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ABSTRACT

Low-rank decomposition has emerged as a vital tool for enhancing parameter ef-
ficiency in neural network architectures, gaining traction across diverse applica-
tions in machine learning. These techniques significantly lower the number of
parameters, striking a balance between compactness and performance. However,
a common challenge has been the compromise between parameter efficiency and
the accuracy of the model, where reduced parameters often lead to diminished ac-
curacy compared to their full-rank counterparts. In this work, we propose a novel
theoretical framework that integrates a sinusoidal function within the low-rank de-
composition process. This approach not only preserves the benefits of the param-
eter efficiency characteristic of low-rank methods but also increases the decom-
position’s rank, thereby enhancing model performance. Our method proves to be
a plug in enhancement for existing low-rank models, as evidenced by its success-
ful application in Vision Transformers (ViT), Large Language Models (LLMs),
Neural Radiance Fields (NeRF) and 3D shape modelling.

1 INTRODUCTION

In the last few years, large-scale machine learning models have shown remarkable capabilities across
various domains, achieving groundbreaking results in tasks related to computer vision and natural
language processing (Vaswani et al., 2017; Dosovitskiy et al., 2021). However, these models come
with a significant drawback: their training necessitates an extensive memory footprint. This chal-
lenge has spurred the demand for more compact, parameter-efficient architectures. A prominent
solution that has emerged is the use of low-rank techniques (Hu et al., 2022; Chen et al., 2024; Liu
et al., 2024; Kopiczko et al., 2024), which involve substituting the large, dense matrices in large scale
models with smaller, low-rank matrices. This substitution not only simplifies the models but also
shifts the computational complexity from quadratic to linear, making a significant impact on effi-
ciency. In the context of high-capacity models like Vision Transformers (ViTs) and Large Language
Models (LLMs) that utilize millions to billions of parameters, transitioning from dense to low-rank
matrices can result in considerable cost savings. Nonetheless, adopting low-rank architectures does
introduce a trade-off, as they typically do not achieve the same level of accuracy as their full-rank
counterparts, presenting a balance between parameter efficiency and model performance.

In this paper, we tackle the challenge of balancing parameter efficiency and model performance
by introducing a novel technique that enhances the representational capacity of low-rank meth-
ods. Our approach builds on the insight that augmenting low-rank matrices with high-frequency
sinusoidal functions can increase their rank without adding parameters. We provide a theoretical
framework that explains how this modulation increases rank and demonstrate how incorporating this
non-linearity into low-rank decompositions enables compact architectures that preserve efficiency
while achieving good accuracy across various machine learning tasks.

We direct the reader’s attention to figure 1, which showcases our method across various machine
learning tasks. Our comparisons with standard low-rank methods consistently demonstrate superior
performance across these diverse tasks.

Our approach’s advantages are corroborated across a range of machine learning applications, in-
cluding variations of LoRA methods for ViT (He et al., 2022b), LLMs (Hu et al., 2022), NeRF for
novel view synthesis (Mildenhall et al., 2020), and 3D shape modeling via Binary Occupancy Fields
(Mescheder et al., 2019). Across the board, our approach not only matches the parameter savings
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Figure 1: Applying a drop-in sine-activation, sine low-rank (ours), component increases the rank
of low-rank matrix methods, leading to improved parameter efficient performance on a variety of
tasks including: a) NeRF, b) 3D Occupancy, c) ViT image classification, and d) Fine-tuning Large
Language Models (LoRA).

offered by low-rank methods but also results in an improvement in accuracy, showing its broad ap-
plicability and superior performance among diverse machine learning tasks. The main contributions
of our paper are:

1. A theoretical framework demonstrating that applying sinusoidal non-linearities to low-rank
matrices can effectively increase their rank without introducing additional parameters. This
method leverages the inherent properties of sinusoidal functions to augment the expressive-
ness of low-rank matrices, allowing them to capture more complex patterns while maintain-
ing parameter efficiency.

2. Demonstrating that our theoretical framework leads to a drop-in component that can be
applied to various low-rank architectures, resulting in improved accuracy while maintaining
computational and parameter efficiency.

3. A comprehensive validation of our method across a range of diverse machine learning tasks,
including computer vision, 3D shape modeling, and natural language processing.

2 RELATED WORK

2.1 LOW-RANK DECOMPOSITION:

Low-rank decomposition stands as a crucial method across disciplines like information theory, op-
timization, and machine learning, providing a strategic approach to reduce memory costs (Strang,
2019; Xinwei et al., 2023). Notably, (Candès et al., 2011) uncovered that matrices can precisely sep-
arate low-rank and sparse components through convex programming, linking to matrix completion
and recovery. Expanding its application, (Yu et al., 2017) devised a low-rank learning framework
for Convolutional Neural Networks, enhancing compression while maintaining accuracy. (Sharma
et al., 2023) further found that performance improvements in Large Language Models could be
achieved by eliminating higher-order weight matrix components without extra parameters or data.
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In the realm of neural radiance fields, (Tang et al., 2022) introduced a rank-residual learning strategy
for optimal low-rank approximations, facilitating model size adjustments. Additional contributions
include (Shi & Guillemot, 2023) with rank-constrained distillation, (Chen et al., 2022) applying
vector-matrix decomposition, and (Schwarz et al., 2023) using soft-gated low-rank decompositions
for compression. More recently, (Yuan & Zhao, 2023) implemented a vector-matrix decomposition
strategy that allows for test-time compression adjustments.

2.2 PARAMETER EFFICIENT LEARNING:

Parameter efficient learning is an important research area in deep learning, merging various tech-
niques to enhance model adaptability with minimal resource demands (Menghani, 2023). Tech-
niques like parameter-efficient fine-tuning (PEFT) allow pretrained models to adjust to new tasks
efficiently, addressing the challenges of fine-tuning large models due to high hardware and stor-
age costs. Among these, Visual Prompt Tuning (VPT) stands out for its minimal parameter alter-
ation—less than 1%—in the input space, effectively refining large Transformer models while keep-
ing the core architecture unchanged (Jia et al., 2022). Similarly, BitFit offers a sparse-finetuning
approach, tweaking only the model’s bias terms for cost-effective adaptations (Zaken et al., 2022).
Moreover, LoRA introduces a low-rank adaptation that maintains model quality without additional
inference latency or altering input sequence lengths, by embedding trainable rank matrices within the
Transformer layers (Hu et al., 2022). Recent studies also combine LoRA with other efficiency strate-
gies like quantization, pruning, and random projections for further model compression (Dettmers
et al., 2024; Li et al., 2024; Zhang et al., 2024; Kopiczko et al., 2024)

3 METHODOLOGY

We introduce our technique that we term a sine activated low-rank approximation. The main purpose
of this technique is to increase the rank of an initial low-rank matrix without adding any extra
parameters.

3.1 PRELIMINARIES

3.1.1 FEED-FORWARD LAYER

Our technique is defined for feed-forward layers of a neural architecture. In this section, we fix the
notation for such layers following Prince (2023). We express a feed-forward layer as:

y = Wx+ b (1)

where W∈Rm×n is a dense weight matrix, b∈Rm×1 is the bias of the layer, and x is the input from
the previous layer. The output y is then often activated by a non-linearity σ producing σ(y). The
weight matrix W and bias b are trainable parameters of the layer. In contemporary deep learning
models, the feed-forward layers’ weight matrices, W, are often large and dense yielding a high rank
matrix. While the high-rank property of the weight matrix helps in representing complex signals, it
significantly adds to the overall parameter count within the network yielding the need for a trade-off
between the rank of the weight matrix and overall architecture capacity.

3.1.2 LOW-RANK DECOMPOSITION

A full-rank weight matrix W can be replaced by low-rank matrices UVT , such that W = UVT ,
where U ∈ Rm×k,V ∈ Rn×k and k ≪ min(m,n).

y = Wx+ b = (UVT )x+ b (2)

This is the most common way to reduce the parameter count in the feed-forward layer. During the
training process, this method performs optimization on U and V alternatively. Low-rank multiplica-
tion then reduces the learnable parameter count and memory footprint from O(mn) to O(k·(m+n)).
Although UVT has the same matrix shape as the full-rank matrix W, the rank of UVT is con-
strained and rank(UVT ) ≤ r. Thus while we have significantly decreased the number of trainable
weights in such a layer, we have paid the price by obtaining a matrix of much smaller rank. In the
next section, we address this trade-off by developing a technique that can raise back the rank of a
low-rank decomposition while keeping its low parameter count.
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3.2 THEORETICAL FRAMEWORK

3.2.1 NON-LINEAR LOW-RANK DECOMPOSITION

We introduce a non-linearity transformation into low-rank matrices as follows

y =
ϕ(ω ·UVT )

g
x+ b (3)

where ϕ(·) is the non-linearity function, ω is a non-learnable frequency parameter, and g is a non-
learnable parameter to control the gain of the transformation. Our theoretical work will show that
ϕ(ωx) = sin(ωx) is a very good choice for the non-linearity ϕ.

3.2.2 MAIN RESULT

In this section, we provide a theoretical framework that clearly shows how to increase the rank of a
low-rank decomposition using a non-linearity without adding any parameters. We will show that if
we choose the non-linearity, in the decomposition defined in section 3.2.1, to be a sine function then
provided the frequency ω is chosen high enough, the rank of the matrix ϕ(ω ·UVT ) will be larger
than that of UVT . The proofs of the theorems are given in the appendix A.1.

To begin with, we fix ω > 0 and let sin(ω ·A) denote the matrix obtained from a fixed m×n matrix
A by applying the function sin(ω · x) component-wise to A. Assuming A ̸= 0 we define A0

min as:

A0
min = min

i,j s.t.Aij ̸=0

|Aij |. (4)

Note that such a quantity is well defined precisely because A has a finite number of entries and all
such entries cannot be zero from the assumption that A ̸= 0.

The following theorem relates the rank of sin(ω ·A) to the frequency parameters ω and the quantity
A0

min.

Proposition 1. Fix an m× n matrix A s.t. A ̸= 0. Then

Rank(sin(ω ·A)) ≥ ω

 A0
min∣∣∣∣∣∣∣∣√|A|

∣∣∣∣∣∣∣∣
op


2

if 0 ≤ ω ≤ π

3A0
min

. (5)

Proposition 1 shows that if we modulate the matrix sin(ω · A) by increasing ω > 0 then the rank
of the matrix sin(ω ·A) can be increased provided ω < π

3A0
min

. We can apply proposition 1 to the
context of a low-rank decomposition as defined in section 3.1.2. Given a low-rank decomposition
UVT with U ∈ Rm×k and V ∈ Rn×k with k ≪ min{m,n} the following theorem shows how we
can increase the rank of the decomposition by applying a sin(ω·) function.

Theorem 1. Let U ∈ Rm×k and V ∈ Rn×k with k ≪ min{m,n}. Assume both U and V are
initialized according to a uniform distribution U(−1/N, 1/N) where N > k. Then there exists an
ω0 such that the matrix sin(ω ·A) will satisfy the inequality

Rank(sin(ω ·UVT )) > Rank(UVT ) (6)

provided ω ≥ ω0.

We mention that theorem 1 also holds for the case where we initialize U and V by a normal distri-
bution of variance N .

Weight matrices within feed-forward layers are typically initialized using a distribution that is con-
tingent upon the layer’s neuron count. When considering low-rank decompositions characterized by
matrices U ∈ Rm×k and VT ∈ Rk×n, where k ≪ min{m,n}, the variance of this initialization
distribution is influenced by m and n. These dimensions are significantly larger than k, ensuring
that the condition specified in theorem 1 — that N > k — is always met, making this theorem

4
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especially relevant for low-rank decompositions in feed-forward layers. For example the most com-
mon initialization schemes such as Kaiming (He et al., 2015b) and Xavier (Glorot & Bengio, 2010)
satisfy the requirements of our theorem.

Theorem 1 offers a viable strategy for maintaining a high-rank characteristic in feed-forward layers
while simultaneously minimizing the parameter count. By introducing a sinusoidal non-linearity
with a sufficiently high frequency ω into a low-rank decomposition, it’s possible to increase the rank
of the layer without altering the quantity of trainable parameters.

Full Rank!!" Low Rank!#" = #$$
Sine Activated Low Rank
!%&'(#") = sin 100 * #$$

Sine Activated Low Rank
!%&'(#") = sin 2000 * #$$

Sine Low-Rank
Full-Rank

Sine Low-Rank
Low-Rank

Figure 2: These figures display weight magnitudes for matrices with dimension 128 × 128. The
first figure showcases a heatmap of a full-rank matrix initialized by Kaiming uniform, highlighting
linear independence among rows. The second shows a low-rank matrix Wlr =UVT ∈R128×128,
with U,V∈R128×1 initialized by Kaiming uniform illustrating minimal linear independence. The
final pair of figures reveal how applying a sine function element-wise, sin(ω ·UVT ), with varying ω,
affects linear independence in low-rank matrices; specifically, ω = 100 and ω = 2000 progressively
increase linear independence.

In figure 2 we give a visualization of our method in action. We consider a full-rank matrix, a low-
rank matrix, and two sine activated low-rank matrices with different frequencies. By visualizing the
weight magnitudes in each matrix via a heat map, we can clearly see how the sine activated low-rank
matrix increases rank and furthermore how increasing the frequency of the sine function increases
the rank in accord with theorem 1.

Building upon equation 3, we explore the application of various non-linear functions to a low-rank
decomposition, with a particular focus on the sine function. This choice is inspired by theorem 1,
which theoretically demonstrates that applying a sine function effectively increases the matrix rank.
In figure 3, we present a comparative analysis of the sine function against other common non-linear
functions in machine learning, such as the sigmoid and ReLU. The results clearly show that the sine
function increases the rank, making it an optimal non-linearity to apply to a low-rank decomposition.

Further, theorem 1 suggests that augmenting the frequency of the sine function applied to a low-rank
decomposition contributes to a further increase in rank. To empirically validate this, we conducted
experiments applying sine functions of various frequencies to a constant low-rank matrix. The
outcomes, depicted in figure 3 (right), corroborate the theorem’s prediction, showcasing a positive
correlation between the frequency of the sine function and the resultant rank increase.

4 EXPERIMENTS

This section is dedicated to validating and analyzing the efficacy of our proposed low-rank meth-
ods across a spectrum of neural network architectures. To demonstrate the broad applicability and
versatility of our approach, we examine its performance in three distinct contemporary applications.
Specifically, we explore its integration into the fine-tuning of large language models through LoRA
(Hu et al., 2022), the pretraining of ViT (Dosovitskiy et al., 2021), the reconstruction of scenes using
NeRF (Mildenhall et al., 2020), and 3D shape modeling (Mescheder et al., 2019). This collectively
underscores our model’s adaptability to a diverse array of low-rank frameworks, highlighting its
potential to significantly impact various domains within the field of computer vision.
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Figure 3: In this figure we depict the singular value spectrum of a Kaiming uniform initialized matrix
Wfr ∈ R256×256 and a low-rank k = 5 approximation matrix Wlr = UVT . All singular values
are normalized to 1. Left: the spectral advantages of applying a non-linear function ϕ(ω · UVT )
where ω is a hyper-parameter. Here we see the natural advantages of the sine function such that
ϕ(x) = sin(ω ·x). Right: manipulating ω within the sine function changes these spectral properties.

4.1 LARGE LANGUAGE MODEL

LoRA is a highly effective strategy for finetuning large pretrained models, as described in (Hu et al.,
2022). LoRA targets the adaptation of pretrained weight matrices W0 ∈ Rm×n by limiting updates
to a low-rank representation, expressed as W0x + ∆Wx = W0x + UVTx, where U ∈ Rm×k

and V ∈ Rn×k with the rank k ≪ min{m,n}. This method does not introduce additional infer-
ence latency or necessitate reducing the input sequence length, thus preserving the model quality.
We conduct thorough experiments to evaluate the performance of our novel approach, termed sine
LoRA, against the standard LoRA framework, demonstrating the effectiveness of our method.

Dataset. We evaluate the natural language understanding (NLU) task performance on the RoBERTa
V3 base model (Reimers & Gurevych, 2019). Specifically, we adopt the widely recognized GLUE
benchmark (Wang et al., 2018), including CoLA (Warstadt et al., 2018), MRPC (Dolan & Brockett,
2005), QQP, STS-B(Cer et al., 2017), MNLI (Williams et al., 2018), QNLI (Rajpurkar et al., 2016),
and RTE (Dagan et al., 2006; Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009).
Furthermore, we evaluate sine LoRA by fine-tuning large scale language models LLaMA 3-8B on
commonsense reasoning tasks, which includes BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2019),
SIQA (Sap et al., 2019), HellaSwag (HS) (Zellers et al., 2019), WinoGrande (WG) (Sakaguchi et al.,
2021), ARC-c, ARC-e (Clark et al., 2018) and OBQA (Mihaylov et al., 2018).

Setting. In the Transformer architecture, there are four weight matrices in the self-attention module
(Wq,Wk,Wv,Wo) and two in the MLP module(Wup,Wdown). To evaluate RoBERTA V3, we
follow up the LoRA architecture and implement low-rank adaptation only on Wq and Wv. We
study the performance of LoRA and sine LoRA in terms of different rank k = 1, 2, 4, 8. To evaluate
LLaMA 3-8B, we implement low-rank adaptations on five modules (Wq,Wk,Wv,Wup,Wdown)
with different rank k = 4, 8, 16, 32. For further details on implementation and computational cost
please see Appendix A.2.1.

Results: We replicated the experimental framework of naive LoRA to establish a baseline, and then
evaluated our sine LoRA, as detailed in table 1 and table 2. Our results reveal that sine LoRA con-
sistently surpasses the performance of the standard LoRA at different rank levels (k), highlighting
the effectiveness of the sine function in enhancing the representation capabilities of low-rank matri-
ces. Notably, sine LoRA at k = 4 not only exceeds LoRA’s performance at k = 8 by 0.57 but also
halves the parameter count, illustrating significant efficiency and parameter savings. Surprisingly,
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Table 1: Performance and parameter count of the RoBERTa V3 model fine-tuned using the LoRA
and sine LoRA methods across varying kmax settings on the GLUE benchmark.

Method Params COLA MRPC STSB SST2 RTE QNLI MNLI QQP Avg. ∆

LoRAk=1 36.9K 66.31 90.15 90.15 94.70 78.80 93.06 88.18 87.61 85.63
0.32

x
Sine LoRAk=1 67.99 90.44 90.85 94.79 78.05 92.76 88.35 87.90 85.95
LoRAk=2 73.7K 68.38 89.42 89.19 95.02 78.27 93.32 89.15 88.57 85.99

0.45
x

Sine LoRAk=2 68.93 90.79 90.94 94.81 79.10 93.29 88.26 88.70 86.44
LoRAk=4 147.5K 68.56 89.69 88.79 95.23 80.39 93.34 89.78 88.70 86.41

0.73
x

Sine LoRAk=4 68.93 90.86 90.87 95.25 82.00 93.53 89.68 89.18 87.14
LoRAk=8 294.9K 68.62 89.82 89.50 95.25 80.37 93.56 89.86 88.83 86.57

0.42
x

Sine LoRAk=8 68.54 90.22 90.85 95.11 81.82 93.58 89.69 89.38 86.99

Table 2: Performance and parameter count of the LLaMA 3-8B model fine-tuned using the LoRA
and sine LoRA methods across varying kmax settings on the commonsense reasoning benchmark.

Method Params BoolQ PIQA SIQA HS WG ARC-e ARC-c OBQA Avg. ∆

LoRAk=4 7.1M 73.58 86.29 79.99 94.92 79.95 63.91 78.7 83 80.04
3.57

x
Sine LoRAk=4 72.69 87.38 79.32 94.39 85.32 75.01 88.64 86.2 83.61
LoRAk=8 14.2M 72.97 87.43 78.81 72.18 85.80 77.47 88.38 83.20 80.79

2.87
x

Sine LoRAk=8 73.42 86.51 80.3 94.16 85.87 76.36 88.05 84.6 83.66
LoRAk=16 28.3M 73.57 85.58 79.27 93.97 85.71 75.42 86.44 83.2 82.9

2.45
x

Sine LoRAk=16 73.7 87.65 80.76 94.93 84.45 79.1 89.77 84.4 84.35
LoRAk=32 56.6M 70.64 86.13 78.25 91.48 83.19 69.71 85.73 81.4 80.82

2.74
x

Sine LoRAk=32 72.42 86.51 79.78 93.96 85.16 78.07 87.58 85 83.56

with the LLaMA 3-8B model, our method with rank 4 already outperforms LoRA with all higher
ranks, achieving 83.61 compared to 82.9.

Analysis. Within the LoRA framework, featuring a low-rank multiplication component ∆W =
UVT, we enhance this low-rank component with a sine function and assess the efficacy of our
method. This adaptation amplifies the update significance due to the ‘intrinsic rank’ increase, facil-
itated by the sine activation. Consequently, our approach attains superior performance at reduced
rank levels k, compared to LoRA, effectively decreasing the count of learnable parameters.

Further results. For comparisons of our method on the recent DORA paper Liu et al. (2024)
please see Appendix A.2.1.

4.2 PRETRAINING VISION TRANSFORMERS

Vision Transformers have risen to prominence as powerful models in the field of computer vision,
demonstrating remarkable performance across a variety of tasks. When pretrained on large-scale
datasets such as ImageNet-21K and JFT-300M, ViTs serve as robust foundational architectures,
particularly excelling in feature extraction tasks (Deng et al., 2009; Sun et al., 2017). A critical
observation regarding the architecture of ViTs is that the two feed-forward layers in each block
dedicated to channel mixing contribute to nearly 66% of the total model parameter count. In light
of this, focused experiments on these specific layers have been conducted to rigorously assess the
effectiveness of our proposed method, facilitating a direct comparison with the baseline model.

Experimental setup. We trained the ViT-Small and ViT-Base models from scratch, utilizing the
CIFAR-100 and ImageNet-1k datasets, respectively, to establish our baseline performance metrics
(Deng et al., 2009; Krizhevsky, 2012). The ViT-Small model, characterized by its two MLP layers
with input/output dimensions of 384 and hidden dimensions of 1536, was modified by replacing
the full-rank weight matrices with low-rank matrices across a range of ranks (k). Similarly, the
ViT-Base model, which features two MLP layers with input/output dimensions of 768 and hidden
dimensions of 3072, underwent a parallel modification, where its full-rank weight matrices were
substituted with low-rank matrices for a range of ranks. For the training of the ViT-Base model,
we follow the training methodology described in Masked Autoencoders (MAE) (He et al., 2022a),
implementing a batch size of 1024. This structured approach allows us to rigorously evaluate the
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Figure 4: Low Rank ViT classification performance. Use of the sine activation improves perfor-
mance of the low-rank models, and even enables improvement relative to the Full Rank model.

impact of introducing low-rank matrices to these model architectures. For further implementation
details see Appendix A.2.2.

Results. Figure 4 shows the outcomes of training ViT models from scratch on the ImageNet-1k and
CIFAR100 datasets, respectively. These findings are compared with those of conventional baseline
training of ViT models, which demonstrate that employing aggressive low-rank levels (k) compro-
mises accuracy. Remarkably, the ViT-Base model, even when operating at a rank of 250 with only
50% of its parameters in comparison to the baseline, attains the performance metrics of the baseline
on the ImageNet-1k dataset, albeit at the cost of increased training loss. The use of sine low-rank
matrices consistently yields substantial improvements in test accuracy across all examined rank lev-
els for both datasets. This suggests that the sine function significantly bolsters the representational
capacity of low-rank weight matrices, as suggested by the theory in section 3.2.

Analysis. Large models, such as ViT-Base, with an excessively large number of parameters, are
prone to overfitting, where they perform well on training data but poorly on unseen data, especially
when trained on relatively ‘small’ datasets like ImageNet-1k (Zheng et al., 2024; Xu et al., 2024).
Low-rank learning techniques can help in designing models that generalize better to new data by
encouraging the model to learn more compact and generalizable representations to reduce overfit-
ting. Additionally, while ViT architectures often underperform on smaller datasets, this method
introduces a novel approach for efficiently training ViT models using small data collections. For
frequency ablations in the rank 1 case, see Appendix A.2.2.

Further results: ConvNeXt. In order to show that our method works on convolutional only ar-
chitectures we implemented sine low-rank on ConvNeXt (Liu et al., 2022), a leading convolutional
architecture for image classification. For implementation details and results see Appendix A.2.3.

4.3 NERF

Neural Radiance Fields (NeRFs) represent 3D scene signals by utilizing a set of 2D sparse images
(Mildenhall et al., 2020). The 3D reconstruction is obtained by a forward pass fθ(x, y, z, θ, ϕ), in-
volving position (x, y, z) and viewing direction (θ, ϕ). We evaluate our methods by training a NeRF
model on the standard benchmarks LLFF dataset, which consists of 8 real-world scenes captured by
hand-held cameras (Mildenhall et al., 2019). To evaluate our method on NeRF we substitute each
fully dense layer with low-rank decomposition and use a range of rank levels (k).

Results. Table 3 provides results on the LLFF dataset (Mildenhall et al., 2019; 2020). We report
the peak signal-to-noise ratio (PSNR) with the compression rate representing the percentage of pa-
rameters used in comparison to the parameter count of the Full Rank NeRF model. Employing low-
rank matrices in NeRF learning reduces parameter count while significantly enhancing compression.
However, performance dips with very low-rank levels (k), where models capture minimal informa-
tion. Our methods, nevertheless, substantially elevate performance. For instance, with k = 1, our
sine low-rank approach yields an average PSNR of 19.77, outperforming the naive low-rank by 5.77
and achieving a compression rate of merely 1.3%. Even at a 48% compression rate, it surpasses the
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Table 3: Quantitative results for NeRF evaluated on the LLFF dataset.

PSNR↑
Fern Flower Fortress Horn Leaves Orchids Room Trex Average ∆

Compression
Rate

Full-Rank 26.38 27.54 30.93 28.20 21.79 21.33 30.96 27.68 26.85 - 100%

Low-Rankk=1 15.03 14.60 14.74 13.66 12.89 12.50 15.04 13.54 14.00
5.77

x 1.3%Sine Low-Rankk=1 20.77 20.14 24.13 19.00 15.92 16.25 25.53 16.42 19.77
Low-Rankk=5 20.64 19.81 24.90 20.40 15.74 16.07 22.74 19.79 20.01

3.10
x 4.7%Sine Low-Rankk=5 23.50 23.27 26.78 23.99 18.49 18.90 27.05 22.96 23.11

Low-Rankk=10 22.83 22.18 25.96 22.76 17.36 18.12 26.12 21.69 22.12
2.27

x 8.7%Sine Low-Rankk=10 24.56 24.61 28.01 25.39 19.62 20.02 28.70 24.21 24.39
Low-Rankk=30 24.48 24.68 28.10 25.54 19.36 20.04 38.92 24.24 24.42

1.45
x 24.6%Sine Low-Rankk=30 25.71 26.01 29.46 27.16 20.95 21.17 30.18 26.27 25.86

Low-Rankk=60 25.26 26.16 29.50 26.74 20.39 20.85 30.00 25.81 25.59
0.77

x 48.6%Sine Low-Rankk=60 26.09 26.70 29.75 27.78 21.56 21.37 30.54 27.16 26.36

basic low-rank model by 0.77 PSNR, narrowly trailing the baseline by just 0.49 PSNR, as shown in
Figure 5b. Our rate-distortion analysis, applying Akima interpolation for Bjøntegaard Delta calcu-
lation, reveals a BD-Rate of −64.72% and BD-PSNR of 2.72dB, signifying marked improvements
in compression efficiency (Bjøntegaard, 2001; Herglotz et al., 2022). Visualization for k = 1 results
are shown in Figure 5a and more results are shown in Figure 8 in the Appendix.
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(a) Qualitative NeRF results for LLFF datasets (k = 1).
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Figure 5: (a) Using a non-transformed Low-Rank model leads to a complete loss of signal at ex-
treme (rank k = 1). In contrast, applying a sine activation function is able to reconstruct details
even at 1.3% of the Full-Rank parameters. (b) The Sine Low-Rank NeRF models show significant
improvements across the rate-distortion curve relative to the Low-Rank models.

Analysis. NeRF models fit entire 3D scenes, and a high training PSNR leads to a high testing
PSNR (Mildenhall et al., 2020). Employing structured weight matrices could result in a drop in
performance due to the inherent constraints imposed by their structural design. Increasing the ma-
trices’ rank enhances their memorization abilities significantly, especially when using a very low
k. Starting from a low frequency, there is a rapid and consistent increase in PSNR. Consequently,
as we elevate the rank level k, our results gradually align with the baseline NeRFs, which serve
as the upper bound. For ablations on the choice of frequency in the case of rank 1 and rank 5 see
Appendix A.2.4.

4.4 3D SHAPE MODELING

For this experiment, we evaluate performance on binary occupancy field reconstruction, which in-
volves determining whether a given coordinate is occupied (Mescheder et al., 2019). Following

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(Saragadam et al., 2023), we sampled over a 512 × 512 × 512 grid with each voxel within the vol-
ume assigned a 1, and voxels outside the volume assigned a 0. We use the Thai Statue, Dragon and
Lucy instance from the Stanford Scanning Repository.1 We evaluate intersection over union (IoU)
for the occupancy volumes. We used a coordinate-based MLP that includes two hidden layers, each
with a width of 256 neurons, and employed the Gaussian activation function. The full-rank model
achieves an accuracy of 97 (IoU). Figure 6 shows the 3D mesh representation of the Thai Statue,
visualized using the low-rank method and the sine low-rank method for k = 1, 2, 5. Applying the
sine function to the low-rank matrix resulted in a significant enhancement and more precise shape
delineation. Results on Dragon and Lucy are given in Table 13 in Appendix A.2.5. A frequency
ablation in the rank 1 case is given in Appendix A.2.5.

k = 1 k = 2
Low-Rank Low-RankSine Low-Rank (Ours) Sine Low-Rank (Ours)
(IoU : 84.3) (IoU : 90.8) (IoU : 88) (IoU : 92)

k = 5

Low-Rank Sine Low-Rank (Ours)
(IoU : 93.4) (IoU : 94.4)

Figure 6: Binary occupancy field reconstruction on the Thai Statue. Note that without a sine func-
tion, the low-rank model is unable reconstruct any finer details for the k = 1 case; however, even at
that level the sine low-rank model is able to reconstruct fine structural details of the statue, including
the trunks of the elephants. The k = 1, k = 2 and k = 5 model utilizes only 2.1%, 2.9% and 5.2%,
respectively, of the parameters of the full-rank model.

5 LIMITATIONS

Our exploration into sine low-rank matrices illuminates their promising capabilities, yet it also has a
limitation: notably, while these matrices can reach rank levels comparable to their full-rank counter-
parts upon the application of a sine function, their accuracy falls short. This highlights an ongoing
challenge in finding the optimal balance between the need for sufficient parameterization to ensure
high accuracy and the preferable rank of matrices. Overparameterization is widely recognized in the
literature as vital for deep learning models to achieve strong generalization and memorization. Mov-
ing forward, developing strategies that not only increase rank but also clearly define the necessary
degree of overparameterization will be crucial for creating cost-effective deep learning architectures,
presenting an intriguing avenue for future research.

6 CONCLUSION

In this work we have demonstrated that applying a sinusoidal non-linearity improves the accuracy of
low-rank approximations by increasing their rank. While simple, this method is highly applicable to
parameter constrained models such as LoRA, as it improves approximation without adding capacity,
by overcoming representation limits of the matrix rank. We have fully justified this approach from
theoretical first principles. When applied as a drop-in component we showed that this method leads
to surprisingly large improvements across a range of tasks involving low-rank models, including
language tasks, image classification, neural radiance fields and 3D shape modelling.

1Available at https://graphics.stanford.edu/data/3Dscanrep/
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A APPENDIX

A.1 THEORETICAL FRAMEWORK

In this section we give the proof of proposition 1 and theorem 1 from section 3.2 of the paper.

We recall from section 3.2 the following notation: For fixed ω > 0, let sin(ω ·A) denote the matrix
obtained from a fixed m × n matrix A by applying the function sin(ω · x) component-wise to A.
Assuming A ̸= 0 we define A0

min as:

A0
min = min

i,js.t.Aij ̸=0

|Aij |. (7)

Note that such a quantity is well defined precisely because A has a finite number of entries and all
such entries cannot be zero from the assumption that A ̸= 0.

Before we give the proof of proposition 1 from section 3.2 of the main paper, we will prove two
lemmas.

Lemma 1. For a fixed m× n matrix A. We have

||sin(ωA)||2F ≥ ω2(A0
min) if 0 < ω <

π

3A0
min

(8)

where A0
min is defined as follows:

A0
min = min

i,js.t.Aij ̸=0

|Aij | (9)

for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Proof. Observer by definition of the Frobenius norm that

||sin(ωA)||2F =

m∑
i=1

n∑
j=1

sin(ωAij)
2. (10)

We then find that
||sin(ωA)||2F ≥ sin(ωA0

min)
2. (11)

The goal is to now find a lower bound on sin(ωA0
min)

2. In order to do this consider the function
f(ω) = sin(ωx)− ωx

2 , where x ∈ R is fixed and positive.

Differentiating this function we have

f ′(ω) = xcos(ωx)− x

2
. (12)

To find a critical point we solve the equation f ′(ω) = 0 to find

cos(ωx) =
1

2
. (13)

We see that equation 13 has the solution ωx = π
3 . In order to check what type of critical point

ωx = π
3 we need to look at f ′′(ω)

f ′′(ω) = −x2sin(ωx) < 0 (14)

when ω = π
3x implying that the critical point ω = π

3x is a maximum point.

Observe that f(0) = 0 it thus follows that f(ω) ≥ 0 on the interval [0, π
3x ].

Applying this to the function sin(ωA0
min) we obtain that

sin(ωA0
min) ≥

ωA0
min

2
if 0 ≤ ω ≤ π

3A0
min

. (15)

Substituting the lower bound in equation 15 into equation 11 we obtain the proposition.
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The next lemma establishes an upper bound on the operator norm of sin(ωA). We remind the reader
that the operator norm of A

Lemma 2. Let A be a fixed m× n matrix. Then

||sin(ωA)||2op ≤
∣∣∣∣∣∣∣∣√ω

√
|A|

∣∣∣∣∣∣∣∣2
op

(16)

where
√

|A| denotes the matrix obtained from A by taking the absolute value and then square root
component wise.

Proof. By definition we have

||sin(ωA)||2op = sup
||x||2=1

||sin(ωA)x||22 (17)

where || · ||2 denotes the 2-norm of a vector.

For any fixed unit vector x we will show how to upper bound the quantity ||sin(ωA)x||22. In order
to do this we will use the fact that for x ≥ 0, we have the bound sin(x) ≤

√
|x|.

||sin(ωA)x||22 =

m∑
i=1

( n∑
j=1

sin(ωAij)xj

)2

(18)

≤
m∑
i=1

( n∑
j=1

√
ω
√

|Aij |xj

)2

(19)

= ||(
√
ω)

(√
|A|

)
x||22. (20)

It follows that
sup

||x||=1

||sin(ωA)x||22 ≤ sup
||x||=1

||
√
ω
√

|A|x||22 (21)

which implies

||sin(ωA)||2op ≤
∣∣∣∣∣∣∣∣√ω

√
|A|

∣∣∣∣∣∣∣∣2
op

. (22)

We can now give the proof of proposition 1 from section 3.2 of the main paper. In order to do so we
will need the definition of the stable rank of a matrix. Assume A is a non-zero m × n matrix. We
define the stable rank of A by

SR(A) :=
||A||2F
||A||2op

. (23)

It is easy to see from the definition that the stable rank is continuous, unlike the rank, and is bounded
above by the rank

SR(A) ≤ Rank(A). (24)

Remark 1. We observe that lemmas 1 and 2 give the main reasons why we chose a sine function as
the non-linearty to apply on a weight matrix A. The periodic nature of a sine function that can be
controlled by a frequency parameter ω > 0 is what allows us to obtain a proof of lemmas 1 and 2.
When we give a proof of Thm. 1 we will see that these two lemmas are crucial.

of proposition 3.1 from section 3.2 of main paper. Observe that from Eqn. equation 24 it suffices to
prove the lower bound on SR(A). This is immediate from lemma 1 and lemma 2.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Proof of theorem 1 from section 3.2 of main paper. From the assumption of the theorem 1 we have
that N >> k. Further, we are assuming that both U and V have entries sampled from
U(−1/N, 1/N). This means if we let A = UVT , then there exists a C > 0 such that

A0
min =

C

N2
. (25)

Furthermore, observe that
||
√
|A|||op ≤ ||

√
|A|||F ≤ ||A||F (26)

which implies

ω

(
A0

min

||
√
|A|||op

)2

≥ ω

(
C

N4

)(
N4

mn

)
= ω(

C

mn
). (27)

Now observe that from proposition 1 in section 3.2 from the main paper we have that

Rank(sin(ωA)) ≥ ω
A0

min

||
√
|A|||op

(28)

if 0 ≤ ω ≤ π
3A0

min
. We can rewrite this last condition to say that equation 28 holds if 0 ≤ ω ≤ πN2

3 .

In particular, by using equation 27 we find that there exists ω0 within the interval 0 ≤ ω0 ≤ πN2

3

Rank(sin(ω0A)) ≥ ω0
A0

min

||
√
|A|||op

≥ k ≥ Rank(A). (29)

This completes the proof.

Remark 2. Observe that if ω is very small, then sin(ωx) ≈ ωx and thus applying a sin simply
scales the matrix by ω which cannot change rank. It is only when ω is sufficiently large that we see
that the rank increases. If ω = 0 then applying sin with frequency ω to the matrix produces the zero
matrix which has zero rank and in general will thus have rank less than A.
Remark 3. In general low-rank matrices inherently have fewer degrees of freedom compared to
high-rank matrices, which limits their representational capacity. For complex datasets, we hypoth-
esize that high-rank weight matrices within a neural model provide additional degrees of freedom,
enabling the model to capture and learn key features more effectively from the input data. Our
empirical results on all tasks seem to validate this hypothesis.

A.2 EXPERIMENTS

For the experiments we observed that the gain factor g in Equation (3) should be chosen analogously
to how weights are initialized in (He et al., 2015a). In particular we chose g =

√
n, where n

was the number of rows of the weight matrix. During backpropagation the frequency parameter ω
scales the gradients which can cause gradient exploding. To mitigate this we found the choice of
g =

√
n worked best. We also point out that for the experiments there is no principled way to set ω.

Therefore, we will obtain ω by treating it as a hyperparameter and tuning it according to what gives
the best results.

A.2.1 FINE TUNING LARGE LANGUAGE MODELS

Implementation details for Roberta V3 We followed the settings in (Hu et al., 2022) and (Ding
et al., 2023). In the Transformer architecture, there are four weight matrices in the self-attention
module (Wq,Wk,Wv,Wo) and two in the MLP module(Wup,Wdown). To evaluate RoBERTA
V3, we follow up the LoRA architecture and implement low-rank adaptation only on Wq and Wv.
We study the performance of LoRA and sine LoRA in terms of different rank k = 1, 2, 4, 8. For
sine LoRA, we use frequency = 200 across all the ranks. We use different learning rate and epoch
for different datasets as shown in Table 4.

Implementation details for Llama3-8B We followed the settings in (Liu et al., 2024).
In the Transformer architecture, there are four weight matrices in the self-attention module
(Wq,Wk,Wv,Wo) and two in the MLP module(Wup,Wdown). To evaluate Llama3-8B, we im-
plement low-rank adaptation only on Wq,Wk,Wv,Wup, and Wdown. We study the performance
of LoRA and sine LoRA in terms of different rank k = 4, 8, 16, 32 and configurations are as shown
in 5.
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Dataset lr epoch

CoLA 8e-5 20
SST-2 1e-4 10
MRPC 1e-4 20
QQP 3e-4 10
STS-B 1e-4 20
MNLI 3e-4 10
QNLI 3e-4 10
RTE 1.2e-3 50

Table 4: Learning rate and epoch for each dataset for the Roberta V3 model.

rank frequency lr epoch

4 800 1e-4 3
8 600 1e-4 3
16 200 1e-4 3
32 200 1e-4 3

Table 5: Sine LoRA. Frequency, learning rate and epochs for the Llama3-8B model.

DoRA In order to compare our method to the current state-of-the-art we apply our sine-LoRA
method to Weight-Decomposed Low-Rank Adaptation (DoRA) (Liu et al., 2024). DoRA decom-
poses pre-trained weights W ∈ Rm×n into two components: a magnitude vector q ∈ R1×n and
a direction matrix D ∈ Rm×n, normalized by the column vector-wise norm ∥ · ∥c such that each
column remains a unit vector.

DoRA decompose a low-rank change in the direction matrix into the decomposition ∆D = UVT,
where U ∈ Rm×k and V ∈ Rn×k. To implement our sine-DoRA, we apply the sine function to this
decomposition as per Equation (3). We evaluate the performance of DoRA and sine-DoRA in terms
of different rank k = 8, 16, 32 in Table 7 and configurations are shown in Table 8. We implement
k = 8 directly as this is not a setting used in (Liu et al., 2024), and compare against reported
results for k = 16 and k = 32. By introducing our methods on top of DoRA, our model (Sine-
DoRA k = 8) achieve state-of-the-art results while utilizing only 25% of the parameters required
by DoRA(k = 32).

Computational cost. Finetuning Llama3-8B takes roughly 6 hours using LoRA, 7 hours using
Sine LoRA, 11 hours using DoRA, and 11 hours using Sine DoRA using a NVIDIA H100 GPU
with 96GB of memory. Training memory cost is shown in Table 6.

A.2.2 VISION TRANSFORMERS

Implementation details for ViT-Small on CIFAR100: The ViT-Small model, characterized by
its two MLP layers with input/output dimensions of 384 and hidden dimensions of 1536, was mod-
ified by replacing the full-rank weight matrices with low-rank matrices across a range of ranks (k).
We use learning rate 1e-3, batch size 512 and train for 200 epochs. Choices of frequency for different
ranks are shown in Table 9.

Table 6: Training memory (GB) cost for LoRA, Sine LoRA, DoRA, Sine Dora on finetuning
Llama3-8B as reported by Nvidia-SMI.

Method Rank 8 Rank 16 Rank 32

LoRA 54.9 55.2 55.3
Sine LoRA 72.0 72.0 72.2
DoRA 75.6 75.9 76.0
Sine DoRA 90.4 90.7 90.8
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Table 7: Performance and parameter count of the LLaMA 3-8B model fine-tuned using the DoRA
and sine DoRA methods across varying kmax settings on the commonsense reasoning benchmark. *
Results reported in the paper.

Method Params BoolQ PIQA SIQA HS WG ARC-e ARC-c OBQA Avg. ∆

DoRAk=8 14.9M 73.2 87.7 79.9 94.7 84.5 89.3 78.0 83.2 83.8
1.4

x
Sine DoRAk=8 73.9 89.0 81.0 95.3 86.1 90.1 79.0 87.0 85.2
DoRA*k=16 29.1M 74.5 88.8 80.3 95.5 84.7 90.1 79.1 87.2 85.0

0.3
x

Sine DoRAk=16 75.1 89.0 81.0 95.3 86.1 90.0 79.3 86.2 85.3
DoRA*k=32 57.4M 74.6 89.3 79.9 95.5 85.6 90.5 80.4 85.8 85.2

0.1
x

Sine DoRAk=32 75.8 89.3 80.3 95.9 86.1 90.2 79.4 85.4 85.3

Table 8: Sine DoRA. Frequency, learning rate and epochs for the Llama3-8B model.

Rank Frequency Learning Rate Epoch

8 300 6e-5 3
16 150 6e-5 3
32 100 6e-5 3

Implementation details for ViT-Base on ImageNet-1k: We followed the settings in (He et al.,
2022a). We use batch size of 1024, learning rate of 3e-4 and we train for 300 epochs. Choices of
frequency for different ranks are shown in Table 9.

Table 9: Frequencies used for different ranks for ViT-Base and ViT-Small.

rank 1 5 10 30 60 100 150 250

ViT-small (CIFAR100) ω 500 500 300 300 300 - - -
ViT-Base (ImageNet-1k) ω 1000 800 800 400 200 200 150 150

Ablation on frequencies: In table 10, we examine the performance of our method on training the
ViT-Small model from scratch on the CIFAR100 dataset using different frequencies, when k = 1.

Table 10: Top-1 Accuracy of ViT-Small (k = 1) on CIFAR100 with varying frequencies ω.

Frequency ω 100 200 300 400 500 600 700

PSNR 55.0 55.8 56.8 58.0 58.1 57.6 57.5

A.2.3 CONVNEXT ON CIFAR100

ConvNeXt is a family of convolutional neural networks (CNNs) models introduced in (Liu et al.,
2022). These models are designed to modernize traditional CNNs architectures by incorporating de-
sign elements inspired by Vision Transformers (ViTs) to enhance performance in image recognition.

Implementation details: We employ our methods on ConvNeXt-Tiny model using CIFAR100
datasets and the Timm codebase. ConvNeXt-Tiny consists of 4 stages with block numbers [3, 3, 9,
3] and feature dimensions with [96, 192, 384, 768]. The majority of parameters (50%) in ConvNeXt
are used in the last stage, therefore we apply a low rank decomposition only to the linear feature
layer in this stage. We use a batch size of 512, learning rate of 5e-3, and we train for 150 epochs.

Results: In Table 11, we present our performance and configurations. We demonstrate that our
method consistently outperform the naive low rank method, and even outperforms the baseline full-
rank method (ConvNext-Tiny) with approximately 50% fewer parameters.
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Table 11: Performance and compression rate of ConvNeXt-Tiny model trained on CIFAR100
datasets. We use frequency [400, 300, 300] for rank [1, 5, 20] respectively.

Method # Params Acc % Compression Rate %

ConvNeXt-Tiny 27.9M 62.3 100

LR-ConvNeXt-Tinyk=1 13.8M 59.5 49.5Sine LR-ConvNeXt-Tinyk=1,ω=400 61.5
LR-ConvNeXt-Tinyk=5 13.9M 59.5 50.0Sine LR-ConvNeXt-Tinyk=5,ω=300 62.0
LR-ConvNeXt-Tinyk=20 14.2M 62.1 50.9Sine LR-ConvNeXt-Tinyk=20,ω=300 62.8

Table 12: Training memory usage(MB) on NeRF experiments

Method rank 1 rank 5 rank 10 rank 30 rank 60

Low-Rank 5620 5622 5622 5626 5630

Sine Low-Rank 5630 5630 5632 5634 5638

A.2.4 NERF

Implementation details: We followed the settings in (Ramasinghe & Lucey, 2022). We use 8
fully connected layers–each with 256 neurons, a learning rate of 5e-4 and train for 500k iterations.
We evaluate the performance of our method by experimenting with different ranks [1, 5, 10, 30, 60],
corresponding to frequencies [1400, 800, 600, 400, 300] respectively.

Results: The full qualitative results on NeRF are given in figure 8.

Ablations: In figure 7, we illustrate the impact of varying frequency on PSNR for cases where
k=1 (shown on the left) and k=5 (shown on the right).

Computational cost: In Table 12, we present the training memory usage (MB) on NeRF experi-
ments across different ranks.

Figure 7: Ablation NeRF results for the LLFF dataset. These two figures show PSNR of NeRF using
different frequencies, when k = 1 (on the left) and k = 5 (on the right)
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Figure 8: Qualitative NeRF results for the LLFF dataset (Mildenhall et al., 2019; 2020) using rank
k = 1 and k = 5. Using a low-rank model leads to a complete loss of signal for k = 1, however,
applying sine is able to reconstruct details even at the extreme low-rank case. At k = 5 the sine
low-rank model is noticeably sharper and clearer than using the low-rank.
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Figure 9: Ablation binary occupancy results for Thai Statue. This figure shows IoU accuracy of 3D
shape modeling using different frequencies, when k=1.

A.2.5 3D SHAPE MODELLING

Implementation details: We use 2 fully connected layers–each with 256 neurons, a learning rate
of 1e-3 and train for 200 epochs.

Results: Table 13 reports the Intersection over Union (IoU) and Compression Rate of the binary
occupancy task using different rank levels (k). Our sine low-rank methods.

Table 13: This table illustrates Intersection over Union for 3D shape modeling (Thai Statue, Lucy
and Dragon) across different rank levels (k). It also includes the compression rate, indicating the
proportion of parameters utilized relative to the total parameter count of the baseline model, thereby
detailing the parameter usage versus model performance at different levels of model complexity. We
use frequency [200, 100, 50, 20] for ranks [1, 2, 5, 20], respectively

IoU Compression
# Params Thai Lucy Dragon Rate

Full-Rank 132K 97.2 97.8 98.7 100%

Low-Rankk=1 2.8K 84.3 79.3 90.4 2.1%Sine Low-Rankk=1,ω=200 90.8 90.7 94.6
Low-Rankk=2 3.8K 88.0 89.4 90.9 2.9%Sine Low-Rankk=2,ω=100 92.0 93.2 96.6
Low-Rankk=5 6.9K 93.4 94.8 96.9 5.2%Sine Low-Rankk=5,ω=50 94.3 95.3 97.4
Low-Rankk=20 22.8K 95.4 96.2 98.0 16.8%Sine Low-Rankk=20,ω=20 95.4 96.3 98.1
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