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Abstract

As LLMs are deployed in knowledge-intensive settings (e.g., surgery, astronomy,1

therapy), users expect not just answers, but also meaningful explanations for2

those answers. In these settings, users are often domain experts (e.g., doctors,3

astrophysicists, psychologists) who require confidence that a model’s explanation4

reflects expert-level reasoning. However, current evaluation schemes primarily5

emphasize plausibility or internal faithfulness of the explanation, often neglecting6

whether the content of the explanation truly aligns with expert intuition. We7

formalize expert alignment as a criterion for evaluating explanations with T-FIX, a8

benchmark spanning seven knowledge-intensive domains. T-FIX includes datasets9

and novel alignment metrics developed in collaboration with domain experts, so an10

LLM’s explanations can be scored directly against expert judgment.111

1 Introduction12

LLMs are increasingly used for domain-specific tasks, which require substantial background knowl-13

edge from specialized fields. It is foreseeable that LLM-powered systems will soon assist in high-14

stakes environments such as operating rooms, astronomical observatories, and therapeutic settings.15

For LLMs to be trustworthy and reliable in these critical applications, users require not only correct16

answers but also good explanations [1, 2].17

What constitutes a “good explanation”? This largely depends on the explanation’s target audience18

[3, 4]. As LLMs are increasingly adopted for specialized tasks like surgical assistance or supernova19

analysis, the primary users are often domain experts, such as doctors and astrophysicists. Conse-20

quently, a “good explanation” in these specialized contexts must offer insights that are valuable and21

interpretable to these domain experts.22

Existing evaluations of LLM explanations predominantly focus on two dimensions: (1) plausibility,23

ensuring that the answer logically follows from the provided explanation; and (2) faithfulness,24

verifying that the answer accurately reflects the LLM’s actual reasoning process. [5–7]. While25

these dimensions are necessary, they are not sufficient for knowledge-intensive applications. Domain26

experts often need highly specific information regarding how a prediction was derived [8], particularly27

whether the LLM considered aspects of the input that they themselves deem critical.28

To address this, we propose a third dimension for evaluating LLM-generated explanations: Expert29

Alignment. This dimension measures the extent to which an LLM-generated explanation for a given30

input and prediction focuses on criteria that a domain expert would deem important when making the31

same prediction.32

1https://anonymous.4open.science/r/FIX-2-BE33/
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Figure 1: Most current evaluations for LLM explanations consider two dimensions: the overall
plausibility and the faithfulness to the reasoning process. However, a crucial third dimension, expert
alignment, asks: Does the LLM reason like a domain expert would? For example, an LLM correctly
predicts sepsis risk with a plausible, faithful explanation, but because the explanation emphasizes
features that clinicians rarely use for sepsis diagnosis, the expert alignment score is low.

An LLM can generate a correct answer with a plausible and faithful explanation, yet still rely on33

features that domain experts consider irrelevant or low-priority, as shown in Figure 1. Such misaligned34

reasoning can undermine trust in the model, even when the output is technically correct.35

While alignment with domain expert reasoning has been explored in machine learning, for example,36

by identifying meaningful feature groups [9], such approaches are primarily suited for interpreting37

traditional, non-generative neural networks. Modern LLMs typically generate free-form text explana-38

tions that are not directly based on these explicit feature groups. To our knowledge, no benchmark39

currently exists to evaluate the expert alignment of such free-form textual explanations.40

To fill this gap, we introduce the T-FIX benchmark: a collection of datasets spanning seven distinct41

domains, accompanied by an evaluation framework. Designed in collaboration with domain experts,42

T-FIX assesses the expert alignment of LLM-generated explanations within each domain. Our43

contributions are as follows:44

• We introduce expert alignment as a desired attribute of LLM-generated explanations and create45

T-FIX, the first benchmark designed to evaluate this.46

• We release a pipeline to evaluate how well any LLM “thinks like an expert,” designed to be easily47

extendable to new domains.48

• We demonstrate that current LLMs often struggle to generate explanations that align with expert49

intuition, highlighting this as a significant area for their future improvement.50

• We find that LLMs generally perform better when they reason over multiple expert criteria, yet51

modern high-performing LLMs do not appear to rely on expert reasoning.52

2 Expert Alignment Criteria53

The development of the T-FIX benchmark was a highly collaborative and interdisciplinary process.54

For each of our seven domains (see Figure 4), our first step was to identify the expert criteria most55

relevant to making a prediction, detailed in the left of Figure 2.56

When answering knowledge-intensive questions like “Will this patient develop sepsis in the next57

12 hours?” or “What kind of supernova produced these wavelengths?”, doctors and astrophysicists58

rely on domain-specific heuristics, prioritizing certain features over others based on training and59

experience. For instance, in sepsis classification, an experienced clinician would typically emphasize60

features like advanced age and hypotension, while assigning lower importance to signals like glucose61

levels or patient demeanor, which are less directly indicative of sepsis risk.62

Thus, an LLM that makes the correct prediction by attending to age and hypotension is more expert-63

aligned than one that arrives at the same answer by focusing on glucose and demeanor. We define64

the subset of features that experts prioritize most highly when performing a task as the task’s expert65

alignment criteria.66
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Figure 2: An overview of the T-FIX construction process. For each dataset, we first establish expert
alignment criteria – features deemed important by domain experts for a specific task – through
collaboration with these experts and LLM-based deep research tools. These criteria form the basis of
the T-FIX evaluation pipeline, which processes an LLM-generated explanation to output an expert
alignment score. A high score suggests the explanation reflects reasoning aligned with domain
experts (i.e., the LLM “thinks like an expert”), while a low score indicates the explanation may rely
on aspects that experts would deem irrelevant.

Figure 3: Our T-FIX pipeline. To evaluate an LLM-generated explanation, we first decompose it into
atomic claims. Next, we filter out irrelevant claims, such as unsupported or speculative statements.
Each remaining claim is then scored against the domain-specific expert alignment criteria on a 0–1
scale: a score of 1 indicates perfect overlap with at least one criterion, while 0 indicates no overlap.
Filtered-out claims are automatically assigned a score of 0. We compute the final expert-alignment
score for the explanation by averaging across all claim scores.

Step 1: Surveying the Field. To seed our initial list of expert criteria, we prompt OpenAI’s o367

model to perform a comprehensive literature review of the relevant field. Each prompt includes a task68

description, example input-output pairs from the dataset, and instructions to generate a list of criteria69

considered important for performing the task – accompanied by reputable citations.70

We begin with this deep research approach to avoid over-reliance on any single expert’s perspective.71

Our goal is to synthesize insights from a broad array of books, journals, and academic publications to72

produce as comprehensive a list as possible.73

Step 2: Iteration with Domain Experts. To validate and improve the output from Step 1, we present74

the preliminary criteria list to a domain expert (see Figure 4 for details on each expert per domain).75

We ask the expert to (1) remove any incorrect or irrelevant criteria, (2) add any important ones that76

were missed, and (3) ensure that the list reflects a consensus that their peers would agree with. The77

expert then refines the list until it accurately captures the field’s knowledge.78

An example criterion for sepsis classification is as follows: Advanced age (over 65 years)79

markedly increases susceptibility to rapid sepsis progression and higher mortality80

after infection.81
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Figure 4: Overview of datasets and domains in T-FIX. We evaluate LLM expert alignment across
seven diverse domains, spanning cosmology, psychology, and medicine. For each dataset, we
highlight the motivating task, input–output format, representative example, and the expert responsible
for validating alignment criteria. The final row summarizes the expert alignment criteria used for
scoring explanations in each domain. The column colors reflect dataset modality: blue indicates
vision, yellow indicates language, and pink indicates time-series.

All Deep Research prompt templates and final expert alignment criteria lists for all domains are82

available in our GitHub repository.83

3 T-FIX Pipeline84

LLM-generated explanations contain a mix of reasoning steps – some aligned with expert judgment,85

and others based on irrelevant information. To systematically evaluate such complex explanations, we86

first break them down into atomic claims, or standalone “features” that can be individually assessed87

for expert alignment. By scoring each feature separately and then aggregating these scores, we can88
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compute an overall expert alignment score for the full explanation. See Figure 3 for an example of89

this multi-step process.90

Our T-FIX pipeline for evaluating expert alignment consists of three main components:91

1. Claim Extraction: Decomposing a free-form explanation into standalone, atomic claims.92

2. Relevancy Filtering: Removing claims that are unsupported, speculative, or otherwise irrelevant93

to the model’s prediction.94

3. Alignment Scoring: Measuring the degree of overlap between each remaining claim and domain95

expert criteria on a 0–1 scale.96

We build our pipeline using GPT-4o, as it is both fast and cost-effective.97

3.1 Stage 1: Atomic Claim Extraction98

Given a free-form text explanation accompanying an LLM’s prediction, our first goal is to identify and99

extract the distinct reasoning steps, i.e. “features”, used by the LLM. We achieve this by decomposing100

the explanation into atomic claims.101

An atomic claim is defined as a self-contained, indivisible statement that conveys a single verifiable102

fact, and can be fully understood without reference to the surrounding context.103

To extract atomic claims, we adapt prompting techniques from the claim decomposition literature104

[10, 11] and prompt GPT-4o to transform a free-form explanation into a list of fully decontextualized105

atomic claims. We treat each claim as representing a single “feature” in the LLM’s explanation.106

3.2 Stage 2: Relevancy Filtering107

Not all extracted claims contribute meaningfully to expert reasoning. Some may be unsupported (i.e.,108

references to content not present in the input), speculative (i.e., unfounded hypotheses), or otherwise109

irrelevant (e.g., repeating the model’s final prediction or citing unrelated information).110

Given that domain experts heavily prefer succinct, informative explanations, we prompt GPT-4o to111

remove such noisy claims by evaluating each atomic claim based on the original input. A claim is112

retained if it satisfies the following two criteria: (1) Clearly grounded in and supported by the input113

(i.e., not unfounded or speculative); (2) Directly contributes to explaining why the model made its114

prediction. On average, 72% of the claims generated in Stage 1 pass this relevancy filter and are115

carried forward for alignment scoring.116

3.3 Stage 3: Alignment Scoring117

In the final stage of our pipeline, we evaluate each retained atomic claim by comparing it to the118

domain-specific expert alignment criteria (see Section 2). This step quantifies how closely the119

reasoning in the LLM’s explanation reflects expert judgment.120

Given an atomic claim and a list of expert criteria, we prompt GPT-4o to measure the claim’s expert121

alignment in two steps:122

1. Identify the most aligned expert criterion. The model selects the criterion whose focus and123

intent best match the core idea of the atomic claim. The model may also indicate that no criteria124

align with the claim.125

2. Assign an alignment score (0-1). The model scores how well the claim aligns with the chosen126

criterion: 1 for complete overlap, and 0 for no alignment. Intermediate scores reflect partial127

alignment, such as when the claim touches on a relevant concept but lacks specificity. See Table 1128

for details on intermediate scores.129

For example, consider the expert criterion for sepsis classification: Advanced age (over 65 years).130

The claim “The patient is at risk as they are 72 years old” would receive an alignment131

score of 1.0, as it directly and fully supports the criterion. In contrast, the claim “The patient is132

at risk as they are 37” may receive a score of 0.2: while it discusses patient age, the specific133

value does not align with the expert threshold for elevated risk. In contrast, the claim “The patient134

is NOT at risk as they are 37” would also receive a score of 1.0. Examples of claims with high135
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Table 1: Interpretation of alignment score ranges used in scoring atomic claims against expert criteria.

Score Meaning

(0, 0.25] The claim references an unrelated or misleading feature, or misinterprets the criterion’s meaning
(0.25, 0.5] The claim loosely refers to the correct concept but lacks key details, thresholds, or uses vague

language
(0.5, 0.75] The claim references a relevant feature but only partially reflects the criterion (e.g., omits

thresholds, is overly general, contains noise)
(0.75, 1] The claim is specific, directly relevant, and fully captures the meaning and intent of the expert

criterion

Table 2: Pipeline validation: Accuracy averaged across all T-FIX domains and annotator agreement –
Cohen’s κ for each stage in our pipeline. Domain-specific statistics are provided in Table A2.

Pipeline Stage N Accuracy Cohen’s κ

Claim Extraction 35 0.943 0.717
Relevancy Filtering 295 0.871 0.402
Expert Alignment 211 0.923 0.405

and low alignment for each domain, along with rationale for why those scores were assigned, are136

provided in Table A3.137

3.4 Final Aggregation138

We assign an alignment score of 0 to the claims that were filtered out or did not align with any criteria.139

This ensures LLM-generated explanations are penalized for unsupported or speculative statements,140

irrelevant information, and misaligned reasoning. We then average the alignment scores across all141

claims to produce a final expert alignment score for the explanation. The prompts for all three stages142

can be found in Appendix D and in our Github repository.143

4 Pipeline Validation144

Given our pipeline relies on multiple curated GPT-4o prompts, we want to ensure that the extracted145

and filtered claims are accurate, and that the final alignment scores match domain expert intuition. To146

validate the outputs at each stage, we conduct an annotation study for 35 examples (5 per domain).147

This includes 295 extracted claims and 211 aligned claims. We recruit a total of six annotators, with148

two annotators per example2.149

Validating atomic claim extraction. Annotators receive the original explanation and its extracted150

atomic claims from Stage 1. They classify each extraction as: (A) Perfect – all claims correctly151

extracted, (B) Partially accurate – 1–3 claims missing or incorrect, or (C) Incorrect – 3+ claims152

missing or incorrect. We convert these labels to accuracy scores: A = 1.0, B = 0.5, C = 0.0.153

Validating relevancy filtering. Annotators review the explanation, extracted claims, and filtered154

claims from Stage 2. For each claim, they assess whether: (A) It was correctly kept or filtered, (B) It155

was incorrectly kept or filtered, or (C) It is ambiguous or borderline. These are scored as: A = 1.0,156

B = 0.0, C = 0.5.157

Validating expert alignment scoring. Annotators are shown the alignment criteria and the filtered,158

scored claims from Stage 2. We define direction as the alignment score category (high, neutral, low),159

and magnitude as the exact score (e.g., 0.1 vs. 0.3 for low alignment).160

Annotators evaluate each score as: (A) Fully accurate – an expert would agree with the score; correct161

direction and magnitude, (B) Partially accurate – correct direction, but magnitude off by ≤0.2, or162

(C) Incorrect – wrong direction and magnitude off by >0.2. These are scored as: A = 1.0, B = 0.5,163

C = 0.0.164

2Annotators are PhD students who study machine learning at an American university and are previously
familiar with evaluating LLM outputs for given criteria.
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Table 3: Evaluating top LLMs on T-FIX. We report the average expert alignment score across all
examples in the dataset. Corresponding accuracies are in Table A1 and baseline prompting strategies
are described in Section 6.

Cosmology Psychology Medicine
Baseline Mass Maps Supernova Politeness Emotion Cholec Cardiac Sepsis

GPT-4o

Vanilla 0.421 0.877 0.629 0.597 0.295 0.533 0.545
CoT 0.390 0.859 0.625 0.639 0.338 0.564 0.532
Socratic 0.412 0.859 0.596 0.612 0.369 0.569 0.539
SubQ Decomp 0.354 0.881 0.596 0.531 0.358 0.519 0.563

o1

Vanilla 0.616 0.778 0.615 0.609 0.443 0.501 0.515
CoT 0.595 0.766 0.620 0.658 0.473 0.481 0.552
Socratic 0.503 0.782 0.555 0.467 0.456 0.449 0.578
SubQ Decomp 0.491 0.805 0.536 0.545 0.409 0.473 0.576

Gemini-2.0-Flash

Vanilla 0.515 0.811 0.618 0.600 0.407 0.529 0.566
CoT 0.507 0.815 0.569 0.566 0.376 0.553 0.578
Socratic 0.281 0.815 0.559 0.554 0.394 0.475 0.581
SubQ Decomp 0.405 0.789 0.566 0.520 0.393 0.494 0.584

Claude-3.5-Sonnet

Vanilla 0.710 0.761 0.634 0.642 0.264 0.565 0.611
CoT 0.688 0.776 0.639 0.622 0.286 0.538 0.584
Socratic 0.698 0.764 0.590 0.580 0.292 0.549 0.592
SubQ Decomp 0.628 0.754 0.631 0.617 0.271 0.555 0.584

Results & agreement. Table 2 reports average accuracy at each stage across all seven T-FIX domains,165

along with Cohen’s κ for inter-annotator agreement. The κ scores fall in the moderate-to-substantial166

agreement range, suggesting consistent annotator judgments and supporting the validity of our T-FIX167

pipeline. Domain-specific metrics are shown in Table A2.168

5 Included Datasets169

T-FIX contains seven open-source datasets, spanning the fields of cosmology, psychology, and170

medicine. To assess LLM explanations across multiple modalities, we include text, vision, and171

time-series datasets. We select these seven datasets due to the availability of domain experts willing172

to work with us for these tasks.173

As running T-FIX requires querying LLMs, many of which follow a pay-as-you-go API structure,174

we keep the total size of our benchmark to 700 (100 per dataset) in order for T-FIX to be accessible175

to as many researchers as possible.176

We select a subset of 100 examples from the test set of each open-source dataset in T-FIX, and177

balance this sampling across classes when possible. We provide an overview of the included open-178

source datasets in Figure 4. See Appendix E for additional details about the motivation, task, and179

prompting procedure for each dataset.180

6 Experiments181

After building a pipeline to evaluate the expert alignment of an LLM explanation, we evaluate a suite182

of today’s top LLMs on T-FIX to determine how expert-aligned these models are on domain-specific183

tasks. We use the following prompting techniques as baselines to generate explanations for each184

dataset in T-FIX.185

1. Vanilla: The LLM is prompted to generate an explanation along with its answer, without any186

additional guidance or reasoning structure.187
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Figure 5: Shannon Entropy of expert alignment criteria for GPT-4o. For each prompting baseline, we
show coverage of each domain’s explanations across all expert criteria – a high value indicates the
LLM considers many criteria across examples, while a low value indicates the LLM focuses on the
same criteria repeatedly.

2. Chain-of-Thought (CoT): The LLM is prompted to reason step-by-step through intermediate188

steps before answering, supporting more accurate responses on complex, multi-step tasks.189

3. Socratic Prompting: The LLM is instructed to question its own reasoning, encouraging reflection190

and the surfacing of uncertainties or assumptions.191

4. Subquestion Decomposition: The LLM is guided to break down a complex task into simpler192

subquestions, answer them individually, and then synthesize a final response.193

Domain-specific prompts are detailed in Appendix E, with templates for the above prompting194

strategies in Figure A5. Results for GPT-4o, GPT-o1, Gemini-2.0-Flash, and Claude-3.5-Sonnet3 are195

shown in Table 3.196

7 Analysis197

In this section, we analyze how LLMs distribute reasoning across expert criteria and whether higher198

task accuracy indicates better expert alignment.199

Chain-of-
Thought

Socratic
Prompting

SubQ
Decomp

Vanilla

Mass Maps

Supernova

Politeness

Emotion

Cholecystectomy

Cardiac

Sepsis
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Figure 6: Expert-Alignment vs. Accuracy Correlation Heatmap, averaged across GPT-4o, o1, Gemini-
2.0-Flash, and Claude-3.5-Sonnet. Red indicates positive correlation, blue is negative, gray is no
correlation.

7.1 Coverage of Expert Alignment Criteria200

Section 3 describes our pipeline for measuring the proportion of expert-aligned claims in LLM201

explanations. We now examine a complementary question: How many expert alignment criteria does202

an LLM consider across its explanations?203

3We only select LLMs with vision support and context windows long enough to accommodate our time-series
datasets. All models are accessed in May 2025.
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A single gold-standard explanation rarely requires reasoning over all expert criteria; most high-quality204

explanations reference only 3–5. Thus, assessing coverage at the question level is not meaningful.205

Instead, we analyze coverage at the dataset level – whether different prompting strategies lead to a206

broader utilization of expert criteria across all questions within a domain.207

Figure 5 presents the Shannon entropy of GPT-4o’s covered expert criteria in each domain. We208

observe a correlation between entropy and performance: domains where GPT-4o underperforms (e.g.,209

Cholecystectomy, Supernova) show lower entropy, indicating limited criteria coverage. In contrast,210

well-performing domains (e.g., Politeness, Sepsis) exhibit more uniform coverage, equally taking211

into account all expert criteria.212

This suggests that LLMs that reason uniformly over expert alignment criteria perform better –213

a promising insight for future work in prompting or training models to incorporate a broader range of214

expert reasoning.215

7.2 Expert-Alignment vs. Accuracy216

T-FIX focuses on evaluating explanation quality, but we are also interested in understanding the217

relationship between expert alignment and prediction accuracy. Specifically, we ask: Does higher218

answer accuracy correspond to stronger expert alignment?219

Figure 6 shows the Pearson correlation of expert alignment (see Table A3) with accuracy (see220

Table A1) for each domain, averaged across models. In some domains with higher performance, like221

Cholecystectomy and Emotion, we do observe higher expert alignment as well. However, the overall222

correlation is weak across domains.223

The heatmap suggests today’s high-performing LLMs do not appear to rely on expert reasoning.224

Future research is needed to explore whether aligning model reasoning with expert criteria – via225

training objectives or prompting – can improve downstream performance.226

8 Related Work227

Evaluating LLM Explanations. Common explanation methods for LLMs include feature attribution228

(e.g., LIME, SHAP [12, 13]), counterfactuals, and self-generated explanations [14, 15]. Some models229

are also trained to produce human-readable justifications [16]. To assess explanation quality and230

utility, recent work highlights criteria such as faithfulness (alignment with the model’s reasoning)231

and plausibility (how convincing it is to humans) [17, 5, 6]. Human studies show mixed outcomes:232

explanations sometimes aid understanding [18, 19], but can also offer little value or cause over-trust233

[20]. A promising alternative is to use LLMs as automatic judges of explanation quality [21, 22],234

providing a scalable substitute for expensive human evaluation; we adopt this approach in T-FIX.235

Domain & Expert Alignment Concept-based models constrain parts of the network to predict high-236

level, human-defined concepts, enabling incorporation of domain knowledge into final predictions237

[23]. Extensions of concept bottlenecks and related methods aim to align latent representations with238

semantically meaningful features [24–26], potentially grouped for expert interpretability [9]. In NLP,239

integrating human knowledge has included collecting human-written explanation datasets to train240

models [16] and using learned explanations to guide predictions [27]. To our knowledge, no prior241

work explicitly evaluates text explanations for expert alignment like T-FIX.242

9 Conclusion243

We introduce T-FIX, the first benchmark designed to evaluate LLM explanations for expert alignment244

across seven knowledge-intensive domains. Our analysis reveals that today’s models struggle to245

generate explanations that experts would rely on, highlighting a critical area for improvement.246

Future work may include exploring instruction-tuning LLMs to generate explanations with strong247

expert alignment, extending T-FIX to additional domains, and Human-Computer Interaction studies248

exploring how expert-aligned explanations affect real-world decision-making by practitioners.249
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A Limitations461

As with any LLM-based system, the quality of the outputs is dependent on the input prompt. T-FIX is462

no exception – though we spend a significant amount of time analyzing outputs and prompt iterating,463

we do a finite amount of prompt iteration. There is a chance our benchmark could be marginally464

improved with additional prompt iteration. We hope the issue of prompt dependency diminishes with465

future models that are more robust and less susceptible to tiny prompt ablations.466

While our evaluation pipeline currently uses GPT-4o for scoring, it is model-agnostic by design, and467

we encourage future work to apply or adapt the pipeline with other LLMs to improve robustness and468

reduce evaluator-model entanglement.469

For pipeline validation, we conduct a user study where we annotate 35 examples. Though the470

annotation results on this subset suggest our pipeline is accurate, this work could have benefited from471

a larger and more robust annotation study. Future work should also involve domain experts vetting472

the pipeline in addition to recruited annotators.473

In addition, we only have one expert to validate the expert alignment criteria for each domain. Though474

our usage of a deep research LLM minimizes over-reliance on a single domain expert, multiple475

experts would have been better to create the expert criteria. We were constrained by domain experts476

eager and available to collaborate with us.477

Our experiments focus on a set of four models and four prompting strategies, and including additional478

models and strategies could provide a more comprehensive set of baseline results. Though many479

other high-performing LLMs and prompting techniques exist as of May 2025, we are conscious of480

budget and the environmental impact of running multiple experiments using T-FIX.481

B Ethical Considerations482

Using LLMs in the domains we describe in T-FIX, especially those relating to medicine, poses a483

unique set of risks and challenges. We do not advocate that LLMs should replace domain experts in484

these tasks; rather, T-FIX should serve as a step towards experts being able to use LLMs in a reliable485

and trustworthy way.486

Additionally, LLMs are constantly changing, especially those that are company-owned and not487

open-source. This poses potential issues relating to the reproducibility of our baseline results as time488

progresses and advances are made.489

Lastly, nearly all LLMs contain biases – some harmful – that may propagate up in a system built off490

of these models. All users of T-FIX must be conscious of this risk.491

C Extending T-FIX to a New Domain492

Though T-FIX covers a wide range of knowledge-intensive settings, it can easily be extended to493

additional domains.494

A key contribution of the T-FIX benchmark is the framework: we create a pipeline to score any495

free-form text explanation for expert alignment given a set of expert criteria. Additionally, we iterate496

extensively on all our prompt templates to ensure all T-FIX users need to do is input their task-specific497

details and perform no additional prompt engineering for good results.498

To add a new domain to T-FIX, we advise you to follow these steps:499

1. Generate criteria: Use the deep research prompt template shown in Figure A4 to generate500

a list of expert alignment criteria for your domain. Optionally, have a domain expert vet the501

generated criteria.502

2. Modify prompts: Modify the prompt templates outlined in Figure A1, Figure A2, and503

Figure A3 with your task description, few-shot examples, and generated expert criteria.504

3. Run T-FIX: Plug in your prompts for each stage of the pipeline and run T-FIX on your505

dataset!506
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Cosmology Psychology Medicine
Baseline Mass Maps Supernova Politeness Emotion Cholecystectomy Cardiac Sepsis

GPT-4o

Vanilla 0.039∗ 0.103 0.916∗ 0.259 0.075∗ 0.567 0.657
Chain-of-Thought 0.044∗ 0.093 0.824∗ 0.286 0.103∗ 0.460 0.714
Socratic Prompting 0.044∗ 0.127 0.829∗ 0.277 0.115∗ 0.462 0.657
SubQ Decomposition 0.049∗ 0.118 0.837∗ 0.304 0.115∗ 0.485 0.657

o1

Vanilla 0.044∗ 0.170 0.784∗ 0.304 0.194∗ 0.656 0.752
Chain-of-Thought 0.045∗ 0.146 0.818∗ 0.339 0.177∗ 0.685 0.750
Socratic Prompting 0.042∗ 0.155 0.793∗ 0.348 0.155∗ 0.646 0.755
SubQ Decomposition 0.044∗ 0.147 0.818∗ 0.321 0.138∗ 0.695 0.780

Gemini-2.0-Flash

Vanilla 0.045∗ 0.145 0.831∗ 0.223 0.253∗ 0.577 0.654
Chain-of-Thought 0.042∗ 0.118 0.837∗ 0.232 0.255∗ 0.558 0.663
Socratic Prompting 0.041∗ 0.118 0.809∗ 0.232 0.159∗ 0.592 0.661
SubQ Decomposition 0.053∗ 0.109 0.773∗ 0.241 0.249∗ 0.562 0.688

Claude-3.5-Sonnet

Vanilla 0.053∗ 0.127 0.962∗ 0.241 0.146∗ 0.485 0.709
Chain-of-Thought 0.050∗ 0.118 1.012∗ 0.268 0.150∗ 0.538 0.735
Socratic Prompting 0.044∗ 0.118 0.998∗ 0.232 0.145∗ 0.508 0.748
SubQ Decomposition 0.050∗ 0.136 0.990∗ 0.259 0.149∗ 0.485 0.741

Table A1: Evaluating top LLMs on T-FIX. We report the average performance of the LLM across all
examples in the dataset. We report accuracy for classification tasks, and MSE for regression tasks – a
(∗) indicates that the score reported is MSE. Baseline implementations are described in Section 6.

We encourage you to contact the authors of this work if you need additional assistance setting up507

your custom domain.508

Prompt

You will be given a paragraph that explains <task description >. Your task is to ←↩

decompose this explanation into individual claims that are:

Atomic: Each claim should express only one clear idea or judgment.
Standalone: Each claim should be self -contained and understandable without needing ←↩

to refer back to the paragraph.
Faithful: The claims must preserve the original meaning , nuance , and tone.

Format your output as a list of claims separated by new lines. Do not include any ←↩

additional text or explanations.

Here is an example of how to format your output:
INPUT: [example]
OUTPUT: [example]

Now decompose the following paragraph into atomic , standalone claims:
INPUT:

Figure A1: Prompt Template for Stage 1: Atomic Claim Extraction

D Prompts for T-FIX Pipeline509

We show the prompts for Stage 1, 2, and 3 in Figure A1, Figure A2, and Figure A3, respectively.510

These prompts show a high-level template that was used by all domains. In practice, authors iterated511

16



Domain
N

generated
claims

N
aligned
claims

Claim
Decomposition

Accuracy

Relevance
Filtering

Accuracy

Expert
Alignment
Accuracy

Cohen’s κ

Cosmology

Mass Maps 66 48 0.900 0.826 0.979 0.4059
Supernova 74 62 0.950 0.892 0.903 0.4946

Psychology

Politeness 72 58 0.950 0.931 0.914 0.6604
Emotion 70 44 1.000 0.929 0.943 0.6233

Medicine

Cholecystectomy 134 92 1.000 0.851 0.902 0.4396
Cardiac 66 52 0.900 0.841 0.962 0.4845
Sepsis 108 66 0.900 0.852 0.894 0.3500

Table A2: Pipeline validation by domain. We report the mean accuracy for each stage of the pipeline
and annotator agreement – Cohen’s κ.

Prompt

You will be given [description of input , output , and claim]

A claim is relevant if and only if:
(1) It is supported by the content of the input (i.e., it does not hallucinate or ←↩

speculate beyond what is said).
(2) It helps explain why <task description >.

Return your answer as:
Relevance: <Yes/No>
Reasoning: <A brief explanation of your judgment , pointing to specific support or ←↩

lack thereof >

Here are some examples:

[Example 1]
[Example 2]
[Example 3]

Now , determine whether the following claim is relevant to the given XXX:
Input:
Output:
Claim:

Figure A2: Prompt Template for Stage 2: Relevancy Filtering

multiple times on each domain’s prompts, experimenting with the instruction wording and few-shot512

examples that yielded the best possible results.513

E T-FIX Datasets: Additional Details514

E.1 Mass Maps515

Task. The goal is to predict two cosmological parameters—Ωm and σ8—from a weak lensing map516

(or known as mass maps) [28]. These parameters characterize the early state of the universe. Weak517

lensing maps can be obtained through precise measurement of galaxies [29, 30], but it is not yet518

known how to characterize Ωm and σ8. There are machine learning models trained to predict Ωm519

and σ8 [31–33], as well as interpretable models that attempt to find relations between interpretable520

features voids and clusters and Ωm and σ8 [34]. We use data from CosmoGrid [35], where inputs are521
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Prompt

You will be given <task description + expert categories description >

Your task is as follows:
1. Determine which expert category is most aligned with the claim.
2. Rate how strongly the category aligns with the claim on a scale of 0-1 (0 being ←↩

lowest , 1 being highest. Use increments of 0.1).

Return your answer as:
Category: <category >
Category Alignment Rating: <rating >
Reasoning: <A brief explanation of why you selected the chosen category and why you←↩

judged the alignment rating as you did.>

-----
Expert categories:
[list of categories and their descriptions]
-----

Here are some examples:
[Example 1]
[Example 2]
[Example 3]

Now , determine the category and alignment rating for the following claim:
Claim:

Figure A3: Prompt Template for Stage 3: Alignment Scoring

Prompt

You are an expert in <domain name >. You have a deep understanding of this subject.
Your task is to behave like an <domain expert > and identify which criteria are ←↩

important to consider for the following task:

Task description:
Input:
Output:

Here are some examples:
[Example 1]
[Example 2]
[Example 3]

Study these examples and fully understand the task. Now , research the field of <←↩

domain name > in order to determine a list of criteria that an expert <domain ←↩

expert > would utilize if they were performing the above task.

Your output should be a list of expert criteria , each 1 sentence long , and ←↩

citations from reputable academic sources to support each criteria. Feel free ←↩

to have as many expert criteria as you deem necessary. The criteria should be ←↩

clear , succinct and non -overlapping with each other. [Include any domain -←↩

specific information about the expert criteria]

Figure A4: Deep Research Prompt Template.

single-channel, noiseless weak lensing maps of size (66, 66), and outputs are two continuous values522

corresponding to Ωm and σ8.523

Data Selection & Preprocessing. We randomly sampled 100 examples from the MassMaps test524

set. To ensure compatibility with LLMs like GPT-4o, which operate on a 32×32 patch size, we525

upsampled each image by a factor of 11 to preserve spatial detail and avoid patch-level compression.526

Instead of raw pixel values, we applied a colormap based on expert-defined intensity thresholds used527

to identify key cosmological features such as voids and clusters. Pixel intensities were scaled by528

standard deviations to emphasize meaningful variation. We found that larger, visually enhanced529

inputs reduced refusal rates from LLMs and encouraged more consistent responses.530
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Prompt

VANILLA
In addition to the answer , please provide 3-5 sentences explaining why you gave the←↩

answer you did.

CHAIN -OF-THOUGHT
To come up with the correct answer , think step -by-step. You should walk through ←↩

each step in your reasoning process and explain how you arrived at the answer.←↩

Describe your step -by-step reasoning in 3-5 sentences. This paragraph will ←↩

serve as the explanation for your answer.

SOCRATIC
To come up with the correct answer , have a conversation with yourself. Pinpoint ←↩

what you need to know , ask critical questions , and constantly challenge your ←↩

understanding of the field. Describe this question -and -answer journey in 3-5 ←↩

sentences. This paragraph will serve as the explanation for your answer.

SUBQUESTION DECOMPOSITION
To come up with the correct answer , determine all of the subquestions you must ←↩

answer. Start with the easiest subquestion , answer it, and then use that ←↩

subquestion and answer to tackle the next subquestion. Describe your ←↩

subquestion decomposition and answers in 3-5 sentences. This paragraph will ←↩

serve as the explanation for your answer.

Figure A5: Baseline Prompting Strategies.

Explanation Prompt. Figure A6 shows the prompt used to generate LLM explanations for predict-531

ing Ωm and σ8. We replace [BASELINE_PROMPT] with one of four prompting strategies shown in532

Figure A5. The prompt includes a description of how pixel values are mapped to colors, as well as533

the valid ranges for Ωm and σ8. Without this range, models tend to default to common values (e.g.,534

0.3 for Ωm, 0.8 for σ8), reducing response variability.535

Expert Criteria. The expert-validated criteria for expert alignment calculation are listed below:536

1. Lensing Peak (Cluster) Abundance: High peak count → higher σ8; clumpy halos more common.537

2. Void Size and Frequency: Large, frequent voids → lower Ωm; less overall matter.538

3. Filament Thickness and Sharpness: Thick, sharp filaments track higher σ8; thin indicates lower.539

4. Fine-Scale Clumpiness: Fine graininess signifies high σ8; smooth map implies lower.540

5. Connectivity of the Cosmic Web: Interconnected web suggests higher Ωm; isolated clumps imply541

lower.542

6. Density Contrast Extremes: Strong density contrast denotes high σ8; muted contrast lower.543

E.2 Supernova544

Task. The objective is to classify astrophysical objects using time-series data comprising obser-545

vation times (Modified Julian Dates), wavelengths (filters), flux values, and corresponding flux546

uncertainties. We use data from the PLAsTiCC challenge [36], where the model must predict one of547

14 astrophysical classes.548

Data Selection & Preprocessing. We sampled 100 examples across the Supernova train, validation,549

and test sets, aiming for 7–8 instances per class to mitigate class imbalance. For rare classes with550

only one test set instance, we included all available examples from the validation and test sets,551

supplementing with training samples to meet the target count. For LLM input, we converted each raw552

time series into a multivariate time-series plot: time is on the x-axis, flux on the y-axis, error bars553

denote flux uncertainty, and point colors indicate different wavelengths.554

Explanation Prompt. Figure A7 shows the prompt used to generate explanations for classifying555

astronomical objects. We replace [BASELINE_PROMPT] with one of four prompting strategies shown556

in Figure A5. The prompt includes a description of the input plot as a multivariate time series and557

provides the full list of possible class labels to guide the model’s predictions.558
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Prompt

You are an expert cosmologist.
You will be provided with a simulated noisless weak lensing map ,

Your task is to analyze the weak lensing map given , identify relevant cosmological ←↩

structures , and make predictions for Omega_m and sigma_8.
Each weak lensing map contains spatial distribution of matter density in a universe←↩

. The weak lensing map provided is simulated and noiseless.
Omega_m captures the average energy density of all matter in the universe (relative←↩

to the total energy density which includes radiation and dark energy).
sigma_8 describes the fluctuation of matter distribution.

When you analyze the weak lensing map image , note that the number is below 0 if it ←↩

shows up as between gray and blue , and 0 is gray , and between 0 and 2.9 is ←↩

between gray and red , and above 2.9 is yellow. The numbers are in standard ←↩

deviations of the mass map.

Omega_m ’s value can be between 0.1 ~ 0.5, and sigma_8 ’s value can be between 0.4 ~ ←↩

1.4.
Note that the weak lensing map given is a simulated weak lensing map , which can ←↩

have Omega_m and sigma_8 values of all kinds.

[BASELINE_PROMPT]

The provided image is the weak lensing mass map for you to predict the cosmological←↩

parameters for.
Your response should be 2 lines , formatted as follows (without extra information):
Explanation: <explanation and reasoning , as described above , 3-5 sentences >
Prediction: Omega_m: <prediction for Omega_m , between 0.1 ~ 0.5, based on this weak←↩

lensing map >, sigma_8: <prediction for sigma_8 , between 0.4 ~ 1.4, based on ←↩

this weak lensing map >

Figure A6: MassMaps Explanation Prompt

Expert Criteria. The expert-validated criteria for expert alignment calculation are listed below:559

1. Contiguous non-zero flux: Contiguous non-zero flux segments confirm genuine astrophysical activity560

and define the time windows from which transient features should be extracted.561

2. Rise–decline rates: Characteristic rise-and-decline rates—such as the fast-rise/slow-fade morphology562

of many supernovae—encode energy-release physics and serve as strong class discriminators.563

3. Photometric amplitude: Peak-to-trough photometric amplitude separates high-energy explosive564

events (multi-magnitude outbursts) from low-amplitude periodic or stochastic variables.565

4. Event duration: Total event duration, measured from first detection to return to baseline, distinguishes566

short-lived kilonovae and superluminous SNe from longer plateau or AGN variability phases.567

5. Periodic light curves: Periodic light curves with stable periods and distinctive Fourier amplitude- and568

phase-ratios flag pulsators and eclipsing binaries rather than one-off transients.569

6. Secondary maxima: Filter-specific secondary maxima or shoulders in red/near-IR bands—prominent570

in SNeIa—are morphological features absent in most core-collapse SNe.571

7. Monotonic flux trends: Locally smooth, monotonic flux trends across one or multiple bands (plateaus,572

linear decays) capture physical evolution stages and help distinguish SNII-P, SNII-L, and related573

classes.574

E.3 Politeness575

Task. Understanding how linguistic styles, like politeness, vary across cultures is necessary for576

building better communication, translation, and conversation-focused systems. [37, 38]. Today’s577

LLMs exhibit large amounts of cultural bias [39], and understanding nuances in cultural differences578

can help encourage cultural adaptation in models. We use the holistic politeness dataset from Havaldar579

et al. [40], which consists of conversational utterances between editors from Wikipedia talk pages,580

annotated by native speakers from four distinct cultures.581

Data Selection & Preprocessing. We sample 100 examples from the data, balanced equally across582

classes (rude, slightly rude, neutral, slightly polite, polite) and languages (English, Spanish, Japanese,583

Chinese).584
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Prompt

What is the astrophysical classification of the following time series? Here are the←↩

possible labels you can use: RR-Lyrae (RRL), peculiar type Ia supernova (SNIa←↩

-91bg), type Ia supernova (SNIa), superluminous supernova (SLSN -I), type II ←↩

supernova (SNII), microlens -single (mu-Lens -Single), eclipsing binary (EB), M-←↩

dwarf , kilonova (KN), tidal disruption event (TDE), peculiar type Ia supernova←↩

(SNIax), type Ibc supernova (SNIbc), Mira variable , and active galactic ←↩

nuclei (AGN).

Each input is a multivariate time series visualized as a scatter plot image. The x-←↩

axis represents time , and the y-axis represents the flux measurement value. ←↩

Each point corresponds to an observation at a specific timestamp and ←↩

wavelength. Different wavelengths are color -coded , and observational ←↩

uncertainty is shown using vertical error bars.

Even if the classification is uncertain or ambiguous , select the most likely label ←↩

based on the observed visual patterns and provide a brief explanation that ←↩

justifies your choice.

[BASELINE_PROMPT]

Your response should be 2 lines , formatted as follows:
Label: <astrophysical classification label >
Explanation: <explanation , as described above >

Here is the time series data for you to classify.

Figure A7: Supernova Explanation Prompt

Prompt

What is the politeness of the following utterance on a scale of 1-5? Use the ←↩

following scale:
1: extremely rude
2: somewhat rude
3: neutral
4: somewhat polite
5: extremely polite

[BASELINE_PROMPT]

Your response should be 2 lines , formatted as follows:
Rating: <politeness rating >
Explanation: <explanation , as described above >

Utterance:

Figure A8: Politeness Explanation Prompt

Explanation Prompt. We show the prompt in Figure A8. We replace “[BASELINE_PROMPT] with585

one of four prompting strategies shown in Figure A5.586

Expert Criteria. The expert-validated criteria for expert alignment calculation are listed below:587

1. Honorifics and Formal Address: The presence of respectful or formal address forms (e.g., “sir,”588

“usted,”) signals politeness by expressing deference to the hearer’s status or social distance.589

2. Courteous Politeness Markers: Words such as “please,” “kindly,” or their multilingual variants590

soften requests and reflect courteous intent.591

3. Gratitude Expressions: Use of expressions like “thank you,” “thanks,” or “I appreciate it” signals592

recognition of the other’s contribution and positive face.593

4. Apologies and Acknowledgment of Fault: Phrases such as “sorry” or “I apologize” express humility594

and repair social breaches, marking a clear politeness strategy.595

5. Indirect and Modal Requests: Requests using modal verbs (“could you,” “would you”) or softening596

cues like “by the way” reduce imposition and signal respect for the hearer’s autonomy.597
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6. Hedging and Tentative Language: Words like “I think,” “maybe,” or “usually” lower assertion598

strength and make statements more negotiable, reflecting interpersonal sensitivity.599

7. Inclusive Pronouns and Group-Oriented Phrasing: Use of “we,” “our,” or “together” expresses600

solidarity and reduces hierarchical distance in requests or critiques.601

8. Greeting and Interaction Initiation: Opening with a salutation (“hi,” “hello”) creates a cooperative602

tone and frames the conversation positively.603

9. Compliments and Praise: Positive evaluations (“great,” “awesome,” “neat”) attend to the hearer’s604

positive face and foster a friendly environment.605

10. Softened Disagreement or Face-Saving Critique: When disagreeing, the use of softeners, partial606

agreements, or concern for clarity preserves the hearer’s dignity.607

11. Urgency or Immediacy of Language: Utterances emphasizing emergency or speed (“asap,” “imme-608

diately”) can heighten perceived imposition and reduce politeness if not softened.609

12. Avoidance of Profanity or Negative Emotion: The presence of strong negative words or swearing is610

a key indicator of rudeness and face threat.611

13. Bluntness and Direct Commands: Requests lacking modal verbs or mitigation (“Do this”) are612

perceived as less polite due to their imperative structure.613

14. Empathy or Emotional Support: Recognizing the hearer’s emotional context or challenges is a614

politeness strategy of concern and goodwill.615

15. First-Person Subjectivity Markers: Statements that begin with “I think,” “I feel,” or “In my view”616

convey humility and subjectivity, reducing imposition.617

16. Second Person Responsibility or Engagement: Sentences starting with “you” or directly addressing618

the hearer can either signal engagement or come across as accusatory, depending on context and tone.619

17. Questions as Indirect Strategies: Questions (“what do you think?” or “could you clarify?”) reduce620

imposition by inviting rather than demanding input.621

18. Discourse Management with Markers: Use of discourse markers like “so,” “then,” “but” organizes622

conversation flow and may help manage face needs in conflict or negotiation.623

19. Ingroup Language and Informality: Use of group-identifying slang or casual expressions (“mate,”624

“dude,” “bro”) may foster solidarity or seem disrespectful, depending on relational norms.625

E.4 Emotion626

Task. Understanding and classifying emotion is important for tasks like therapy, mental health627

diagnoses, etc. [41]. Emotion is often expressed implicitly, and understanding such cues can628

also aid in building LLM systems that handle implied language understanding well [42]. We use629

the GoEmotions dataset from Demszky et al. [43], consisting of Reddit comments that have been630

human-annotated for one of 27 emotions (or neutral, if no emotion is present).631

Data Selection & Preprocessing. We sample 100 examples from the data, balanced equally across632

28 emotion classes, including neutral. We additionally ensure the comment is over 20 characters,633

to remove noisy data points and ensure each comment contains enough information for the LLM to634

make an accurate classification.635

Prompt

What is the emotion of the following text? Here are the possible labels you could ←↩

use: admiration , amusement , anger , annoyance , approval , caring , confusion , ←↩

curiosity , desire , disappointment , disapproval , disgust , embarrassment , ←↩

excitement , fear , gratitude , grief , joy , love , nervousness , optimism , pride , ←↩

realization , relief , remorse , sadness , surprise , or neutral.

[BASELINE_PROMPT]

Your response should be 2 lines , formatted as follows:
Label: <emotion label >
Explanation: <explanation , as described above >

Here is the text for you to classify. Please ensure the emotion label is in the ←↩

given list.
Text:

Figure A9: Emotion Explanation Prompt
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Explanation Prompt. We show the prompt in Figure A9. We replace “[BASELINE_PROMPT] with636

one of four prompting strategies shown in Figure A5.637

Expert Criteria. The expert-validated criteria for expert alignment calculation are listed below:638

1. Valence: Decide if the overall tone is pleasant or unpleasant; positive tones suggest joy or admiration,639

negative tones suggest sadness or anger.640

2. Arousal: Gauge how energized the wording is—calm phrasing implies low arousal emotions, intense641

phrasing implies high arousal emotions.642

3. Emotion Words & Emojis: Look for direct emotion terms or emoticons that explicitly name the643

feeling.644

4. Expressive Punctuation: Multiple exclamation marks, ALL-CAPS, or stretched spellings signal645

higher emotional intensity.646

5. Humor/Laughter Markers: Tokens like “haha,” “lol,” or laughing emojis reliably indicate amuse-647

ment.648

6. Confusion Phrases: Statements such as “I don’t get it” clearly mark confusion.649

7. Curiosity Questions: Genuine information-seeking phrases (“I wonder. . . ”, “why is. . . ?”) point to650

curiosity.651

8. Surprise Exclamations: Reactions of astonishment (“No way!”, “I can’t believe it!”) denote surprise.652

9. Threat/Worry Language: References to danger or fear (“I’m scared,” “terrifying”) signal fear or653

nervousness.654

10. Loss or Let-Down Words: Mentions of loss or disappointment cue sadness, disappointment, or grief.655

11. Other-Blame Statements: Assigning fault to someone else for a bad outcome suggests anger or656

disapproval.657

12. Self-Blame & Apologies: Admitting fault and saying “I’m sorry” marks remorse.658

13. Aversion Terms: Words like “gross,” “nasty,” or “disgusting” point to disgust.659

14. Praise & Compliments: Positive evaluations of someone’s actions show admiration or approval.660

15. Gratitude Expressions: Phrases such as “thanks” or “much appreciated” indicate gratitude.661

16. Affection & Care Words: Loving or nurturing language (“love this,” “sending hugs”) signals love or662

caring.663

17. Self-Credit Statements: Boasting about one’s own success (“I nailed it”) signals pride.664

18. Relief Indicators: Release phrases like “phew,” “finally over,” or “what a relief” mark relief after665

stress ends.666

E.5 Laparoscopic Cholecystectomy Surgery.667

Task. The task is to identify the safe and unsafe regions for incision. We used the open-source668

subset of data from [44], which consists of surgeon-annotated images taken from video frames669

from the M2CAI16 workflow challenge [45] and Cholec80 [46] datasets. This consists of 1015670

surgeon-annotated images.671

Data Selection & Preprocessing. We selected the first 100 items from the test set where the safe672

and unsafe regions were of nontrivial area. Each item has three components: an image of dimensions673

640 pixels wide by 360 pixels high, a binary mask of the safe regions of the same dimensions, and a674

binary mask of the unsafe regions of the same dimensions.675

To convert the task into a form easily solvable by the available APIs, our objective was to have the676

LLM output a small list of numbers that identify the safe and unsafe regions. This is achieved by677

using square grids of size 40 to discretize each of the safe and unsafe masks, separating them into678

144 = (640/40)× (360/40) disjoint regions. One can then use an integer inclusively ranging from 0679

to 143 to uniquely identify these patches. The LLM was to then output two lists with numbers from680

this range: a “safe list” that denotes its prediction of the safe region, and an “unsafe list” predicting681

the unsafe region.682

Explanation Prompt. We show the prompt in Figure A10. We replace [BASELINE_PROMPT] with683

one of four prompting strategies shown in Figure A5.684
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Expert Criteria. The expert-validated criteria for expert alignment calculation are listed below:685

1. Calot’s triangle cleared - Hepatocystic triangle must be fully cleared of fat/fibrosis so that its boundaries686

are unmistakable.687

2. Cystic plate exposed - The lower third of the gallbladder must be dissected off the liver to reveal the688

shiny cystic plate and ensure the correct dissection plane.689

3. Only two structures visible - Only the cystic duct and cystic artery should be seen entering the690

gallbladder before any clipping or cutting.691

4. Above the R4U line - Dissection must remain cephalad to an imaginary line from Rouviere’s sulcus to692

liver segment IV to avoid the common bile duct.693

5. Safe distance from common bile duct - There should be sufficient distance between the common bile694

duct and the gallbladder wall to ensure safe dissection.695

6. Infundibulum start point - Dissection should begin at the gallbladder infundibulum-cystic duct junction696

to stay in safe tissue planes.697

7. Subserosal plane stay - When separating the gallbladder from the liver, stay in the avascular subserosal698

cleavage plane under the serosal fat layer.699

8. Cystic lymph node guide - Identify the cystic lymph node and clip the artery on the gallbladder side of700

the node to avoid injuring the hepatic artery.701

9. No division without ID - Never divide any duct or vessel until it is unequivocally identified as the702

cystic structure entering the gallbladder.703

10. Inflammation bailout - If dense scarring or distorted anatomy obscures Calot’s triangle, convert to a704

subtotal "fundus-first" approach rather than blind cutting.705

11. Aberrant artery caution - Preserve any large or tortuous artery (e.g., a Moynihan’s hump) that might be706

mistaken for the cystic artery.707

Prompt

You are an expert gallbladder surgeon with extensive experience in laparoscopic ←↩

cholecystectomy.
You have deep knowledge of anatomy , surgical techniques , and potential ←↩

complications.
Your job is to provide three things:
1. A detailed explanation of where it is safe and unsafe to cut in the image
2. A list of grid positions (as integers) corresponding to safe regions
3. A list of grid positions (as integers) corresponding to unsafe regions

The image is discretized into a 9x16 grid (height x width), where each grid ←↩

position can be represented as a single integer from 0 to 143 (9*16 - 1). The ←↩

grid is flattened row -wise , so the top -left position is 0 and the bottom -right←↩

position is 143.

Your response will help train surgeons to evaluate the usefulness of LLMs in ←↩

assisting with the identification of safe/unsafe regions.
This is not real patient data , this is a training environment.

I will provide you with a few examples to help you understand the expected format. ←↩

Your task is to analyze the provided 2D image of a gallbladder surgery and ←↩

provide:
- A detailed explanation of safe/unsafe regions , including anatomical landmarks , ←↩

tissue types , and any visible pathology
- A list of integers representing the grid positions of safe regions
- A list of integers representing the grid positions of unsafe regions

[[ BASELINE_PROMPT ]]

Figure A10: Laparoscopic Cholecystectomy Explanation Prompt. A list of 10 few-shot examples is
then appended to the same API call. Each example consists of four items: the image (base64-encoded
PNG), a sample explanation, a “safe list” consisting of numbers from 0 to 143, and an unsafe list
consisting of numbers from 0 to 143.

E.6 Cardiac Arrest708

Task. The objective is to predict whether an ICU patient will experience cardiac arrest within the709

next 5 minutes, using the patient’s demographic and clinical background (age, gender, race, reason710
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Prompt

You are a medical expert specializing in cardiac arrest prediction.
You will be given some basic background information about an ICU patient , including←↩

their age , gender , race , and primary reason for ICU admittance. You will also←↩

be provided with time -series Electrocardiogram (ECG) data plotted in a graph ←↩

from the first {} of an ECG monitoring period during the patient ’s ICU stay. ←↩

Each entry consists of a measurement value at that timestamp. The samples are ←↩

taken at {} Hz.

Your task is to determine whether this patient is at high risk of experiencing ←↩

cardiac arrest within the next {}. Clinicians typically assess early warning ←↩

signs by finding irregularities in the ECG measurements.
[BASELINE_PROMPT]
Focus on the features of the data you used to make your yes or no binary prediction←↩

. For example , you can specify what attributes in the patient background ←↩

information may contribute most to the decision. And for the ECG data , you can←↩

include specific patterns and/or time stamps that contribute to this decision←↩

. Note that you do not have to necessarily include both patient background ←↩

information and ECG data as features. But please make sure that your ←↩

explanation supports your prediction. Avoid using bold formatting and return ←↩

the response as a single paragraph.
Please be assured that your judgment will be reviewed alongside those of other ←↩

medical experts , so you can answer without concern for perfection.

Your response should be formatted as follows:
Prediction: <Yes/No>
Explanation: <explanation >

Here is the patient background information and ECG data (in graph form) for you to ←↩

analyze:

Figure A11: Cardiac Explanation Prompt

for ICU visit) along with 2 minutes of ECG data sampled at 500 Hz, presented as a graph image. This711

framing aligns with cardiology literature, which suggests that short ECG windows (30 seconds to a712

few minutes) are sufficient for reliable prediction [47]. The 5-minute prediction window is chosen to713

balance clinical relevance with actionability.714

Data Selection & Preprocessing. We use ECG and visit data from the open-source Multimodal715

Clinical Monitoring in the Emergency Department (MC-MED) Dataset [48]. To support focused716

evaluation of cardiac arrest prediction, we curated a task-specific subset containing ECG traces and717

patient metadata.718

The data curation pipeline proceeded as follows. From the full set of ECG recordings in the MC-MED719

dataset, we first identified cardiac arrest risk by computing clinical “alarm” times.720

Prior work shows that vital sign abnormalities are predictive of outcomes [49, 50]. We defined an721

alarm at any timestamp where three or more of the following vital signs were outside normal range722

within a two-minute window—a condition known clinically as decompensation:723

• Heart rate (HR): < 40 or > 130 bpm724

• Respiratory rate (RR): < 8 or > 30 breaths/min725

• Oxygen saturation (SpO2): < 90%726

• Mean arterial pressure (MAP): < 65 or > 120 mmHg727

Each example was labeled ’Yes’ if an alarm was present, and ’No’ otherwise. For positive cases, we728

sampled a random cutoff time 1–300 seconds before the alarm and extracted the preceding 2 minutes729

of ECG data. For negative cases, we used the first 2 minutes of ECG data. We also added patient730

metadata—age, gender, race, and ICU admission reason—using information from the MC-MED visit731

records. To ensure diversity, each example came from a unique patient; for positives, we only used732

the visit containing the alarm.733

To address class imbalance and support focused evaluation, we created a balanced training set of 200734

positive and 200 negative examples. The validation and test sets each contain 50 examples.735
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Explanation Prompt. Figure A11 shows the prompt used to generate explanations for predicting736

whether an ICU patient will experience cardiac arrest within 5 minutes, based on 2 minutes of ECG737

data along with age, gender, race, and ICU admission reason. We replace [BASELINE_PROMPT] with738

one of four prompting strategies shown in Figure A5. The ECG is provided as a graph image of739

p-signal values sampled at 500 Hz over a 2-minute window, with labeled axes. While we considered740

supplying the raw signal as text, the input token limits of current LLMs made this infeasible.741

Expert Criteria. The expert-validated criteria for expert alignment calculation are listed below:742

1. Ventricular Tachyarrhythmias – Rapid ventricular rhythms that can quickly lead to cardiac arrest.743

2. Ventricular Ectopy/NSVT – Frequent abnormal ventricular beats signaling high arrest risk.744

3. Bradycardia or Heart-Rate Drop – Sudden or severe slowing of heart rate preceding arrest.745

4. Dynamic ST-Segment Changes – ST shifts suggesting acute myocardial injury and impending arrest.746

5. Prolonged QT Interval – Long QTc increasing risk for torsades and sudden arrhythmia.747

6. Severe Hyperkalemia Signs – ECG changes from high potassium predicting arrest, especially among748

patients on dialysis / end stage renal disease.749

7. Advanced Age – Older age strongly correlates with higher arrest likelihood.750

8. Male Sex – Males have a higher overall risk of cardiac arrest.751

9. Underlying Cardiac Disease – Preexisting heart disease increases arrest susceptibility.752

10. Critical Illness (Sepsis/Shock) – Severe infections or shock states elevate arrest risk through systemic753

instability.754

Prompt

What is the sepsis risk prediction for the following time series? Here are the ←↩

possible labels you can use: Yes (the patient is at high risk of developing ←↩

sepsis within 12 hours) or No (the patient is not at high risk of developing ←↩

sepsis within 12 hours).
The time series consists of Electronic Health Record (EHR) data collected during ←↩

the first 2 hours of the patient ’s emergency department (ED) admission. Each ←↩

entry includes a timestamp , the name of a measurement or medication , and its ←↩

corresponding value.

[BASELINE_PROMPT]

Your response should be 2 lines , formatted as follows:
Label: <prediction label >
Explanation: <explanation , as described above >

Here is the text for you to classify.

Figure A12: Sepsis Explanation Prompt

E.7 Sepsis755

Task. The goal is to predict whether an emergency department (ED) patient is at high risk of756

developing sepsis within 12 hours, using Electronic Health Record (EHR) data collected during the757

first 2 hours of their visit. Each input is a time series of records containing a timestamp, the name of758

a physiological measurement or medication, and its value.759

Data Selection & Preprocessing. We used data from the publicly available MC-MED dataset [48]760

and curated a task-specific subset for sepsis prediction.761

To label a patient as high risk for sepsis, we followed standard clinical definitions requiring three762

conditions: (1) evidence of infection, indicated by either a blood culture being drawn or at least763

two hours of antibiotic administration; (2) signs of organ dysfunction, defined by a SOFA score764

≥2 within 48 hours of suspected infection, based on abnormalities in respiratory, coagulation, liver,765

cardiovascular, neurological, or renal function; and (3) presence of fever, with a recorded temperature766

≥38.0°C (100.4°F). Patients meeting all three criteria were labeled as high risk. Labels were validated767

with a Sepsis clinician.768
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Due to class imbalance (1̃0% positive), we created a balanced evaluation set of 100 samples (50769

positive, 50 negative) drawn from the validation and test splits.770

Explanation Prompt. Figure A12 shows the prompt used to generate LLM explanations for sepsis771

risk prediction. We substitute [BASELINE_PROMPT] with one of four prompting strategies shown772

in Figure A5. The prompt includes a description of the EHR input format: each time-series record773

consists of a timestamp, a measurement or medication name, and its value.774

Expert Criteria. The expert-validated criteria for expert alignment calculation are listed below:775

1. Elderly Susceptibility (Age ≥65 years): Advanced age (≥65 years) markedly increases susceptibility776

to rapid sepsis progression and higher mortality after infection.777

2. SIRS Positivity (≥2 Criteria): Presence of ≥2 SIRS criteria—temperature >38◦C or <36◦C,778

heart rate >90 bpm, respiratory rate >20/min or PaCO2 <32 mmHg, or WBC >12,000/µL or779

<4,000/µL—identifies systemic inflammation consistent with early sepsis.780

3. High qSOFA Score (≥2): A qSOFA score ≥2 (respiratory rate ≥22/min, systolic BP ≤100 mmHg,781

or altered mentation) flags high risk of sepsis-related organ dysfunction and mortality.782

4. Elevated NEWS Score (≥5 points): A National Early Warning Score (NEWS) of ≥5–7 derived from783

deranged vitals predicts imminent clinical deterioration compatible with sepsis.784

5. Elevated Serum Lactate (≥2 mmol/L): Serum lactate ≥2 mmol/L within the first 2 hours signals785

tissue hypoperfusion and markedly elevates sepsis mortality risk.786

6. Elevated Shock Index (≥1.0): Shock index (heart rate ÷ systolic BP) ≥1.0—or a rise ≥0.3 from787

baseline—denotes haemodynamic instability and a high probability of severe sepsis.788

7. Sepsis-Associated Hypotension (SBP <90 mmHg or MAP <70 mmHg, or ≥40 mmHg drop):789

Sepsis-associated hypotension, defined as SBP <90 mmHg, MAP <70 mmHg, or a ≥40 mmHg drop790

from baseline, indicates progression toward septic shock.791

8. SOFA Score Increase (≥2 points): An increase of ≥2 points in any SOFA component—e.g.,792

PaO2/FiO2 <300, platelets <100×109/L, bilirubin >2 mg/dL, creatinine >2 mg/dL, or GCS793

<12—confirms new organ dysfunction and high sepsis risk.794

9. Early Antibiotic/Culture Orders (within 2 hours): Administration of broad-spectrum antibiotics or795

drawing of blood cultures within the first 2 hours signifies clinician suspicion of serious infection and796

should anchor sepsis risk assessment.797
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Domain Claim Score (Category) Reasoning

Cosmology

Mass Maps

[Good] The prominence of red and
yellow suggests a universe with sig-
nificant matter fluctuations.

0.9 (Density Contrast
Extremes)

Aligns well with the Density Con-
trast Extremes category, describing pro-
nounced contrasts between dense and
void regions, signaling high sigma_8.

[Bad] The mix of colors, with sig-
nificant gray areas but noticeable
reds and yellows, suggests a moder-
ate Omega_m.

0.3 (Connectivity of the
Cosmic Web)

Discusses both underdense and over-
dense regions, but doesn’t specifically
discuss connectivity or the degree of
fragmentation or interconnection of the
network.

Supernova

[Good] A prominent peak followed
by a gradual decline in flux is char-
acteristic of a type Ia supernova
light curve.

1.0 (Rise–decline rates) Describes a classic feature of type Ia su-
pernovae, perfectly aligning with expert
criteria on rise-and-decline rates.

[Bad] The variability does not dis-
play a clear periodicity.

0.1 (Periodic light
curves)

Contradicts key characteristics of peri-
odic light curves; highlights absence of
periodic behavior.

Psychology

Politeness

[Good] The use of the phrase
“seems defective” introduces uncer-
tainty and avoids definitiveness.

0.9 (hedging & tentative
language)

The phrase utilizes tentative language
and is a clear example of hedging to
reduce the assertive strength of a state-
ment.

[Bad] The utterance is a straight-
forward description of information
from a biology textbook.

0.2 (First-Person Sub-
jectivity Markers)

Weakly aligns as it describes objective
reporting without the personal tone cen-
tral to first-person subjectivity.

Emotion

[Good] This choice of description
is likely intended to evoke a reac-
tion of fear or caution.

0.9 (Threat/Worry Lan-
guage)

The claim centers around evoking fear
or caution, which directly maps to this
category.

[Bad] The text conveys an objective
statement.

0.0 (Valence) The claim highlights an absence of emo-
tional content, which does not align with
the Valence category or any other expert
emotion categories.

Medicine

Cholecys-

[Good] The fat and fibrous tissue
overlying Calot’s triangle has been
fully excised, exposing only two
tubular structures.

High (Complete Trian-
gle Clearance)

Precisely describes complete clearance
of Calot’s triangle, perfectly matching
expert criteria.

tectomy [Bad] The cystic plate is not visible
due to dense adhesions, making the
gallbladder-liver plane indistinct.

Low (Cystic Plate Visi-
bility)

Describes failure to visualize the cystic
plate, opposite of the criterion, leading
to low alignment.

Cardiac

[Good] The irregularity in the ECG
could indicate a dangerous arrhyth-
mia, such as ventricular tachycardia
or fibrillation.

0.9 (Ventricular Tach-
yarrhythmias)

Directly references hallmark arrhyth-
mias like ventricular tachycardia/fibril-
lation, key indicators in the category.

[Bad] A skin lesion of the scalp is
a condition not directly related to
cardiac function.

0.2 (Critical Illness –
Sepsis/Shock)

Potential weak connection if interpreted
as infection, but lacks explicit signs of
sepsis/shock.

Sepsis

[Good] Fever and high heart rate
are potential signs of sepsis.

1.0 (SIRS Positivity) References two SIRS criteria; strong and
direct alignment with early sepsis identi-
fication guidelines.

[Bad] The patient’s lab results show
an increased platelet count.

0.2 (SOFA Score In-
crease)

SOFA score focuses on low platelet
counts; increased count contradicts the
criterion.

Table A3: Expert-aligned claims (good and bad) across all T-FIX domains, with corresponding
alignment scores and provided reasoning.
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