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Abstract

Machine learning is now ubiquitous in societal decision-making, for example in
evaluating job candidates or loan applications, and it is increasingly important
to take into account how classified agents will react to the learning algorithms.
The majority of recent literature on strategic classification has focused on reduc-
ing and countering deceptive behaviors by the classified agents, but recent work
of Attias et al. [5] identifies surprising properties of learnability when the agents
genuinely improve in order to attain the desirable classification, such as smaller
generalization error than standard PAC-learning. In this paper we characterize
so-called learnability with improvements across multiple new axes. We introduce
an asymmetric variant of minimally consistent concept classes and use it to pro-
vide an exact characterization of proper learning with improvements in the real-
izable setting. While prior work studies learnability only under general, arbitrary
agent improvement regions, we give positive results for more natural Euclidean
ball improvement sets. In particular, we characterize improper learning under a
generative assumption on the data distribution. We further show how to learn in
more challenging settings, achieving lower generalization error under well-studied
bounded noise models and obtaining mistake bounds in realizable and agnostic on-
line learning. We resolve open questions posed by Attias et al. [5] for both proper
and improper learning.

1 Introduction

Suppose that a school is trying to create a machine learning classifier to admit students based on
their test score. The school uses a cutoff § to determine whether a student should be admitted. If the
school publishes this cutoff, then students immediately below the cutoff will want to boost their test
scores in order to be admitted, for example by studying harder or by registering for booster courses.
This is an example of where deploying a classifier can influence the behavior of the agents it is
aiming to classify. We assume binary classification and that agents want to be positively classified.

There are two views one can take on this phenomenon. The first is that the actions that agents take
in response to the deployed classifier do not truly improve the agent’s quality. This setting is known
as strategic classification [36] or measure management [16]. A second view, however, which is
the focus of this work, is that agents’ actions lead to real improvements. For example, studying or
taking classes in order to get a higher exam score can genuinely make a student more qualified, so
the school would want to admit any student that achieves their desired cutoff 6. This setting, when
agents respond to the classifier to potentially improve their classification while changing their true
features in the process, is known as strategic improvements [40, 45].
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Previous works seek to efficiently incentivize and maximize agent improvement [45, 40, 53]. In a
recent paper, Attias et al. [5] instead take the agent improvement function as given and study statisti-
cal learnability with improvements. Attias et al. [S] show fundamental differences in the learnability
of concept classes compared to both standard PAC-learning where the agents cannot respond to the
classifier, as well as the strategic setting where the agent tries to deceive the classifier to obtain a
more favorable classification. Surprisingly, learning with improvements can sometimes be easier
than the standard PAC setting, and it can sometimes be harder than strategic classification. Attias
et al. [5] provide concrete examples showing the separation between standard PAC-learning, strate-
gic PAC-learning, and PAC-learning with improvements. Attias et al. [S]’s results focus on realizable
and fully offline learning. They give necessary and sufficient conditions for proper learning in terms
of the intersection-closed property of concept classes.

In this paper, we give an exact characterization of which concepts classes are PAC learnable in the
proper and realizable setting using a new notion which we call nearly minimally consistent concept
classes. This improves upon prior work by closing the gap between the necessary and sufficient
conditions for proper, realizable PAC learning. We also design classifiers to maximize accuracy
for strategic improvements in more challenging settings as well as under more natural assumptions.
For improper learning, we show a natural sufficient condition on the data distribution for learning
when the agents can improve within Euclidean balls. Under this condition, we obtain tight sample
complexity bounds, up to logarithmic factors.

Next, we turn our attention to learning with improvements in more challenging settings. We study
learning with bounded label noise (including random classification noise and Massart noise), where
we can no longer rely on positive labels in our training set as being perfectly safe. For example, a
weak student who studied a small random subset of the syllabus might get lucky with some small
probability if the test questions happen to be from the part the student reviewed. We show how to de-
sign Bayes optimal classifiers, that is achieve OPT expected error in the learning with improvements
setting. In contrast, one can only hope to achieve OPT + ¢ in standard PAC learning.

Finally, we initiate the study of online learning with improvements, which may be more realistic
than assuming that the agents come from a fixed distribution. This is particularly important to study
when agents can move in response to our classification over time. For example, a false positive in our
published classifier may be exploited by an increasing number of agents. Further, we handle even the
agnostic learning in the online setting where no classifier available to the learner may be perfect. We
design “conservative” versions of the majority vote classifier which achieve near-optimal mistake
bounds for both realizable and agnostic online learning with improvements.

Contributions. Our paper makes the following contributions on learning with improvements in
challenging and natural settings:

* Proper learning for any improvement function. In Section 3, we introduce a new property of
concept classes called nearly minimally consistent and show that this property fully characterizes
which concept classes can be learned with improvements for any improvement function in the
proper, realizable setting. This resolves an open question of Attias et al. [5].

* Improper learning for Euclidean ball improvement sets. In Section 4, we move beyond proper
learning. We show that to get positive results in the improper setting we need to make assump-
tions about both the agent improvement set and the data distribution. We prove that the simple
memorization learning rule can learn any concept class improperly, even those with infinite VC-
dimension, assuming that the improvement set is or contains a Euclidean ball and that the data
distribution satisfies a coverability condition. Both of these assumptions are natural and appear in
prior literature. This addresses another question raised by Attias et al. [5].

* Learning with noise. In Section 5, we construct optimal algorithms for learning linear separators
in the improvements setting with bounded label noise under isotropic logconcave distributions and
instantiate our algorithms for many well-studied noise models. To the best of our knowledge, we
are the first to consider learning with strategic agents under label noise.

* Online learning on a graph. In Section 6, we study mistake bounds for online learning with
improvements for the discrete graph model of Attias et al. [5] in the more challenging online
setting. In both realizable and agnostic settings, we prove that risk-averse modifications of the
weighted majority vote algorithm enjoy near-optimal mistake bounds.



Related work. In each of the settings we study above, we discuss the conceptual differences be-
tween learning with improvements and learning under strategic classification. More generally, our
paper is related to several works studying learning in strategic and adversarial environments, such as
strategic classification [37, 46, 19, 1, 35], learning with improvements [40, 35, 5], reliable learning
[49, 33], and learning with noise [10]. For a detailed discussion of related work, see Appendix A.

2 Model

Attias et al. [S] propose the following formal model for learning with improvements. Let X denote
the instance space consisting of points or agents, and the label space is binary {0, 1}. Here the label
0 is called the negative class and label 1 is called the positive class, and all the agents would prefer
to be classified positive. Let A : X — 2% denote an improvement function that maps each point
x € X to its improvement set A(z), to which x can potentially move after the learner has published
the classifier in order to be classified positively. For example, if X C R<, a natural choice for Ax)
could be an /5-ball centered at . Let H C {0, 1}X denote the concept space, that is, the set of
candidate classifiers. We assume the existence of a ground truth function f* : X — {0, 1}, which
represents the true label of every point.

The goal is to learn the ground truth by sampling labeled instances from X. After seeing several
samples from X, the learner will publish a classifier h : X — {0, 1}. Each point now reacts to h in
the following way: if the agent was classified negative by £, it tries to find a point in its improvement
set A(z) that is classified positive by h and moves to it. The agent will only move if such a positive
point exists. We formalize this as the reaction set with respect to h,

_ [{z} if h(x) = Lorif {2/ € A(x) | h(z/) =1} =0
Anlw) = {{fl € A(z) : h(2') =1}  otherwise. 2.1

Note that if A classifies = as positive, = stays in place. If & classifies x as negative, there are two
cases. Either, there is no point in its improvement set where the agent is classified positive by A and
the agent does not move. Else, the agent moves to some point 2’ to be predicted positive by h. Our
improvement set model is equivalent to the behavior of utility-maximizing agents that have a utility
equal to h(z) — cost(z), and A(z) = {2’ € X | cost(xz) < 1}. These agents have a utility of 1 for
being classified as positive, a utility of O for being classified as negative, and incur a cost for moving,
where A(z) corresponds to the points that z can move to at a cost less than 1.

A classification error in the improvements setting is said to occur if there exists a point in the
reaction set of x where h disagrees with f*, namely

LosS(z; h, f*) = max 1[h(2") # f*(2)]. (2.2)
' €EAp ()

According to Eq. (2.2), agents = with h(x) = 0 will improve to a point =’ in their reaction set with
h(z") = 1 if possible, breaking ties in the worst case in favor of points z’ for which f*(2’) = 0.
This definition is natural if we want our classifiers to be robust to unknown tiebreaking mechanisms,
and would also make sense if improving to points whose true label according to f* is negative is
less costly than improving to points whose true label is positive. Hence Eq. (2.2) implies that a
classification error occurs for z if one of the following is true: z itself is a false positive, x is a false
negative and there is no positive ' € Ay (x) that = can improve to, or z is negative and there exists a
false positive 2’ € A, (x) that z can move to. This loss function favors conservative classifiers that
label uncertain points as negative rather than positive. For example, consider a scenario in which
there are no false positives, equivalently {x | h(z) = 1} C {z | f*(x«) = 1}. Note that h can have
zero loss so long as all points x for which h(z) = 0 and f*(z) = 1 can improve to some point
2’ € A(zx) with h(z") = 1. Importantly, the fact that some true positives might need to put in effort
to improve in order to be classified as positive does not count as a classification error in learning
with improvements.

Remark 2.1. Our improvement set based abstraction has a one-to-one correspondence with utility-
maximizing agents, including the adversarial tiebreaking behavior, as follows. Set the agent utility
to be 1 at positive points x with h(z) = 1, 0 at negative points x with h(z) = 0, and the utility
of movement from x fo a point ' € A(x) as a real number in [0, 1]. As an example, we could set
the utility of movement to 1[x € A(z)] - h(2') - fo(x/) For this utility function, the agent has no
incentive 1o move if either 1[x ¢ A(x)] or h(z') = 0, else it has a utility of 2 for ground-truth



negative points f*(z') = 0 and % for ground-truth positive points, so the agent moves in either
case but prefers the former. Note that A(x) consists of the points to which the agent x would ever
consider (or is able to) move to, and its incentives to move to a point © within A(x) are governed
by h(z') and f*(x') as described above.

Conversely, our improvement set based abstraction can be used to model an arbitrary utility function
as follows. Without loss of generality say that the utility of being positive is 1 and negative is 0.
Movements are associated with cost functions (negative utilities) for each © ~~ x' move, and costs
outside of (0, 1) can be ignored as the agent either always moves or never moves, irrespective of the
classifier. We can define the improvement set A(x) to be the set of points where the cost is in (0, 1).
Now the agent with h(x) = 0 will move to a point x’ with h(xz) = 1 as long as ' € A(x), as their
net utility is 1 — cost(x,x’) > 0. We can further incorporate worst-case tiebreaking by defining
A(x) to only consist of points with f*(z') = 0.

PAC-learning with improvements is defined similarly to standard PAC-learning but for the above loss
that incorporates agents’ movements. A learning algorithm A has access to a training set consisting
of m samples S € X" drawn i.i.d. from a fixed but unknown distribution D over X and labeled
by the ground truth f*. The learner’s population loss is LOSSp(h, f*) = Pyp [LOSS(z; A, f*)].
Most of the results of this paper focus on the realizable setting in which f* € ‘H and for which we
can define PAC-learnability as follows:

Definition 2.2. [5, Definition 2.2] A learning algorithm A PAC-learns with improvements a concept
class H with respect to improvement function A and data distribution D with sample complexity
m = m(e, §; A, H, D) ifforany f* € Hande,§ > 0, the following holds: with probability at least

1 — 9, A takes in as input a sample S DM labeled according to f* and outputs h : X — {0,1}
such that LOSSp(h, f*) < e.

3 Characterizing proper PAC-learning with improvements for any
improvement function

In this section we prove a complete characterization of which concept classes are properly PAC-
learnable with improvements for any improvement function A. Our main conceptual advance is
establishing a connection between PAC-learnability with improvements and the minimally consistent
property that characterizes PAC-learnability with one-sided error [48, Chapter 2.4]. For a discussion
on the previous results on proper PAC-learning with improvements which our theorem generalizes,
see Appendix B. We first review relevant background on learning with one-sided error.

Definition 3.1. An algorithm A learns a concept class H with one-sided error if A PAC-learns H
and the concept output by A does not have false positives.

For a concept f, denote by graph(f) the set of all examples for f, namely {(z, f(x))},c . We say
that f is consistent with a set of examples S C X x Y if S C graph(f). Let S C graph(f) for
some f € H. A concept g € H is the least g € H consistent with S if g is consistent with .S and for
all h € H consistent with S, every instance classified positive by ¢ is also classified positive by h.
Note that a least ¢ may not exist. A concept class H is minimally consistent if for each f € H and
each nonempty and finite subset S C graph(f), there exists a least g € H consistent with S. Ttis a
textbook result that minimally consistent characterizes learning with one-sided error.

Theorem 3.2. [48, Chapter 2.4] A concept class is PAC-learnable with one-sided error if and only
if it is minimally consistent.

To characterize PAC-learnability with improvements, we subtly modify the minimally consistent
property to exclude sets of examples that are all labeled positively. We only require / to be mini-
mally consistent on subsets .S that have at least one negatively labeled example, calling this asym-
metric variant nearly minimally consistent:

Definition 3.3. A concept class H is nearly minimally consistent if for each f € H and each
nonempty and finite subset S C graph(f) that contains at least one negative example (x,0) € S,
there exists a least g € H consistent with S.

Our main result is that the new nearly minimally consistent property we define above exactly char-
acterizes PAC-learnability with improvements:



Algorithm 1: Proper learning with improvements

Input: Set S consisting of m i.i.d. sampled instances (z1,¥1), .-, (T, Ym)
1: if there exists ¢ such that y; = 0 then
Output: Least concept in H consistent with .S
else
Output: Any concept in H consistent with S
end if

Theorem 3.4. A concept class H is properly PAC-learnable with improvements for all improvement
Sfunctions A and all data distributions D with sample complexity m = O (é (dvc(’H) + log %)) if
and only if H has finite VC-dimension and is nearly minimally consistent.

Proof sketch. We discuss the conceptual ideas needed to prove Theorem 3.4, relegating the full proof
to Appendix B. To learn with one-sided error, we output conservative classifier, namely the minimal
concept that is consistent with the training set .S, because we cannot afford any false positives. In
learning with improvements however, we can have false positives so long as points in S do not
“improve” to them. Assuming a worst-case improvement function A, the only case where points in
S do not move to any false positive is when they were originally positively labeled. In other words,
false positives are allowed only if S consists of only positive labeled examples. It turns out that
learning with improvements on such S is easy: if we see only positive examples in the training set,
with high probability the target concept f* originally consisted almost entirely of positive labels
under D. In this case we can simply output any concept h consistent with .S to achieve low error.
Our learning rule is given in Algorithm 1. O

Our theorem for proper PAC-learning with improvements in the realizable setting and its relation to
the previous results from Attias et al. [S] as well as to learning with one-sided error can be neatly
summarized using a Venn diagram (Fig. 1). The following two examples show that each of the Venn
inclusions is strict.

Example 3.5 (Separation between intersection closed and minimally consistent). Suppose X =
{21,202} and H = {h1, ha} with hy(z1) = 1,h1(x2) = 0 and ha(x1) = 0, ha(z2) = 1. Clearly
h1 N hy & H so H is not intersection-closed. Since knowledge of a single label tells us the target
concept, there is at most one concept consistent with any non-empty set, so ‘H is minimally consistent.

Example 3.6 (Separation between minimally consistent and nearly minimally consistent). Let X =
{z1, 22,23} and consider a concept class H = {hi, ho, hs}, where h;(xz;) = 1[i # j| for all
i,j € [3]. Note that H is not minimally consistent since there is no least hypothesis g € H consistent
with S = {(x1,1)}. However, one can show that H is nearly minimally consistent, the idea being
that these singleton sets S only contain positive examples and hence it is not required for a least g
consistent with S to exist. One can also show that H is PAC-learnable with improvements.

Importantly, our results establish that PAC-learnability with one-sided error implies proper PAC-
learnability with improvements. Nonetheless, since the difference between the learning algorithms
for these two settings lies only in what happens when the training set .S has only positive labels,
learning with improvements is only slightly easier than learning with one-sided error.

Comparison with strategic classification. A natural question to ask is when a concept class is
learnable for any A in the strategic classification model, where A(z) denotes the set of points '
that = can misreport. Recall that in the strategic classification, since x can misreport as but not truly
improve to any 2’ € A(x), the loss function is the following:

Loss(z;h, f*) = max 1[h(z') # " (2)].
' €Ap ()

We claim that for any concept class in which there exists a concept such that greater than ¢ fraction
of the points have negative label and greater than ¢ fraction have positive label, there is no algorithm
that can PAC-learn for every A. In order to get error at most &, the learning algorithm A must
output a hypothesis h that labels at least one point positive, say h(z) = 1. However, since greater
than than ¢ fraction of the points have negative label, if we take A(x) = X for all x € X then all
negative points can misreport as x, thus incurring strategic loss greater than e. We conclude that
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Figure 1: Relation between property PAC-learnability with improvements, PAC-learnability with
one-sided error, and the nearly minimally consistent, minimally consistent, and intersection-closed
properties, assuming that the concept class has finite VC-dimension.

PAC-learning for every A is impossible in the strategic setting unless all concepts either label all
points in X negative or all points in X positive.

4 Improper PAC-learning with ball improvement sets

In this section we consider improper learning with improvements. We first note that in order to
get interesting results, we must make some assumption on the improvement function A. This is
because we show that any concept class that is improperly PAC-learnable for a/l A must also be
properly PAC-learnable, and we have already characterized proper PAC-learnability in Section 3
using the nearly minimally consistent property. (Recall that proper learnability trivially implies
improper learnability.) Indeed, if A(z) = X for all € X then the learning algorithm cannot
make any false positives or else every negative instance can “improve” to such a false positive and
incur a classification error. On the other hand, if A(x) = {«} for all x € X then the learning
algorithm cannot incur too many false negatives as any false negative is unable to improve. These
two examples show that if we make no assumption on A, the concept class must be learnable with
one-sided error, which implies that it is properly PAC-learnable by our results in Section 3.

Therefore, in this section we will focus on PAC-learning of geometric concepts where X C R?
for some d and assume that the improvement function is A(z) = {2’ € X | |2’ — z||, < r}, a Eu-
clidean ball with radius 7. (Our learnability upper bounds hold more generally for any improvement
function for which A(x) contains a ball of radius r centered at z.) The ¢3-ball improvement set is
well-studied in the strategic classification literature [55] and corresponds to the agent being able to
misreport each of their features by a continuous and bounded amount. In Appendix C we construct a
concept class with finite VC-dimension that shows that proper learning under ¢5-ball improvement
sets is intractable in general, which motivates why we consider improper learning. In stark contrast
to proper learning, in the improper setting we show that under a generative data assumption known
as coverability that all concept classes are PAC-learnable, and furthermore such distributions are
learnable with the simple memorization learning rule (Algorithm 4).

Coverability asssumption. To state our main result, we first describe the coverability assumption,
which was introduced by Balcan et al. [14] in the context of robust learning in the presence of small,
adversarial movements in the feature space.

Definition 4.1. [14, Definition 1] A distribution D is (¢, 8, N)-coverable if at least a 1 — ¢ fraction
of probability mass of the marginal distribution Dx can be covered by N balls By, . .., By in R¢
of radius & and of mass Pp [By] > B.

Definition 4.1 means that one can cover most of the probability mass of the distribution with not
too many balls. Coverability is important in many learning settings because it implies the following
nice property: with enough samples from D, with high probability it will be the case that all but €
fraction of instances according to the marginal distribution D will be distance at most r from some
sampled instance. In Appendix C we formalize this observation and also discuss its relation to the
well-known doubling dimension of a distribution [22, 32].



Sample complexity upper bound. Our main positive result, proven in Appendix C, is that the
memorization learning rule (Algorithm 4) can PAC-learn any distribution D for which the condi-
tional distribution of positive instances are coverable:

Theorem 4.2. Let the fraction of positive labels according to D be a constant independent of € and
assume that Dj(, the conditional marginal distribution for positive instances, is (¢, 3, N )-coverable.

Then with probability at least 1 —-y, a predictor h learned using Algorithm 4 fromm = O (% log %)
i.i.d. samples from D has improvement loss LOSSp(h, f*) < e.

We remark that the the parameter 3, which is the probability mass of each ball, implicitly depends on
the improvement radius r. For example, if the data distribution is uniform over a bounded set in R4,
then a ball of radius r has probability mass proportional to 7¢. Interestingly, Theorem 4.2 requires
only an assumption on the marginal distribution Dy and is agnostic to the labels and the concept
class. In particular, it is possible to improperly learn concept classes with infinite VC dimension so
long as Definition 4.1 is satisfied. Furthermore, it is even possible to achieve zero error with high
probability in many natural situations, which reinforces the conceptual advance that learning with
improvements often yields lower generalization error than standard PAC-learning. For example,
Proposition C.4 implies that if X C R? has a finite diameter then X is coverable with ¢ = 0,
resulting in zero error with high probability by Theorem 4.2.

Sample complexity lower bound. Even though the memorization learning rule is very simple, it
is the best one can hope for under the coverability assumption. Formally, in Appendix C we prove a
lower bound for the number of samples needed to improperly PAC-learn with improvements:

Theorem 4.3. There exists a concept class H and a (0, B, %) -coverable data distribution D such

that (% log %) samples are necessary to achieve [3 improvement loss with high probability.

Note that our upper bound (Theorem 4.2) can be generalized to any improvement function where
A(z) D> {2/ €R?| |2’ — z|, <r}, namely the improvement region for any z contains a ball
of radius r. Additionally, our lower bound (Theorem 4.3) can be generalized to any improvement
function where A(z) C {2’ € R?| ||’ — z||, < r}, namely the improvement region for any x
is contained a ball of radius . These two observations imply that our results are robust to the

exact shape of the improvement set. Since we should think of /V in Theorem 4.2 of order © (%) ,

which corresponds to N balls each of mass J covering all but € fraction of the instance space X,
Theorem 4.3 shows that Theorem 4.2 is tight up to logarithmic factors in 5. This implies that the
very simple memorization rule learns with improvements with a near-optimal sample complexity in
the improper setting under a coverability assumption.

Comparison with strategic classification. One interesting observation is that the memorization
learning rule outputs a predictor that has monotonically decreasing improvement loss as the improve-
ment region enlarges. This is because there are no false positives, and if false positives improve they
must do so to a point with ground-truth positive label. A larger improvement set gives false posi-
tives weakly more points to improve to and hence can only reduce error. On the other hand, a larger
movement set in strategic classification is generally expected to increase error, as this gives more
chances for a negative point to mimic a positive point. For example, in an extreme setting where X’
is bounded, the movement radius r is large enough to cover the entirety of X, and there is at least
one point with positive label, then every negative point incurs classification error.

5 Learning linear separators optimally under bounded noise

As mentioned in the introduction, there is a large and growing literature that studies PAC-learning
with different types of label noise [10]: random classification noise [23, 18, 26], Massart noise
[7, 8, 31, 25, 28], malicious noise Kearns and Li [39], Klivans et al. [41], Awasthi et al. [6, 9], and
nasty noise [21, 30, 12]. Our understanding of learning with noise in the presence of strategic or
improving agents is far more limited. Braverman and Garg [19] study learning in the presence of
strategic agents with feature noise but no label noise. In contrast, we focus here on label noise. We
develop optimal algorithms for learning linear separators in the improvements setting with bounded
label noise under isotropic log-concave distributions.



Concretely, as before we have a distribution D over the points in X'. However, the learner does not
see perfect labels f*(x) in the training sample. Instead, the labels y € {0, 1} are given by a noisy
label distribution y | * ~ N. An example is when y comes from crowdsourced data, where one
typically assumes that for any given = the majority of labelers, but not all of them, will label the
point correctly. Formally, Toayes(@) = sign(E[y | 2] — 3). The bounded or Massart noise model

has a parameter v < % corresponding to an upper bound on the noise of any point z, i.e. v(z) =
Ex[1ly # foaes(@)]) T z] < v. A special case is the random classification noise (RCN), where all
the labels of all points are flipped by equal probability v < %, or Ex[1l[y # fgayes(a:)]) | 2] = v.

In the presence of noise, the goal is to minimize the expected loss which modifies the loss (Eq. (2.2))
in the noiseless case by considering movement of the agent  to the point in the reaction set Ay ()
which has the largest expected loss (expectation is over the noise as below):

LosSy(z;h) = /e Eyjermn [h(2) # 9]

General reduction to PAC-learning with noise. In Appendix D we show a general reduction
from learning linear separators with noise in the improvements settings to learning with noise in the
standard PAC-setting:

Theorem 5.1. Suppose the improvement region for each point v € X = R% is given by A(x) =
{2’ | arccos((z,2')) < r} and H is the class of homogeneous linear separators H = {x —
sign(wTx) : w € R4}, Let D be an isotropic log-concave distribution over the instance space X,
realizable by some f,,,. € H. Suppose the learner has access to noisy labels with bounded noise
v(z) = Ex[1ly # [pyes(2)]) | 2] < v. Finally, suppose that for any €,6 € (0, 1) given access
to a noisy sample of size m = p( , log 6) there is a proper learner in the standard PAC-setting
that outputs h with error at most v + ¢, with probability 1 — § over the draw of the sample. For
any 6 € (0, %), a noisy sample of size m = p (O (m) ,log %) is sufficient to PAC-learn

with improvements an improper classifier f such that for any © € X, LOSSy (x5 f) = Pryly #
Fhayes ()] with probability at least 1 — 6. That is, our classifier is Bayes optimal.

Proof sketch. Our overall idea is as follows. Suppose there is proper learning algorithm that attains
low error rate given sufficiently many samples from the distribution. For nice data distributions (e.g.
for uniform, Gaussian, or log-concave distributions), in the case of linear separators, small error
implies a small angle from the target concept fy, . [43, 10]. Our approach is to run these algorithms

on sufficiently many samples such that the angle 6 between fg;yes and the learned f is small relative
to the agent movement budget r. Then we use f to construct a conservative (improper) classifier f
such that all agents between fy, .. and f are able to move to get positively classified according to 1,
but there is no point classified negative by fy, ., but positive by f. O

Instantiation for well-studied noise classes. Theorem 5.1 implies sample complexity bounds for
Bayes optimal learning with improvements in the presence of bounded noise by simply plugging
in the corresponding sample complexity bounds from the standard PAC learning setting. For in-

stance, for RCN the sample complexity is well-known to be O (g) [10], implying o} (ﬁ)
for optimal learning with improvements. Similarly, for Massart noise [44], Theorem 5.1 implies
a0 (W) sample complexity bound. Note that while prior work on standard PAC learning
only achieves OPT + ¢, we achieve exactly OPT, the error of fy, . ().

Discussion. To the best of our knowledge we are the first to study and design classifiers for label
noise when agents react to the classifier. As in Section 4, in the strategic improvements model we can
achieve smaller error than standard PAC-learning for learning linear separators with noise, in this
case reaching the Bayes optimal error. Braverman and Garg [19] study designing classifiers under
feature noise. One surprising result of their work is that it is sometimes possible for the classifier to
achieve higher accuracy when the agents’ features are noisy under strategic classification. This is
counterintuitive because noisy features cannot help when there is no strategic manipulation. It is an
interesting open question whether feature noise can reduce error under improvements as well.



Algorithm 2: Realizable online learning: Risk-averse majority vote

Input: Concept class H, maximum degree of the graph Ag.
1: Initialize H < H.
2: fort=1,2,... do
3:  For each node z, set

hO (@) = {1, if {h € H | h(z) =1} > 2% |H],
0, otherwise.

4 AT {z e A@®D) | MO (z) =1}

5 H «+{heH|h(z)=1forallz’ € AT}

6:  if there is a mistake, and A" (z(¥)) = 0 then

7: If|AT| =0, H < {h€ H|h(z®) =1}.

8: Else, H + H\ H'.

9:  endif A

0:  If there is a mistake and 2(Y) () = 1, H « {h € H | h(z®) = 0}.

1: end for

6 Online learning on a graph

Attias et al. [5] study the sample complexity of learning with improvements in a general discrete
graph model in the statistical learning setting. Here we will study mistake bounds in the natural
online learning version of their model. The nodes of the graph correspond to agents (points) and the
(undirected, unweighted) edges govern the improvement function, i.e. the agents can move to their
neighboring nodes in order to potentially improve their classification. Formally, let G = (V| E)
denote an undirected graph. The vertex set V = {z1,...,x,} represents a fixed collection of n
points corresponding to a finite instance space X'. The edge set E C V' x V captures the adjacency
information relevant for defining the improvement function. More precisely, for a given vertex
x € V, the improvement set of z is given by its neighborhood in the graph, i.e. A(z) = {2’ €
V| (z,2") € E}. Let f*: V — {0, 1} represent the target labeling (partition) of the vertices in the
graph G.

In the online setting, for each round ¢t = 1,2, .. ., the learner sees a node z® € V and must make a
prediction 2(*) for all nodes. The true label f*(z(®)) is then revealed and the learner is said to suffer
a mistake if there there is some 2’ € A(z®) such that h()(2/) # f*(z'). The learner only knows
whether a mistake was made, without learning about z’. The goal of the learner is to minimize the
total number of mistakes across all rounds. Our main contributions are new algorithms for online
learning with improvements in both the realizable and agnostic settings. All proofs of theorems in
this section are in Appendix E.

Realizable online learning. In the realizable setting, f* € H, the concept space consists of valid
labelings that the learner is allowed to output. In the standard learning setting (where agents cannot
improve), the majority vote algorithm (which predicts using the majority label of consistent classi-
fiers in H, and discards all the inconsistent classifiers at every mistake) achieves a mistake upper
bound of log |#|. We first construct an example (Example E.1) where the majority vote algorithm
can result in an unbounded number of mistakes in the learning with improvements setting.

A risk-averse modification of the majority vote algorithm, requiring a certain super-majority for pos-
itive classification, can avoid the unbounded mistakes by the standard majority vote algorithm. This
is in stark contrast to the online learning algorithm of Ahmadi et al. [3] for the strategic classification
setting, where a super-majority is used for negative classification. Another modification from stan-
dard majority vote (see Algorithm 2) is a change in the way classifiers are discarded when a mistake
is made, taking the predictions on the neighboring nodes into account.

Theorem 6.1. Algorithm 2 makes at most (Ag + 1) log |H| mistakes, where A¢ is the maximum
degree of a vertex in G.



Algorithm 3: Agnostic online learning: Risk-averse weighted majority vote

Input: Concept class H, maximum degree of the graph Ag.
1: Initialize wy, = 1 for each h € H.
2: fort=1,2,... do
3: Wt — ZhGH W,
4:  For each node x, set
5 W Yherin(m=1 Wh

b s A
A (z) = {1’ if Wy > 55 We

0, otherwise.

6: At {zeAl®)|hD(z)=1}.

7. H < {heH|h(x)=1forallz’ € AT}

8: if there is a mistake, and h(*) (z®) = 0 then

9: If |A*| =0, H < {h€ H|h(z®) =0}, wy, + wy/2foreach h € H, .

10: Else, wy, < wyp,/2 foreach h € H'.

11:  endif .

12:  If there is a mistake and h(Y) (2()) = 1, H;" « {h € H | h(z®) = 1}, wy, + wy, /2 for
each h € H;".

13: end for

Agnostic online learning. In the agnostic setting, we remove the realizability assumption that
there exists a perfect classifier f* € #H. Instead, we will try to compete with smallest number of
mistakes achieved by any classifier in 7, denoting this by OPT. Our online learning algorithm will
be a risk-averse version of the weighted majority vote algorithm.

We maintain a set of weights {wy, | h € H} for each concept in the concept space. Initially, wy, = 1
for each concept h € H. Let W;“ denote the sum of weights of experts that predict a node x as
positive in round ¢, and W = ), wy, denote the total weight. Then the risk-averse online learner

predicts z as positive if W;“ > Aiil W, and negative otherwise. Finally, if there is a mistake, then

we halve the weights of certain classifiers (as opposed to discarding them in Algorithm 2).

Theorem 6.2. Let G be any graph with maximum degree Ag > 1. Algorithm 3 makes O(2(A¢ +
1)(OPT + log |H|)) mistakes.

Mistake lower bounds. Finally, we show lower bounds on the number of mistakes made by any
deterministic learner against an adaptive adversary in both the realizable and agnostic settings.

Theorem 6.3. For any A > 1, there exist a graph G with any maximum degree A\, a hypothesis
class ‘H, and an adaptive adversary such that any deterministic learning algorithm makes at least
A - OPT mistakes in the agnostic setting and A — 1 mistakes in the realizable setting.

The lower bound in Theorem 6.3 is against deterministic algorithms. If we allow for the use of
randomness, it may be possible to remove the factor of Ag in the statement of Theorem 6.2 by
using a modified version of the Hedge algorithm similar to [3, Algorithm 3]. We leave this as an
open question.

7 Conclusion

In this paper we study statistical learning under strategic improvements. We develop new algo-
rithms for proper learning with any improvement function, improper learning with Euclidean ball
improvement sets, learning with noise, and online learning. Our work opens up several exciting new
future directions. For example, it would be interesting to extend the learning with improvements
model beyond the binary classification setting to multi-label and regression settings. This would
have practical applications to any learning problem that involves several classes such as assigning
credit scores or deciding loan amounts. Also, we can study learnability under label noise in strategic
classification, as well as under feature noise in our improvements model.
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A Discussion of related work
Our paper is related to several works studying learning in strategic and adversarial environments:

* Strategic classification. Taking into account how utility-maximizing agents can strategically
“game” the classifier is an important research area in societal machine learning [37, 46, 19, 1, 35].
The first papers in this area modeled strategic gaming behavior as a Stackelberg game [36, 20]
where negatively classified agents manipulate their features to obtain more favorable outcomes if
the benefits outweigh the costs.

Learning with improvements. Kleinberg and Raghavan [40] are the first to consider learning
with improvements, which is when agents manipulate but also genuinely improve their features.
Ahmadi et al. [2] consider a similar improvement setting and propose classification models that
balance maximizing true positives with minimizing false positives. Prior work has studied the
inherent learnability of concepts in the strategic manipulation setting [54, 27, 42] but not in the
strategic improvement setting. Attias et al. [5] propose to study the statistical learnability of con-
cept classes, the sample complexity of learning, and the ability to achieve zero-error classification
in the improvement setting. Haghtalab et al. [35] also study the sample complexity of learning in
the presence of improving agents, but they optimize for social welfare by maximizing the fraction
of true positives after improvement and primarily focus on linear mechanisms. In contrast, we
focus on classification error in which false positives matter, leading to fundamentally different
properties of good classifiers.

Reliable learning. Learning with improvements is also related to reliable machine learning
[49, 33] in which learner may abstain from classification to avoid mistakes. The goal in reli-
able learning is to tradeoff coverage, the fraction of classified points, against classification error.
The conservative classification paradigm that serves as a basis for many of our algorithms also
has a similar flavor to learning with one-sided error [47, 38] in which the learned classifier is not
allowed to have any false positives. There are connections between strategic classification and
adversarial learning [54], but it remains an interesting open question if similar connections can be
established between learning with improvements and adversarial learning [13, 15, 17].

Learning with noise. There is a large and growing literature that studies PAC-learning with
different types of label noise [10]: random classification noise [23, 18, 26], Massart noise [7, 8,
31, 25, 28], malicious noise Kearns and Li [39], Klivans et al. [41], Awasthi et al. [6], and nasty
noise [21, 30, 12]. Recent work [29, 24] has developed optimal approaches for learning margin
halfspaces with bounded label noise. Braverman and Garg [19] study learning in the presence of
strategic agents with feature noise but no label noise. The problem of learning with noise in the
presence of strategic agents is understudied and a very relevant direction for future work.

Online strategic classification. Ahmadi et al. [3, 4], Cohen et al. [27], Shao et al. [50] study the
problem of strategic online binary classification. Our discrete graph model for online learning
is similar to theirs, agents are nodes that can potentially move to their neighbors, except that we
consider true movements that can change the agents’ labels (as opposed to just their classification).
This distinction leads to surprisingly different good online learners. Connections with adversari-
ally robust online learning (e.g. Goldblum et al. [34], Balcan et al. [11], Sharma [51], Sharma and
Suggala [52]) are less well understood, especially in multi-task and meta-learning settings.

B Characterizing proper PAC-learning with improvements for any
improvement function

Prior work. Attias et al. [5] prove a sufficient condition for learnability based on a property called
intersection-closed, which we define below.

Definition B.1 (Closure operator of a set). For any set S C X and any hypothesis class H C 2%,
the closure of S with respect to H, denoted by CLOS#(S) : 2% — 2%, is defined as the intersection

of all hypotheses in H that contain S, that is, CLOS%/(S) = (1 h. In words, the closure of S
heH,SCh
is the smallest hypotheses in H which contains S. If {h : H : S C h} = 0, then CLOSy(S) = X.

Definition B.2 (Intersection-closed classes). A hypothesis class H C 2 is intersection-closed if for
all finite S C X, CLOS(S) € H. In words, the intersection of all hypotheses in H containing an
arbitrary subset of the domain belongs to H. For finite hypothesis classes, an equivalent definition
states that for any hy, ho € H, the intersection hi N hy is in H as well Natarajan [47].

14



There are many natural intersection-closed concept classes, for example, axis-parallel d-dimensional
hyperrectangles, intersections of halfspaces, k-CNF boolean functions, and linear subspaces.

Theorem B.3. [5, Theorem 4.7] Let H be an intersection-closed concept class on instance space X.
There is a learner that PAC-learns with improvements H with respect to any improvement function A
and any data distribution D given a sample of size O (X(dyc(H) +log %)), where dyc(H) denotes
the VC-dimension of H.

Attias et al. [5] also prove the following necessary condition for learnability:

Theorem B.4. [5, Theorem 4.8] Let H be any concept class on a finite instance space X such that
at least one point x' € X is classified negative by all h € H (i.e. {x | h(z) = 0 forall h € H} # 0),
and suppose H | x\ (o} is not intersection-closed on X \ {x'}. Then there exists a data distribution
D and an improvement function A such that no proper learner can PAC-learn with improvements
H with respect to A and D.

Note that Theorem B.4 only applies when there is a point that is classified negative by all concepts
in H and says nothing about learnability when this condition does not hold. Our main result, Theo-
rem 3.4, shows an exact characterization of which concept classes are properly PAC-learnable with
improvements for all improvement functions which generalizes both Theorem B.3 and Theorem B.4.

Characterizing proper PAC-learnability with improvements. We prove Theorem 3.4.

Proof of Theorem 3.4. Note that if A(z) = {«} for all = then learning with improvements reduces
to vanilla PAC-learning, so finite VC-dimension is necessary by the Fundamental Theorem of Sta-
tistical Learning. Assuming now that A has finite VC-dimension, we first show that if a concept
class H is not nearly minimally consistent then there exists an improvement function A and a data
distribution D for which # is not PAC-learnable with improvements. Let f € H and S C graph(f)
be such that S contains a negative example (z_,0) € .S and there is no least concept consistent with
S. Let D be the uniform distribution over Sx and suppose that the improvement function is

A ) = {X ifr=a_

() otherwise.

Suppose that a learning algorithm outputs a concept g € H. If g is not consistent with .S, then
either g(z_) = 1 or g(z) = 0 for some x € S,z # x_. Since points in S other than x_ cannot
move, such points cannot improve and hence g suffers constant error. Hence we can assume that g
is consistent with S. Since there is no least concept consistent with .S, there exists a concept h also
consistent with S and a point x4 for which g(xzy) = 1 and h(z;) = 0. Note that h could have
very well been the target concept since D is uniformly supported on S for which both g and & are
consistent with. However, note that x_ can in the worst case “improve” to = since g(x4) = 1, but
then outputting g suffers constant error since the ground truth is h(z4) = 0. We conclude that any
learning algorithm must suffer constant error on D for the improvement function A defined above.

The other direction is to show that if a concept class H is nearly minimally consistent then H is PAC-
learnable with improvements. The learning algorithm we use (Algorithm 1) is very similar to the
one used to learn with one-sided error [48, Chapter 2.4]. However, we need to specify what concept
the algorithm outputs when the training set consists of only positive examples, in which case there
may not be a least concept consistent with the examples so far. In this case it turns outputting any
concept consistent with the training set S' will work. Informally, this is because if S consists of only
positive examples, then with high probability it must have been the case that f* positively labels
nearly all points according to D. By the Fundamental Theorem of Statistical Learning, the concept
hs output by the learning algorithm agrees with f* on nearly all of D, which also means that hg
positively labels nearly all points. Since positively label points do not move, then hg has low error
in the improvement setting as well.

We now give the formal proof. For a number of samples m = O (% (dvc (H) + log %) ) , we know,
for example see [48, Theorem 2.1], that the concept hg output by the the learning algorithm satisfies
Py [hs(z) # f*(2)] < § with probability at least 1 — 2 for any target concept f* € H. We split
into two cases.

* Case 1: P,cp [f*(x) = 1] > 1 — 5. Then the concept hg disagrees with f* on at most
5 fraction of points according to D, so Pyeplhs(z) = f*(z) = 1] > 1 — €. Such z

15



are positively classified so they do not move and hence incur zero improvement loss. We
conclude that with probability at least 1 — g the improvement loss is at most €.

* Case2: P,cp [f*(z) = 1] < 1— 5. Then after m samples, the probability that the training
set S consists of a negative example is at least 1 — g For any x € X with hg(z) = 1, z does
not move and hence the improvement loss is the same as the 0-1 loss 1 [hg(x) # f*(z)].
For any « € X with hg(z) = 0, suppose that 2 moves to a point z’, possibly equal to x.
If 2’ = x then the improvement loss is again the same as the 0-1 loss. Otherwise we can
assume ' # x, which means that hg(z’) = 1 since = only moves if it can improve. If
f*(z) = 1thentheloss 1 [hg(z') # f*(2)] is at most the 0-1 loss 1 [hg(x) # f*(x)] = L.
Finally, we can assume f*(z) = 0. Since S consists of a negative example, hg is the least
concept consistent with S, so hg(z’) =1 = f*(2’) = 1 in which case z has zero
improvement loss. By the union bound, with probability at least 1 — § the improvement
loss is at most 5.

In both cases we conclude that with probability at least 1 — ¢ the improvement loss is at most e. [

C Improper PAC-learning with ball improvement sets

Proper learning with ball improvement sets is intractable. 'We construct a simple concept class
that has finite VC-dimension but is impossible to properly PAC-learn under ¢-ball improvement
sets.

Example C.1. Consider a union of two intervals, which clearly has finite VC-dimension. Let the
instance space X be [0,1], let H = {hy : hape(z) = 1iffz € [L,0) (b, 3]}, and let D be the
uniform distribution over [0,1]. Let r = % and consider a target function f* = hy, with b chosen
uniformly in (%, %)

For any learning algorithm, with probability 1 the learner will not see the point b in its training data,
so it learns nothing from its training data about the location of b. Note that LOSS(f*, f*) = 0. On

the other hand, we claim that for any other h = hy € H we have LOSS(hy, f*) > i. Without loss
of generality assume b < % Note that in the worst-case, all points x < i, which are negatively
labeled, will move to b, incurring loss at least i.

Covering lemma. We formally state and prove that with enough samples from D, with high prob-
ability it will be the case that all but ¢ fraction of instances according to the marginal distribution
D~ will be distance at most r from some sampled instance.

Lemma C.2. [14, Theorem 4.4] Suppose that x1, ..., x,, are m instances i.i.d. sampled from the
marginal distribution Dy. If D is (g, 3, N)-coverable, for sufficiently large m = ) (% log %)
with probability at least 1 — ~y over the sampling we have P [| J\" | B(z;,7)] > 1 —e.

For completeness we provide a proof of the covering lemma from Balcan et al. [14].
Proof of Lemma C.2. Fix ball B; in the cover from Definition 4.1. Let B; denote the event that no

point is drawn from ball B; over the m samples. Since successive draws are independent and by
definition Pp, [B;] > 3, we have

P [Bi] < (1- )" < exp(—pm).

By a union bound over N balls we have

P

UBi| < N-exp(—pm) <~

for m > % log % Therefore, with probability at least 1 — v we have

m N
U B(mi,r)l Z P U Bk

i=1 k=1

m N
UB@ir> B = P >1—¢
=1 k=1

since for all k¥ € [N] there is a sample x;, € By, and By, is a ball of radius 5 O
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Algorithm 4: Memorization learning rule

Input: m instances (z1,91), - -, (T, Ym)
1: Tnitialize h(x) = O for all x € R?
2: fori=1,...,mdo
3: Ify;, =1, set h(l‘l) =1
4: end for
Output: h

Doubling dimension. The coverability property of a distribution is closely related to the well-
known notion of doubling dimension of a metric space [22, 32].

Definition C.3 (Doubling dimension). A measure Dy has doubling dimension d’ if for all points
x € X and all radii v > 0, we have Dy (B(z,2r)) < 2¢ . Dy (B(x,r)).

Note that the uniform distribution on Euclidean space R has doubling dimension d’ = ©(d). Dou-
bling dimension of a data distribution has been used to obtain sample complexities of generalization
for learning problems [22] as well as to give bounds on cluster quality for nearest-neighbor based
clustering algorithms in the distributed learning setting [32]. In our context, X having finite doubling
dimension and finite diameter is enough to yield complete coverability (¢ = 0 in Definition 4.1).

Proposition C.4. [14, Lemma 4.7] Let X C R? have diameter D and doubling dimension d' =
O(d). For T € N, there exists a covering of X with N < (%)d balls of radius 2%.

Memorization learning rule. For completeness we provide pseudocode for the memorization
learning rule (Algorithm 4).

Sample complexity upper bound. We prove Theorem 4.2.

Proof of Theorem 4.2. The idea is that with enough samples every ground-truth positive instance in
a ball has a sampled positive instance in the same ball that it can improve to. We first claim that h
incurs zero improvement loss on points « for which f*(z) = 0. Since h(z') =1 = f*(a’) =1
by definition of the memorization learning rule, we must have h(z) = 0. If there exists 2’ € A(x)
for which h(z') = 1, then x will improve to some such 2’ which has h(z') = f*(z') = 1. If there
is no such 2, then x stays put and h(x) = f*(z) = 0. Hence we only need to consider points x
for which f*(z) = 1. If h(z) = 1 as well then x does not incur error. For all other points x for
which h(z) = 0 and f*(z) = 1, namely the false negatives, due to the coverability assumption we
claim that for all but € fraction of these points there will exist a positively labeled sample in every
ball that  can improve to. Let balls By, ..., By each with radius 5 and mass ]P’D; [Bi] > S8 cover

D+. Then by Lemma C.2, after m = O (% log %) samples, with probability at least 1 — - there

will be at least one positively labeled sample in every ball By. This implies that least 1 — ¢ fraction
of points = € D} are within distance r of a sampled positive instance 2’ € A(x), f*(z') = 1. All
such x can improve to ' and hence LOSS(h, f*) < ¢ as desired. O

Sample complexity lower bound. We prove Theorem 4.3.

Proof of Theorem 4.3. Consider a data distribution D that consists of N = % distinct points each
with probability mass [ such that the pairwise distance between points is greater than the improve-
ment radius 7. Let the concept class H consist of all 2V possible labelings of these N points, with
the rest of H being labeled negative. By construction D is trivially (0, B, %) -coverable. We claim

that sampling every point is necessary to achieve % error. Assume for contradiction that there is an
unsampled point x*. Since H consists of all possible labelings of the points, z* could be labeled
negative or positive. Let h be the predictor that the learning algorithm A outputs and let f* be the
ground-truth concept. We consider two cases. If the predictor h does not label any point = with
||z — x*||, < r positive, then 2* is misclassified when f*(z*) = 1 since there is no point in A(z™)
that z* can improve to. Otherwise, the predictor / labels some point = with ||z — z* ||, < r positive.
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Then when f*(z*) = 0, 2* will move to x, but the ground truth is f*(z) = 0 and hence z* will
be misclassified. Both cases yield a contradiction if there is an unsampled point, thus proving the
claim. By a standard coupon-collector analysis, m = Q(N log N) = % log % samples are necessary
to sample every point. O

D Learning linear separators optimally under bounded noise

General reduction to PAC-learning with noise We prove Theorem 5.1.

Proof of Theorem 5.1. Suppose we are given a noisy sample S with bounded noise < v. To con-

struct the classifier in the improvements setting, we start with a classifier h € H that achieves low
excess error ¢ in the standard PAC-learning setting. Using a well-known property of bounded noise

(see e.g. Section 5.1 in Balcan and Haghtalab [10]), the disagreement of h with the Bayes optimal
classifier fy, ., can be upper bounded as
€

[ ( )#fbdyes( )]— 1_21/

Now, for D isotropic and log—concave, this further implies [43, 10] that there is an absolute constant
C such that

(h fbayes) < C- PI‘[ ( )7é fbayes( )] -1 052

where 0(h1, he) is angle between the normal vectors of the linear separators hy and he. We set
6 = = = r and define H := {h € H | 6(h,h) < 6}. Note that Foayes () € H. Now, we
define P := {z € X | h(z) = 1foreach h € ’H}, the positive agreement region of classifiers in
H. We set our improper classifier f = 1[z € P]. We will now bound the error LoSSp_x(f) of the
above classifier in the improvements setting. Note that if f(z) = 1 then foayes(2) = 1 by the above
construction. These points do not move and the error equals Prr[fy, ., (z) # yl.

If f(z) = 0, we have two cases. Either, there is a point ' with arccos((z, z')) < r and f@) =1.
In this case, the agent moves to some such z’. But since f(z') = 1, we also have fy, . (z') = 1 and
again Pry/ . o n[f(2') # Y] = Pryrjoron[frayes(¥') # y']. Else, the distance of z to any positive
point 2 satisfies arccos((x,z)) > r = 6. Then, any h € H (including fy, ..) must classify z as
negative. In this case, the agent does not move and again the error of f matches that of fg, ...

Put together, the above cases imply that for any point , LOSSx/ (5 h) = Pra[fiyes(z) #y]. O

E Online learning on a graph

Standard majority vote algorithm fails to learn with improvements. We construct an example
where the standard majority vote algorithm can result in an unbounded number of mistakes in the
learning with improvements setting.

Example E.1. Let G be the star graph, with leaf nodes x1, . .., xa for A > 2, and the center node
xay1. Let H ={hy,...,ha}, where

() = 1[i # j], ifj € [A],
)=, otherwise (7 = A + 1).

Let f* = hy. The standard majority vote algorithm uses a majority vote to make the prediction at
each node. At time t = 1, say the learner sees the center node M) = TA+1- We have that

1, ifjela]
B0y = {1 FI€lAl
0, otherwise (j = A+1).
The learner suffers a mistake, as there is ¥’ = x1 such that f* (') = 0 but h(V (') = 1. However,

all the classifiers agree with f* on x a1, and no classifier is discarded. Thus, if the online sequence

of nodes simply consists of repeated occurrences of the center node, that is, ©) = x4 for all t,
then the learner using the standard majority vote algorithm suffers a mistake on every round.
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Mistake upper bound in realizable setting. We prove Theorem 6.1.

Proof of Theorem 6.1. Suppose there is a mistake on round ¢. If (") () = f*(2(®)) = 1, there is
no mistake as the agent does not move at all. We consider three cases.

e Case 1: If AV (z(")) = 1, f*(z() = 0, then the agent doesn’t move, and we discard classifiers
h € H that predict h(z®) = 1. Clearly, f* is not discarded, and we discard at least x2S~ |H|

v,
classifiers that make a mistake on z(*).
« Case 2: If AW (2®) = 0, f*(#®) = 0, then there must be some =/ € A(z®) such that
h(®)(2') = 1, f*(«') = 0. This implies that for each such 2, we must have |[{h € H | h(z') =

0} < IH' -. Taking a union over all neighbors in A, we conclude that |H'| > |£IJ|FI.

* Case 3: If h(t (z®) = 0, f*(2V)) = 1, then the agent can potentially move. If it does not move,
then it must be the case that |[AT| = 0, else () would have moved and changed the predicted
label to 1. In this case, we discard at least AI _Ll classifiers h € H that predict h(z(®)) = 0. It
is however also possible that the agent moves and still makes a mistake. In this case, |AT| > 0
but there is some point 2’ € A(z(") in the neighborhood of (") such that A (2(Y)) = 1 but

f*(x®) = 0. In this case our algorithm discards H’, the set of classifiers that predict positive on
[H]
Ag+1°

all neighbors of z(*), and as argued above, |H'| >

Thus we discard at least a A‘fll fraction of the classifiers on each mistake, implying the desired

mistake bound. Indeed, since f* never gets discarded and we are in the realizable setting, if we

M
i -1 > < __ log|Hl _ -~
make M mistakes then (1 Ac+1) |H| > 1,0or M < log(l—AGIH) < (Ag+1)log|H|. O

Mistake upper bound in agnostic setting. We prove Theorem 6.2.

Proof of Theorem 6.2. The overall arguments are similar to those in the proof of Theorem 6.1. Sup-
pose there is a mistake on round ¢. We have the following three cases.

RO (2®) =1, f*(x®) = 0. In this case, we halve the weights wy, for classifiers h € H that predict
h(z®) = 1. The reduction in the total weight TV i > ﬁWt. That
is, Wi <W; — Wy < Wy (

1
(A +1> - 2(Ac+1))'

RO (2®) = 0, f*(z®) = 0. Since the learner made a mistake, there must be some z/ € A(z(®)
such that h(M(2') = 1,f*(2/) = 0. For each such 2/, the learner predicted positive and so
Zhe?—ﬂh(az’):l wp > ﬁWt, or Zhemh(z) oWn < ij_l Taking a union over all neigh-
bors in AT, we get 3, o wn > Wy — |A+|A

Algorithm 3, this implies that Wy < W, (

AGAG—H = Ac+1 By Line 10 of
o Q(Ac-i-l)

O (™) = 0, f*(z®) = 1. If the agent does not move, then |A*| = 0. In this case, we
halve the weight of all classifiers that predicted negative on z(*). Since h(t)(x(t)) = 0 implies

that W," < %Wt, Wi < Wy (1 — M) On the other hand, if the agent moves, then

|AT] > 0. We discard H’ and as shown in the previous case, W; 1 < W, (1 - m>

Thus, in all cases when there is a mistake, Wy; < W, (1 — m) Thus, after M mistakes,
M

W; < |H| ( TW) . Since f* makes at most OPT mistakes, we have W; > gr. Putting

M
together, sgpr < || (1 - m) , which simplifies to the desired mistake bound. O
Mistake lower bounds in realizable and agnostic settings. We prove Theorem 6.3.
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Proof of Theorem 6.3. The proof is analogous to [3, Theorem 4.7] which shows lower bounds under
strategic online classification. For A > 1 we use a star graph G with leaf nodes z1,...,za for
A > 2 and the center node za41. Let . = {hq,...,ha}, where h;(x;) = 1 and h;(x;) = 1 for all
other j # i.

We first consider the agnostic setting. The proof idea is to construct an adaptive adversary that
chooses an example that induces a mistake at every round, but such that at every round all but
at most one hypothesis from H can classify this example correctly. Formally, after the learning
algorithm outputs the predictor »(*) at round ¢ the adversary chooses the next example according to
the following procedure:

* Case 1: If h(!) (25, 1) = 1, then the adversary picks the labeled example (z 41, 0) and ground-

truth labeling
" _J1 ifje (A]
JHla) = {0 ifj=A+1.

Since za 41 does not move under h(®) then h(® fails to classify x a4 correctly. On the other hand,
every classifier h; € H classifies x a4 correctly since under h;, A1 will move to the point z;
which has positive label under both h; and f*.

* Case2: If h!)(z;) = Oforall j € [A+1], then the adversary picks the labeled example (a1, 1)
and the ground-truth labeling f*(z;) = 1 for all j € [A + 1]. Since all points have negative label
under A", x a1 cannot improve under A, so h(*) fails to classify 2a 41 correctly. On the other
hand, every classifier h; € H classifies za 1 correctly since under h;, za 1 Will move to the
point z; which has positive label under both h; and f*.

e Case 3: If ) (za11) = 0 and h(Y)(z;) = 1 for some i € [A], then the adversary picks the
labeled example (z;,0). Since x; does not move under h(® then h(") fails to classify x; correctly.
On the other hand, every classifier h; € H for i # j classifies x; correctly as negative since x;
cannot improve.

By the above analysis, h(*) makes a mistake on the next example for all t. However, for each ¢ at
most one hypothesis from 7 makes a mistake, implying that the sum of the number of the mistakes
made by all hypotheses over all rounds is at most the current round number ¢. Since |H| = A by
the pigeonhole principle there exists a hypothesis that makes at most i mistakes, so OPT < %,
implying that the number of mistakes made is t > A - OPT in the agnostic setting.

For the proof of the A — 1 lower bound in the realizable setting, we use the same construction as in
the agnostic setting but restrict to ¢t = A — 1 rounds. The learning algorithm makes A — 1 mistakes,
but at this point there still exists at least one hypothesis that has made no mistakes so far, say h; for
i € [A]. Then the adversary can keep using h; as the ground truth for the first A — 1 rounds in the
above procedure so that the ground truth is still realizable after A — 1 rounds. O
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The claims accurately reflect prior work and contributions of this work.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: All limitations have been discussed in context.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Full proofs are included and assumptions are clearly stated.
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Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-

rems.

The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a

short proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be comple-

mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: The main contribution is theoretical.
Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: The main contribution is theoretical.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: The main contribution is theoretical.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [NA]
Justification: The main contribution is theoretical.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: The main contribution is theoretical.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We reviewed the NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: Theoretical work with no direct societal impact.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The main contribution is theoretical.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The main contribution is theoretical.
Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
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Answer: [NA]
Justification: No new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No study over human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: LLM does not impact the core methodology, scientific rigorousness, or origi-
nality of the research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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