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ABSTRACT

Human beings can easily understand object concepts involving attributes and af-
fordances. Recently, to simulate this ability, Object Concept Learning (OCL) has
been introduced as a new task to recognize attributes and affordances related to
a given object. OCL is essentially a many-to-many mapping problem: While an
object may possess multiple different concepts, a concept can also belong to mul-
tiple different objects. In this regard, the prevailing method of learning discrimi-
native representation—which is effective in the single-mapping cases—often fails
in OCL. Inspired by the reasoning mechanism of human beings, in this paper,
we propose Hierarchical Multi-Grained Reasoning (HGR) for OCL, aiming to in-
fer object-related concepts from coarse-to-fine and counterfactual grains. Specif-
ically, we first propose a coarse-to-fine hierarchical reasoning module that ex-
ploits multi-step learnable prompts to progressively localize object-relevant con-
cept information. Subsequently, multiple counterfactual samples are selected to
strengthen the relations between objects and concepts, which further improves the
reasoning performance. In the experiments, our method is evaluated on multiple
benchmarks. Significant performance gains and extensive visualization analysis
demonstrate the superiorities of our method.

1 INTRODUCTION

With the development of deep neural networks, many challenging tasks, e.g., object classifica-
tion (Krizhevsky et al., 2012), detection (Ren et al., 2015), and segmentation (Huynh et al., 2021),
have achieved many progresses. Most existing methods (Hameed & Khalaf, 2024; Gonthina &
Prasad, 2024) often leverage the specific neural network to extract discriminative representation and
construct accurate mappings between representations and corresponding categories, which is eas-
ily affected by environment variances. Instead, human beings could accurately understand object
concepts involving attributes and affordances, which improves the performance and robustness of
identifying objects. To imitate this ability, a task of object concept learning (Li et al., 2023b) is re-
cently proposed, whose goal is to recognize the attributes and affordances related to a given object.
Addressing this task is beneficial for promoting the development of embodied AI.

Towards this task, one straightforward solution is to follow traditional object classification to mine
discriminative representations corresponding to object-related attributes and affordances, which fur-
ther construct a one-to-one mapping between objects and attributes (or affordances). For exam-
ple, the work Li et al. (2023b) designs a specific debiasing mechanism for learning discriminative
object-agnostic attribute representations. However, in practice, an object could have multiple differ-
ent attributes and affordances. Meanwhile, an attribute and affordance could also belong to multiple
different objects. Taking Fig. 1 (a) as an example, a cake includes ‘round’, ‘fresh’, etc. And Pizza
and Bowl all contain the ‘round’ attribute. Thus, for OCL, how to construct an accurate many-to-
many mapping between objects and concepts is a critical challenge.

Of course, enhancing the discrimination of the learned object representation is still beneficial for im-
proving the performance of object-to-concept mapping (Luo et al., 2023b; Almahairi et al., 2018).
However, since many-to-many mapping is full of much uncertainty, only learning discriminative rep-
resentation is easily affected by environment variances, which may weaken its performance and ro-
bustness. Therefore, simply learning discriminative representations is not sufficient for this task (Li
et al., 2023b). However, based on current observations, humans could leverage the reasoning mech-
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Figure 1: Compared with classical computer vision problems, Object Concept Learning is more
challenging as it belongs to a many-to-many mapping problem. To this end, we explore designing
a proper reasoning mechanism and propose a method of hierarchical multi-grained reasoning. We
first exploit a series of learnable coarse and fine prompts to progressively focus on concept-relevant
object information. Then, multiple counterfactual samples are selected to strengthen the relations
between objects and concepts, which improves the accuracy of the learned object concepts.

anism to deepen their understanding of object concepts. To this end, in this paper, we first explore
designing a dedicated reasoning method for learning object concepts.

Specifically, a method of Hierarchical Multi-Grained Reasoning (HGR) is proposed, consisting of
a coarse-to-fine hierarchical reasoning module and a counterfactual relation-enhancing module. As
illustrated in Figure 1, given an input image, we first design a series of coarse-grained prompts to
promote the model to capture plentiful concept-relevant object information. On this basis, a series of
dedicated fine-grained prompts are defined to accurately localize concept regions. Subsequently, to
further strengthen the relations between concepts and objects, a graph neural network is designed to
leverage multiple counterfactual samples to improve the performance of identifying concepts. Ex-
tensive experimental results and visualization analysis demonstrate the effectiveness of our method.

The contributions are summarized as follows:

(1) We first summarize OCL as a many-to-many mapping problem. To this end, how to construct an
accurate many-to-many mapping between objects and concepts is a critical challenge. Meanwhile,
a proper reasoning mechanism is designed to improve the reasoning accuracy.

(2) We propose a new reasoning method, i.e., Hierarchical Multi-Grained Reasoning, which inte-
grates contextual information into coarse-to-fine reasoning process to more effectively identify the
attributes and affordances of objects.

(3) Furthermore, due to the causal relationships between certain attributes and affordances, we de-
sign the counterfactual relation-enhancing model to accurately capture these causalities during train-
ing and improve recognition performance.

(4) Extensive experimental results and visualization analyses demonstrate the effectiveness of our
method. Particularly, compared with state-of-the-art method (Li et al., 2023b), our method is 8.1%
and 3.9% higher on attribute and affordance predictions.

2 RELATED WORK

Attribute and Affordance Recognition. Attributes recognition shares common background with
other popular topics in research such as object detection (Ren et al., 2015), image segmenta-
tion (Huynh et al., 2021) and classification (Srinivas et al., 2021). It usually plays the role of
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Figure 2: The details of Hierarchical Multi-Grained Reasoning (HGR). This method mainly consists
of two components: Coarse-to-Fine Hierarchical Reasoning (CHR) and Counterfactual Relation-
enhancing (CRE). Concretely, CHR first extracts visual tokens from the global image and generate
coarse-grained attribute and affordance prompts. Subsequently, CHR refines the prompts by com-
bining coarse-grained text prompts with localized visual information. The heatmaps illustrate the
learning process from coarse to fine. Finally, we design a CRE to build the accurate relation between
objects and concepts, which improves the performance of concept prediction.

mediator between pixels and higher-level concepts. However, visual attribute recognition has its
unique challenges that set it apart from other visual tasks. The examples of these challenges include
the large number of attributes need to be predicted and there exists many-to-many mapping rules
between attributes and categories. Consequently, for attribute recognition, besides classifying the
attribute directly, other methods incorporate both global and local information (Hwang et al., 2011)
or excavate the intrinsic properties (Li et al., 2020) to enhance the performance.

Affordance recognition (Chen et al., 2023), aiming to reason about the objects’ affordances in a
scene through the input, leads to multivariant application in scene understanding Aarthi & Chitrakala
(2017), human-object interaction (Antoun & Asmar, 2023) and so on. Most traditional affordance
recognition methods rely on a Bayesian network (Friedman et al., 1997) or Support Vector Ma-
chine (Noble, 2006) to encode the dependencies between the object’s global features and the affor-
dances characteristics (Montesano et al., 2008; Uğur & Şahin, 2010). Deep learning-based methods
learn the information of different modalities as prior knowledge and compensate them with the tra-
ditional methods to improve accuracy (Chen et al., 2023). For instance, Pinto et al. (Pinto & Gupta,
2016) utilized the multi-stage learning approach to collect affordances. Dadure et al. (Dadure et al.,
2023) discusses knowledge representation and reasoning the target object itself. However, these
methods often focus solely on affordance recognition. In practical scenarios, people often infer af-
fordance based on observed attributes. For example, if we need to drink water but do not have a cup,
we may find another hollow, hard object to hold the water. This reflects the importance of perceiving
the relationship between attributes and affordances.

Multimodal Prompting Methods. Recently, many works (Lester et al., 2021; Liu et al., 2023;
Alayrac et al., 2022) focus on prompting large pre-trained vision-language models to adapt to spe-
cific downstream tasks. The key idea of prompt engineering is to provide hints and other textual in-
formation to guide the pre-trained model in leveraging its existing knowledge to solve new tasks. The
hints can be in the form of continuous vector representations, referred to as prompt tuning (Lester
et al., 2021). This approach directly optimizes prompts within the embedding space of the model.
The related work, such as (Dong et al., 2022), uses prompt tuning to improve the adaptation of
pre-trained Vision Transformers to image and video understanding tasks. Additionally, CoOp (Zhou
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et al., 2022b) introduces prompt tuning for visual tasks. They achieve this by converting context
words into a set of learnable vectors to adapt them to the pre-trained vision-language model. Co-
CoOp (Zhou et al., 2022a) further transforms static prompts into dynamic prompts to better handle
category shifts. Chain-of-Thought Prompting (Wei et al., 2022) is a method to prompt the model by
adding a series of intermediate reasoning steps. Each prompt in the chain incorporates contextual
information, enabling the model to generate more coherent and contextually appropriate responses.
Our work draws on the idea of the multi-step reasoning. In the object concept learning task, we ex-
plore the potential of large pre-trained models, which utilize prompt as a bridge between the image
and visual concept for reasoning.

3 HIERARCHICAL MULTI-GRAINED REASONING

Figure 2 shows the framework of HGR model. Our work focuses on how to enhance the model’s
reasoning ability to understand object concepts. In this section, we present our method including
Coarse-to-Fine Hierarchical Reasoning (Sec 3.1) and Counterfactual Relation-enhancing (Sec 3.2).

3.1 COARSE-TO-FINE HIERARCHICAL REASONING

Compared with concrete object categories, e.g., cake, object concept is much more abstract and
involves plentiful information. To deepen the understanding of object concepts, we explore imitating
human beings to perform coarse-to-fine reasoning to progressively localize concept-relevant object
content, which improves the OCL performance.

3.1.1 COARSE-GRAINED PROMPT GENERATION

The goal of Coarse-grained Prompt Generation is to create continuous vector representations as
input prompts (see Category-agnostic Prompting) and obtain a more accurate attribute and affor-
dance description including global visual contexts (see Contextual Prompting), which is helpful for
a thorough understanding of visual content.

Category-agnostic Prompting. To adapt the large pre-trained vision-language model to the down-
stream recognition tasks, a common way is to use text prompt templates in CLIP, like “a photo of a
[cls]”, which primarily focuses on category semantics. Nevertheless, utilizing such hard text prompt
templates presents challenges in generating generic attribute and affordance textual embeddings.
This is because the original pretraining of CLIP focused on aligning with categorical semantics
rather than high-level attributes and affordances concepts of images. To overcome this limitation,
we aim to construct a set of learnable text prompts incorporating the prior knowledge of concepts.
Recently works (Hassan & Dharmaratne, 2016; Li et al., 2023b) reveal that the attributes and af-
fordances are shared between objects. Consequently, we construct a category-agnostic model and
optimize prompts focusing on aligning with attribute and affordance semantics. We employ the
prompt tuning (Lester et al., 2021) to construct a set of learnable text prompts h incorporating the
knowledge of attributes and affordances as:

hα = [T1] [T2] . . . [Tn] [is][attribute]
hβ = [P1] [P2] . . . [Pn] [afford to][affordance],

(1)

where [Ti] and [Pi](i ∈ 1, . . . , n) are learnable token embeddings in attribute and affordance text
prompt templates, respectively. This design ensures the category-agnostic text prompt template to
learn the shared patterns of different categories.

Contextual Prompting. Since the nearby environment affects the recognition of attributes and af-
fordances (Hassan & Dharmaratne, 2016), we devise a contextual prompt tuning approach that uses
visual contexts to optimize the prompt features, making the generated textual embeddings capable
of aligning visual content. Specifically, given an input image Xi, we extract the visual embedding
Fg ∈ Rd from CLIP visual encoder v(·) and feature FM ∈ Rp×d from the M -th intermediate layer
of CLIP visual encoder following (Zhou et al., 2023), where p and d separately denote the number
of patches and feature dimension. And the input text hα and hβ are sent to the text encoder f(·), ob-
taining the text feature embeddings Hα ∈ RNα×d and Hβ ∈ RNβ×d. Nα is the number of attributes
and Nβ is the number of affordances. To encourage the text features to align with related visual
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elements, we design the context decoder, where the features FM are used as the keys and values,
and the text features Hα and Hβ are used as the queries:

Ĥα = Θg(Φg(Hα), FM ) +Hα, Ĥβ = Θg(Φg(Hβ), FM ) +Hβ , (2)

where the Φg(·) and the Θg(·) represent the self-attention and cross-attention operation respectively.
The self-attention mechanism allows for focusing on important contextual information for each word
while reducing attention to irrelevant information. The cross-attention helps the model understand
the semantic alignment between images and language, thereby providing a more accurate and mean-
ingful joint representation. Through the residual connection “+”, the language priors from the text
features are preserved. Based on this, we can store the extracted text features Ĥα and Ĥβ with
sufficient global visual information.

3.1.2 FINE-GRAINED PROMPT FORMATION

As our task is to identify the instance object’s attribute and affordance, to further align the instance
visual feature to attributes and affordances prompts, we employ ground-truth bounding boxes to crop
the objects, and compute visual features Ig ∈ R1×d through the CLIP visual encoder. Then, the text
features Ĥα and Ĥβ are refined with the help of instance visual features Ig by cross-attention ΘI(·):

H̄α = ΘI(Ĥα, Ig), H̄β = ΘI(Ĥβ , Ig), (3)

where H̄α ∈ RNα×d, H̄β ∈ RNβ×d. From the above two steps, we first obtain category-agnostic text
features with the global visual content, which helps to capture the attribute and affordance semantics
comprehensively. Then, the fine-grained prompt formation is introduced to enable prompt features
to concentrate on fine-grained visual contents, which guides the following visual concept reasoning.

3.2 COUNTERFACTUAL RELATION-ENHANCING BETWEEN OBJECTS AND CONCEPTS

For OCL, it is important to construct accurate connections between objects and concepts. To this
end, we attempt to design multiple specific counterfactual samples to strengthen the object-concept
relation, which further improves the reasoning accuracy.

3.2.1 PROMPT-GUIDED VISUAL CONCEPT EXTRACTION

We define a set of attribute concepts Cα =
{
ci ∈ RD, i = 1, ..., k

}
and affordance concepts Cβ ={

ci ∈ RD, i = 1, ..., k
}

, where k denotes the number of concept and D is the dimension of each
concept. Each concept c(t)i is initialized by visual feature Fa and updated through attention and
Gated Recurrent Unit (GRU) (Cho et al., 2014) operation over t iterations, where Fa is aggregated
by the global image feature Fg and instance image feature Ig . We project the Fa and the text
prompt features H̄α, H̄β dimension to D by nonlinear transformations Q , V and K respectively.
Dot-product is applied to generate an attention matrix attn(t):

attn(t)
α = Softmax(

1√
d
Q(C(t)

α ) ·K(H̄α)), attn
(t)
β = Softmax(

1√
d
Q(C

(t)
β ) ·K(H̄β)), (4)

where attention matrix attnα ∈ Rk×Nα , attnβ ∈ Rk×Nβ . To aggregate the input values V to their
assigned concepts, we use cross product operation and get the updates feature U

(t)
α and U

(t)
β :

U (t)
α = attn(t)

α · V (H̄α), U
(t)
β = attn

(t)
β · V (H̄β), (5)

where the aggregated updates feature U (t)
α , U

(t)
β ∈ Rk×D. The concept code Cα and Cβ are eventu-

ally updated with a GRU as c(t)i = GRU
(
c
(t−1)
i , U (t)

)
, separately. In our experiment, the concepts

are updated for t = 3 times.

3.2.2 CONCEPT CONNECTION NETWORK WITH COUNTERFACTUAL

Concept Connection Network. As is shown in the right part of Figure 2, the object rider afford
to ride and take because the bicycle is hard and metal. Obviously, there are causal relationships
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between some attributes and affordances. In order to enable the model not only recognizing these
concepts but also learning the causal relationships between specific concepts, we design the relation-
enhancing network. After obtaining the concepts Cα ∈ Rk×D and Cβ ∈ Rk×D, we construct
connection among concepts to reason out the specific attributes and affordances label.

Specifically, we seek to model an undirected attribute-affordance graph Ga = {V, ξ,A}, where ξ is
the set of graph edges to learn and A ∈ Rk×k is the corresponding adjacency matrix. Each node
ν ∈ V corresponds to one element of the visual concept Cα and Cβ . And the size of V is set to 2k

. We define an adjacency matrix for the graph as A = softmaxc

(
CαC

T
β

)
+ Id, where Id indicates

the identity matrix and softmaxc indicates we make softmax operation across the column direction.

M = ACβ , M̃ = tanh
(
wc

f ∗M + bcf
)
, (6)

where wc
f ∈ Rk×k, bcf ∈ RD indicate the trainable parameters. M̃ ∈ Rk×D is the output of the

concept connection network.“*” indicates the multiplication operation. Each row of the affordance
matrix M represents a feature vector of a node, which is a weighted sum of the neighboring node
features of the current node. Subsequently, we design a fusion operation to obtain the attribute and
affordance classification feature. The fusion feature F̄ ∈ Rk is obtained by taking the dot-product
of feature Fa and matrix M̃ . The Softmax function ϕ(.) is used to generate a probability simplex
over the F̄ , i.e., ϕ(F̄ ) = [pi]

k
i=1. Next, the affordance concept representation Fβ is derived by

using a convex combination of the affordance features M̃ weighted by their corresponding pi, i.e.,
Fβ =

∑k
i=1 pi · M̃ . The attribute concept features Fα have the same fusion operation.

Counterfactual Reasoning. To better reason out attributes and affordances, we utilize the causality
annotation from the benchmark to strengthen the connection among them. We add interventions
on the attribute prompts by applying masks (Tang et al., 2020) to specific attribute elements and
observing the corresponding affordances prediction results.

We formulate the masked attribute text prompt embedding as Hαmask = H̄α ∗Mask, where Mask
is generated following (Li et al., 2023b). Then, we sent the masked prompts to the visual concept
extraction module and obtain the counterfactual affordance results Fβmask from the concept con-
nection network. Assuming there is a causal relationship between attribute αi and affordance βi. If
there is a significant difference between the counterfactual affordance prediction result ŷβmask and
the original affordance result ŷβ , it means that the model has learned the causal relationship between
αi and βi. Conversely, it indicates that the model could not capture the causality. Based on this, we
design the counterfactual loss as:

Lcl =

{
max {0, γ − (ŷβ − ŷβmask)} , βi = 1,

max {0, γ + (ŷβ − ŷβmask)} , βi = 0,
(7)

where γ is a hyperparameter. We design two loss function Lcl according to the different affordance
label to promise the Lcl should be a positive value.

Based on the above operation, we connect the attribute features Cα with the affordance features Cβ .
To promise the final predction results, we consider the following optimization strategy.

Optimization. The attribute and affordance features Fα and Fβ are sent to the different classifier,
obtaining the predicted probability ŷα and ŷβ and calculating binary cross-entropy losses:

Lbce = BCE (yα, ŷα) +BCE (yβ , ŷβ) , (8)

where yα and yβ are the attribute and affordance label. To capture different characteristics of images,
different concepts should cover different visual regions. Therefore, each concept is enforced to keep
it far from any other concept. We define a concept distinctiveness loss to achieve as:

Lcd =
1

k(k − 1)

k∑
i,j

⟨Ui, Uj⟩
∥Ui∥22 ∥Uj∥22

, (9)

where ∥ · ∥2 denotes L2-norm and ⟨·, ·⟩ denotes the inner product operation. Ui means the i-th
updated concept feature, Uj represents any other updated feature different from Ui. In this way,
the concepts can capture different aspects of the image. The final loss function is Ltotal = Lbce +
λ1Lcd + λ2Lcl. In the experiment, the λ1 = 0.1 and λ2 = 1.
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Figure 3: The heatmaps of Coarse-to-Fine Hierarchical Reasoning. For each image, the top side
indicates the heatmaps from the coarse-grained prompt generation module, and the bottom side
indicates the heatmaps from the fine-grained prompt formation module.

Table 1: OCL accuracies (map). The baselines in the “N/A” fold means α and β are calculated
separately, without connection process. “α → β” means the β is reasoned from the α.

Fold Method α β SITE Sα-β-ITE Fold Method α β SITE Sα-β-ITE

N/A

DM-V 29.9 51.8 - -

α → β

DM-α → β 28.8 52.4 15.5 14.0
HMa 28.6 51.7 - - Attention 23.9 49.0 17.8 15.5
DM-att 21.9 49.2 - - OCRN 31.5 53.6 20.3 16.9
Vanilla CLIP 23.6 49.6 - - Vanilla CLIP§ 33.5 54.2 19.7 15.9
Vanilla CLIP† 27.3 54.9 - - HGR 39.6 57.5 20.9 17.4

4 EXPERIMENTS

We evaluate our method on the OCL datasets. We demonstrate that HGR improves attributes and
affordances recognition performance and effectively enhances the causal effect between them. We
also conduct experiments on Multi-task Indoor Scene Understanding and Weakly Supervised Affor-
dance Grounding tasks to demonstrate that HGR can also perform well.

4.1 DATASETS AND BASELINES.

We consider three different tasks ranging from object concept learning, multi-task indoor scene un-
derstanding and weakly supervised affordance grounding. In object concept learning, we consider
OCL (Li et al., 2023b) dataset, which is the first attribute-affordance reasoning dataset comprising
185,941 instances of 381 categories, 114 attributes, and 170 affordances. The SOTA competing
methods include DM-V, DM-α → β (Li et al., 2023b), HMa (Rumelhart et al., 1986), Atten-
tion (Vaswani et al., 2017), DM-att (Li et al., 2023b), OCRN (Li et al., 2023b), Vanilla CLIP (Rad-
ford et al., 2021). In multi-task indoor scene understanding task, we consider NYUd2 (Silberman
et al., 2012) dataset including 1449 RGB-D images of indoor scenes with 40 object categories, 5 af-
fordances and 11 attributes labels. The SOTA competing methods include PSPNet (Zhao et al.,
2017), FastFCN (Wu et al., 2019), DeepLab V3 (Chen et al., 2017), VarReg (Shi et al., 2019)
and Cerberus (Chen et al., 2022). In weakly supervised affordance grounding task, we consider
AGD20K (Luo et al., 2022) dataset comprising of 20,061 exocentric images and 3,755 egocentric
images, and is annotated with 36 affordances. The SOTA competing methods include Hotspots (Na-
garajan et al., 2019), Cross-view-AG (Luo et al., 2022), Cross-view-AG+ (Luo et al., 2023a), Af-
fCorrs (Hadjivelichkov et al., 2023), LOCATE (Li et al., 2023a).

4.2 THE PERFORMANCE OF OUR METHOD

Table 1 2 3 show the comparison of our HGR with the state-of-the-art models (Li et al., 2023a;b;
Chen et al., 2022) on object concept learning, multi-task indoor scene understanding and weakly
supervised affordance grounding benchmarks. Our approach consistently achieves superior perfor-
mance compared to previous methods.

Object Concept Learning. According to the experiment in (Li et al., 2023b), we evaluate the
affordance (β), attributes (α), SITE and the Sα-β-ITE performance. The mean Average Precision
(mAP) is the evaluation metric for α and β. We follow the OCL and use SITE and Sα−β−ITE as the

7
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Table 2: Quantitative results on NYUd2 for Attribute, Affordance, and Semantic tasks.

Attribute Affordance Semantic
Method mIoU (%) Method mIoU (%) Method Input mIoU (%)
PSPNet 36.7 PSPNet 60.4 FastFCN RGB 45.4
DeepLab V3 38.1 DeepLab V3 61.4 VarReg RGB 50.7
Cerberus 45.3 Cerberus 66.3 Cerberus RGB 50.4

Cerberus+HGR 46.0 Cerberus+HGR 67.2 Cerberus+HGR RGB 50.6

Table 3: Comparison to state-of-the-arts from weakly supervised affordance grounding task on
AGD20K dataset (↑/↓ means higher/lower is better).

Method Seen Unseen
KLD↓ SIM↑ NSS↑ KLD↓ SIM↑ NSS↑

Hotspots 1.773 0.278 0.615 1.994 0.237 0.577
Cross-view-AG 1.538 0.334 0.927 1.787 0.285 0.829
Cross-view-AG+ 1.489 0.342 0.981 1.765 0.279 0.882
AffCorrs 1.407 0.359 1.026 1.618 0.348 1.021
LOCATE 1.226 0.401 1.177 1.405 0.372 1.157
LOCATE+HGR 1.193 0.432 1.233 1.331 0.379 1.210

causal relevant metrics. For fair comparison, we combine the Vanilla CLIP baseline method with the
classifier, denoted as “Vanilla CLIP†” and “Vanilla CLIP§” in the N/A and α → β fold respectively,
to investigate the effect of our method.

As shown in Table 1, our approach outperforms the published state-of-the-art method (Li et al.,
2023b) by 8.1 map on attribute and 3.9 map on affordance, respectively. Compared with the “Vanilla
CLIP§”, which concats the attributes and the affordances features together, our method improves the
performance, attaining a 6.1 map enhancement on attribute and 3.3 map enhancement on affordance.
These suggest that our method can effectively capture the object’s attributes and affordances charac-
teristics and own the ability to reason out the multi-label affordances from attributes. Furthermore,
we observe that the performance of affordance (β) is better than attribute (α). As mentioned in (Li
et al., 2023b), the possible reason is that one object usually has various attributes and the attribute
number is less than the affordance number.

In addition, the reasoning scores SITE and the Sα-β-ITE which combines the recognition probability
are higher than the baseline methods, which indicates that our method is benefit for reasoning the
relationship between the attributes and affordances. In Figure 5, we show some visualization results.
As is shown in these examples, compared with OCRN (Li et al., 2023b), our method not only
predicts attributes and affordances more accurately but also correctly recognizes the causality pair,
which further demonstrates the superiority of HGR.

Multi-task Indoor Scene Understanding. Multi-task indoor scene understanding is a task to parse
attribute, affordance and semantic from a single image. The mean intersection over union (mIoU)
score is the evaluation metric. To evaluate the scene understanding qualities and generalization
ability of our proposed method, we add our method on the baseline method Cerberus (Chen et al.,
2022). We set the number of attribute concepts kα equals 6 and the number of affordance concepts
kβ equals 3. As shown in Table 2, HGR is added to the Cerberus and improves the performance
significantly. Besides, in semantic parsing task, although the results do not perform well compared
with VarReg, it still improves the Cerberus accuracy. These indicate that our HGR not only enhances
the model’s reasoning ability in the OCL benchmark but also helps to achieve joint inference in
multi-task prediction. More details can be found in the appendix A.2.

Weakly Supervised Affordance Grounding. Since affordance understanding of interaction loca-
tions has garnered significant attention in the domains of robotics and computer vision, we conduct
experiments on the weakly supervised affordance grounding (Li et al., 2023a) to evaluate the model’s
cognitive reasoning capabilities and generalization ability. Weakly supervised affordance grounding
goal is to perform affordance grounding in the target object image where only the image-level labels
are given without any per-pixel annotations. Kullback-Leibler Divergence (KLD), Similarity (SIM),
and Normalized Scanpath Saliency (NSS) are used as metrics. As shown in Table 3, by designing
the affordance prompt for incorporating the text knowledge during training, we report the accuracy
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(a) Ablation on the 𝑘𝛽
when 𝑘𝛼 equals 5.

(b) Ablation on the 𝑘𝛽
when 𝑘𝛼 equals 10.

(c) Ablation on the 𝑘𝛽
when 𝑘𝛼 equals 15.

(c) Ablation on the 𝑘𝛽
when 𝑘𝛼 equals 20.

Figure 4: The ablation results of the concept number based on the OCL benchmark.

of our method combined with the baseline method LOCATE. Notably, our proposed method HGR
makes an improvement over LOCATE. These results demonstrate the excellent adaptation ability of
HGR. More details can be found in the appendix A.2.

4.3 ABLATION ANALYSIS OF EACH COMPONENTS

Table 4: Ablation study of the module reported
on OCL benchmark.

Method α β SITE Sα-β-ITE
Base 33.5 54.2 19.7 15.9

+CHR 37.8 55.8 19.7 16.1
+PVCE 39.0 56.4 20.0 16.5
+CCC 39.6 57.5 20.9 17.4

Module ablation. We validate the effectiveness
of different high-level modules of our HGR, in-
cluding Vanilla CLIP (Base), Coarse-to-Fine Hier-
archical Reasoning (CHR), prompt-guided visual
concept extraction (PVCE), and concept connec-
tion network with counterfactual (CCC). As shown
in Table 4, each module contributes to the remark-
able performance of HGR. CHR improves recogni-
tion performance through coarse-to-fine prompting
learning. PVCE aggregates the learned fine-grained textual prompts into the visual space, enhancing
the representation of visual concept features. Furthermore, CCC enhances the causal relationship
between attributes and affordances through counterfactual reasoning, which promotes the accuracy
of many-to-many mappings.

Table 5: Ablation study of the different prompt
step reported on OCL benchmark.

Prompt α β SITE Sα-β-ITE

global 37.5 54.4 16.3 15.8
local 24.8 40.6 11.5 9.3

global+local 39.6 57.5 20.9 17.4

Analysis of Contextual Prompt. Table 5
presents the effects of prompt flow. We decom-
pose the prompt reasoning into a two step re-
fining process, where the first step is to gener-
ate prompt containing the global image infor-
mation. The second row in Table 5 shows the
results only by fusing the global image contex-
tual with text prompts. The second step is to
relay the prompt from the previous step and deepen the local instance corresponding prompts. The
fourth row results indicate the performance of the second step, surpassing the performance of the
global contextual prompt. However, only the instance-specific contextual prompt leads to poor per-
formance, as shown in the third row. The results suggest that model can not align the attribute and
affordance prompts with image features directly solely from local regions. The reason may be that
most objects’ interact with the nearby environment. Thus, the model is difficult to comprehend in-
stance information without global image guidance. In addition, we report the hierarchical reasoning
heatmaps in Figure 3. Our method could indeed focus on concept-related object regions progres-
sively by means of coarse-to-fine prompts, which improves the accuracy of recognition concepts.

Analysis of the Number of Concepts. We study the impact on recognition results when the number
of attributes kα and affordances kβ visual concepts differ. We report in Figure 4 the results by chang-
ing k ∈ [1, 20] with a 5 interval. As can be observed in the OCL benchmark, when the values of kα
and kβ are the same, the recognition accuracy is higher. This indicates that significant differences in
visual concepts may lead to inaccurate mapping relationships. The recognition accuracy reaches its
peak when k equals 10. A reasonable explanation is that although OCL contains more attributes and
affordances, the contents of images are more complex, learning too many concepts may increase the
complexity of the network and thus influence the accuracy and stability of the model.

9
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Figure 5: The ablation results of the baseline method (OCRN) and HGR. The attributes and af-
fordances prediction results are shown in the image right part. The causal relation from dataset
annotation is presented below each image.

5 CONCLUSIONS AND LIMINATIONS

For OCL, we explore introducing a reasoning mechanism to strengthen object concept learning.
Concretely, we propose a Hierarchical Multi-Grained Reasoning (HGR) method, which consists of
coarse-to-fine hierarchical reasoning module and counterfactual relation-enhancing module. Partic-
ularly, we first sent the entire image to the Coarse-to-Fine Hierarchical Reasoning module, obtaining
the fine-grained prompt containing instance object concepts. Subsequently, multiple counterfactual
samples are selected to strengthen the relations between objects and concepts, which further im-
proves the reasoning performance. Experiment results show the effectiveness of HGR.

Notably, it still has much room for reasoning ability improvement. From the experiments, we found
that although the CLIP improved the model’s recognition of attributes and affordances, there is still
much room for improvement. It is worth noting that capturing causal relationships between attributes
and affordances requires deeper exploration. In the future, we plan to validate and optimize our
method in a broader range of application scenes.
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Emre Uğur and Erol Şahin. Traversability: A case study for learning and perceiving affordances in
robots. Adaptive Behavior, 18(3-4):258–284, 2010.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and Ronald M Sum-
mers. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised
classification and localization of common thorax diseases. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 2097–2106, 2017.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Chaoyi Wu, Xiaoman Zhang, Ya Zhang, Yanfeng Wang, and Weidi Xie. Medklip: Medical knowl-
edge enhanced language-image pre-training in radiology. arXiv preprint arXiv:2301.02228, 2023.

Huikai Wu, Junge Zhang, Kaiqi Huang, Kongming Liang, and Yizhou Yu. Fastfcn: Rethinking
dilated convolution in the backbone for semantic segmentation. arXiv preprint arXiv:1903.11816,
2019.

Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing
network. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
2881–2890, 2017.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
vision-language models. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 16816–16825, 2022a.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
language models. International Journal of Computer Vision, 130(9):2337–2348, 2022b.

Qihang Zhou, Guansong Pang, Yu Tian, Shibo He, and Jiming Chen. Anomalyclip: Object-agnostic
prompt learning for zero-shot anomaly detection. arXiv preprint arXiv:2310.18961, 2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

Table 6: Ablation of the γ (equation 7) on OCL benchmark.

γ α β SITE Sα-β-ITE

0.1 38.7 56.1 19.7 16.9
0.3 39.6 57.5 20.9 17.4
0.5 38.5 56.4 19.9 17.0
0.7 38.0 56.0 18.2 16.6
1.0 35.2 55.6 18.0 16.2

Table 7: Ablation of learnable prompts n on OCL.

n α β SITE Sα-β-ITE

10 38.9 57.0 20.1 17.0
12 39.6 57.5 20.9 17.4
14 39.2 57.1 20.5 17.2
16 38.7 56.8 20.2 16.9

Table 8: Ablation of concept connection network on OCL.

Method α β SITE Sα-β-ITE

w/ Linear Network 39.2 56.0 19.9 16.1
w/o Linear Network 39.6 57.5 20.9 17.4

For object concept learning, to mitigate the significant uncertainty of many-to-many mappings, we
proposes HGR method, aiming to exploit the coarse-to-fine hierarchical reasoning module to per-
form object attributes and affordances recognition, and leveraging multiple counterfactual samples
to strengthen the relations between objects and concepts. In the appendix, we provide implementa-
tion details, additional analyses, various ablation studies, and more visualization results.

A.1 EXPERIMENTAL SETUP

Implementation details. We use the CLIP model VIT-L/14@336px as our backbone. The length
of learnable attribute and affordance prompt embeddings n is set to 12 and the CLIP visual encoder
parameters are frozen. For OCL, the concept number k in the best experiment results is 10 and
the γ is 0.3. The ablation experiments setting are based on the k = 10. The model learns with
batch size 128 and SGD learning rate 1 for parameter optimization. For NYUd2 benchmark, the
counterfactual reasoning cannot be used since there is no causality annotation. Thus, we add our
concept extraction module to the baseline network. The experiments use the standard SGD optimizer
with a learning rate of 7e-3, momentum 0.9, and batch size 2. For AGD20K, the names of the
affordances corresponding to the image labels have been added to the prompt template. And we set
the k = 5 and batch size 16. SGD with learning rate 1e-3, weight decay 5e-4 is used for parameter
optimization. In addition, the metrics in OCL also include the SITE and Sα-β-ITE, which combine
the actual affordance probability and counterfactual output following (Li et al., 2023b) to verify the
performance of reasoning. All experiments are conducted in PyTorch-1.10 with two NVIDIA RTX
A6000. More details can be found in the appendix.

A.2 EXPERIMENTAL DETAILS

Our method can be considered an independent module that can be flexibly integrated into existing
methods. For NYUd2 (Silberman et al., 2012), since the original method involves joint training
of attributes and affordances, we can incorporate our method into the original approach by con-
structing learnable prompts using the labels of attributes and affordances. For AGD20K (Luo et al.,
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2022), since the affordance labels are available, we build coarse-grained prompt learning on the
exocentric branch and construct fine-grained prompt formation on the egocentric branch. Subse-
quently, the visual concept extraction module maps the prompts to discriminative visual features.
The optimization includes the loss of our module as well as the loss of the original framework. Ad-
ditionally,incorporating our module does not alter the optimization process of the original network.

A.3 MORE ABLATION EXPERIMENTS OF HYPER-PARAMETERS AND MODULES

For our method, we utilize the hyper-parameter n for the length of learnable prompts, the hyper-
parameter γ for the loss Lcl (equation 7) and concept connection network to connect the attribute
α and affordance β. Here, we take the OCL dataset to perform an ablation analysis of hyper-
parameters and concept connection module. And we only change these hyper-parameters and keep
other modules unchanged.

Analysis of γ. The hyper-parameter γ in equation 7 is a threshold, which can be dynamically
adjusted. From the Table 6, we find that when γ is set to 0.3, the corresponding evaluation metrics
get the best performance.

Analysis of n. From the Table 7, we can find that the performance initially improves with an
increase in the value of n.However, within the range of lengths from 12 to 16, we notice a decline
in performance, which suggests that excessively long learnable prompts could involve redundant
information. Therefore, an appropriate value is n = 12.

Analysis of concept connection network. The concept connection network goal is to construct
connection among concepts to reason out the specific attributes and affordances label. To validate the
effectiveness of our designed network, we replaced matrix A in the network with a linear network
for experimental analysis. The results in Table 8 emerges that replacing the adjacency matrix A
with a linear network reduces performance. This indicates that our concept connection network is
better at improving performance.

Analysis of the Number of Concepts from the Complete Dataset. We conduct experiments
where the number of k samples is equal to the total number of attributes (114) and affordances (170)
in the entire dataset. The results are as shown in Table 9.

Table 9: More ablation of concept number k on OCL. ”att” is the abbreviation for attributes, and
”aff” is the abbreviation for affordances. The values in ”()” represent the number of k.

k α β SITE Sα-β-ITE

att(114)-aff(114) 36.7 55.9 19.9 16.3
att(114)-aff(170) 35.9 55.1 19.5 15.9

att(10)-aff(10) 39.6 57.5 20.9 17.4
Vanilla CLIP§ 33.5 54.2 19.7 15.9

When the number of k equals the number of attributes and affordances, the model’s performance
could be improved compared with the Vanilla CLIP baseline. However, the model’s performance
decreases compared with the “attr(10)-aff(10)”. The experimental results reveal that an excessive
number of k samples decreases performance, and a significant difference between attributes and
affordances also results in poor performance. Learning too many visual concepts will increase the
network’s complexity and introduce information redundancy, degrading performance.

Table 10: Ablation of GRU on OCL.

Method α β SITE Sα-β-ITE

w/o GRU 39.4 57.2 20.7 17.3
w/ GRU 39.6 57.5 20.9 17.4
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Analysis of the GRU and Concept Update. From the Table 10, it can be observed that removing
the GRU leads to a slight decrease in performance. This is because the GRU is used to refine the
shape of the regions corresponding to the extracted concepts. Different attributes and affordances
of an object correspond to different region. Therefore, it is necessary to provide a better regional
boundary for these concepts.

Table 11: Ablation of Concept Update on OCL.

Method α β SITE Sα-β-ITE

w/o concept update 38.8 57.0 20.5 17.1
w/ concept update 39.6 57.5 20.9 17.4

The experimental results in Table 11 indicate that performance declines when concept update is
not employed. This is because each concept feature is initialized by visual features and then pro-
gressively updated to different object regions through attention-based clustering. Without concept
update, different concepts may intertwine, making it more difficult to complete the recognition task.

Table 12: Ablation of Ground-truth Bounding Boxes (bbox) on OCL.

Method α β SITE Sα-β-ITE

OCRN w/ bbox 31.5 53.6 20.3 16.9
OCRN w/o bbox 28.6 49.8 17.7 15.5
HGR w/o bbox 33.9 52.3 20.1 17.0

Analysis of the Bounding Boxes. We replace the bounding boxes with the predicted boxes ex-
tracted by Faster R-CNN. The results of our experiments are shown in Table 12. From the experi-
mental results, it can be observed that there is a decline in performance after using the pre-trained
Faster R-CNN to extract the prediction boxes. However, our method can still enhance the perfor-
mance of the baseline.

A.4 IMBALANCE LEARNING AND ZERO-SHOT CAUSAL LEARNING

A.4.1 IMBALANCE LEARNING

There is an imbalance in the distribution of attributes and affordances for objects. The original
distribution of attributes and affordances in the OCL dataset is also imbalanced. To illustrate the
impact of the imbalance ratio on our method, we set the same imbalance ratio r for both attributes
and affordance, and we conduct experiments.

Table 13: More ablation of imbalance ratio r on OCL. The values in ”()” represent the imbalance
ratio.

r α β SITE Sα-β-ITE

OCRN-r(100) 26.4 49.8 15.5 14.3
HGR-r(100) 29.5 52.0 16.1 14.7
OCRN-r(50) 29.1 52.3 18.2 16.1
HGR-r(50) 34.2 55.1 18.9 16.6

OCRN-r(10) 32.4 54.1 20.4 16.7
HGR-r(10) 39.2 57.2 20.5 17.3

By setting the same imbalance ratio in the OCL baseline OCRN and our method HGR, it can be
observed in Table 13 that our method still improves performance. This indicates that our approach
can adapt to imbalance cases.
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A.4.2 ZERO-SHOT CAUSAL LEARNING

To further demonstrate the effectiveness of our method, we conducted experiments on the zero-shot
causal setting, and the results are as shown in Table 14.

Table 14: Performance results for OCL dataset on zero-shot causal learning task.

Method α β SITE Sα-β-ITE

OCRN 30.0 52.5 16.3 14.1
HGR 37.5 56.1 17.3 15.2

The results indicate that our method can enhance the model’s reasoning performance. In this setting,
300 attributes-affordances causality annotations are used as unseen causal relations. 785 attributes-
affordances causality annotations are used as seen causal relations. For this setting, the concept
number k in the best experiment results is 10 and the γ is 0.1.

A.5 MORE EXPERIMENTS ON MEDICAL DOMAIN

To verify the effectiveness and generalizability of our method, we further conduct experiments on
medical datasets. The results are shown in Table 15.

Table 15: Comparison of AUC scores with other state-of-the-art methods on fine-tuning classifica-
tion task. The results are reported for ChestX-ray14 dataset.

Method Data portion 1% Data portion 10% Data portion 100%

GLoRIA 0.6710 0.7642 0.8184
BioViL 0.6952 0.7527 0.8245

MedKLP 0.7721 0.7894 0.8323
HGR 0.7876 0.7963 0.8388

We have compared our method with the GLoRIA Huang et al. (2021), BioViL Boecking et al.
(2022), and MedKLIP Wu et al. (2023) baselines. To ensure fairness, we follow the same protocol.
The experiments are conducted on the ChestX-ray14 Wang et al. (2017) dataset. From the exper-
imental results, it can be observed that our method can achieve better performance enhancement,
which demonstrates that our method possesses generalization ability.

A.6 FURTHER DISCUSSION

Although multi-label recognition is not a new problem, it is under explored in the Object Concept
Learning (OCL) task. Multi-label recognition mainly focus on the mapping between images and
categories. The main challenge of OCL lies in the many-to-many mapping relationships between
objects and concepts. That is, an object could have multiple different attributes and affordances
(concepts). Meanwhile, an attribute and affordance could also belong to multiple different objects.
To overcome this, we propose a Hierarchical Multi-Grained Reasoning framework. For objects in an
image, an attribute and affordance could belong to multiple different objects, which means concepts
exist across objects. Thus, we first design object-agnostic prompts to enhance concepts-objects
mapping precision. Subsequently, a mapping between object concepts is formed by integrating
contextual global information and fine-grained local information. Furthermore, to make the mapping
between objects and concepts more precise, we introduce counterfactual reasoning to identify causal
relationships between certain attributes and affordances. This enhances the mapping connections
between objects and these concepts, which in turn improves recognition performance. Significant
performance improvements and extensive visual analysis have demonstrated the superiority of HGR.
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A.7 VISUALIZATION RESULTS

We test our approach on the Object Concept Learning (OCL) benchmark. The visualization results
are as follows. Among them, Figure 7 is the baseline method, Figure 8 is our method, and Figure 6
is the coarse-grained and fine-grained prompt heatmaps. For Figure 7 and Figure 8, the right side of
each image shows the predicted attribute and affordance of the object, and the bottom of the image
shows the test results of causality. The experimental results further demonstrate that our approach
not only achieves greater accuracy in attribute and affordance prediction, but also indicates that our
method own the ability to understand causality. For Figure 6, the top side of each image show the
heatmaps from the coarse-grained prompt generation module, and the down side show the heatmaps
from the fine-grained prompt formation module. The results show that our method could capture the
object-related attributes and affordances features in a coarse-to-fine manner. These results prove the
applicability and superiority of our proposed method in complex scenarios, and lay a foundation for
future object understanding application in a wider range of fields.

A.8 VISUALIZATION RESULTS FOR CAUSAL RELATIONS

To further illustrate that our method HGR can learn the causal relationships between attributes and
affordances, we visualize the features of attributes and affordances in the image that have causal
annotation relationships, with the results shown in Figure 9. Through the visualization, it can be
observed that the regions of attributes and affordances with causal relationships are approximately
similar. The visualization results indicate that specific attributes can be used to infer the correspond-
ing affordances.

Attribute: wet Affordance: sit

Input Image Input Image

Input Image Input Image

Attribute: furry

Attribute: horizontal Attribute: redAffordance: take Affordance: park

Affordance: load

Figure 6: More heatmaps of Coarse-to-Fine Hierarchical Reasoning. For each image, the top side
indicates the heatmaps from the coarse-grained prompt generation module, and the bottom side
indicates the heatmaps from the fine-grained prompt formation module..
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Figure 7: The prediction results of OCRN.
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Figure 8: The prediction results of our HGR.
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Figure 9: The visualization of causal relations.
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