A. Mahabal, Alex I. Malz, Kaisey S. Mandel, Juan Rafael
 411 Martínez-Galarza, Jason D. McEwen, Daniel Muthukrishna, Gautham Narayan, Hiranya Peiris,
 412 Christina M. Peters, Kara Ponder, Christian N. Setzer, The LSST Dark Energy Science Collabo-
 413 ration, The LSST Transients, and Variable Stars Science Collaboration. The photometric lsst
 414 astronomical time-series classification challenge (plasticc): Data set, 2018.
- 415 [37] Janet Holmes. Politeness in intercultural discourse and communication. *The handbook of*
 416 *intercultural discourse and communication*, pages 205–228, 2012.
- 417 [38] Shreya Havaldar, Bhumika Singhal, Sunny Rai, Langchen Liu, Sharath Chandra Guntuku, and
 418 Lyle Ungar. Multilingual language models are not multicultural: A case study in emotion. In
 419 *Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, &*
 420 *Social Media Analysis*, pages 202–214, 2023.
- 421 [39] Shreya Havaldar, Salvatore Giorgi, Sunny Rai, Thomas Talhelm, Sharath Chandra Guntuku,
 422 and Lyle Ungar. Building knowledge-guided lexica to model cultural variation. In *Proceedings*
 423 *of the 2024 Conference of the North American Chapter of the Association for Computational*
 424 *Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pages 211–226, 2024.
- 425 [40] Shreya Havaldar, Matthew Pressimone, Eric Wong, and Lyle Ungar. Comparing styles across
 426 languages: A cross-cultural exploration of politeness, 2023. URL <https://arxiv.org/abs/2310.07135>.
- 428 [41] Norman K Denzin. *On understanding emotion*. Transaction Publishers, 1984.
- 429 [42] Shreya Havaldar, Hamidreza Alvari, John Palowitch, Mohammad Javad Hosseini, Senaka
 430 Buthpitiya, and Alex Fabrikant. Entailed between the lines: Incorporating implication into nli.
 431 *arXiv preprint arXiv:2501.07719*, 2025.
- 432 [43] Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo Ko, Alan Cowen, Gaurav Nemade, and
 433 Sujith Ravi. Goemotions: A dataset of fine-grained emotions. *arXiv preprint arXiv:2005.00547*,
 434 2020.
- 435 [44] Amin Madani, Babak Namazi, Maria S Altieri, Daniel A Hashimoto, Angela Maria Rivera,
 436 Philip H Pucher, Allison Navarrete-Welton, Ganesh Sankaranarayanan, L Michael Brunt, Allan
 437 Okrainec, et al. Artificial intelligence for intraoperative guidance: using semantic segmentation
 438 to identify surgical anatomy during laparoscopic cholecystectomy. *Annals of surgery*, 276(2):
 439 363–369, 2022.
- 440 [45] Ralf Stauder, Daniel Ostler, Michael Kranzfelder, Sebastian Koller, Hubertus Feußner, and
 441 Nassir Navab. The tum lapchole dataset for the m2cai 2016 workflow challenge. *arXiv preprint*
 442 *arXiv:1610.09278*, 2016.
- 443 [46] Andru P Twinanda, Sherif Shehata, Didier Mutter, Jacques Marescaux, Michel De Mathelin,
 444 and Nicolas Padoy. Endonet: a deep architecture for recognition tasks on laparoscopic videos.
 445 *IEEE transactions on medical imaging*, 36(1):86–97, 2016.
- 446 [47] Udi Nussinovitch, Keren P. Elishkevitz, Kalman Katz, and Michael Nussinovitch. Reliability of
 447 ultra-short ecg indices for heart rate variability. *Annals of Noninvasive Electrocardiology*, 16(2):
 448 117–122, 2011. doi: 10.1111/j.1542-474X.2011.00417.x.
- 449 [48] Aayush Kansal, Edward Chen, Tiffany Jin, Pranav Rajpurkar, and David Kim. Multimodal
 450 clinical monitoring in the emergency department (mc-med). <https://doi.org/10.13026/jz99-4j81>, 2025. Version 1.0.0, PhysioNet.

- 452 [49] Bart Gj Candel, Renée Duijzer, Menno I Gaakeer, Ewoud Ter Avest, Özcan Sir, Heleen
453 Lameijer, Roger Hessels, Resi Reijnen, Erik W van Zwet, Evert de Jonge, and Bas de Groot.
454 The association between vital signs and clinical outcomes in emergency department patients of
455 different age categories. *Emerg. Med. J.*, 39(12):903–911, December 2022.
- 456 [50] Emma Chen, Aman Kansal, Julie Chen, Boyang Tom Jin, Julia Rachel Reisler, David A Kim,
457 and Pranav Rajpurkar. Multimodal clinical benchmark for emergency care (MC-BEC): A
458 comprehensive benchmark for evaluating foundation models in emergency medicine. In *Thirty-
459 seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track*,
460 2023.

461 **A Limitations**

462 As with any LLM-based system, the quality of the outputs is dependent on the input prompt. T-FIX is
463 no exception – though we spend a significant amount of time analyzing outputs and prompt iterating,
464 we do a finite amount of prompt iteration. There is a chance our benchmark could be marginally
465 improved with additional prompt iteration. We hope the issue of prompt dependency diminishes with
466 future models that are more robust and less susceptible to tiny prompt ablations.

467 While our evaluation pipeline currently uses GPT-4o for scoring, it is model-agnostic by design, and
468 we encourage future work to apply or adapt the pipeline with other LLMs to improve robustness and
469 reduce evaluator-model entanglement.

470 For pipeline validation, we conduct a user study where we annotate 35 examples. Though the
471 annotation results on this subset suggest our pipeline is accurate, this work could have benefited from
472 a larger and more robust annotation study. Future work should also involve domain experts vetting
473 the pipeline in addition to recruited annotators.

474 In addition, we only have one expert to validate the expert alignment criteria for each domain. Though
475 our usage of a deep research LLM minimizes over-reliance on a single domain expert, multiple
476 experts would have been better to create the expert criteria. We were constrained by domain experts
477 eager and available to collaborate with us.

478 Our experiments focus on a set of four models and four prompting strategies, and including additional
479 models and strategies could provide a more comprehensive set of baseline results. Though many
480 other high-performing LLMs and prompting techniques exist as of May 2025, we are conscious of
481 budget and the environmental impact of running multiple experiments using T-FIX.

482 **B Ethical Considerations**

483 Using LLMs in the domains we describe in T-FIX, especially those relating to medicine, poses a
484 unique set of risks and challenges. We do not advocate that LLMs should replace domain experts in
485 these tasks; rather, T-FIX should serve as a step towards experts being able to use LLMs in a reliable
486 and trustworthy way.

487 Additionally, LLMs are constantly changing, especially those that are company-owned and not
488 open-source. This poses potential issues relating to the reproducibility of our baseline results as time
489 progresses and advances are made.

490 Lastly, nearly all LLMs contain biases – some harmful – that may propagate up in a system built off
491 of these models. All users of T-FIX must be conscious of this risk.

492 **C Extending T-FIX to a New Domain**

493 Though T-FIX covers a wide range of knowledge-intensive settings, it can easily be extended to
494 additional domains.

495 A key contribution of the T-FIX benchmark is the framework: we create a pipeline to score any
496 free-form text explanation for expert alignment given a set of expert criteria. Additionally, we iterate
497 extensively on all our prompt templates to ensure all T-FIX users need to do is input their task-specific
498 details and perform no additional prompt engineering for good results.

499 To add a new domain to T-FIX, we advise you to follow these steps:

- 500 1. **Generate criteria:** Use the deep research prompt template shown in Figure A4 to generate
501 a list of expert alignment criteria for your domain. Optionally, have a domain expert vet the
502 generated criteria.
- 503 2. **Modify prompts:** Modify the prompt templates outlined in Figure A1, Figure A2, and
504 Figure A3 with your task description, few-shot examples, and generated expert criteria.
- 505 3. **Run T-FIX:** Plug in your prompts for each stage of the pipeline and run T-FIX on your
506 dataset!

Baseline	Cosmology		Psychology		Medicine		
	Mass Maps	Supernova	Politeness	Emotion	Cholecystectomy	Cardiac	Sepsis
<i>GPT-4o</i>							
Vanilla	0.039*	0.103	0.916*	0.259	0.075*	0.567	0.657
Chain-of-Thought	0.044*	0.093	0.824*	0.286	0.103*	0.460	0.714
Socratic Prompting	0.044*	0.127	0.829*	0.277	0.115*	0.462	0.657
SubQ Decomposition	0.049*	0.118	0.837*	0.304	0.115*	0.485	0.657
<i>o1</i>							
Vanilla	0.044*	0.170	0.784*	0.304	0.194*	0.656	0.752
Chain-of-Thought	0.045*	0.146	0.818*	0.339	0.177*	0.685	0.750
Socratic Prompting	0.042*	0.155	0.793*	0.348	0.155*	0.646	0.755
SubQ Decomposition	0.044*	0.147	0.818*	0.321	0.138*	0.695	0.780
<i>Gemini-2.0-Flash</i>							
Vanilla	0.045*	0.145	0.831*	0.223	0.253*	0.577	0.654
Chain-of-Thought	0.042*	0.118	0.837*	0.232	0.255*	0.558	0.663
Socratic Prompting	0.041*	0.118	0.809*	0.232	0.159*	0.592	0.661
SubQ Decomposition	0.053*	0.109	0.773*	0.241	0.249*	0.562	0.688
<i>Claude-3.5-Sonnet</i>							
Vanilla	0.053*	0.127	0.962*	0.241	0.146*	0.485	0.709
Chain-of-Thought	0.050*	0.118	1.012*	0.268	0.150*	0.538	0.735
Socratic Prompting	0.044*	0.118	0.998*	0.232	0.145*	0.508	0.748
SubQ Decomposition	0.050*	0.136	0.990*	0.259	0.149*	0.485	0.741

Table A1: Evaluating top LLMs on T-FIX. We report the average performance of the LLM across all examples in the dataset. We report accuracy for classification tasks, and MSE for regression tasks – a (*) indicates that the score reported is MSE. Baseline implementations are described in Section 6.

507 We encourage you to contact the authors of this work if you need additional assistance setting up
 508 your custom domain.

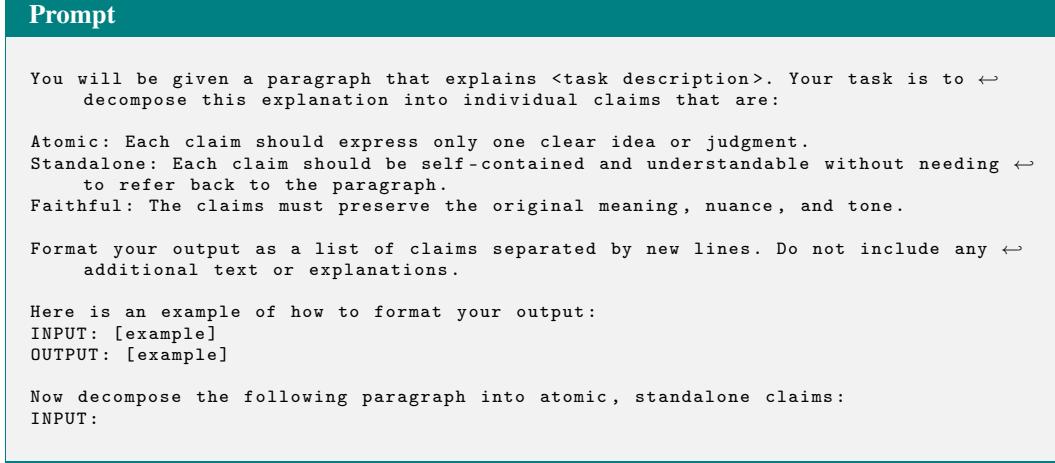


Figure A1: Prompt Template for Stage 1: Atomic Claim Extraction

509 D Prompts for T-FIX Pipeline

510 We show the prompts for Stage 1, 2, and 3 in Figure A1, Figure A2, and Figure A3, respectively.
 511 These prompts show a high-level template that was used by all domains. In practice, authors iterated

Domain	\mathcal{N} generated claims	\mathcal{N} aligned claims	Claim Decomposition Accuracy	Relevance Filtering Accuracy	Expert Alignment Accuracy	Cohen's κ
<i>Cosmology</i>						
Mass Maps	66	48	0.900	0.826	0.979	0.4059
Supernova	74	62	0.950	0.892	0.903	0.4946
<i>Psychology</i>						
Politeness	72	58	0.950	0.931	0.914	0.6604
Emotion	70	44	1.000	0.929	0.943	0.6233
<i>Medicine</i>						
Cholecystectomy	134	92	1.000	0.851	0.902	0.4396
Cardiac	66	52	0.900	0.841	0.962	0.4845
Sepsis	108	66	0.900	0.852	0.894	0.3500

Table A2: Pipeline validation by domain. We report the mean accuracy for each stage of the pipeline and annotator agreement – Cohen’s κ .

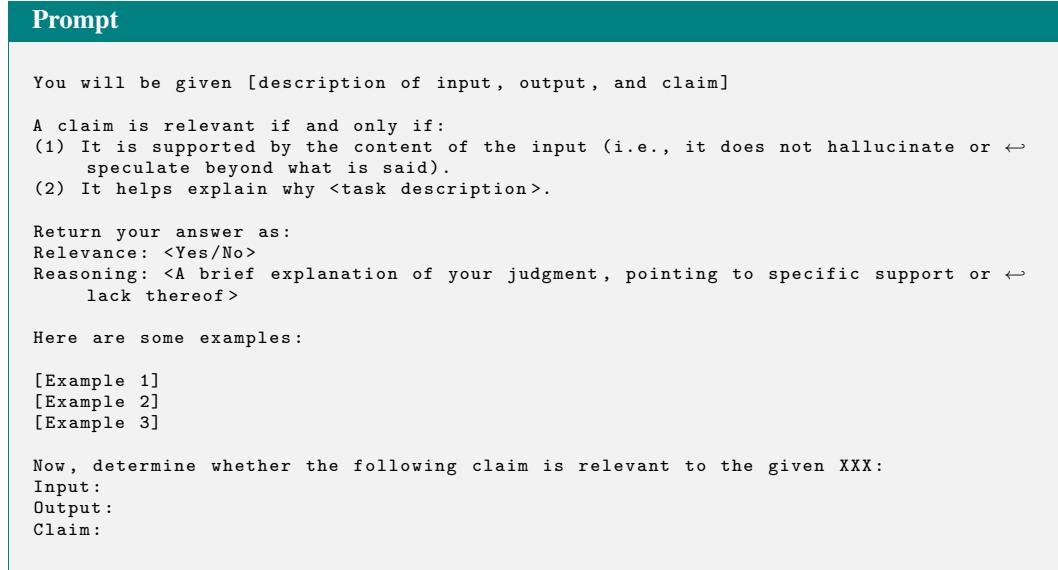


Figure A2: Prompt Template for Stage 2: Relevancy Filtering

512 multiple times on each domain’s prompts, experimenting with the instruction wording and few-shot
 513 examples that yielded the best possible results.

514 E T-FIX Datasets: Additional Details

515 E.1 Mass Maps

516 **Task.** The goal is to predict two cosmological parameters— Ω_m and σ_8 —from a weak lensing map
 517 (or known as mass maps) [28]. These parameters characterize the early state of the universe. Weak
 518 lensing maps can be obtained through precise measurement of galaxies [29, 30], but it is not yet
 519 known how to characterize Ω_m and σ_8 . There are machine learning models trained to predict Ω_m
 520 and σ_8 [31–33], as well as interpretable models that attempt to find relations between interpretable
 521 features voids and clusters and Ω_m and σ_8 [34]. We use data from CosmoGrid [35], where inputs are

Prompt

```
You will be given <task description + expert categories description>

Your task is as follows:
1. Determine which expert category is most aligned with the claim.
2. Rate how strongly the category aligns with the claim on a scale of 0-1 (0 being ←
   lowest, 1 being highest. Use increments of 0.1).

Return your answer as:
Category: <category>
Category Alignment Rating: <rating>
Reasoning: <A brief explanation of why you selected the chosen category and why you←
   judged the alignment rating as you did.>

-----
Expert categories:
[list of categories and their descriptions]
-----

Here are some examples:
[Example 1]
[Example 2]
[Example 3]

Now, determine the category and alignment rating for the following claim:
Claim:
```

Figure A3: Prompt Template for Stage 3: Alignment Scoring

Prompt

```
You are an expert in <domain name>. You have a deep understanding of this subject.
Your task is to behave like an <domain expert> and identify which criteria are ←
   important to consider for the following task:

Task description:
Input:
Output:

Here are some examples:
[Example 1]
[Example 2]
[Example 3]

Study these examples and fully understand the task. Now, research the field of <←
   domain name> in order to determine a list of criteria that an expert <domain ←
   expert> would utilize if they were performing the above task.

Your output should be a list of expert criteria, each 1 sentence long, and ←
   citations from reputable academic sources to support each criteria. Feel free ←
   to have as many expert criteria as you deem necessary. The criteria should be ←
   clear, succinct and non-overlapping with each other. [Include any domain-←
   specific information about the expert criteria]
```

Figure A4: Deep Research Prompt Template.

522 single-channel, noiseless weak lensing maps of size (66, 66), and outputs are two continuous values
523 corresponding to Ω_m and σ_8 .

524 **Data Selection & Preprocessing.** We randomly sampled 100 examples from the MassMaps test
525 set. To ensure compatibility with LLMs like GPT-4o, which operate on a 32×32 patch size, we
526 upsampled each image by a factor of 11 to preserve spatial detail and avoid patch-level compression.
527 Instead of raw pixel values, we applied a colormap based on expert-defined intensity thresholds used
528 to identify key cosmological features such as voids and clusters. Pixel intensities were scaled by
529 standard deviations to emphasize meaningful variation. We found that larger, visually enhanced
530 inputs reduced refusal rates from LLMs and encouraged more consistent responses.

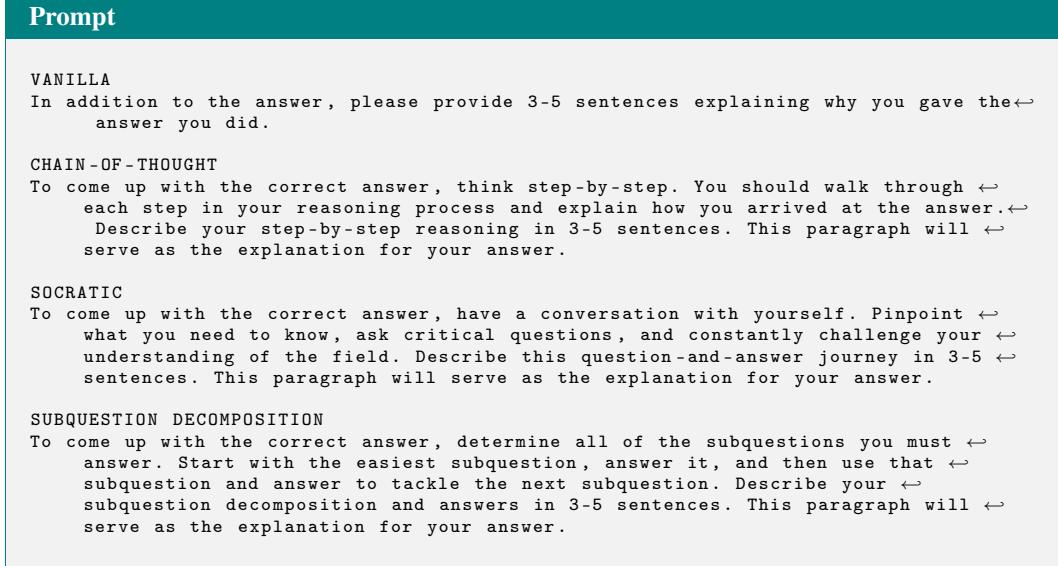


Figure A5: Baseline Prompting Strategies.

531 **Explanation Prompt.** Figure A6 shows the prompt used to generate LLM explanations for predicting Ω_m and σ_8 . We replace [BASELINE_PROMPT] with one of four prompting strategies shown in
 532 Figure A5. The prompt includes a description of how pixel values are mapped to colors, as well as
 533 the valid ranges for Ω_m and σ_8 . Without this range, models tend to default to common values (e.g.,
 534 0.3 for Ω_m , 0.8 for σ_8), reducing response variability.

536 **Expert Criteria.** The expert-validated criteria for expert alignment calculation are listed below:

- 537 1. **Lensing Peak (Cluster) Abundance:** High peak count \rightarrow higher σ_8 ; clumpy halos more common.
- 538 2. **Void Size and Frequency:** Large, frequent voids \rightarrow lower Ω_m ; less overall matter.
- 539 3. **Filament Thickness and Sharpness:** Thick, sharp filaments track higher σ_8 ; thin indicates lower.
- 540 4. **Fine-Scale Clumpiness:** Fine graininess signifies high σ_8 ; smooth map implies lower.
- 541 5. **Connectivity of the Cosmic Web:** Interconnected web suggests higher Ω_m ; isolated clumps imply
 542 lower.
- 543 6. **Density Contrast Extremes:** Strong density contrast denotes high σ_8 ; muted contrast lower.

544 **E.2 Supernova**

545 **Task.** The objective is to classify astrophysical objects using time-series data comprising obser-
 546 vation times (Modified Julian Dates), wavelengths (filters), flux values, and corresponding flux
 547 uncertainties. We use data from the PLAsTiCC challenge [36], where the model must predict one of
 548 14 astrophysical classes.

549 **Data Selection & Preprocessing.** We sampled 100 examples across the Supernova train, validation,
 550 and test sets, aiming for 7–8 instances per class to mitigate class imbalance. For rare classes with
 551 only one test set instance, we included all available examples from the validation and test sets,
 552 supplementing with training samples to meet the target count. For LLM input, we converted each raw
 553 time series into a multivariate time-series plot: time is on the x-axis, flux on the y-axis, error bars
 554 denote flux uncertainty, and point colors indicate different wavelengths.

555 **Explanation Prompt.** Figure A7 shows the prompt used to generate explanations for classifying
 556 astronomical objects. We replace [BASELINE_PROMPT] with one of four prompting strategies shown
 557 in Figure A5. The prompt includes a description of the input plot as a multivariate time series and
 558 provides the full list of possible class labels to guide the model’s predictions.

Prompt

```
You are an expert cosmologist.  
You will be provided with a simulated noiseless weak lensing map,  
  
Your task is to analyze the weak lensing map given, identify relevant cosmological structures, and make predictions for Omega_m and sigma_8.  
Each weak lensing map contains spatial distribution of matter density in a universe. The weak lensing map provided is simulated and noiseless.  
Omega_m captures the average energy density of all matter in the universe (relative to the total energy density which includes radiation and dark energy).  
sigma_8 describes the fluctuation of matter distribution.  
  
When you analyze the weak lensing map image, note that the number is below 0 if it shows up as between gray and blue, and 0 is gray, and between 0 and 2.9 is between gray and red, and above 2.9 is yellow. The numbers are in standard deviations of the mass map.  
  
Omega_m's value can be between 0.1 ~ 0.5, and sigma_8's value can be between 0.4 ~ 1.4.  
Note that the weak lensing map given is a simulated weak lensing map, which can have Omega_m and sigma_8 values of all kinds.  
  
[BASELINE_PROMPT]  
  
The provided image is the weak lensing mass map for you to predict the cosmological parameters for.  
Your response should be 2 lines, formatted as follows (without extra information):  
Explanation: <explanation and reasoning, as described above, 3-5 sentences>  
Prediction: Omega_m: <prediction for Omega_m, between 0.1 ~ 0.5, based on this weak lensing map>, sigma_8: <prediction for sigma_8, between 0.4 ~ 1.4, based on this weak lensing map>
```

Figure A6: MassMaps Explanation Prompt

559 **Expert Criteria.** The expert-validated criteria for expert alignment calculation are listed below:

- 560 1. **Contiguous non-zero flux:** Contiguous non-zero flux segments confirm genuine astrophysical activity
561 and define the time windows from which transient features should be extracted.
- 562 2. **Rise-decline rates:** Characteristic rise-and-decline rates—such as the fast-rise/slow-fade morphology
563 of many supernovae—encode energy-release physics and serve as strong class discriminators.
- 564 3. **Photometric amplitude:** Peak-to-trough photometric amplitude separates high-energy explosive
565 events (multi-magnitude outbursts) from low-amplitude periodic or stochastic variables.
- 566 4. **Event duration:** Total event duration, measured from first detection to return to baseline, distinguishes
567 short-lived kilonovae and superluminous SNe from longer plateau or AGN variability phases.
- 568 5. **Periodic light curves:** Periodic light curves with stable periods and distinctive Fourier amplitude- and
569 phase-ratios flag pulsators and eclipsing binaries rather than one-off transients.
- 570 6. **Secondary maxima:** Filter-specific secondary maxima or shoulders in red/near-IR bands—prominent
571 in SNeIa—are morphological features absent in most core-collapse SNe.
- 572 7. **Monotonic flux trends:** Locally smooth, monotonic flux trends across one or multiple bands (plateaus,
573 linear decays) capture physical evolution stages and help distinguish SNII-P, SNII-L, and related
574 classes.

575 E.3 Politeness

576 **Task.** Understanding how linguistic styles, like politeness, vary across cultures is necessary for
577 building better communication, translation, and conversation-focused systems. [37, 38]. Today’s
578 LLMs exhibit large amounts of cultural bias [39], and understanding nuances in cultural differences
579 can help encourage cultural adaptation in models. We use the holistic politeness dataset from Havaldar
580 et al. [40], which consists of conversational utterances between editors from Wikipedia talk pages,
581 annotated by native speakers from four distinct cultures.

582 **Data Selection & Preprocessing.** We sample 100 examples from the data, balanced equally across
583 classes (rude, slightly rude, neutral, slightly polite, polite) and languages (English, Spanish, Japanese,
584 Chinese).

Prompt

What is the astrophysical classification of the following time series? Here are the possible labels you can use: RR-Lyrae (RRL), peculiar type Ia supernova (SNIa-91bg), type Ia supernova (SNIa), superluminous supernova (SLSN-I), type II supernova (SNII), microlens-single (mu-Lens-Single), eclipsing binary (EB), M-dwarf, kilonova (KN), tidal disruption event (TDE), peculiar type Ia supernova (SNIax), type Ibc supernova (SNIbc), Mira variable, and active galactic nuclei (AGN).

Each input is a multivariate time series visualized as a scatter plot image. The x-axis represents time, and the y-axis represents the flux measurement value. Each point corresponds to an observation at a specific timestamp and wavelength. Different wavelengths are color-coded, and observational uncertainty is shown using vertical error bars.

Even if the classification is uncertain or ambiguous, select the most likely label based on the observed visual patterns and provide a brief explanation that justifies your choice.

[BASELINE_PROMPT]

Your response should be 2 lines, formatted as follows:
Label: <astrophysical classification label>
Explanation: <explanation, as described above>

Here is the time series data for you to classify.

Figure A7: Supernova Explanation Prompt

Prompt

What is the politeness of the following utterance on a scale of 1-5? Use the following scale:
1: extremely rude
2: somewhat rude
3: neutral
4: somewhat polite
5: extremely polite

[BASELINE_PROMPT]

Your response should be 2 lines, formatted as follows:
Rating: <politeness rating>
Explanation: <explanation, as described above>

Utterance:

Figure A8: Politeness Explanation Prompt

585 **Explanation Prompt.** We show the prompt in Figure A8. We replace “[BASELINE_PROMPT]” with
586 one of four prompting strategies shown in Figure A5.

587 **Expert Criteria.** The expert-validated criteria for expert alignment calculation are listed below:

- 588 **Honorifics and Formal Address:** The presence of respectful or formal address forms (e.g., “sir,” “usted,”) signals politeness by expressing deference to the hearer’s status or social distance.
- 589 **Courteous Politeness Markers:** Words such as “please,” “kindly,” or their multilingual variants soften requests and reflect courteous intent.
- 590 **Gratitude Expressions:** Use of expressions like “thank you,” “thanks,” or “I appreciate it” signals recognition of the other’s contribution and positive face.
- 591 **Apologies and Acknowledgment of Fault:** Phrases such as “sorry” or “I apologize” express humility and repair social breaches, marking a clear politeness strategy.
- 592 **Indirect and Modal Requests:** Requests using modal verbs (“could you,” “would you”) or softening cues like “by the way” reduce imposition and signal respect for the hearer’s autonomy.

- 598 6. **Hedging and Tentative Language:** Words like “I think,” “maybe,” or “usually” lower assertion
 599 strength and make statements more negotiable, reflecting interpersonal sensitivity.
- 600 7. **Inclusive Pronouns and Group-Oriented Phrasing:** Use of “we,” “our,” or “together” expresses
 601 solidarity and reduces hierarchical distance in requests or critiques.
- 602 8. **Greeting and Interaction Initiation:** Opening with a salutation (“hi,” “hello”) creates a cooperative
 603 tone and frames the conversation positively.
- 604 9. **Compliments and Praise:** Positive evaluations (“great,” “awesome,” “neat”) attend to the hearer’s
 605 positive face and foster a friendly environment.
- 606 10. **Softened Disagreement or Face-Saving Critique:** When disagreeing, the use of softeners, partial
 607 agreements, or concern for clarity preserves the hearer’s dignity.
- 608 11. **Urgency or Immediacy of Language:** Utterances emphasizing emergency or speed (“asap,” “imme-
 609 diately”) can heighten perceived imposition and reduce politeness if not softened.
- 610 12. **Avoidance of Profanity or Negative Emotion:** The presence of strong negative words or swearing is
 611 a key indicator of rudeness and face threat.
- 612 13. **Bluntness and Direct Commands:** Requests lacking modal verbs or mitigation (“Do this”) are
 613 perceived as less polite due to their imperative structure.
- 614 14. **Empathy or Emotional Support:** Recognizing the hearer’s emotional context or challenges is a
 615 politeness strategy of concern and goodwill.
- 616 15. **First-Person Subjectivity Markers:** Statements that begin with “I think,” “I feel,” or “In my view”
 617 convey humility and subjectivity, reducing imposition.
- 618 16. **Second Person Responsibility or Engagement:** Sentences starting with “you” or directly addressing
 619 the hearer can either signal engagement or come across as accusatory, depending on context and tone.
- 620 17. **Questions as Indirect Strategies:** Questions (“what do you think?” or “could you clarify?”) reduce
 621 imposition by inviting rather than demanding input.
- 622 18. **Discourse Management with Markers:** Use of discourse markers like “so,” “then,” “but” organizes
 623 conversation flow and may help manage face needs in conflict or negotiation.
- 624 19. **Ingroup Language and Informality:** Use of group-identifying slang or casual expressions (“mate,”
 625 “dude,” “bro”) may foster solidarity or seem disrespectful, depending on relational norms.

626 **E.4 Emotion**

627 **Task.** Understanding and classifying emotion is important for tasks like therapy, mental health
 628 diagnoses, etc. [41]. Emotion is often expressed implicitly, and understanding such cues can
 629 also aid in building LLM systems that handle implied language understanding well [42]. We use
 630 the GoEmotions dataset from Demszky et al. [43], consisting of Reddit comments that have been
 631 human-annotated for one of 27 emotions (or neutral, if no emotion is present).

632 **Data Selection & Preprocessing.** We sample 100 examples from the data, balanced equally across
 633 28 emotion classes, including neutral. We additionally ensure the comment is over 20 characters,
 634 to remove noisy data points and ensure each comment contains enough information for the LLM to
 635 make an accurate classification.

Prompt

```
What is the emotion of the following text? Here are the possible labels you could use: admiration, amusement, anger, annoyance, approval, caring, confusion, curiosity, desire, disappointment, disapproval, disgust, embarrassment, excitement, fear, gratitude, grief, joy, love, nervousness, optimism, pride, realization, relief, remorse, sadness, surprise, or neutral.

[BASELINE_PROMPT]

Your response should be 2 lines, formatted as follows:
Label: <emotion label>
Explanation: <explanation, as described above>

Here is the text for you to classify. Please ensure the emotion label is in the given list.
Text:
```

Figure A9: Emotion Explanation Prompt

636 **Explanation Prompt.** We show the prompt in Figure A9. We replace “[BASELINE_PROMPT]” with
637 one of four prompting strategies shown in Figure A5.

638 **Expert Criteria.** The expert-validated criteria for expert alignment calculation are listed below:

- 639 1. **Valence:** Decide if the overall tone is pleasant or unpleasant; positive tones suggest joy or admiration,
640 negative tones suggest sadness or anger.
- 641 2. **Arousal:** Gauge how energized the wording is—calm phrasing implies low arousal emotions, intense
642 phrasing implies high arousal emotions.
- 643 3. **Emotion Words & Emojis:** Look for direct emotion terms or emoticons that explicitly name the
644 feeling.
- 645 4. **Expressive Punctuation:** Multiple exclamation marks, ALL-CAPS, or stretched spellings signal
646 higher emotional intensity.
- 647 5. **Humor/Laughter Markers:** Tokens like “haha,” “lol,” or laughing emojis reliably indicate amusement.
- 648 6. **Confusion Phrases:** Statements such as “I don’t get it” clearly mark confusion.
- 649 7. **Curiosity Questions:** Genuine information-seeking phrases (“I wonder...”, “why is...?”) point to
650 curiosity.
- 652 8. **Surprise Exclamations:** Reactions of astonishment (“No way!”, “I can’t believe it!”) denote surprise.
- 653 9. **Threat/Worry Language:** References to danger or fear (“I’m scared,” “terrifying”) signal fear or
654 nervousness.
- 655 10. **Loss or Let-Down Words:** Mentions of loss or disappointment cue sadness, disappointment, or grief.
- 656 11. **Other-Blame Statements:** Assigning fault to someone else for a bad outcome suggests anger or
657 disapproval.
- 658 12. **Self-Blame & Apologies:** Admitting fault and saying “I’m sorry” marks remorse.
- 659 13. **Aversion Terms:** Words like “gross,” “nasty,” or “disgusting” point to disgust.
- 660 14. **Praise & Compliments:** Positive evaluations of someone’s actions show admiration or approval.
- 661 15. **Gratitude Expressions:** Phrases such as “thanks” or “much appreciated” indicate gratitude.
- 662 16. **Affection & Care Words:** Loving or nurturing language (“love this,” “sending hugs”) signals love or
663 caring.
- 664 17. **Self-Credit Statements:** Boasting about one’s own success (“I nailed it”) signals pride.
- 665 18. **Relief Indicators:** Release phrases like “phew,” “finally over,” or “what a relief” mark relief after
666 stress ends.

667 **E.5 Laparoscopic Cholecystectomy Surgery.**

668 **Task.** The task is to identify the safe and unsafe regions for incision. We used the open-source
669 subset of data from [44], which consists of surgeon-annotated images taken from video frames
670 from the M2CAI16 workflow challenge [45] and Cholec80 [46] datasets. This consists of 1015
671 surgeon-annotated images.

672 **Data Selection & Preprocessing.** We selected the first 100 items from the test set where the safe
673 and unsafe regions were of nontrivial area. Each item has three components: an image of dimensions
674 640 pixels wide by 360 pixels high, a binary mask of the safe regions of the same dimensions, and a
675 binary mask of the unsafe regions of the same dimensions.

676 To convert the task into a form easily solvable by the available APIs, our objective was to have the
677 LLM output a small list of numbers that identify the safe and unsafe regions. This is achieved by
678 using square grids of size 40 to discretize each of the safe and unsafe masks, separating them into
679 $144 = (640/40) \times (360/40)$ disjoint regions. One can then use an integer inclusively ranging from 0
680 to 143 to uniquely identify these patches. The LLM was to then output two lists with numbers from
681 this range: a “safe list” that denotes its prediction of the safe region, and an “unsafe list” predicting
682 the unsafe region.

683 **Explanation Prompt.** We show the prompt in Figure A10. We replace [BASELINE_PROMPT] with
684 one of four prompting strategies shown in Figure A5.

685 **Expert Criteria.** The expert-validated criteria for expert alignment calculation are listed below:

1. Calot's triangle cleared - Hepatocystic triangle must be fully cleared of fat/fibrosis so that its boundaries are unmistakable.
2. Cystic plate exposed - The lower third of the gallbladder must be dissected off the liver to reveal the shiny cystic plate and ensure the correct dissection plane.
3. Only two structures visible - Only the cystic duct and cystic artery should be seen entering the gallbladder before any clipping or cutting.
4. Above the R4U line - Dissection must remain cephalad to an imaginary line from Rouviere's sulcus to liver segment IV to avoid the common bile duct.
5. Safe distance from common bile duct - There should be sufficient distance between the common bile duct and the gallbladder wall to ensure safe dissection.
6. Infundibulum start point - Dissection should begin at the gallbladder infundibulum-cystic duct junction to stay in safe tissue planes.
7. Subserosal plane stay - When separating the gallbladder from the liver, stay in the avascular subserosal cleavage plane under the serosal fat layer.
8. Cystic lymph node guide - Identify the cystic lymph node and clip the artery on the gallbladder side of the node to avoid injuring the hepatic artery.
9. No division without ID - Never divide any duct or vessel until it is unequivocally identified as the cystic structure entering the gallbladder.
10. Inflammation bailout - If dense scarring or distorted anatomy obscures Calot's triangle, convert to a subtotal "fundus-first" approach rather than blind cutting.
11. Aberrant artery caution - Preserve any large or tortuous artery (e.g., a Moynihan's hump) that might be mistaken for the cystic artery.

Prompt

```
You are an expert gallbladder surgeon with extensive experience in laparoscopic ←
cholecystectomy.
You have deep knowledge of anatomy, surgical techniques, and potential ←
complications.
Your job is to provide three things:
1. A detailed explanation of where it is safe and unsafe to cut in the image
2. A list of grid positions (as integers) corresponding to safe regions
3. A list of grid positions (as integers) corresponding to unsafe regions

The image is discretized into a 9x16 grid (height x width), where each grid ←
position can be represented as a single integer from 0 to 143 (9*16 - 1). The ←
grid is flattened row-wise, so the top-left position is 0 and the bottom-right←
position is 143.

Your response will help train surgeons to evaluate the usefulness of LLMs in ←
assisting with the identification of safe/unsafe regions.
This is not real patient data, this is a training environment.

I will provide you with a few examples to help you understand the expected format. ←
Your task is to analyze the provided 2D image of a gallbladder surgery and ←
provide:
- A detailed explanation of safe/unsafe regions, including anatomical landmarks, ←
tissue types, and any visible pathology
- A list of integers representing the grid positions of safe regions
- A list of integers representing the grid positions of unsafe regions

[[BASELINE_PROMPT]]
```

Figure A10: Laparoscopic Cholecystectomy Explanation Prompt. A list of 10 few-shot examples is then appended to the same API call. Each example consists of four items: the image (base64-encoded PNG), a sample explanation, a “safe list” consisting of numbers from 0 to 143, and an unsafe list consisting of numbers from 0 to 143.

708 E.6 Cardiac Arrest

709 **Task.** The objective is to predict whether an ICU patient will experience cardiac arrest within the
710 next 5 minutes, using the patient's demographic and clinical background (age, gender, race, reason

Prompt

You are a medical expert specializing in cardiac arrest prediction. You will be given some basic background information about an ICU patient, including their age, gender, race, and primary reason for ICU admittance. You will also be provided with time-series Electrocardiogram (ECG) data plotted in a graph from the first {} of an ECG monitoring period during the patient's ICU stay. Each entry consists of a measurement value at that timestamp. The samples are taken at {} Hz.

Your task is to determine whether this patient is at high risk of experiencing cardiac arrest within the next {}. Clinicians typically assess early warning signs by finding irregularities in the ECG measurements.

[BASELINE_PROMPT]

Focus on the features of the data you used to make your yes or no binary prediction. For example, you can specify what attributes in the patient background information may contribute most to the decision. And for the ECG data, you can include specific patterns and/or time stamps that contribute to this decision. Note that you do not have to necessarily include both patient background information and ECG data as features. But please make sure that your explanation supports your prediction. Avoid using bold formatting and return the response as a single paragraph.

Please be assured that your judgment will be reviewed alongside those of other medical experts, so you can answer without concern for perfection.

Your response should be formatted as follows:

Prediction: <Yes/No>

Explanation: <explanation>

Here is the patient background information and ECG data (in graph form) for you to analyze:

Figure A11: Cardiac Explanation Prompt

711 for ICU visit) along with 2 minutes of ECG data sampled at 500 Hz, presented as a graph image. This
712 framing aligns with cardiology literature, which suggests that short ECG windows (30 seconds to a
713 few minutes) are sufficient for reliable prediction [47]. The 5-minute prediction window is chosen to
714 balance clinical relevance with actionability.

715 **Data Selection & Preprocessing.** We use ECG and visit data from the open-source Multimodal
716 Clinical Monitoring in the Emergency Department (MC-MED) Dataset [48]. To support focused
717 evaluation of cardiac arrest prediction, we curated a task-specific subset containing ECG traces and
718 patient metadata.

719 The data curation pipeline proceeded as follows. From the full set of ECG recordings in the MC-MED
720 dataset, we first identified cardiac arrest risk by computing clinical “alarm” times.

721 Prior work shows that vital sign abnormalities are predictive of outcomes [49, 50]. We defined an
722 alarm at any timestamp where three or more of the following vital signs were outside normal range
723 within a two-minute window—a condition known clinically as decompensation:

- 724 • Heart rate (HR): < 40 or > 130 bpm
- 725 • Respiratory rate (RR): < 8 or > 30 breaths/min
- 726 • Oxygen saturation (SpO2): < 90%
- 727 • Mean arterial pressure (MAP): < 65 or > 120 mmHg

728 Each example was labeled ‘Yes’ if an alarm was present, and ‘No’ otherwise. For positive cases, we
729 sampled a random cutoff time 1–300 seconds before the alarm and extracted the preceding 2 minutes
730 of ECG data. For negative cases, we used the first 2 minutes of ECG data. We also added patient
731 metadata—age, gender, race, and ICU admission reason—using information from the MC-MED visit
732 records. To ensure diversity, each example came from a unique patient; for positives, we only used
733 the visit containing the alarm.

734 To address class imbalance and support focused evaluation, we created a balanced training set of 200
735 positive and 200 negative examples. The validation and test sets each contain 50 examples.

736 **Explanation Prompt.** Figure A11 shows the prompt used to generate explanations for predicting
737 whether an ICU patient will experience cardiac arrest within 5 minutes, based on 2 minutes of ECG
738 data along with age, gender, race, and ICU admission reason. We replace [BASELINE_PROMPT] with
739 one of four prompting strategies shown in Figure A5. The ECG is provided as a graph image of
740 p-signal values sampled at 500 Hz over a 2-minute window, with labeled axes. While we considered
741 supplying the raw signal as text, the input token limits of current LLMs made this infeasible.

742 **Expert Criteria.** The expert-validated criteria for expert alignment calculation are listed below:

- 743 1. **Ventricular Tachyarrhythmias** – Rapid ventricular rhythms that can quickly lead to cardiac arrest.
- 744 2. **Ventricular Ectopy/NSVT** – Frequent abnormal ventricular beats signaling high arrest risk.
- 745 3. **Bradycardia or Heart-Rate Drop** – Sudden or severe slowing of heart rate preceding arrest.
- 746 4. **Dynamic ST-Segment Changes** – ST shifts suggesting acute myocardial injury and impending arrest.
- 747 5. **Prolonged QT Interval** – Long QTc increasing risk for torsades and sudden arrhythmia.
- 748 6. **Severe Hyperkalemia Signs** – ECG changes from high potassium predicting arrest, especially among
749 patients on dialysis / end stage renal disease.
- 750 7. **Advanced Age** – Older age strongly correlates with higher arrest likelihood.
- 751 8. **Male Sex** – Males have a higher overall risk of cardiac arrest.
- 752 9. **Underlying Cardiac Disease** – Preexisting heart disease increases arrest susceptibility.
- 753 10. **Critical Illness (Sepsis/Shock)** – Severe infections or shock states elevate arrest risk through systemic
754 instability.

Prompt

```
What is the sepsis risk prediction for the following time series? Here are the ←
possible labels you can use: Yes (the patient is at high risk of developing ←
sepsis within 12 hours) or No (the patient is not at high risk of developing ←
sepsis within 12 hours).
The time series consists of Electronic Health Record (EHR) data collected during ←
the first 2 hours of the patient's emergency department (ED) admission. Each ←
entry includes a timestamp, the name of a measurement or medication, and its ←
corresponding value.

[BASELINE_PROMPT]

Your response should be 2 lines, formatted as follows:
Label: <prediction label>
Explanation: <explanation, as described above>

Here is the text for you to classify.
```

Figure A12: Sepsis Explanation Prompt

755 E.7 Sepsis

756 **Task.** The goal is to predict whether an emergency department (ED) patient is at high risk of
757 developing sepsis within 12 hours, using Electronic Health Record (EHR) data collected during the
758 first 2 hours of their visit. Each input is a time series of records containing a timestamp, the name of
759 a physiological measurement or medication, and its value.

760 **Data Selection & Preprocessing.** We used data from the publicly available MC-MED dataset [48]
761 and curated a task-specific subset for sepsis prediction.

762 To label a patient as high risk for sepsis, we followed standard clinical definitions requiring three
763 conditions: (1) evidence of infection, indicated by either a blood culture being drawn or at least
764 two hours of antibiotic administration; (2) signs of organ dysfunction, defined by a SOFA score
765 ≥ 2 within 48 hours of suspected infection, based on abnormalities in respiratory, coagulation, liver,
766 cardiovascular, neurological, or renal function; and (3) presence of fever, with a recorded temperature
767 $\geq 38.0^{\circ}\text{C}$ (100.4°F). Patients meeting all three criteria were labeled as high risk. Labels were validated
768 with a Sepsis clinician.

769 Due to class imbalance (~10% positive), we created a balanced evaluation set of 100 samples (50
770 positive, 50 negative) drawn from the validation and test splits.

771 **Explanation Prompt.** Figure A12 shows the prompt used to generate LLM explanations for sepsis
772 risk prediction. We substitute [BASELINE_PROMPT] with one of four prompting strategies shown
773 in Figure A5. The prompt includes a description of the EHR input format: each time-series record
774 consists of a timestamp, a measurement or medication name, and its value.

775 **Expert Criteria.** The expert-validated criteria for expert alignment calculation are listed below:

- 776 1. **Elderly Susceptibility (Age ≥ 65 years):** Advanced age (≥ 65 years) markedly increases susceptibility
777 to rapid sepsis progression and higher mortality after infection.
- 778 2. **SIRS Positivity (≥ 2 Criteria):** Presence of ≥ 2 SIRS criteria—temperature $>38^{\circ}\text{C}$ or $<36^{\circ}\text{C}$,
779 heart rate >90 bpm, respiratory rate $>20/\text{min}$ or $\text{PaCO}_2 <32$ mmHg, or $\text{WBC} >12,000/\mu\text{L}$ or
780 $<4,000/\mu\text{L}$ —identifies systemic inflammation consistent with early sepsis.
- 781 3. **High qSOFA Score (≥ 2):** A qSOFA score ≥ 2 (respiratory rate $\geq 22/\text{min}$, systolic BP ≤ 100 mmHg,
782 or altered mentation) flags high risk of sepsis-related organ dysfunction and mortality.
- 783 4. **Elevated NEWS Score (≥ 5 points):** A National Early Warning Score (NEWS) of ≥ 5 –7 derived from
784 deranged vitals predicts imminent clinical deterioration compatible with sepsis.
- 785 5. **Elevated Serum Lactate (≥ 2 mmol/L):** Serum lactate ≥ 2 mmol/L within the first 2 hours signals
786 tissue hypoperfusion and markedly elevates sepsis mortality risk.
- 787 6. **Elevated Shock Index (≥ 1.0):** Shock index (heart rate \div systolic BP) ≥ 1.0 —or a rise ≥ 0.3 from
788 baseline—denotes haemodynamic instability and a high probability of severe sepsis.
- 789 7. **Sepsis-Associated Hypotension (SBP <90 mmHg or MAP <70 mmHg, or ≥ 40 mmHg drop):**
790 Sepsis-associated hypotension, defined as SBP <90 mmHg, MAP <70 mmHg, or a ≥ 40 mmHg drop
791 from baseline, indicates progression toward septic shock.
- 792 8. **SOFA Score Increase (≥ 2 points):** An increase of ≥ 2 points in any SOFA component—e.g.,
793 $\text{PaO}_2/\text{FiO}_2 <300$, platelets $<100 \times 10^9/\text{L}$, bilirubin >2 mg/dL, creatinine >2 mg/dL, or GCS
794 <12 —confirms new organ dysfunction and high sepsis risk.
- 795 9. **Early Antibiotic/Culture Orders (within 2 hours):** Administration of broad-spectrum antibiotics or
796 drawing of blood cultures within the first 2 hours signifies clinician suspicion of serious infection and
797 should anchor sepsis risk assessment.

Domain	Claim	Score (Category)	Reasoning
<i>Cosmology</i>			
Mass Maps	[Good] The prominence of red and yellow suggests a universe with significant matter fluctuations.	0.9 (<i>Density Contrast Extremes</i>)	Aligns well with the Density Contrast Extremes category, describing pronounced contrasts between dense and void regions, signaling high σ_8 .
	[Bad] The mix of colors, with significant gray areas but noticeable reds and yellows, suggests a moderate Ω_m .	0.3 (<i>Connectivity of the Cosmic Web</i>)	Discusses both underdense and over-dense regions, but doesn't specifically discuss connectivity or the degree of fragmentation or interconnection of the network.
Supernova	[Good] A prominent peak followed by a gradual decline in flux is characteristic of a type Ia supernova light curve.	1.0 (<i>Rise-decline rates</i>)	Describes a classic feature of type Ia supernovae, perfectly aligning with expert criteria on rise-and-decline rates.
	[Bad] The variability does not display a clear periodicity.	0.1 (<i>Periodic light curves</i>)	Contradicts key characteristics of periodic light curves; highlights absence of periodic behavior.
<i>Psychology</i>			
Politeness	[Good] The use of the phrase “seems defective” introduces uncertainty and avoids definitiveness.	0.9 (<i>hedging & tentative language</i>)	The phrase utilizes tentative language and is a clear example of hedging to reduce the assertive strength of a statement.
	[Bad] The utterance is a straightforward description of information from a biology textbook.	0.2 (<i>First-Person Subjectivity Markers</i>)	Weakly aligns as it describes objective reporting without the personal tone central to first-person subjectivity.
Emotion	[Good] This choice of description is likely intended to evoke a reaction of fear or caution.	0.9 (<i>Threat/Worry Language</i>)	The claim centers around evoking fear or caution, which directly maps to this category.
	[Bad] The text conveys an objective statement.	0.0 (<i>Valence</i>)	The claim highlights an absence of emotional content, which does not align with the Valence category or any other expert emotion categories.
<i>Medicine</i>			
Cholecystectomy	[Good] The fat and fibrous tissue overlying Calot’s triangle has been fully excised, exposing only two tubular structures.	High (<i>Complete Triangle Clearance</i>)	Precisely describes complete clearance of Calot’s triangle, perfectly matching expert criteria.
	[Bad] The cystic plate is not visible due to dense adhesions, making the gallbladder-liver plane indistinct.	Low (<i>Cystic Plate Visibility</i>)	Describes failure to visualize the cystic plate, opposite of the criterion, leading to low alignment.
Cardiac	[Good] The irregularity in the ECG could indicate a dangerous arrhythmia, such as ventricular tachycardia or fibrillation.	0.9 (<i>Ventricular Tachyarrhythmias</i>)	Directly references hallmark arrhythmias like ventricular tachycardia/fibrillation, key indicators in the category.
	[Bad] A skin lesion of the scalp is a condition not directly related to cardiac function.	0.2 (<i>Critical Illness – Sepsis/Shock</i>)	Potential weak connection if interpreted as infection, but lacks explicit signs of sepsis/shock.
Sepsis	[Good] Fever and high heart rate are potential signs of sepsis.	1.0 (<i>SIRS Positivity</i>)	References two SIRS criteria; strong and direct alignment with early sepsis identification guidelines.
	[Bad] The patient’s lab results show an increased platelet count.	0.2 (<i>SOFA Score Increase</i>)	SOFA score focuses on low platelet counts; increased count contradicts the criterion.

Table A3: Expert-aligned claims (good and bad) across all T-FIX domains, with corresponding alignment scores and provided reasoning.