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ABSTRACT

Recent advances in generative adversarial networks (GANs) have shown remark-
able progress in generating high-quality images. However, this gain in perfor-
mance depends on the availability of a large amount of training data. In limited
data regimes, training typically diverges, and therefore the generated samples are
of low quality and lack diversity. Previous works have addressed training in low
data setting by leveraging transfer learning and data augmentation techniques. We
propose a novel transfer learning method for GANSs in the limited data domain
by leveraging informative data prior derived from self-supervised/supervised pre-
trained networks trained on a diverse source domain. We perform experiments
on several standard vision datasets using various GAN architectures (BigGAN,
SNGAN, StyleGAN2) to demonstrate that the proposed method effectively trans-
fers knowledge to domains with few target images, outperforming existing state-
of-the-art techniques in terms of image quality and diversity. We also show the
utility of data instance prior in large-scale unconditional image generation and
image editing tasks.

1 INTRODUCTION

Generative Adversarial Networks (GANSs) are at the forefront of modern high-quality image synthe-
sis in recent years (Brock et al., [2018}; |Karras et al., |2020bj; 2019). GANs have also demonstrated
excellent performance on many related computer vision tasks such as image manipulation (Zhu
et al.l 2017} Isola et al.| |2017), image editing (Plumerault et al., 2020; [Shen et al., 2020; |Jahanian
et al.| [2020) and compression (Tschannen et al 2018). Despite the success in large-scale image
synthesis, GAN training suffers from a number of drawbacks that arise in practice, such as training
instability and mode collapse (Goodfellow et al., 2016; |Arora et al.L[2017). It has been observed that
the issue of unstable training can be mitigated to an extent by using conditional GANs. However,
this is expected as learning the conditional model for each class is easier than learning the joint
distribution. The disadvantages of GAN training have prompted research in several non-adversarial
generative models (Hoshen et al.l 2019; [Bojanowski et all |2018; Li & Malik, 2018} [Kingma &
Wellingl 2014). These techniques are implicitly designed to overcome the mode collapse problem,
however, the quality of generated samples are still not on par with GANs.

Current state-of-the-art deep generative models require a large volume of data and computation
resources. The collection of large datasets of images suitable for training - especially labeled data in
case of conditional GANS - can easily become a daunting task due to issues such as copyright, image
quality and also the training time required to get state-of-the-art image generation performance. To
curb these limitations, researchers have recently proposed techniques inspired by transfer learning
(Noguchi & Harada, 2019; Wang et al., [2018; Mo et al.l 2020) and data augmentation methods
(Karras et al.|[2020a};Zhao et al.,|2020b; |[Zhang et al.,2019). Advancements in data and computation
efficiency for image synthesis can enable its applications in data-deficient fields such as medicine
(Yi et al.;, 2019) where labeled data generation can be difficult to obtain.

Transfer learning is a promising area of research (Oquab et al., 2014} [Pan & Yang||2009) that lever-
ages prior information acquired from large datasets to help in training models on a target dataset un-
der limited data and resource constraints. There has been extensive exploration of transfer learning in
classification problems that have shown excellent performance on various downstream data-deficient
domains. Similar extensions of reusing pre-trained networks for transfer learning (i.e. fine-tuning a
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subset of pre-trained network weights from a data-rich domain) have also been recently employed
for image synthesis in GANs (Wang et al.| 2018} [Noguchi & Haradal 2019; |[Mo et al., [2020; Wang
et al., 2020; Zhao et al.,|2020a) in the limited data regime. However, these approaches are still prone
to overfitting on the sparse target data, and hence suffer from degraded image quality and diversity.

In this work, we propose a simple yet effective way of transferring prior knowledge in unsuper-
vised image generation given a small sample size (~ 100-2000) of the target data distribution. Our
approach is motivated by the formulation of the IMLE technique (Li & Malik] [2018) that seeks to
obtain mode coverage of target data distribution by learning a mapping between latent and target dis-
tributions using a maximum likelihood criterion. We instead propose the use of data priors in GANs
to match the representation of the generated samples to real modes of data. In contrast to (Li & Ma-
lik, 2018)), we use the images generated using data priors to find the nearest neighbor match to real
modes in the generator’s learned distribution. In particular, we show that using an informative data
instance prior in limited and large-scale unsupervised image generation substantially improves the
performance in image synthesis. We show that these data priors can be derived from commonly used
computer vision pre-trained networks (Simonyan & Zisserman, 2014} |Zhang et al., 2018} [Noguchi
& Haradal 2019} [Hoshen et al.l 2019)) or self-supervised data representations (Chen et al., 2020)
(without any violation of the target setting’s requirements, i.e. ensuring that the pre-trained network
has not been trained on few-shot classes in the few-shot learning setting, for instance). In case of
sparse training data, our approach of using data instance priors leverages a model pre-trained on a
rich source domain to the learn the target distribution. Different from previous works (Noguchi &
Haradal, 2019} [Wang et al.| 2020; 2018)) which rely on fine-tuning models trained on a data-rich do-
main, we propose to leverage the feature representations of our source model as data instance priors,
to distill knowledge (Romero et al., 2015 [Hinton et al.,[2015)) into our target generative model.

We note that our technique of using data instance priors for transfer learning becomes fully unsuper-
vised in case the data priors are extracted from self-supervised pre-trained networks. Furthermore,
in addition to image generation in low data domain, we also achieve state-of-the-art Fréchet incep-
tion distance (FID) score (Heusel et al.l 2017) on large-scale unsupervised image generation and
also show how this framework of transfer learning supports several image editing tasks.

‘We summarize our main contributions as follows:

e We propose Data Instance Prior (DIP), a novel transfer learning technique for GAN image
synthesis in low-data regime. We show that employing DIP in conjunction with existing
few-shot image generation methods outperforms state-of-the-art results. We show with as
little as 100 images our approach DIP results in generation of diverse and high quality
images (see Figure [3).

e We demonstrate the utility of our approach in large-scale unsupervised GANs (Miyato
et al.,2018; Brock et al.,[2018) achieving the new state-of-the-art in terms of image quality
(Heusel et al.,[2017) and diversity (Sajjadi et al., 2018; Metz et al.,[2017).

e We show how our framework of DIP by construction enables inversion of images and com-
mon image editing tasks (such as cutmix, in-painting, image translation) in GANs.

We call our method a data instance prior (and not just data prior), since it uses representations of
instances as a prior, and not a data distribution itself.

2 RELATED WORK

Deep Generative Models In recent years, there has been a surge in the research of deep generative
models. Some of the popular approaches include variational auto-encoders (VAEs) (Rezende et al.}
2014;|Kingma & Welling| [2014), auto-regressive (AR) models (Van Oord et al., [ 2016; |Van den Oord
et al.| 2016) and GANs (Goodfellow et al.| | 2014). VAE models learn by maximizing the variational
lower bound of likelihood of generating data from a given distribution. Auto-regressive approaches
model the data distribution as a product of the conditional probabilities to sequentially generate
data. GANs comprise of two networks, a generator and a discriminator that train in a min-max
optimization. Specifically, the generator aims to generate samples to fool the discriminator, while
the discriminator learns distinguish these generated samples from the real samples. Several research
efforts in GANs have focused around improving the performance (Karras et al.,|2018; |Denton et al.,
2015; Radford et al., 2016} Karras et al., 2020bj; 2019; |Brock et al., 2018; [Zhang et al., |2019) and
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training stability (Salimans et al.|[2016bj; |Gulrajani et al.,|2017; |Arjovsky et al., 2017; Miyato et al.,
2018; [Mao et al.l 2017; [Chen et al.l 2019). Recently, the areas of latent space manipulation for
semantic editing (Shen et al., |2020; Jahanian et al.| 20205 Zhu et al., 2020; |Plumerault et al.l 2020)
and few-shot image generation (Wang et al.| |2020; Mo et al.| |2020; Noguchi & Haradal 2019) have
gained traction in an effort to mitigate the practical challenges while deploying GANs. Several
other non-adversarial training approaches such as (Hoshen et al.| 2019; Bojanowski et al.l 2018;
Li & Malik| 2018)) have also been explored for generative modeling, which leverage supervised
learning along with perceptual loss (Zhang et al., 2018) for training such models.

Transfer Learning in GANs While there has been extensive research in the area of transfer learn-
ing for classification models (Yosinski et al.| 2014 |[Oquab et al.| [2014; |Tzeng et al., 2015} [Pan &
Yang, [2009; |[Donahue et al., 2014), relatively fewer efforts have explored this on the task of data
generation (Wang et al.,|2018};|2020; Noguchi & Harada, 2019;|[Zhao et al., |2020a; Mo et al.| [2020).
(Wang et al., 2018)) proposed to fine-tune a pre-trained GAN model (often having millions of pa-
rameters) from a data-rich source to adapt to the target domain with limited samples. This approach,
however, often suffers from overfitting as the final model parameters are updated using only few
samples of the target domain. To counter overfitting, the work of (Noguchi & Haradal, 2019) pro-
poses to update only the batch normalization parameters of the pre-trained GAN model. In this
approach, however, the generator is not adversarially trained and uses supervised L; pixel distance
loss and perceptual loss (Johnson et al.l [2016; Zhang et al., 2018) which often leads to generation
of blurry images in the target domain. Based on the assumption that source and target domain sup-
port sets are similar, (Wang et al., [2020) recently proposed to learn an additional mapping network
that transforms the latent code suitable for generating images of target domain while keeping the
other parameters frozen. We compare against all leading baselines including (Noguchi & Harada,
2019;|Wang et al.|[2020) on their respective tasks, and show that our method DIP outperforms them
substantially, while being simple to implement.

A related line of recent research aims to improve large-scale unsupervised image generation in
GANs by employing self-supervision - in particular, an auxiliary task of rotation prediction (Chen
et al., 2019) or using one-hot labels obtained by clustering in the discriminator’s (Liu et al., 2020) or
ImageNet classifier feature space (Sage et al., 2018). In contrast, our method utilizes data instance
priors derived from the feature activations of self-supervised/supervised pre-trained networks to
improve unsupervised few-shot and large-scale image generation, leading to simpler formulation
and higher performance as shown in our experiments in Section [5.3] and Appendix [A] Recently,
some methods (Karras et al.,[2020a}; [Zhao et al.| |2020bj; [Zhang et al.|2019; [Zhao et al.|[2020c) have
leveraged data augmentation to effectively increase the number of samples and prevent overfitting
in GAN training. However, data augmentation techniques often times alter the true data distribution
and there is a leakage of these augmentations to the generated image, as shown in (Zhao et al.
2020cib). To overcome this, (Zhao et al.,|2020b)) recently proposed to use differential augmentation
and (Karras et al.|[2020a)) leveraged an adaptive discriminator augmentation mechanism. We instead
focus on leveraging informative data instance priors, and in fact, show how our DIP method can be
used in conjunction with (Zhao et al.,[2020b) to improve performance.

3 PRELIMINARIES
We now present the related background on generative models that are essential for our methodology.

Conditional GAN: It consists of a generator G : R xY — RP and a discriminator D : RP xY —
[0, 1] which are trained adversarially to learn a target data distribution ¢(x|y), wherex € RP,y € Y,
the space of class labels. The goal of G is to generate samples from noise z ~ p(z), z € R™ given
a conditional label y ~ ¢(y) that matches the target distribution and the aim of D is to distinguish
between real samples and those generated from G. Conditional GANs use class-level information
y of data in the generator and discriminator. The standard hinge loss (Tran et al., [2017) for training
GAN:Ss is given by:

LD = Eywq(y) [Equ(x|y) [maX(Oa 1- D(X7 y))H + Equ(y) [Ezwp(z) [max(07 1+ D(G(Z|y)a y))]]

Lo = —Ey q) [EZNP(Z) [D(G(zly), y>H (1)
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where the discriminator score D(x,y) depends on input image (either real or fake) and its class y
(Miyato & Koyamal, 2018} (Odena et al.l 2017). Generally, the class information is passed into G
through a one-hot vector concatenated with z or through conditional batch norm layers (De Vries
et al., [2017; Dumoulin et al .l [2016).

Implicit Maximum Likelihood Estimation IMLE (Li & Malik, |2018)) is a non-adversarial tech-
nique that uses a maximum likelihood criterion to train the generative model. During training, each
real sample of the data distribution is matched to a generated image through nearest neighbour search
and the distance between the two is minimized. The optimization objective to update the parameters
of network G in each training step is given by:

min Ezl‘..szN(OJd) [Ex~q(x) [HG(Z* (X)) - XH%H )

where z* = min ||G(z) — x||3 @)
Z1...Zm

Here, the inner optimization of finding latent code z*(x) from the batch {zj...zm} such that

G(z*(x)) is nearest to the real image x from the data distribution is implemented using the nearest

neighbor search technique (Li & Malik,|2017). The above objective promotes that each real example

is close to some generated sample from the trained generator.

4 DIP: PROPOSED METHODOLOGY

We propose a transfer learning framework DIP for training GANs that exploits knowledge extracted
from self-supervised/supervised networks, pre-trained on a rich and diverse source domain in the
form of data instance priors. It has been shown that providing class label information in GANs sig-
nificantly improves training stability and quality of generated images as compared to unconditional
setting (Miyato & Koyamal 2018} |Chen et al., 2019). However, in practice, GANs are observed to
be prone to mode-collapse that is further exacerbated in case of sparse training data. We take mo-
tivation from the reconstructive framework of IMLE (Li & Malikl 2018)) and propose to condition
GANSs on image instance priors that act as a regularizer to prevent mode collapse and discriminator
overfitting.

Knowledge Transfer in GAN GANs are a class of implicit generative models that minimize a
divergence measure between the data distribution ¢(x) and the generator output distribution G(z)
where z ~ p(z) denotes the latent distribution. Intuitively, this minimization of a divergence objec-
tive ensures that each generated sample G(z) is close to some data example x ~ ¢(x). However, this
does not ensure the converse, i.e. that each data instance is close to a generated sample, which can
result in mode dropping. To counter this, especially in limited data regime, we propose to update the
parameters of the model so that each real data example is close to some generated sample similar to
(Li & Malik| 2018)) by using data instance priors as conditional label in GANs. Moreover to enable
transfer of knowledge, image features extracted from networks pre-trained on a large source domain
are used as the instance level prior.

Given a pre-trained feature extractor C' : RP — R?, x € RP, which is trained on a source domain
using supervisory signals or self-supervision, we use its output C(x) as condition in the generator.
G is conditioned on C'(x) using conditional batch-norm (Dumoulin et al., [2016) whose input is
Gemp(C(x)), where Gepyp is a learnable matrix. During training we enforce that G(z|C(x)) is
close to the real image x in discriminator feature space (similar to G(z*(x)) being close to x in Eq

. Let the discriminator be D = D; o Dy (o denotes composition) where Dy is discriminator’s last
feature layer and Dj is the final linear layer. To enforce the above objective we map C(x) to the
dimension equal to discriminator’s feature layer D using a trainable matrix D.,,; and minimize
distance between D.,,;(C(x)) and Dy of both real image x and generated image G(z|C(x)) in an
adversarial manner. Hence, our final GAN training loss for the discriminator and generator is given
by:

Lp = Exg(z) [max(0,1 — D(x, C(x)))] + Exng(e) smp(z [max(0, 1 + D(G(z|C(x)), C(x)))]
Lg = _Ex~q(1)7zwp(z) [D(G(2C(x)), C(x))] (3)

D(%,¥)) = Demp(y) - Dy (x) + Dy o Df(x) )

where
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Figure 1: Overview of our proposed technique, Data Instance Priors (DIP) for transfer learning in GANSs. Top:
DIP training with feature C'(x) of a real sample x as a conditional prior in the conditional GAN framework of
(Miyato & Koyamal [2018). C'is a pre-trained network on a rich source domain from which we wish to transfer
knowledge. Bottom: Inference over trained GAN involves learning a distribution over the set of training data
prior {C(x)} to enable sampling of conditional priors.

Algorithm 1: Data Instance Prior Training (DIP)

1 Input:G, D network with parameters 6 and 6p, pre-trained model C' for extracting prior condition,
samples from real data distribution g(x) and latent distribution p(z), batch size b, number of training
iterations, discriminator update steps ds+ep for each generator update, Adam hyperparameters «, 51, B2.

2 for number of training iterations do

3 fort: 1...dg., do

4 Sample batch z ~ ¢(z), z ~ p(2)

5 Tiare = G(2|C())

6

7

8

9

Calculate D(z, C(z)) = Dy(z) + Demp(C(x)) + Dy o Dy(x)
(

Lp = max(0,1 — D(z,C(z))) + max(0, 1 + D(2fu, C(x)))
Update 6p < Adam(Lp,a, 81, B2)

10 end
11 Sample z ~ p(z)
12 Generate images e = G(2|C(z)

13 Calculate D(zsuke, C(x)) = Dy (Xfuke) * Demb(C () + Dy © Dy (Zgare)
4 | Lo =—D(zpu, C(z))

15 Update 0 < Adam(Lg, o, 81, B2)

16 end

17 return g, 0p.

In the above formulation, the first term in Eq. []is the projection loss as in (Miyato & Koyamal 2018)
between input image and conditional embedding of discriminator. Since conditional embedding is
extracted from a pre-trained network, above training objective leads to feature level knowledge
distillation from C'. It also acts as a regularizer on the discriminator reducing its overfitting in the
limited data setting as shown in Figure[2] The gap between discriminator score (D; o Dy) of training
and validation images keeps on increasing and FID quickly degrades for baseline model as compared
to DIP when trained on only 10% data of CIFAR-100. Moreover, enforcing feature D (G(z|C(x)))
to be similar to D¢, (C(x)) promotes that for each real sample, there exists a generated sample
close to it and hence promotes mode coverage of target data distribution. We demonstrate that the
above proposed use of data instance priors from a pre-trained feature extractor, while designed for
a limited data setting, also benefits in large-scale image generation. Our overall methodology is
illustrated in Figure|l|and pseudo code is in Algorithm

Random image generation at inference Given the training set Djpa9e = {X; };’:1 of sample
size n and its corresponding training data prior set D0 = {C (Xj)}?zl, the generator requires
access to D5, for sample generation. In case of few-shot image generation where size of Do,
is limited (~ 100), to create more variations we generate images conditioned on interpolation of two
randomly sampled prior i.e.

G(z|A-p1+ (1 —X) - p2) where p1,pP2 ~ Dprior; A ~ Uniform|0, 1] 5)
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Figure 2: Comparison between DIP and Baseline when trained on 10% data of CIFAR-100. left: FID (in
Pytorch) of baseline training starts increasing very early in training (around 15k) as compared to FID of DIP
training. middle: Discriminator score on training and validation images remain similar to each other and
consistently higher than score of generated images for DIP model. right: Discriminator score on training and
validation images start diverging and training collapses for the baseline model.

In case of large-scale image generation, to avoid storing D,,,.;,, corresponding to complete training
set (possibly in order of millions), we propose to cluster (Sculley}, 2010) or build a Gaussian Mixture
Model (GMM) (Xu & Jordan, |1996) on ID,,,.;, and store only the cluster centroids and thus enable
memory efficient sampling of conditional prior from the distribution fit during inference as follows:

G(z|p+ N(0,1;)) where 1 ~ K-MeansCentroids(Gems(Dprior))

or G(Z‘N(ﬂﬁ E)) where s Y~ GMM(Gemb(Dprior)) (6)

Controlled image generation through semantic diffusion We observed that high-level seman-
tics (e.g. smile, hair, gender, glasses, etc in case of faces) of a generated image, G(z|C(x)), relied
on the conditional prior, C(x). Complementarily, variations in the latent code z ~ N(0, I) induced
fine-grained changes such as skin texture, face shape, etc. This suggests that one can exploit our
conditional prior, C'(x), to get some control over the image generation’s high-level semantics. We
show that by altering an image x (through CutMix, CutOut, etc) and using C'(x) of the altered image
as our new input prior helps in generating samples with the desired attributes, as shown in Fig [3]
In a similar manner, DIP also allows generation of images with certain cues (like sketch to image
generation, as shown in Fig[5|and Appendix). We note that the generation of samples at inference,
in this case, can simply be done by using C'(x) as condition in G.

5 EXPERIMENTS

We perform extensive experiments to highlight the efficacy of our data instance prior module DIP
in unsupervised training based on SNGAN (Miyato et al., 2018)), Big-GAN (Brock et al.,[2018) and
StyleGAN2 (Karras et al.| 2020b) architectures. For extracting image prior information, we use the
last layer activations of: (1) Vgg16 (Simonyan & Zisserman, 2014) classification network trained on
ImageNet; and (2) SimCLR (Chen et al., 2020) network trained using self-supervision on ImageNet.
We conduct experiments on few-shot (~ 25-100 images), limited (~ 2k-5k images) and large-scale
(~ 50k-1M images) data settings. For evaluation, we use FID (Heusel et al., [2017), precision and
recall scores (Kynkddnniemi et al.l [2019) to assess the quality and mode-coverage/diversity of the
generated images.

5.1 FEW-SHOT IMAGE GENERATION

Baselines and Datasets For comprehensive evaluation, we compare and augment our methodol-
ogy DIP with training SN-GAN from scratch and the following leading baselines: Batch Statistics
Adaptation (BSA) (Noguchi & Haradal [2019), TransferGAN (Wang et al., 2018)), FreezeD (Mo
et al., |2020) and DiffAugment (Zhao et al., 2020b). In case of BSA, a non-adversarial variant,
GLANN (Hoshen et al.,|2019)) is used which optimizes for image embeddings and generative model
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SN-GAN (128 x 128)
Pre-training Anime Faces Flower

Method FID, Pt R{ FD| Pt R{ FD| Pt Rt
From scratch x 12038 0.61 000 14066 031 000 12402 030 0.09
+DIP-Vggl6 6685 071 003 6849 074 015 9422 0.62 041
TransferGAN v 10275 070 000 10115 0.85 000 11335 071 0.09
+DIP-Vggl6 8696 057 002 7521 070 010 11024 055 0.11
FreezeD v 10940 0.67 000 107.83 0.83 000 91.80 0.69 0.14
+DIP-Vggl6 9336 056 003 77.09 068 0.14 12043 053 020
+ DIP-SimCLR 89.39 046 0.025 7040 074 022 12013 063 0.33
DiffAugment x 85.16 095 000 10925 084 000 8345 075 023
+DIP-Vggl6 4867 082 003 6244 080 0.19 7986 079 057
+ DIP-SimCLR 5241 077 004 6453 078 022 8792 075 054
BSA* v 920 - - 1232 - - 1298 - -

GLANN+DIP-Vggl6 67.07 087 001 6011 095 008 9773 095 051

Table 1: Few-shot image generation results using 100 training images (|: lower is better; 1: higher is better).
Precision and Recall scores are based on (Kynkdénniemi et al [2019). FID is computed between 10k, 7k, 5k
generated and 10k, 7k, 251 real samples for Anime, Faces and Flower respectively. * denotes directly reported
from the paper.

Big-GAN (128 x 128)

Method Places2.5k  FFHQ2k CUB6k
FID | FID | FID |
MineGAN 75.50 7591 69.64
TransferGAN 16291 126.23 138.87
+ DIP-Vggl6 57.35 44.43 23.37
FreezeD 191.04 161.87 142.47
+ DIP-Vggl6 50.58 43.90 26.90
DiffAugment 56.48 31.60 36.09
+ DIP-Vggl6 30.76 23.19 15.81
+ DIP-SimCLR 26.65 21.06 12.36

Table 2: Limited data image generation using different ap-
proaches. FID (lower is better) is computed between 10k, 7k,

Figure 3: 100-shot image interpolation between 6k generated and real samples (disjoint from training set) for
instance-level prior for DiffAugment Places2.5k, FFHQ2k, CUB datasets respectively. BigGAN pre-

@ (Rows 1,3,5) and DiffAugment + DIP-Vggl6 trained on ImageNet is fine-tuned in all approaches.
(Rows 2,4,6) on Anime, Faces and Flower datasets re-
spectively.

through perceptual lossﬂ We use our data priors to distill knowledge over these image embeddings.
For more training and hyperparameter details, please refer to Appendix [A]

We perform experiments on randomly chosen 100 images at 128 x 128 resolution from: (1) AnimeEl
(2) FFHQ (Karras et al.}[2019)) and (3) Oxford 102 flowers (Nilsback & Zisserman|, 2008)) (we restrict
to the Passion flower class following (Noguchi & Haradal |2019), to avoid overlap with ImageNet
classes) datasets. The above datasets are chosen to ensure that there is no class label intersection with
ImageNet classes. For methods with pre-training, we finetune SNGAN pre-trained on ImageNet as
done in (Noguchi & Harada, |2019). We also show additional results at 256 x 256 resolution as
well as additional datasets (Pandas, Grumpy Cat, Obama) with StyleGAN-2 (Karras et al, [2020b)
in Appendix [A]

Results Using DIP shows consistent improvement in FID and Recall over all baseline methods as
shown in Table[T] Fig[3]shows samples generated via interpolation between conditional embedding
of models trained via DIP-Vgg on DiffAugment and vanilla DiffAugment. These results show
qualitatively the significant improvement obtained using our DIP-based transfer learning approach.
Comparatively, the baseline, vanilla DiffAugment, fails to generate realistic interpolation and for

!'The code provided with BSA was not reproducible, and hence this choice
2www.gwern.net/Danbooru2018
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Method Inference CIFAR-10 CIFAR-100 FFHQ LSUN-Bedroom ImageNet32x32
FID| | Pt | Rt |FID|| P+ | Rt |FID/| Pt | Rt |FID|| P+ | Rt |FID| | Pt |R?T
Baseline 19.73 | 0.64 | 0.70 | 24.66 | 0.61 | 0.67 | 21.67 | 0.77 | 0.47 | 9.89 | 0.58 | 0.42 | 16.19 | 0.60 | 0.67
SSGAN 15.65 | 0.67 | 0.68 | 21.02 | 0.61 | 0.65 - - - 7.68 | 0.59 | 0.50 | 17.18 | 0.61 | 0.65
Self-Cond GAN 16.72 | 0.71 | 0.64 | 21.8 | 0.64 | 0.60 - - - 15.56 | 0.66 | 0.63
Dyrior 10.57 | 0.75 | 0.65 | 14.11 | 0.70 | 0.66 | 13.88 | 0.85 | 0.55 | 3.77 | 0.67 | 0.57 | 9.93 | 0.66 | 0.63
DIP GMM 11.24 | 0.74 | 0.64 | 1571 | 0.70 | 0.62 | 15.83 | 0.76 | 0.55 | 4.99 | 0.66 | 0.54 | 12.11 | 0.64 | 0.62
Vggl6 K-means | 11.79 | 0.70 | 0.69 | 15.75 | 0.67 | 0.69 | 13.43 | 0.82 | 0.54 | 4.69 | 0.71 | 0.50 | 11.96 | 0.62 | 0.64

DIP GMM 14.42 | 0.68 | 0.65 | 20.08 | 0.67 | 0.62 | 16.62 | 0.77 | 0.53 | 4.92 | 0.62 | 0.53 | 14.99 | 0.60 | 0.63
SimCLR K-means | 14.27 | 0.67 | 0.70 | 17.96 | 0.66 | 0.699 | 14.10 | 0.82 | 0.52 | 548 | 0.74 | 0.45 | 15.58 | 0.62 | 0.64

Dyprior 12.60 | 0.69 | 0.70 | 16.26 | 0.67 | 0.70 | 13.50 | 0.83 | 0.59 | 3.85 | 0.67 | 0.56 | 11.43 | 0.62 | 0.68

Table 3: Comparison of FID, Precision and Recall metrics of DIP with Baseline and SSGAN for large-scale
image generation. Best values obtained by using complete training set Dp;o, are underlined and the best value
among all other approaches are in bold.

the most part, presents memorized training set images. DIP performs better when training is done
from scratch as compared to FreezeD and TransferGAN but is worse than DiffAugment+DIP. We
present additional ablation studies in Appendix[A] including more qualitative comparisons, to study
the benefit of using DIP in few-shot image generation.

5.2 LIMITED DATA IMAGE GENERATION

In many practical scenarios, we have access to moderate number of images (1k-5k) instead of just a
few examples, however the limited data may still not be enough to achieve stable GAN training. We
show the benefit of our approach in this setting and compare our results with: MineGAN(Wang et al.,
2020), TransferGAN, FreezeD, and DiffAugment. We perform experiments on three 128 x 128 res-
olution datasets: FFHQ2k, Places2.5k and CUB6k following (Wang et al.|,[2020). FFHQ2k contains
2K training samples from FFHQ (Karras et al., 2019) dataset. Places2.5k is a subset of Places365
dataset (Zhou et al.| 2014) with 500 examples each sampled from 5 classes (alley, arch, art gallery,
auditorium, ball-room). CUBG6k is the complete training split of CUB-200 dataset (Wah et al., 2011)).
We use the widely used BigGAN (Brock et al.,[2018) architecture, pre-trained on ImageNet for fine-
tuning. Table [2] shows our results; using DIP consistently improves FID on existing baselines by
a significant margin. More implementation details are given in Appendix (B| and sample generated
images via our approach are shown in Fig[8| We also compare our approach with DiffAugment on
CIFAR-10 and CIFAR-100 dataset while varying the number of sample used for training in Table 9]

Appendix [B]

5.3 LARGE-SCALE IMAGE GENERATION

In order to show the usefulness of our method on large-scale image generation, we carry out experi-
ments on CIFAR-10, CIFAR-100 (Krizhevsky et al., 2010) and ImageNet-32 x 32 datasets with 50k,
50k and ~ 1.2M training images respectively at 32 X 32 resolution. For a higher 128 x 128 reso-
lution, we perform experiments on FFHQ and LSUN-bedroom (Yu et al., 2015)) datasets with 63k
and 3M training samples. We use a ResNet-based architecture for both discriminator and generator
similar to BigGAN (Brock et al.l 2018 for all our experiments. We also compare DIP with SS-
GAN (Chen et al.l 2019) and Self-Conditional GAN (Liu et al.,2020). Implementation and training
hyperparameter details are provided in Appendix

Table [3|reports the FID, precision and recall score on the generated samples and the test set for base-
lines and our approach (DIP). For K-means clustering on Gepmp(Dprior ), We set number of clusters
to 10K and for GMM, the number of components are fixed to 1K for all datasets. DIP achieves
better FID, precision and recall scores compared to leading baselines. Sample qualitative results are
shown in the Appendix (Figure [IT). To further analyze the role of prior in our methodology, we
train CIFAR-100 dataset with DIP using priors from different pre-trained models. As shown in the
results in Table [5] the FID metric remains relatively similar for different priors when compared to
the baseline. We also evaluate the quality of inverted images for 128 x 128 resolution on FFHQ and
LSUN datasets using Inference via Optimization Measure (IvOM) (Metz et al.,[2017) to emphasize
the high instance-level data coverage in the prior space of GANSs trained through our approach (de-
tails on IvOM calculation are provided in Appendix [C). Table ] shows the IvOM and FID metric
between inverted and real query images. Figure 4 shows sample inverted images. We observe both
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Method FFHQ LSUN-Bedroom
IvOM | | FID| | IvOM | | FID |

Baseline 0.0386 | 85.06 | 0.0517 | 115.02
+ DIP-Vggl6 0.0142 | 73.85 | 0.0191 129.4
+ DIP-SimCLR | 0.0125 | 71.44 | 0.0161 | 116.11

. Table 4: IvOM and FID measure on 500 random test
images of FFHQ and LSUN-Bedroom datasets

Method CIFAR-100
Baseline 24.66
FFHQ LSUN-Bedroom + DIP-SimCLR (ImageNet) 16.26
. + DIP-SimCLR (CIFAR-100) 14.62
Figure 4: Images generated through IvOM for + DIP-ResNet50 (Places-365) 14.68

randomly sampled test set images on FFHQ and
LSUN-Bedroom. (Top to Bottom:) Original im-
ages, Baseline, Baseline + DIP-Vgg16, Baseline
+ DIP-SimCLR.

Table 5: Comparison of FID when using prior from

various pre-trained models on CIFAR-100

Figure 5: Semantic diffusion for image manipulation using DIP-Vgg16 model on FFHQ dataset. (Left to
Right:) Custom Editing, Inpainting, Sketch-to-Image Translation and Colorization.
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from qualitative and quantitative perspective, models trained via DIP invert a given query image
better than the corresponding baselines.

Semantic Diffusion and Variations As described in Section ] our conditional DIP module pro-
vides us with a framework to alter input images and thus generate images with specific semantics.
Figure [5|demonstrates how controlled semantic diffusion can be leveraged in several image manip-
ulation tasks. We perform: (1) Custom Editing by using CutMix (i.e pasting a desired portion of
one image upon another); (2) Inpainting by using CutOut (i.e removing random portions in example
image); (3) Sketch-to-Image by providing the feature of a sketch as conditional prior; and (4) Col-
orization by using the feature of a given grayscale image for conditioning. As evident from Figure
Bl our trained generator is able to generalize well through its ability to diffuse the semantic infor-
mation from altered (cutmix and cutout) as well as out-of-domain (sketches and gray-scale) images.
For more qualitative results, please see Fig[10]in Appendix. We can also use interpolation, noise
injection and Mixup in the conditional space to generate meaningful variations of a given image as
shown in Fig[0]in the Appendix.

6 CONCLUSION

In this work, we present a novel data instance prior based transfer learning approach to improve
the quality and diversity of images generated using GANs when a few training data samples are
available. By leveraging features as priors from rich source domain in limited unsupervised image
synthesis, we show the utility of our simple yet effective approach on various standard vision datasets
and GAN architectures. We demonstrate the efficacy of our approach in image generation with
limited data, where it achieves the new state-of-the performance, as well as on large-scale settings.
Furthermore, using our framework of training via instance level priors, we show how easily we can
perform common image editing tasks by manipulating these priors. As future work, it would be
interesting to explore the application of prior information in other potential image editing tasks.
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Appendix

A  FEW-SHOT IMAGE GENERATION

Performance on varying number of training images We vary the number of training examples
in Anime dataset from 25-500 for baseline few-shot algorithms and their respective augmentations
with DIP-Vgg16. The FID metric comparison in Fig[6a|shows the benefit of our approach when used
with existing training algorithms. The FID metric for all approaches improves (decreases) with the
increase the number of training images with DIP out-performing corresponding baselines. Sample
images generated by our approach are shown in Fig[6b]

Memorization in GANs To evaluate whether trained GANSs are actually generating novel images
instead of only memorizing the training set, we calculate FID between images randomly sampled
from training set with repetition and the separate test set for Anime and FFHQ dataset. For Anime
dataset, we get an FID of 81.23 and for FFHQ, 100.07. On comparing these numbers to Table [T| we
observe that only on using DIP with existing algorithms, we achieve a better FID score suggesting
the usefulness of the proposed approach.

Anime
2251 5 BSA F D + DiffA t GLANN +
N GLANN + DIP-Vggl6 reeze {LANgIIen
kS DIPVggl6
200+ 2N —e- FreezeD
175 \\ —— FreezeD + DIP-Vggl6
AN —e - DiffAugment
1501 . S\« —— DiffAugment + DIPVggl6

25 50 100 500
#images in training dataset

(a)

Figure 6: (a) FID (lower is better) performance graph of few-shot image generation on 25-500 images of
Anime dataset using various approaches on SNGAN model; (b) Samples of few-shot image generation on
25-500 images of Anime dataset using DIP on various approaches on SNGAN.

Few-shot image generation with StyleGAN-2 For 256 x 256 resolution dataset with StyleGAN-
2 architecture, we follow (Zhao et al},[2020b) and perform experiments on 100-shot Obama, Panda
and Grumpy Cat dataset with pre-trained models on FFHQ (Karras et al, 2019) dataset. Table [6]
shows consistent improvement in FID scores when trained with DIP irrespective of baseline training
algorithm except on Grumpy Cat dataset. We hypothesize that this is because the prior features of
this dataset has low diversity and are not informative enough to lead to improved performance with
data instance prior training.

Impact of loss function we analyze how DIP performs when loss function is changed. We com-
pare between the following three loss functions: hinge loss used originally in our experiments, non-
saturating loss (Goodfellow et al., 2014) and the wasserstein loss (Arjovsky et al.l [2017). Table g
shows the corresponding results when DIP is used with FreezeD and DiffAugment. We observe that
in case of FreezeD+DIP wasserstein loss significantly outperforms non-saturating loss and hinge
loss. In case of DiffAugment hinge loss performs best followed by non-saturating loss and wasser-
stein loss.

Implementation Details In SN-GAN architecture, while training with data instance prior, Gemp
and D.,,; are matrices which linearly transform the pre-trained features into generator conditional
space of dimension 128 and discriminator feature space of dimension 1024. For baseline training,
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(a) Anime Faces (b) Human Faces

Figure 7: Few-shot interpolation samples between instance-level priors: Scratch (Row 1), Scratch + DIP-
Vggl6 (Row 2), FreezeD (Row 3), FreezeD + DIP-Vggl6 (Row 4), DiffAugment (Row 5), DiffAugment +
DIP-Vggl6 (Row 6)

Style-GAN 2 (256 x 256) g
Method Panda Grumpy Cat Obama Method Anlm;I(gleAN)
FID | FID | FID |
FreezeD 16.69 29.67 62.26 FreezeD + DIP 93.36
+ DIP-Vggl6 14.66 29.93 54.87 FreezeD + Logo-GAN (K=5) 226.60
FreezeD + Logo-GAN (K=10) 183.38
DiffAugment 12.06 27.08 46.87
+DIP-Vggl6 11.14 28.45 43.79 DiffAugment + DIP 48.67
DiffAugment + Logo-GAN (K=5) 130.54
BSA* 21.38 34.20 50.72 X
GLANN + DIP-Vggl6  11.51 29.85 38.57 Diff Augment + Logo-GAN (K=10) 190.59
Table 6: 100-shot image generation results using Table 7: 100-shot image generation com-

StyleGAN-2 (Karras et al}, 2020b) architecture on ~ parison of DIP with Logo-GAN
Panda, Grumpy-cat and Obama datasets. FID is 2018) on Anime dataset using Vggl6 net-

computed between 5k generated and the complete work trained on ImageNet. FID is com-
training dataset. * denotes directly reported from puted between 10k generated and real sam-
the paper (Zhao et al| 2020b). ples (disjoint from training set).

we use an embedding for each of the 100 training images to ensure minimal difference between
baseline and our approach without increasing number of parameters. We also experimented with
self-modulated and unconditional training which resulted in either training col-
lapse or worse results in all approaches. In DiffAugment, we use three augmentations: translation,
cutout, and color with consistency regularization hyperparameter as 10 and training is done from
scratch following the implementation in their paper (Zhao et al., 2020b). In FreezeD, we freeze the
first five blocks of the discriminator and finetune the rest. We use spectral normalization for both
generator and discriminator during training with batch size of 25, number of discriminator steps as
4, G and D learning rate as 2e — 4, z dimension as 120 and maximum number of training steps as
30K. During evaluation, moving average weights (Salimans et al., 2016a)) of the generator is used
in all experiments unless stated otherwise. For FID calculation, we select the snapshot with best FID
similar to (Chen et al} 2019} [Zhao et al.l 2020b). For calculating precision and recall based on the
k-nearest neighbor graph of inception features, as in (Kynkidnniemi et al.} 2019), we use k as 10 for
Precision and 40 for Recall.

For StyleGAN-2, G, is a 2-layer MLP with ReLU non-linearity which maps C(x) to a 512-
dimensional generator conditional space. It is then concatenated with random noise z of dimension
512 which is used as input in the mapping network. D.,,; is a linear transformation matrix and
discriminator loss is projection loss combined with real/fake loss. Training is done with batch-size
of 16 for DiffAugmentEl and 8 for Freeze]ﬂ till 20k steps.

In case of BSA, we show that DIP can be used to improve the results on similar non-adversarial
generative models. Specifically, we perform experiments with GLANNE]WhiCh is a two step training

3https://github.com/mit-han-lab/data-efficient-gans
*https://github.com/sangwoomo/FreezeD
Shttps://github.com/yedidh/glann
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SN-GAN (128 x 128)

Pre-training Anime Faces
Method H NS w H NS w
FreezeD v 109.40 10243 14899 107.83 10534 209.23
+ DIP-Vggl6 93.36 82.49 74.91 77.09 77.38 71.05
DiffAugment X 85.16 106.96 252.11 109.25 107.18 325.85
+ DIP-Vggl6 48.67 48.61 56.43 62.44 68.66 81.03

Table 8: Comparison of loss function in few-shot image generation using 100 training images (FID: lower is
better). H is hinge loss, NS is non saturating loss and W is wasserstein loss.

procedure, as follows: (1) Optimize for image embeddings {e;} of all training images {x;} jointly
with a generator network G using perceptual loss; and (2) Learn a sampling function 7' : z — e
through IMLE for generating random images during inference. For adding data instance prior in the
training procedure of GLANN, instead of directly optimizing for {e; }, we optimize for the following
modified objective:

arg min Z Lyerceptual (G 0 Gemp 0 C(Xi),X;)
G\.Gemp (7N

where {e;} = {Gemp 0 C(x4)}

We finetune the pre-trained generator on batch-size of 50 with a learning rate of 0.01 for 4000
epochs. During second step of IMLE optimization, we use a 3-layer MLP with z dimension as 64
and train for 500 epochs with a learning rate of 0.05.

Comparison with Logo-GAN (Sage et al.,[2018) Logo-GAN has shown advantage of using fea-
tures from pre-trained ImageNet network in unconditional training by assigning class label to each
instance based on clustering in the feature space. We compare our approach with this method in the
few-shot data setting. For implementing logo-GAN, we perform class-conditional training (Miyato
et al., [2018)) using labels obtained by K-means clustering on Vggl6 features of 100-shot Anime
dataset. The results reported in Table [/| show the benefit of directly using features as data instance
prior instead of only assigning labels based on feature clustering.

B LIMITED DATA IMAGE GENERATION

Experiments on CIFAR-10 and CIFAR-100 We experiment with unconditional BigGAN and
StyleGAN2 model on CIFAR-10 and CIFAR-100 while varying the amount of data as done in (Zhao
et al.| [2020b)). We compare DIP with DiffAugment on all settings and the results are shown in Table
E} In the limited data setting (5% and 10%) augmenting DiffAugment with DIP gives the best
results in terms of FID for both BigGAN and StyleGAN2 architectures. When trained on complete
training dataset DIP slightly outperforms DiffAugment on BigGAN architecture. BigGAN model
used for training CIFAR-10 and CIFAR-100 is same as the one used for large scale experiments in
Section[5.3] In DiffAugment with BigGAN architecture, we use all three augmentations: translation,
cutout, and color along with consistency regularization hyperparameter as 10. In DiffAugment +
DIP consistency regularization hyperparameter is changed to 1. For experiments on StyleGAN2
architecture we use the code-base of DiffAugmentﬂ

Implementation details of experiment on 128 Resolution datasets in Section We use our
approach in conjunction with existing methodologies in a similar way as the few-shot setting with
Gemp and De,y,yp as linear transformation matrices which transform the data priors into the genera-
tor’s conditional input space of dimension 128 and discriminator feature space of dimension 1536.
During baseline training, we use self-modulation (Chen et al.,|2018) in the batch-norm layers similar
to (Chen et al} |2019; Schonfeld et al.| 2020). In DiffAugment, we use three augmentations: trans-
lation, cutout, and color with consistency regularization hyperparameter as 10. During FreezeD
training, we freeze the first 4 layers of discriminator. For TransferGAN, FreezeD, MineGAN and
its augmentation with DIP, we use the following hyperparameter setting: batch size 256, G and D

Shttps://github.com/mit-han-lab/data-efficient-gans/tree/master/Diff Augment-stylegan2
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Method CIFAR-10 CIFAR-100
100% data  20% data 10% data  100% data 20% data 10% data

BigGAN 17.22 31.25 42.59 20.37 33.25 42.43
+DIP 9.70 16.24 27.86 12.89 21.70 31.48
+DiffAugment 10.39 15.12 18.56 13.33 19.78 23.80
+DiffAugment & DIP 9.52 14.24 18.50 12.70 16.91 20.47
StyleGAN2* 11.07 23.08 36.02 16.54 32.30 45.87
+DiffAugment* 9.89 12.15 14.5 15.22 16.65 20.75
+DiffAugment & DIP 9.50 10.92 12.03 14.45 15.52 17.33

Table 9: Comparison of FID on CIFAR-10 and CIFAR-100 while varying the amount of data used during
training. Above all approaches are trained with random-horizontal flip augmentation of real images. BigGAN-
DiffAugment includes consistency regularization [2019) following the implementation provided
by authors [2020b). Best FID values are reported for each model. * denotes directly reported from
paper.

(a) Places (2.5k) (b) FFHQ (2K) (c) CUB (6K)

Figure 8: Sample generated images on limited data training: FreezeD (Row 1), FreezeD + DIP-
Vggl6 (Row 2), DiffAugment (Row 3) and DiffAugment + DIP-Vggl16 (Row 4)

Ir 2e — 4 and z dimension 120. For DiffAugment, batch size is 32, D-steps is 4 and rest of the hy-
perparameters are same. Training is done till 30k steps for Diff Augment, FreezeD, and 5k steps for
the rest. The moving average weights of the generator are used for evaluation. We use pre-trained
network fromﬂ (Brock et al., [2018) for finetuning.

C LARGE-SCALE IMAGE GENERATION

Test for memorization in trained model For analyzing memorization in GANs, we evaluate it on
the recently proposed test to detect data copying (Meehan et all [2020). The test calculates whether
generated samples are closer to the training set as compared to a separate test set in the inception
feature space using three sample Mann-Whitney U test (Mann & Whitney} [1947). The test statistic
Cr << 0 represents overfitting and data-copying, whereas Cr >> 0 represents underfitting. We
average the test statistic over 5 trials and report the results in Table We can see that using data
instance priors during GAN training does not lead to data-copying according to the test statistic
except in case of FFHQ dataset where both DIP and baseline C';- values are also negative.

Image inversion To invert a query image, x, using our trained model, we optimize the prior (after
passing it to G.,p) that is used to condition each resolution block, independently. Mathematically,
we optimize the following objective:

z",Cy,.Cp = arcigmén |G(2|C1,..Ck) — x4]|3, xfl’“’ = G(z*|CT,..C})
z,01,..02

Here, C; (after passing it through G.,,;) is the prior that is used to condition the #*"* € {1...k}
resolution block. To get a faster and better convergence, we initialize all C; as Gepmp(C(x4)). The
optimization is achieved via back-propagation using Adam optimizer with learning rate of 0.1.

https://github.com/ajbrock/BigGAN-PyTorch
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Figure 9: Semantic variations using pre-trained Vggl6 conditional DIP module on FFHQ dataset. (Left:)
Random samples generated with prior as feature of the first image in each row; (Right:) first and second
row in both images shows generated samples by interpolation and Bernoulli mixup between two image priors
respectively.

Figure 10: Examples of semantic diffusion used in image manipulation on FFHQ dataset using
our DIP-Vggl6 approach. Top-Left: Custom Editing; Top-Right: Sketch-to-Image; Bottom-Left:
Inpainting; Bottom-Right: Colorization

Semantic diffusion for image manipulation Figure[T0]shows more examples of semantic diffu-
sion being used in standard image manipulations like colorization, editing, sketch-to-image transla-
tion and inpainting.
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(d) FFHQ

Figure 11: Samples generated by our DIP-Vgg16 approach on large-scale image generation

Methods CIFAR-10 | CIFAR-100 | FFHQ | LSUN | ImageNet32x32
Cr Cr Cr Cr Cr
Baseline 3.02 4.26 -0.15 2.59 10.5
DIP-Vggl6 1.24 2.50 -0.63 3.31 7.48
DIP-Vggl6 (GMM) 1.58 3.05 -0.81 1.06 8.53
DIP-Vggl6 (K-means) 1.96 3.70 -0.46 1.12 8.47
DIP-SimCLR 2.23 3.30 -1.14 2.49 9.70
DIP-SimCLR (GMM) 2.86 3.48 -1.49 0.13 9.91
DIP-SimCLR (K-means) 2.45 3.91 -1.84 -0.12 10.11

Table 10: Test for evaluating data-copy and memorization in GANs (Meehan et al., 2020) for different ap-
proaches and datasets. Test statistic Cr << 0 denotes overfitting and data-copying, and C'r >> 0 represents
under-fitting.

Implementation Details We use a single linear layer to transform the pre-trained image features
to the generator’s conditional input space of 128 dimensions, and discriminator feature space of
1024 dimensions respectively. A hierarchical latent structure similar to (Brock et all 2018)) is used
during DIP training. During evaluation with K-means and GMM on ImageNet and LSUN-Bedroom
we first randomly sample 200K training images and then fit the distribution since clustering on com-
plete training set which is in the order of millions is infeasible. In the training of the unconditional
baseline, we use self-modulation [2018). In SSGAN, for rotation loss we use the de-
fault parameter of 0.2 for generator and 1.0 for discriminator as mentioned in 2019).
For training Self-Conditional GAN 2020), we set the number of clusters to 100 for all
datasets. For CIFAR-10 and CIFAR-100, we re-cluster at every 25k iterations with 25k samples, and
for ImageNet, at every 75k iterations with 50k samples following default implementation as in
2020). Following standard practice (Zhang et al.l 2019), we calculate FID, Precision and Re-
call between test split and an equal number of generated images for-10, CIFAR-100, and ImageNet
32x 32, i.e., 10k, 10k, and 50Kk, respectively. For FFHQ and LSUN-bedroom datasets, we use 7k and
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30k generated and real (disjoint from training) samples, respectively. For all datasets and methods,
training is done with batch size of 64, G and D learning rate is set to 0.0002, z dimension equals 120
and spectral normalization is used in both generator and discriminator networks. Training is done
till 100k steps for all datasets except ImageNet which is trained for 200k steps and moving average
weights of generator are used during evaluation.
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