
Llama-3-Meditron: An Open-Weight Suite of Medical LLMs Based on Llama-3.1

Alexandre Sallinen1 Antoni-Joan Solergibert1,3 Michael Zhang1 Guillaume Boyé1
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Abstract

We introduce Llama-3-Meditron, a high-performing open-
weight suite of medical large language models (LLMs) built
on LLama-3.1 (8B and 70B). The models are pre-trained
on a carefully curated medical corpus that includes text-
books, filtered PubMed Central articles, and Clinical Prac-
tice Guidelines. To enable robust reasoning and generaliza-
tion, we synthesize a new dataset for instruction fine-tuning,
combining multi-turn Q&A, adversarial questions, medical
exams, and differential diagnostics. Additionally, we propose
MediTree, an inference pipeline that leverages the Tree-of-
Thoughts sampling strategy, to boost the performance of our
models. On widely-used benchmarks (MedMCQA, MedQA,
PubMedQA), Llama-3-Meditron-8B surpasses all Llama-3.1
models by over 3%, and the 70B-parameter model outper-
forms other medical and non-medical LLMs across all tasks,
outperforming Meditron 1 and 2, GPT-4 (fine-tuned), Flan-
PaLM, and MedPaLM-2. These findings demonstrate that
open-weight medical LLMs can set the state of the art in
physician-level question-answering, advancing the accessi-
bility and usefulness of AI in healthcare.

Introduction
Access to medical knowledge and expertise is critical
to delivering high-quality healthcare, especially in low-
resource settings where shortages of medical professionals
are common. Recent advancements in large language mod-
els (LLMs) have demonstrated that AI can perform profi-
ciently on medical question-answering tasks (Liévin et al.
2024; Rajpurkar et al. 2022; Singhal et al. 2023a). This has
spurred significant interest in the development of medical
LLMs with the eventual goal of achieving physician-level
capabilities.

Closed-weight medical models such as the MedPaLM
family (Anil et al. 2023) and even non-specialized LLMs
including GPT-4, have achieved impressive performance on
popular benchmarks such as MedMCQA (Pal, Umapathi,
and Sankarasubbu 2022), MedQA (Jin et al. 2020a), and
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PubMedQA (Jin et al. 2019). However, there has been a con-
certed effort by the research community to develop open-
weight medical LLMs such as the BioMistral(Labrak et al.
2024), PMC-Llama (Wu et al. 2024), and Meditron (Chen
et al. 2023) families of models. FOr example, PMC-Llama,
adapted from Llama 2 (Touvron et al. 2023), was specialized
to the medical domain through continued pre-training on
PubMed Central (PMC) articles (Roberts 2001). Meditron-
70B improved on this approach by performing continued
pre-training on a richer source of medical data, including
filtered PMC data, medical textbooks, and Clinical Practice
Guidelines (CPG).

In this work, we introduce a new family of mod-
els, LLama-3-Meditron, based on Llama-3.1 (Dubey et al.
2024). The markedly improved language capabilities of the
Llama-3 family of models provides a significantly better
foundation than the widely used Llama-2 family of mod-
els. We adopt the continued pre-training methodology of
Meditron-70B and develop an improved instruction fine-
tuning phase by utilizing novel Q&A datasets reformat-
ted from DDxPlus (Tchango et al. 2022) and MedlinePlus
(Miller, Lacroix, and Backus 2000), standard training splits
of MedQA, MedMCQA, and PubMedQA augmented with
explanations, and adversarial question-answering. To fur-
ther improve inference, we develop MediTree, a Tree-of-
Thoughts inspired pipeline co-designed with clinicians to
leverage the problem-solving ability of large language mod-
els (LLMs) for differential diagnosis. Our 8B-parameter
model equipped with MediTree inference is capable of out-
performing substantially larger models such as Meditron-
70B. The 70B-parameter model is even more promising,
which outperforms all tested competitors, including Med-
PaLM 2 and GPT-4 by over 2% on average. These results
suggest that the Llama-3-Meditron family represents the
new state-of-the-art in open-weight medical LLMs.

Llama-3-Meditron Training
In this section, we detail our training strategy to develop
Llama-3-Meditron.



Pre-training Data
We constructed a pre-training dataset from a variety of au-
thoritative medical information sources, aiming to cover
both general medical knowledge and specialized clinical
guidelines:

• PubMed Central Articles: We included peer-reviewed
articles from PubMed Central (PMC) Wu et al. (2024),
focusing on high levels of evidence such as meta-
analyses, systematic reviews, randomized controlled tri-
als, practice guidelines, and Phase III/IV clinical trials.
Articles tagged with ”Animal” or ”Veterinary” were ex-
cluded to maintain clinical relevance. The selection and
filtration process was rigorously validated by medical
doctors from the Centre Hospitalier Universitaire Vau-
dois (CHUV).

• Medical Textbooks: To provide a solid foundation of
medical knowledge, we incorporated validated medical
textbooks covering various specialties, including genet-
ics, oncology, infectious diseases, and pain management.
Recognizing the challenges of extracting text from PDFs,
we utilized advanced tools like Surya Paruchuri and
Surya Contributors (2024), enabling us to extract approx-
imately 34 million tokens of high-quality text.

• Clinical Practice Guidelines: We incorporated clinical
practice guidelines (CPGs) from globally recognized en-
tities, following the approach of Chen et al. (2023). CPGs
represent the pinnacle of evidence-based medical data,
synthesizing expert analyses to offer crucial guidance for
clinical decision-making. Our guidelines corpus includes
46,000 articles spanning multiple medical domains and
catering to diverse geographic scopes, including both
high- and low-resource settings.

Instruction Tuning Data
To enhance the models’ ability to follow instructions and
perform complex medical tasks, we fine-tuned them on a
custom instruction-tuning dataset. This dataset was designed
to make the models more useful for real-world interactions
and to improve their knowledge extraction capabilities.

• Patient Progression Dialogue Dataset: This multi-turn
chat dataset tracks patients’ conditions throughout their
hospital stay or across a series of appointments. Con-
structed from the PMC-Patient dataset’s discharge sum-
maries (https://pmc-patients.github.io/), it simulates in-
teractions where the assistant suggests medical tests or
treatments based on initial symptoms, and the user pro-
vides results or feedback. This setup mirrors the iterative
diagnostic process in clinical practice.

• Symptoms to Diagnosis QA: We reformatted the DDx-
Plus dataset Tchango et al. (2022) to create a question-
answering dataset where, given a list of symptoms in nat-
ural language, the model outputs a differential diagnosis
containing potential diseases. This enhances the model’s
diagnostic reasoning capabilities.

• Questions for Diagnosis Generation: Another refor-
matting of the DDxPlus dataset, this component focuses

on generating relevant diagnostic questions given a dif-
ferential diagnosis. to improve the model’s ability to sug-
gest pertinent questions and aid in the diagnostic process.

• Health and Lab Tests Topics QA: We scraped the Med-
linePlus website (med 2024) to construct a multi-turn
question-answering dataset covering various health top-
ics and medical tests. This dataset enriches the models’
knowledge base and improves their ability to handle pa-
tient inquiries.

• Exam MCQA: We combined the training sets from
MedQA Jin et al. (2020a), MedMCQA Pal, Umap-
athi, and Sankarasubbu (2022), and PubMedQA Jin
et al. (2019) to create a comprehensive multiple-choice
question-answering dataset with standardized format-
ting. To enhance instruction tuning stability, we pro-
cessed these datasets through Llama 3.1 70B using web-
based retrieval-augmented generation (RAG), generat-
ing explanations along with answers. This approach in-
creased the amount of tokens in 80% of the samples, pro-
viding richer context and improving the models’ perfor-
mance on complex tasks.

• Adversarial QA: We created a synthetic dataset that cri-
tiques answers to exam questions, pointing out poten-
tial shortcomings to discredit them. This task trains the
model to self-reflect and recognize incorrect or subopti-
mal responses, enhancing its reliability.

Following recommendations from Longpre et al. (2023),
we diversified system prompts and included few-shot ex-
amples in approximately 50% of the samples, improving
the models’ capabilities in both zero-shot and few-shot set-
tings. We also incorporated a portion of the AlpacaReplay
dataset to broaden the range of learned tasks and mitigate
over-fitting. A summary of the instruction tuning dataset is
provided in Table 1.

Training Infrastructure
We conducted training of both the 8B and 70B models
on a high-performance computing cluster. Each node was
equipped with 8 NVIDIA A100 SXM GPUs with 80GB
of memory, connected via NVLink and NVSwitch within
nodes. For inter-node communications, we have a 2-port
ThinkSystem Mellanox ConnectX-6 Dx 100GbE QSFP56
Ethernet Adapter per node, utilizing RoCE to speed up com-
munications.

After considering the number of tokens, the size of the
models, and the number of nodes available for training, we
ultimately decided against using 3D parallel training frame-
works such as Megatron (Shoeybi et al. 2019), which would
have required a significant amount of hours to implement
all the features we wanted to experiment with. Instead, we
opted to use multiple Hugging Face libraries: transformers
(Wolf et al. 2020) for the models and checkpoints, datasets
(Lhoest et al. 2021) for preprocessing and feeding data to the
models during training, and accelerate (Gugger et al.
2022) to shard the models among multiple GPUs. For the lat-
ter, we leveraged the DeepSpeed integration included in ac-
celerate, specifically DeepSpeed ZeRO-3 (Rajbhandari et al.
2020).



Table 1: Summary of the instruction tuning dataset.

Dataset Type Samples Percentage (%)

Patient Progression Dialogue Multi-turn 86,000 14
Symptoms to Diagnosis QA Single-turn 10,000 1
Questions for Diagnosis Generation Single-turn 24,000 4
Health and Lab Tests Topics QA Multi-turn 3,000 0.6
Exam MCQA MCQA with CoT 397,000 62
Adversarial QA Single-turn 32,000 2

AlpacaReplay Single-turn 52,000 8

Total 607,000 100

Training pipeline. Clinical reasoning is a complex skill
that requires flawless accuracy in diagnosing patients. In
safety-critical applications such as clinical decision-making,
reducing errors in LLM generation is crucial. To this end,
we continue pretraining Llama-3 8B and 70B using our data
mixture. We aim to specialize the generalist model Llama-3
into a medical model by embedding more accurate medical
knowledge into its parameters.

Ultimately, our goal is to deploy Meditron for practical
use in the medical field, where it will interact with humans
and must, therefore, learn to follow instructions. To achieve
this, we employ instruction-tuning. This transforms our spe-
cialized model into a chatbot capable of answering physi-
cians’ questions in the most truthful and helpful manner.

Continued pretraining. To adapt our model to medi-
cal applications, we perform a continued pretraining. This
method allows our model to specialize in the medical field
while being computationally cheaper than pretraining from
zero. Continued pretraining relies on self-supervised learn-
ing on large quantities of unstructured texts.

Moreover, previous works have shown that training mod-
els on voluminous documents with questions answering en-
ables them to extract information better than continued pre-
training Jiang et al. (2024). Mixing questions/answering
with related medical documents increases the model’s in-
formation retrieval capability, leading to better performance
Jiang et al. (2024). Following this work, we create a contin-
ued pretraining data mixture:

• General medical information mixture containing volu-
minous documents

• Information retrieval mixture containing instruction
tuning samples

To adapt our instruction-tuning dataset to continued pre-
training, we transform each sample to a dialogue format in
the following way: each dialogue line is preceded by the role
of the interlocutor.

In total, the continued pretraining dataset contains 2.4B
tokens. During training, we pack multiple samples until
reaching the sequence length and avoid cross-attention con-
tamination between samples, as described by Matej Kosec
et. al. Kosec, Fu, and Krell (2021). For the instruction tun-
ing datasets, we only train the models with tokens belonging
to the assistant’s responses and not the user’s questions. The
same training procedure is applied for the 8B and 70B mod-
els, except for a few hyperparameters described in Table 4.

Example of transformed instruction-tuning sam-
ple

<begin of text>
SYSTEM:
You are a medical expert. Your task is to address
each query about a medical scenario with precision
and accuracy.

HUMAN:
How is the diagnosis of insulinoma established?

GPT:
The diagnosis of insulinoma is established by
demonstrating inappropriately high serum insulin
concentrations during a spontaneous or induced
episode of hypoglycemia, such as a 72-hour fast for
fasting hypoglycemia or a mixed-meal test for post-
prandial hypoglycemia.
<end of text>

Instruction tuning and alignment. Instruction tuning
and alignment are essential to ensure the helpfulness
and truthfulness of our models, especially in the medical
field. We take advantage of the performance of ORPO to
instruction-tune and align Meditron on a subset of the Ultra-
feedback dataset Hong, Lee, and Thorne (2024) Cui et al.
(2023) combined with a custom medical ORPO dataset.
With this training step, we hope to achieve high-quality
answers based on the four aspects targeted by Ultrafeed-
back: instruction-following, truthfulness, honesty, and help-
fulness. Table 4 describes the hyperparameters used with
ORPO.

Tuning for API calls. Context plays a crucial role in clin-
ical decision-making as diagnoses and treatments highly de-
pend on the geographical environment and local guidelines.
Furthermore, document retrieving ability also alleviates the
need for the model to embed large medical information in
its parameters. Following this logic, we must ensure that
our model can query documents when needed. Our goal is
to make the model learn our API call format by using the
dataset described in Section with replay data from Ultra-
feedback. Once again, we leverage ORPO’s capabilities to
learn our API call format.



Figure 1: MediTree pipeline with the four components: Chat, Generation, Evaluation, and Selection.

MediTree Inference Pipeline
In this section, we introduce MediTree, a novel inference
pipeline designed in close collaboration with trained medi-
cal doctors. Built to help clinical decision-making and en-
hance differential diagnosis (DDx), the pipeline leverages
the problem-solving ability of large language models while
integrating the structured reasoning approach used by physi-
cians.

The method utilizes Tree of Thoughts (ToT) sampling, as
introduced by Yao et al. Yao et al. (2023), in combination
with the Med-Gemini architecture Saab et al. (2024). ToT
is well-suited for clinical decision-making because it opti-
mizes inference efficiency while preserving reasoning depth,
making it superior to conventional search-based or stepwise
inference methods. Unlike traditional beam search or chain-
of-thought (CoT) prompting, ToT enables the model to ex-
plore multiple reasoning paths in parallel, iteratively refining
its diagnostic hypotheses in a structured tree-based format.
Moreover, ToT efficiently reduces inference latency com-
pared to exhaustive search techniques, while maintaining or
even enhancing diagnostic accuracy by systematically elimi-
nating less plausible branches early in the reasoning process.
Further, other inference-time optimization techniques, such
as beam search or standard CoT prompting, either introduce
redundancy (by considering too many unnecessary paths) or
lack the deliberative refinement necessary for complex med-
ical reasoning.

These reasons make ToT sampling and the differential di-
agnosis approach well suited for medical tasks, permitting a
systematic method to identify a disease and determine ap-
propriate treatment, especially when numerous alternative
diagnoses are possible. See Section for an example.

The input to the MediTree pipeline is a patient case de-
scription. The pipeline iteratively calls four components:
1. Chat: Interact directly with the user to adds more con-

textual information to the patient description.

2. Generation: Proposes a thought to elaborate on or sug-
gests a probable diagnosis.

3. Evaluation: Assesses the pertinence of each proposed
diagnosis.

4. Selection: Chooses the best diagnosis to explore using
the evaluation results or determine the end of the pipeline
if the confidence is high enough.

Chat. The chat component adds additional context
through an interactive process that mimics a medical eval-
uation. The model aims to evaluate the temporalization,
quality, and quantification of symptoms by asking questions
to the patient, similar to the way medical doctors do. The
model is prompted to ask questions to the user in an inter-
active way, to further describe the main characteristics of
the symptoms. At the end of the interaction user model, the
model is prompted to update the patient description based
on the new information collected. This patient description/-
patient note serves as both the input to the pipeline and is
also updated to reflect the new state of the patient, for exam-
ple, including the results of any medical test. It is composed
of four parts:

1. Introduction: A brief introduction to the patient and
their illness, injury, or condition.

2. Symptoms: Observed or detectable signs, and experi-
enced symptoms of an illness, injury, or condition.

3. Treatments/Tests: Information of previous or current
medical therapy and medical tests conducted on the pa-
tient.

4. Medical history: Details involving the patient, and even-
tually people close to them, to gather reliable/objec-
tive information for managing the medical diagnosis and
proposing efficient medical treatments.



Table 2: Performance on Medical Benchmarks. The performance of various LLMs on three medical QA benchmarks: Pub-
MedQA, MedMCQA, and MedQA-4-Option. Our 8B models outperform all other LLMs of similar size, and even several large
models, such as the Meditron 2 70B series and Flan-Palm. The Llama-3-Meditron 70B base model is even better, only slightly
lagging GPT4-Base, while Llama-3-MediTree 70B is the highest performing model overall.

Accuracy (↑)

Model MedmcQA MedQA PubmedQA Average

Llama2-70B-Base Inst 43.08 49.73 76.80 56.54
Llama2-70B-Base 47.93 57.42 74.40 59.92
Llama 3 8B Instruct 56.99 60.25 74.20 63.81
Llama 3 8B 57.52 60.00 74.80 64.11
Meditron 70B 53.30 59.80 79.80 64.30
Llama-3-Meditron 8B (ours) 57.83 63.00 76.80 65.88
Llama-3-MediTree 8B (ours) 61.1 69.88 79.2 70.06
Flan-Palm 57.60 67.60 79.00 68.07
Meditron 2 70B 65.10 65.40 80.00 70.17
Meditron 2 70B - CoT 63.20 67.80 81.00 70.67
GPT-4 69.50 78.80 75.20 74.50
Meditron 2 70B - CoT/SC 66.70 75.80 81.60 74.70
Llama 3 70B 70.00 78.40 77.00 75.13
Llama 3 70B Instruct 70.01 76.36 79.81 75.39
MedPalm 2 71.30 79.70 79.20 76.73
Llama-3-Meditron 70B (ours) 70.10 80.75 81.00 77.28
Llama-3-MediTree 70B (ours) 75.87 86.00 81.20 81.02
GPT4-Base 73.66 86.10 80.40 80.05

Physician guidance for prompts. To mimic a medical
exam, we design questions around the following categories:

• Temporalization, location of the symptoms and their par-
ticular characteristics.

• The patient’s previous treatments and behaviors affecting
the symptoms.

• Understanding the patient’s pain, including its nature and
intensity.
– Quantifying the pain level on a scale from 1 to 10.
– Describing the kind of pain felt.

• Other contexts that might influence the patient’s condi-
tion, such as:
– Geographical context.
– Location and recent travels.

• The patient’s personal and family medical history and
current medication.

• Lifestyle factors, such as smoking and drinking, that can
significantly impact the patient’s overall health.

Generation. The generation component uses the mode
sample, similar to the method presented in Yao & al. Yao
et al. (2023), to generate multiple diagnoses. This step in-
volves producing multiple answers from the model with a
high temperature (temperature = 1.5) to encourage diver-
sity in the responses. To optimize inference time, sampling
is performed using batch generation with a sampling size of
8, assuring a sufficiently large sample size. Each generation
represents multiple possible diagnosis, and each diagnosis is
identified by parsing the model answers.

Evaluation. The evaluation component assigns a score to
each possible diagnosis suggested in the answers. The score

is calculated as the ratio of the number of times a particular
diagnosis has been suggested to the total number of sugges-
tions. This scoring method aims to approximate the proba-
bility of each opinion, using a sampling strategy to evaluate
the model’s knowledge rather than relying on the raw logits.

Selection. The selection component at the end of the
pipeline is inspired by Med-Gemini (Saab et al. 2024). In
this part, the entropy of each generation candidate is calcu-
lated using Shannon’s formula H = −

∑d
i∈S pi log2(pi). If

the entropy value is higher than a predetermined threshold,
indicating that the choice is not confident enough, resam-
pling occurs. A new set of diagnoses is generated using a
modified prompt, and this process is repeated until the en-
tropy falls below the threshold. The inference pipeline then
outputs the diagnosis with the highest probability.

Experiments
In this section, we assess the medical question-answering
abilities of Llama-3-Meditron in comparison to other well-
known models.

Selected Benchmarks
We selected three well-known medical question-answering
benchmarks. MedQA (Jin et al. 2020b) and MedMCQA
(Pal, Umapathi, and Sankarasubbu 2022) evaluate the accu-
racy and reasoning abilities of models in diagnosing medi-
cal conditions based on clinical information and established
medical knowledge. These datasets use a simple multiple-
choice format. PubMedQA Jin et al. (2019) evaluates the
model on more theoretical medical knowledge. This dataset
also uses a multiple-choice format. To systematically run
these benchmarks, we used a Gao et al. (2023).



Table 3: Comparison of different models and their respective configurations.

Base Instruct (Gen) ContPre ContPre + Instruction ContPre + Prompt

Llama-2-70B-Base Llama-2-70B-Instruct Meditron 70B Meditron 2 70B Meditron 2 70B CoT*
GPT4-Base GPT-4 Medprompt
Palm Flan-Palm MedPalm 2
Llama 3 8B Llama 3 8B Instruct Llama-3-Meditron-3 8B Meditron 3 8B Inst
Llama 3 70B Llama 3 70B Instruct Llama-3-Meditron 70B Meditron 3 8B Inst

Average Gain 0 -0.93 1.65 5.87

Llama-3-Meditron Evaluation
We compared Llama-3-Meditron and Llama-3-MediTree to
several other (medical and non-medical) LLMs, including
Llama-2[7B] and Llama-2[70B], Meditron-7B, Meditron-
70B (Chen et al. 2023), MedPalm 2 (Singhal et al. 2023b),
and GPT-4 (Base and fine-tuned). We observe that the
8B-parameter model achieves a strong performance in the
7B/8B category. On average, Llama-3[8B]-Meditron outper-
forms all models and achieves similar results to Llama-2-
70B. The 70B-parameter Meditron series is even stronger:
Llama-3-Meditron 70B outperforms all but GPT-4 Base,
and Llama-3-MediTree 70B is the highest performing model
overall. More detailed results can be found in Table 2.

Future Directions: MOOVE
While benchmark evaluations provide a standardized means
of assessing model performance, they often fail to capture
the complexity and unpredictability of real-world clinical
reasoning. To bridge this gap, we will introduce MOOVE
(Massive Online Open Validation and Evaluation of Med-
ical LLMs), an interactive evaluation platform designed to
assess medical AI models under real-world conditions.

MOOVE will enable clinicians to engage directly with
Llama-3-Meditron and Llama-3-MediTree, presenting them
with case-based diagnostic challenges that reflect the uncer-
tainty, ambiguity, and contextual nuance inherent in med-
ical decision-making. Unlike static multiple-choice bench-
marks, MOOVE will provide a dynamic evaluation environ-
ment where the models must navigate complex clinical pre-
sentations, synthesize multiple sources of information, and
adapt to real-time expert feedback.

By incorporating MOOVE-based evaluations, we will go
beyond conventional benchmarks, ensuring that models are
not only state-of-the-art in accuracy but also clinically use-
ful, reliable, and aligned with real-world medical workflows.

Conclusion
In this paper, we introduced Llama-3-Meditron, a suite of
open source medical LLM foundation models. We con-
structed a high-quality dataset, using continued pretraining,
instruction tuning, query tools, and alignment and developed
MediTree, a new inference pipeline that provides potential
diagnoses and explores the most likely options, mimicking
a doctor’s diagnostic approach. Our 8B-parameter model,
tailored for low resource settings, is the state of the art in
its size category and performs on par with larger models.
Our 70B-parameter model achieved the best performances
on public benchmarks, within 2% of GPT-4-Base.
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Appendix
MediTree Example

MediTree Example

MedQA question:
A 30-year-old G1P1 woman gives birth to a healthy infant at 39 weeks gestation. The mother attended all her prenatal
visits and took all her appropriate prenatal vitamins. Her past medical history is notable for diabetes mellitus, for which
she takes metformin. Apgar scores were 8 and 9 at 1 and 5 minutes, respectively. The infant’s temperature is 99.2°F
(37.3°C), blood pressure is 65/40 mmHg, pulse is 110/min, and respirations are 22/min. On exam, the child has am-
biguous genitalia. A karyotype analysis demonstrates the presence of a Y chromosome. Further workup reveals internal
testes with normal levels of serum luteinizing hormone and testosterone. Which of the following additional findings
would most likely be seen in this patient? (A) Decreased androgen receptor responsiveness (B) Impaired sense of smell
(C) Long extremities (D) Testosterone-to-dihydrotestosterone ratio > 1 (E) Testosterone-to-dihydrotestosterone ratio >
20 Give a step-by-step explanation then always answer the question with one of the options A, B, C, D or E (Answer:
correct letter).

One of the answers:
Let’s solve this step-by-step, referring to authoritative sources as needed. The infant has ambiguous genitalia and a Y
chromosome, indicating XY sex chromosome anatomy. However, the presence of internal testes suggests an androgen
biosynthetic defect rather than a receptor defect (option A) or XY complete sex reversal. Patients with XXXY sex re-
versal often have Kallmann syndrome (hypo-olfactory deficiency, hyposmia), but XY complete sex reversal typically
does not manifest with olfactory deficiencies (option B). The diagnosis is likely congenital adrenal hyperplasia (CAH)
with complete virilization due to a 21-hydroxylase deficiency. CAH is often characterized by tall stature (long extremi-
ties) due to premature epiphyseal ossification. Elevated testosterone-to-dihydrotestosterone (T:DHT) ratio is consistent
with CAH, as a deficiency in the conversion of testosterone to DHT leads to increased androgen levels (option E). The
T:DHT ratio is typically high (> 20) in classic forms of CAH, such as 21-hydroxylase deficiency. Answer: E

Results:
’D’: 2, ’E’: 5, ’A’: 1
Entropy: 1.2
Probability of D: 0.25
Probability of E: 0.625
Probability of A: 0.125
Answer E is the correct answer. ✓

MedMCQA

Prompt:
A 45 yrs old man presents with progressive cervical lymph nodes enlargement, since 3 months; most diagnostic inves-
tigation is
A. Xray soft tissue
B. FNAC
C. Lymph node biopsy
D. None of the above

Rejected

I would choose option A. Xray soft tissue. Explanation: The patient presenting with progressive cervical lymph node
enlargement suggests the possibility of malignancy, which would require further evaluation beyond just an X-ray of the
soft tissue. Lymph node biopsy is the most appropriate diagnostic investigation in this case as it can provide a definitive
diagnosis by examining the tissue sample for the presence of cancer cells. Additionally, an X-ray may not provide
enough information to determine the underlying cause of the lymph node enlargement.
Answer: A. Xray soft tissue



Chosen

Explanation: Answer is “c” i.e., Lymph node biopsy Harrison writes that in cases of lymphadenopathy, if the patient’s
history and physical findings are suggestive of malignancy, then a prompt lymph node biopsy (excisional biopsy) should
be done. FNAC is not of much use, as it does not provide enough tissue to reach a diagnosis. (“FNAC should be reserved
for thyroid nodules and for confirmation of relapse in patients whose primary diagnosis is known.” - Harrison)
Answer: C. Lymph node biopsy

Hyperparameters

Table 4: Training hyperparameters for Llama-Tree-Meditron.

Model Training phase Tokens Learning rate Batch size Epochs

8B
Cont. Pret. 2.4B 3e-5 896 3

Instruct. 20M 3e-6 1280 1
API tuning 2M 3e-6 1280 1

70B Cont. Pret. 2.4B 1e-5 480 2
Instruct. 20M 1e-6 1280 1

API tuning 2M 1e-6 1280 1


