
Under review as submission to TMLR

Birds of a Feather Trust Together: Knowing When to Trust
a Classifier via Adaptive Neighborhood Aggregation

Anonymous authors
Paper under double-blind review

Abstract

How do we know when the predictions made by a classifier can be trusted? This is a
fundamental problem that also has immense practical applicability, especially in safety-critical
areas such as medicine and autonomous driving. The de facto approach of using the classifier’s
softmax outputs as a proxy for trustworthiness suffers from the over-confidence issue; while
the most recent works incur problems such as additional retraining cost and accuracy versus
trustworthiness trade-off. In this work, we argue that the trustworthiness of a classifier’s
prediction for a sample is highly associated with two factors: the sample’s neighborhood
information and the classifier’s output. To combine the best of both worlds, we design a
model-agnostic post-hoc approach NeighborAgg to leverage the two essential information
via an adaptive neighborhood aggregation. Theoretically, we show that NeighborAgg
is a generalized version of a one-hop graph convolutional network, inheriting the powerful
modeling ability to capture the varying similarity between samples within each class. We also
extend our approach to the closely related task of mislabel detection and provide a theoretical
coverage guarantee to bound the false negative. Empirically, extensive experiments on image
and tabular benchmarks verify our theory and suggest that NeighborAgg outperforms
other methods, achieving state-of-the-art trustworthiness performance.

1 Introduction

In recent years, interactions with AI systems have become increasingly pervasive in all walks of our daily lives.
As machine learning models become more widely involved in our decision-making processes, the robustness
and trustworthiness of their decisions need to be carefully scrutinized (Varshney & Alemzadeh, 2017). This is
of vital importance in many scenarios, especially in safety-critical areas, such as medical applications, where
successful deployment is highly dependent on a model’s ability to detect an incorrect prediction, so that
humans can intervene when necessary (Shi & Jain, 2019; Chang et al., 2020; Li et al., 2021). This leads to
our central question: how can we know when the predictions made by a classifier can be trusted?

In this paper, we investigate the trustworthiness of the prediction given by a classifier, which serves as a
measure for the classifier’s quality rather than the data. Concretely, given some i.i.d data and an pretrained
classifier (referred to as ‘base classifier’ hereinafter), the goal is to devise a discriminative and accurate
trustworthiness score, such that higher scores indicate a belief that the classifier’s predicted class
is more likely to be correct. In this way, the users can easily determine whether they should trust
the prediction output by machine learning models, or they should resort to domain experts for manual
predictions. In the literature, this task is also referred to as “trustworthiness prediction”, “failure prediction”,
or “misclassification detection” (Jiang et al., 2018; Corbière et al., 2019).

The most common approach is to employ a classifier’s softmax output (i.e. the maximal value of a softmax
vector, referred to as confidence score hereinafter) as the proxy for trustworthiness (Hendrycks & Gimpel,
2017). However, this approach has been found to be over-confident (Guo et al., 2017). Figure 1 illustrates
this issue over 2D toy datasets: the points marked by circles ‘A’ and ‘B’ in Figure 1a are misclassified with
high confidence scores. In Figure 1c, while all samples have been correctly classified, the base classifier
assigns excessively high confidence scores on almost all the data points, even those near the classification
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Figure 1: Comparison between max softmax scores and NeighborAgg scores (ours), based on a shallow
base classifier (left) and a deep base classifier (right), respectively. The color of the points indicates its ground
truth label while the color of the background shows the corresponding trustworthiness score. The dotted
black line demonstrates the decision boundary of the base classifier. (a): The points marked by circles ‘A’ and
‘B’ overstep the decision boundary, being misclassified while some of them still get high max softmax scores.
On the contrary, (b): our algorithm can correctly assign these points the lowest trustworthiness scores. (c):
Max softmax scores from base classifiers are potentially over-confident near the decision boundary whereas
(d): our proposed score resolves this issue in a model-agnostic manner by inspecting their neighbors.

boundary, making the decision boundary (full of bends and curves) prone to noise. On the contrary, our
method addresses these issues by utilizing information from the neighbors of each point rather than just the
point itself, thereby giving much lower trustworthiness scores to those misclassified points (Figure 1b) and
better reflecting the uncertainty of points near the decision boundary (Figure 1d).

Other related works include uncertainty-aware methods and post-hoc methods. The uncertainty-aware
methods such as MC-dropout (Gal & Ghahramani, 2016), Deep Ensemble (Lakshminarayanan et al., 2017)
and Dirichlet-based approaches (Charpentier et al., 2020) typically involve retraining the classifier due to the
modification of network architecture, and can incur trade-offs between classifier accuracy and the performance
of trustworthiness prediction. In contrast, the post-hoc setting avoids such extra-cost by focusing on a
pretrained classifier, and among which, Corbière et al. (2019) builds on a strong assumption that the base
classifier is always over-confident, which fails in many cases (Wang et al., 2021). Trust Score (Jiang et al.,
2018) leverages the neighborhood information by a hand-designed and non-trainable function, suffering from
limited functional space and modeling capacity.

Figure 2: Sources of infor-
mation for trustworthiness
prediction. Our adaptive
approach outperforms other
methods that only use
the classifier’s prediction
(ProbOnly) or neighborhood
information (NeighOnly),
and Trust Score.

Inspired by the commonly-held neighborhood-homophily assumption (Fix &
Hodges, 1989), we argue that the trustworthiness of a classifier’s prediction for
a given sample is highly associated with the sample’s neighborhood information,
such as their labels and distances to the point itself. That is, if a sample’s
predicted label is consistent with the majority of its neighbors’ labels, this
prediction is more likely to be reliable; otherwise, we tend to assign it a lower
trustworthiness score. To capture the various correlation between the sample
and its neighborhood in a more flexible manner, we devise an adaptive approach
to learn the scoring function, thereby ensuring superior capacity than Trust
Score (Jiang et al., 2018). Figure 2 verifies the advantage by showing that the
adaptive function (NeighOnly and Ours) outperforms Trust Score.

Furthermore, we believe that the classifier’s predictive output is also an indis-
pensable source of information for the trustworthiness prediction, if not more
so than the sample’s neighborhood information, particularly in cases where
the classifier is sufficiently reliable or the neighborhood-homophily assumption
does not perfectly meet. This is further borne out by Figure 2 where using the
classifier output (ProbOnly and Ours) outperforms using only neighborhood
information (NeighOnly and Trust Score) for the Adult dataset.

In this paper, we propose a model-agnostic algorithm, termed as NeighborAgg,
for the trustworthiness prediction by leveraging the neighborhood information
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and the classifier output via an adaptive scoring function that combines the best of both worlds. Theoretically,
we demonstrate that our method is essentially a generalized one-hop graph convolutional network, and
hence inherits the powerful modeling capacity to capture the varying similarity within each class, making it
insensitive to hyperparameters for neighbor selection. Owing to the adaptive design, these two factors are
able to act in a complementary manner when determining the trustworthiness score. Our method is also
effective by achieving 7.63% gain on APM and 2% gain on AUC on average for the tabular dataset.

Additionally, we apply our approach to the closely related task of detecting mislabeled data samples, and
propose the NeighborAgg-CMD algorithm for mislabel detection. Furthermore, we obtain a theoretical
coverage guarantee for this algorithm to bound the probability of false negative predictions. To the best of
our knowledge, the present work is the first to adapt to real-world noisy data setting and achieves a promising
result, which we believe is of independent interest.

In summary, our main contributions are as follows:

• We propose a model-agnostic post-hoc algorithm NeighborAgg to measure the trustworthiness of a
classifier’s predictions. Moreover, by demonstrating the theoretical equivalence with a generalized
graph convolutional network, we provide a better understanding into how our approach works.

• We propose NeighborAgg-CMD, which adapts our method to mislabel detection and provide a
noise-robust coverage guarantee to bound the false negative probability.

• Experiments on multiple tabular and image datasets showcase that the proposed NeighborAgg
consistently outperforms other state-of-the-art methods by clear margins. Additionally, we show that
NeighborAgg-CMD is able to identify mislabelled samples with promising results.

2 Preliminaries and Notations

We aim to measure a classifier’s trustworthiness in the context of multi-class classification with C ≥ 2
categories. Given a set of N data points X =

{
x(1), . . . , x(N)}, with x(i) ∈ RD, and their corresponding labels

Y =
{

y(1), . . . , y(N)}, with y(i) ∈ C = {0, 1, . . . , C − 1}, let bold y(i) ∈ RC denote the one-hot encoding of
y(i). The dataset is split into training, validation and test set, denoted by (Xtr, Ytr), (Xval, Yval), (Xts, Yts),
respectively. Formally, we define the base classifier as a mapping F : X 7→ RC . Specifically, a base classifier
takes a data point x as input and then outputs its predicted probability vector or logits p ∈ RC . Unless
otherwise stated, vectors and matrices are denoted by boldface lowercase and uppercase letters, respectively,
and sets are denoted by calligraphic letters. All vectors are treated as column vectors throughout the paper.
Problem 1 (Trustworthiness Prediction). Given a base classifier F : X 7→ RC and a set of samples {X , Y},
the trustworthiness prediction problem is to give a trustworthiness score tc ∈ R corresponding to the predicted
class c from F for any x ∈ Xts

1, that is, tc = T (F(x); F , {X , Y}), where T is the designed function for
trustworthiness prediction.

3 Proposed Method

In this section, we first introduce the training and inference algorithms of our proposed NeighborAgg.
Then, we theoretically show that NeighborAgg is a generalized version of a one-hop graph convolutional
network. Lastly, we show a promising extension of NeighborAgg applied in mislabel detection with a
theoretical coverage guarantee.

3.1 Algorithm

As stated in the introduction, one of our key observations is that the trustworthiness of the classifier’s
prediction for a sample is highly associated with two information sources: the neighborhood of the sample and
the predictive output of the classifier. These two components can interact in a variety of ways. How can we
utilize the two information to determine a more reliable trustworthiness score?

1{Xts, Yts} and {X , Y} are i.i.d dataset.
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Figure 3: A conceptual illustration of the proposed NeighborAgg with K = 3 and C = 3. Given a sample x
in question, we first compute two features: (1) class-wise neighborhood feature h = [s0, s1, s2] that reflects the
similarity to its K neighbors across every class, and (2) the base classifier’s probability vector p. Then, after
two linear transforms Wh, Wp followed by concatenation, (3) NeighborAgg aggregates the information
and outputs the final trustworthiness score corresponding to the base classifier’s predicted class. Compared
to the confidence score 0.4, our approach assigns more trustworthiness to the predicted class by increasing
the score to 0.6.

Next, we will introduce our proposed model termed NeighborAgg and elaborate on how these two
components are constructed and efficiently aggregated by our method. The overall framework is illustrated in
Figure 3.

Feature Construction. For a given sample x ∈ X , we utilize two input features: the neighborhood vector
h and the classifier output vector p as shown in Figure 3.

For the classifier output feature, we use the aforementioned vector from the classifier p = F(x).

The neighborhood vector consists of the similarity of a sample to its K nearest neighbors across all the C
classes. Specifically, for the sample x and each class c ∈ C, we find its K nearest neighbors from class c:
Nc = {nc1, · · · , ncK} and construct a similarity vector sc as

sc = [sc1, sc2, . . . , scK ]T , sck = Kf (x, nck), (1)

where Kf is the Laplacian kernel with a transform f , i.e. Kf (x, z) = exp (− ∥f(x) − f(z)∥2). Cosine similarity
can be used as well; but we find that in practice, Euclidean distance wrapped into Laplacian kernel performs
better empirically. Then, the final neighborhood vector h is constructed by concatenating all such class-wise
similarity vectors:

h = [s1 ∥ s2∥, · · · , ∥sC ], (2)

where · ∥ · denotes the column concatenation operator. The procedure is shown in the Figure 3.

Here, we utilize KD-tree (Scheuermann & Ouksel, 1982) and Faiss (Johnson et al., 2017) on CPU/GPU
settings to efficiently search for neighbors of a sample in the large dataset.

Aggregation. Considering the potentially varying contribution of h and p to the trustworthiness score, we
introduce two separate linear transformations to them, which are parameterized by Wh ∈ RC×CK and Wp ∈
RC×C , respectively. We then aggregate the two resultant vectors using an operator Agg : RC × RC 7→ RC ,

4
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Algorithm 1: Training Algorithm of NeighborAgg
Input: Training set (Xtr, Ytr); Validation set (Xval, Yval); Base classifier F ; Kernel Kf ; Aggregator Agg;

Training epoches M ; Number of neighbors K; Trustworthiness performance evaluation metric M.
Output: Parameters of NeighborAgg Wh, Wp, W.

1 Initialize Wh, Wp, W;
2 for c = 1 to C do
3 ▷ Building class-wise KD-trees using the training set
4 Split from Xtr: Xc = {x|x ∈ Xtr, y = c};
5 Construct a KD-tree KDTc using Xc based on the kernel Kf ;
6 end
7 for epoch = 1 to M do
8 for x in Xtr do
9 for c = 1 to C do

10 Find K nearest neighbors of x from KDTc;
11 Compute similarity vector sc using Equation (1);
12 end
13 Compute the neighborhood vector h = [s1∥, · · · , ∥sC ];
14 Compute the predicted vector with F : p = F(x);
15 Compute the trustworthiness t using Aggregator: t = Agg (Whh, Wpp);
16 Compute the loss function using Equation (4);
17 Update Wh, Wp, W via gradient descent;
18 end
19 end
20 return Wh, Wp, W

which outputs a C-dimensional trustworthiness vector of x (one element for one class),

t = Agg (Whh, Wpp) . (3)

Here, the aggregation operator Agg can be instantiated by any neural network.

The optimization process is carried out by reducing the negative log-likelihood loss (NLL), i.e.
E(x,y)∼(Xval,Yval)[L(x, y)] where each sample’s loss is calculated as

L(x, y) = − 1
C

C∑
c=1

yc log(tc). (4)

The overall training procedure is summarized in Algorithm 1.

For simplicity, a single-layer feedforward neural network with a learnable weight matrix W ∈ RC×2C and a
nonlinear activation σ(·) is used as the aggregator in this paper. Formally, the trustworthiness vector t (as
shown in Figure 3) can be expressed as

t = softmax
(
WT σ ([Whh ∥ Wpp])

)
. (5)

Underlying the learnable framework, how do these two pieces of information cooperate during the aggregation?
Curious about this question, we also investigate the mechanism and show the empirical result in section 4.1.

Inference. Given a test sample x̃, we construct its corresponding neighborhood vector h̃ and fetch its
classifier output vector p̃ from the base classifier F . Then, with the fitted model parameters W, Wh and
Wp, we evaluate the trustworthiness vector t̃ using equation 3. Finally, the trustworthiness score can be
evaluated by indexing the trustworthiness vector using predicted class c∗, i.e., t̃c∗ .

3.2 Relation to Graph Neural Networks

In this section, we study the relations between our design and graph neural networks (GNNs) and show that
our approach is inherently more flexible than GNNs in terms of aggregating neighborhood information to
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Algorithm 2: NeighborAgg-CMD
Input: Dataset {(x, y, ŷ)}N

i=1}; Mislabeling rate p; Confidence level α; Well-trained trustworthiness
model NeighborAgg.

Output: Mislabeled sample set S.
1 T = {t | t = NeighborAgg(x) ∀ 1 ≤ i ≤ n}
2 R = {r|r = (2 · I(ŷ = c) − 1) · ty ∀ t ∈ T }
3 R = sort(R) ▷ Sort in non-increasing order
4 Bα = ⌈(N + 1)(1 − α) + αNp)⌉
5 τα = r(Bα) ▷ r(Bα) is the Bα-th largest element of R
6 S = {(x, y) | r ≤ τα, ∀ 1 ≤ i ≤ n}
7 return S

augment the classifier output for trustworthiness prediction. GNNs (Kipf & Welling, 2017; Xu et al., 2019)
have been a topic of interest in recent times for their powerful modeling capacity to aggregate neighbors,
and this motivates us to compare our method with GNNs. Among the several GNN variants, we choose the
widely used graph convolutional neural network (GCN) as the subject for simplicity.

First, we show that our design of employing only one-hop neighbors for trustworthiness prediction is effective
and efficient by comparing the performance of multi-hop GCNs with one-hop GCNs. Empirically, we
demonstrate that the use of multi-hop GNNs does not have significant improvement and even degrades the
performance for some datasets (see Table 2). We argue that multi-hop neighborhood aggregation may lead to
the over-smoothing issue and the noise accumulation risk, at least for our task.

Second, we prove that NeighborAgg is essentially a generalized version of a one-hop GCN: when imposing
certain constraints on our NeighborAgg (i.e., fixing the learned matrices Wh and Wp to be block diagonally-
dominant), NeighborAgg acts as a one-hop GCN. This equivalence is rigorously characterized as follows.
Theorem 1 (One-hop GCN Equivalence). Provided that Wh exhibits a block diagonal structure:

Wh = 1
K

[
IC×C ⊗ 1T

]
with 1T = [1, 1, · · · , 1]︸ ︷︷ ︸

K 1’s

,

where ⊗ denotes the Kronecker product, and that Wp = IC×C , NeighborAgg operates as a one-hop Graph
Convolutional Network with the node features [y ∥ 0] ∈ ∆2C−1 for y ∈ Ytr and [0 ∥ p] ∈ ∆2C−1 for p = F(x)
with x ∈ Xval ∪ Xts, and the adjacency matrix A induced by a predefined kernel Kf (e.g. Laplacian kernel).

Proof. The proof is relegated to Appendix B.

Remark. In fact, our approach is more flexible than one-hop GCN for feature aggregation, as Wh and Wp
in our setting can exhibit more flexible forms than the simple block diagonal structure. This is further verified
by empirical studies (see Figure 6), which show that our model can exploit not only intra-class relations, but
also inter-class relations, which one-hop GCN cannot. More detailed analyses can be found in Section 4.1.

3.3 Conformal Mislabel Detection: An Extension of NeighborAgg

In this section, we show that our trustworthiness score can also be used for another task, mislabel detection.
In particular, we introduce the NeighborAgg-CMD algorithm to assess the reliability of data labels in a
mislabeled dataset. The detailed procedure is described in algorithm 2.

To identify mislabeled data in a noisy-labeled dataset, we compute a reliability score for the label of each
sample using NeighborAgg and a well-trained base classifier. The reasoning behind this is that labels that
contradict the classifier’s prediction and have low trustworthiness scores are questionable, meaning that when
the neighborhood supports the classifier’s prediction rather than the label itself, it is more likely the label
that makes a mistake. So we devise the reliability score based on the class label y’s trustworthiness score ty:

r = (2 · I(ŷ = y) − 1) · ty,

6
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where the indicator function I(·) and the classifier’s prediction ŷ are used to detect whether the sample is
misclassified. Samples with reliability scores lower than a certain threshold τα are treated as mislabeled (i.e.
r < τα).

To bound the probability of false negative detections, we apply the conformal anomaly detection (Balasub-
ramanian et al., 2014) framework and extend the existing work to the noisy setting for determining the
threshold τα. Given a dataset of size N with mislabeling rate p, and a user-specified confidence level α, we
compute reliability scores for each sample in the validation dataset and sort them in non-increasing order as
(r(1), . . . , r(N)). The threshold τα is set to the Bα-th largest element, i.e.,

τα = r(Bα), where Bα = ⌈(N + 1)(1 − α) + αNp⌉ . (6)

Next, we show the following theoretical guarantee which to the best of our knowledge is the first to consider
the real-world noisy data setting.
Theorem 2 (Noisy-robust Coverage Guarantee). For any given confidence level α ∈ ( 1

N+1 , 1), with probability
at least 1 − α over the random choice of any correctly labeled data point (x̃, ỹ), we have

r̃ > τα,

where r̃ is the predicted reliability score of x̃ and τα is defined in Equation (6).

Proof. The detailed proof is relegated to Appendix C. In contrast to existing work in conformal learning
which requires an i.i.d. validation set, our algorithm uses a partitioning approach to allow for a more realistic
setting involving a small percentage of mislabeled samples.

Remark. Theorem 4 suggests that the reliability score that our method outputs provide a theoretical
guarantee — with high probability, a correctly labeled data point will be given a score above the threshold τα.
In other words, if we select the likely mislabeled samples by selecting those below the reliability threshold, we
can bound the probability of a false positive (by α).

4 Experiments

Through extensive experiments, we aim to answer the following questions:

• Mechanism Visualization: How does NeighborAgg work?
• Effectiveness: How well does NeighborAgg perform on different types of datasets?
• Ablation Study: How does each component of NeighborAgg contribute to the trustworthiness

performance?
• Sensitivity: How sensitive to hyperparameters is NeighborAgg?
• Computational Cost: How fast is NeighborAgg?
• Case Study: How is NeighborAgg extended to mislabel detection?

Due to space limitation, we refer discussions about hyperparameter sensitivity, computational cost, and case
study of mislabel detection to the Appendix E, F, J.

4.1 Mechanism Visualization and Verification

In this section, we examine the mechanism of NeighborAgg empirically, demonstrating that our method
utilizes neighborhood and classifier information in a complementary manner and captures intra-class and
inter-class relations inside the neighborhood.

Complementary effect We show that NeighborAgg integrates neighborhood information with classifier
output in a complementary manner: it adaptively weighs the importance of the classifier’s output against
neighborhood information for each class. In other words, when the sample’s neighborhood information is not
accurate or useful, it relies more on the classifier output; and vice versa. To show this empirically, Figure 4

7
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Figure 4: Visualization of weight matrices Wh for similarity vectors and Wp for classifier output
learned by NeighborAgg. Brighter colors indicate larger values. The dimmer diagonal blocks in Wh

(e.g. in the red rectangle) are empirically associated with their corresponding brighter diagonal entries
in Wp, suggesting that NeighborAgg combines sample confidence with neighborhood information in a
complementary manner. The different weights within each diagonal block in Wh (e.g. in the orange rectangle)
suggests that NeighborAgg can learn an appropriate K (i.e. how many neighbors are necessary to determine
the trustworthiness) for every class based on its local density, making it hyperparameter-insensitive.

suggests that the dimmer diagonal blocks in Wh (e.g. in the red rectangle) are empirically associated with
their corresponding brighter diagonal entries in Wp, and vice versa. To further confirm this quantitatively,
we calculate the Pearson’s correlation coefficient ρ between the diagonal blocks in Wh and the corresponding
diagonal entries in Wp on Landsat. The result shows a strong negative correlation ρ = −0.90, which sheds
light on the complementary mechanism in NeighborAgg.

Intra-class and inter-class relations We have three observations on how NeighborAgg leverages
neighbors: firstly, aligning with our motivation and Theorem 1, the learned weight matrices Wh and Wp are
significantly block-diagonally dominant as shown in Figure 4, exhibiting the neighbor-homophily property
and our method’s similarity to graph neural networks. Secondly, the different weights within each diagonal
block in Wh reflect different importance among neighbors of the same class (i.e. intra-class proximity) as
shown in the orange rectangle region of Figure 4. This suggests that NeighborAgg can automatically learn
how many neighbors are necessary to determine the trustworthiness for every class based on its neighborhood
without tuning the hyperparameter K. Thirdly, the off-diagonal blocks represent the inter-class relations,
such as similar or exclusive relations among classes, which makes it more flexible in determining a robust
trustworthiness score. We leave the more detailed discussion in Appendix D.

4.2 Experiment Setup

Datasets. We evaluate our method on image datasets including CIFAR10 (Krizhevsky, 2009), FashionM-
NIST (Xiao et al., 2017) and MNIST (Deng, 2012), and UCI tabular datasets (Dua & Graff, 2017), including
CardDefault, Landsat and LetterRecognition, etc. Statistics of each dataset are summarized in Appendix H.

Compared methods. We compare our proposed NeighborAgg with the following methods:

• Confidence Score (Hendrycks & Gimpel, 2017) employs the maximum softmax output of a classifier
as a measure of trustworthiness.

• Trust Score (Jiang et al., 2018) defines the trustworthiness measure as the ratio between the
distance from the test sample to its nearest neighbor with labels excluding the predicted class, and
the distance from the test sample to the nearest neighbor of the predicted class.

• Temperature Scaling (Guo et al., 2017) modifies the confidence score using a temperature parameter
T learned from the validation set.

8
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Clf Method LetterRecognition Landsat CardDefault
AUC % APC % APM % AUC % APC % APM % AUC % APC % APM %

LR

Confidence 85.28(0.18) 95.03(0.14) 61.25(0.51) 88.05(0.47) 97.77(0.07) 52.09(2.13) 65.19(0.30) 86.94(0.21) 33.44(0.32)
TempScaling 84.67(0.22) 94.83(0.15) 59.72(0.64) 87.20(0.42) 97.63(0.08) 48.85(1.73) 65.22(0.33) 87.04(0.25) 33.50(0.36)
TrustScore 95.75(0.23) 98.46(0.12) 86.93(0.63) 91.55(0.39) 98.39(0.12) 64.76(0.70) 61.61(0.42) 85.35(0.28) 28.42(0.41)
TCP 90.78(0.21) 96.96(0.13) 74.85(0.43) 89.47(0.49) 98.06(0.15) 54.25(1.78) 68.79(0.29) 88.78(0.22) 34.14(0.37)
TopLabel 78.58(0.31) 92.63(0.18) 44.85(0.53) 84.05(0.31) 96.45(0.10) 41.55(1.10) 64.80(0.45) 86.68(0.30) 33.91(0.40)
Ours 99.08(0.04) 99.72(0.01) 97.17(0.13) 93.40(0.17) 98.84(0.04) 72.54(1.40) 67.60(0.31) 87.45(0.22) 36.06(0.33)

RF

Confidence 93.94(0.29) 99.48(0.03) 51.41(1.97) 90.25(0.37) 98.69(0.09) 48.77(1.78) 68.89(0.32) 89.43(0.11) 33.24(0.37)
TempScaling 94.58(0.19) 99.55(0.02) 55.41(1.86) 89.26(0.24) 98.56(0.05) 46.88(0.91) 68.68(0.32) 89.31(0.16) 33.07(0.44)
TrustScore 90.96(0.23) 99.22(0.01) 39.19(1.46) 88.52(0.34) 98.51(0.04) 43.36(2.76) 59.68(0.29) 84.89(0.23) 25.84(0.39)
TCP 85.83(0.22) 98.71(0.06) 29.40(0.53) 85.07(0.77) 97.97(0.16) 34.30(1.62) 67.96(0.12) 89.57(0.14) 30.08(0.24)
TopLabel 83.99(0.51) 98.44(0.10) 26.79(0.55) 84.44(0.30) 97.57(0.11) 32.54(1.10) 67.64(0.36) 88.90(0.20) 32.14(0.38)
Ours 96.45(0.18) 99.69(0.02) 72.16(1.36) 91.23(0.26) 98.91(0.06) 53.60(1.80) 69.27(0.30) 89.61(0.09) 34.27(0.45)

Confidence 90.71(0.18) 99.18(0.04) 39.59(0.93) 84.41(1.61) 96.95(0.71) 40.26(2.04) 68.99(0.32) 89.05(0.18) 34.17(0.49)
TempScaling 93.83(0.15) 99.49(0.01) 52.68(0.58) 87.10(0.53) 97.98(0.16) 46.16(1.20) 68.46(0.39) 88.96(0.20) 34.69(0.45)
TrustScore 88.53(0.31) 99.05(0.05) 32.28(0.60) 88.09(0.48) 98.32(0.09) 41.85(1.47) 60.20(0.39) 84.82(0.25) 26.60(0.35)
TCP 79.91(0.58) 97.62(0.15) 25.61(1.06) 86.01(1.01) 97.78(0.26) 39.70(2.67) 67.77(0.19) 88.91(0.09) 31.17(0.27)
TopLabel 78.78(1.55) 98.09(0.20) 16.65(0.79) 81.29(1.02) 96.70(0.29) 30.16(0.93) 67.64(0.37) 88.68(0.15) 32.81(0.44)

MLP

Ours 95.02(0.36) 99.58(0.04) 65.81(1.19) 91.75(0.39) 98.88(0.08) 57.80(0.91) 69.69(0.29) 89.51(0.19) 35.64(0.23)

Table 1: The performance of our proposed model NeighborAgg and other models on three tabular datasets
(mean±std). We report the results of all models based on different base classifiers (LR, RF, MLP) and best
results are emphasized in bold. We use TempScaling for Temperature Scaling due to space limitation.

• Top-label Calibration (Gupta & Ramdas, 2021) calibrates a classifier’s softmax output by using
histogram binning to reduce top-label multi-class calibration into binary calibration.

• TCP (Corbière et al., 2019) trains a ConfidNet using an intermediate output of any neural networks
as the input for regression to the desired softmax output.

Evaluation Metrics. Following the existing pioneering work on trustworthiness (Hendrycks & Gimpel,
2017; Corbière et al., 2019), we adopted the same metrics to evaluate the trustworthiness of a base classifier:

• AUC-ROC: it measures how separate the trustworthiness scores of correctly classified samples and
those of misclassified samples are.

• APM & APC: Average Precision of selecting misclassified and correctly classified samples respec-
tively.

More details regarding specific evaluation procedures can be found in Sec. 2 of Hendrycks & Gimpel (2017).
All reported results are averaged over 5 trials under distinct random seeds on the same splits of datasets.

Implementation Details. For tabular datasets, experiments are conducted based on three base classifiers,
including logistic regression (LR) (Peng et al., 2002), random forest (RF) (Svetnik et al., 2003) and multi-layer
perceptrons (MLPs) (Ruck et al., 1990); while for image datasets, shallow convolutional networks, Resnet18
and Resnet50 (He et al., 2016) are used. We leave details such as hyperparameters to Appendix H.

4.3 Effectiveness of NeighborAgg

Performance results on tabular datasets and image datasets are summarized in Table 1 and Table 2 respectively,
from which we make the following observations:

Firstly, our proposed NeighborAgg outperforms other models under almost all metrics across benchmarks.
Specifically, Table 1 shows that our model achieves the most significant improvement on APM, with the
highest performance gain of 12.17%, and the average performance gain of 7.63%. This suggests that our
model performs best in identifying misclassified samples. Besides, NeighborAgg achieves more than 2%
improvement on AUC in most cases. Table 2 reveals that our model also achieves better or comparable
performance on image datasets.

Secondly, the result suggests that the neighborhood information and classifier prediction are two essential
and complementary sources of information for trustworthiness prediction. This is demonstrated by results
shown in Table 1 that Trust Score achieves better results than Confidence Score on LetterRecognition and
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Method MNIST FashionMNIST CIFAR10
AUC % APC % APM % AUC % APC % APM % AUC % APC % APM %

Confidence 90.48(0.39) 98.93(0.06) 46.71(1.93) 91.31(0.32) 99.10(0.03) 44.22(1.03) 83.72(1.21) 94.97(0.66) 54.42(1.66)
TempScaling 90.50(0.40) 98.93(0.06) 47.27(1.99) 91.33(0.31) 99.11(0.03) 44.27(0.99) 83.75(1.29) 94.96(0.68) 54.81(1.80)
TrustScore 96.40(0.28) 99.61(0.04) 78.53(1.25) 91.31(0.21) 99.10(0.03) 47.27(0.86) 86.98(0.75) 96.04(0.18) 63.29(3.84)
TCP 92.11(1.03) 98.37(0.43) 69.91(7.47) 90.82(0.07) 98.83(0.03) 50.52(1.33) 86.63(0.92) 95.36(0.16) 64.06(3.40)
TopLabel 90.35(0.31) 98.89(0.05) 43.31(1.02) 89.54(0.41) 98.62(0.17) 45.76(1.53) 85.24(1.17) 94.40(0.34) 60.90(5.59)

GCN3hop 91.77(0.27) 99.07(0.05) 55.75(1.77) 90.44(0.54) 98.94(0.08) 45.63(1.70) 82.68(1.44) 93.78(0.31) 60.79(5.30)
GCN2hop 91.58(0.29) 99.05(0.05) 54.71(1.90) 90.35(0.56) 98.92(0.07) 45.63(1.91) 83.75(1.66) 94.18(0.41) 62.37(5.46)
GCN1hop 91.38(0.30) 99.02(0.06) 53.77(1.89) 90.31(0.56) 98.92(0.08) 45.60(1.76) 84.08(1.46) 94.33(0.27) 62.63(5.39)
Ours 96.40(0.52) 99.55(0.08) 81.02(1.91) 91.52(0.16) 99.04(0.02) 48.83(0.51) 87.52(1.07) 96.05(0.51) 65.27(4.03)

Table 2: The performance of NeighborAgg and other models on image datasets (mean ± std). Best
results are emphasized in bold. We refer to Table 1 for the full name of abbreviations.

Landsat when LR is the base classifier, whereas Confidence Score performs better on CardDefault. Moreover,
our method’s outperformance of both information sources validates the complementary effect.

Thirdly, our method consistently beats the GCN-based method across all datasets, suggesting that our
formulation is more effective and efficient. In addition, Table 2 also demonstrates that one-hop neighborhood
aggregation is sufficient and that utilizing multi-hop neighbors may lead to the over-smoothing issue, by
showing that multi-hop graph convolutional neural networks have limited improvement compared to the
one-hop model, and sometimes become worse.

4.4 Ablation Study

(a) Comparison for LR base classifiers under the APM metric.

(b) Comparison for RF base classifiers under the AUC metric.

Figure 5: Performance results for ablation study. NeighborAgg outperforms all the other model
variants ProbOnly and NeighOnly across all datasets with LR and RF as the base classifiers, respectively.
More results can be found in Appendix I.

To demonstrate the effectiveness of each component and the adaptiveness of the learnable weights in
NeighborAgg, we compare against its variants ProbOnly and NeighOnly,

• NeighOnly: solely takes neighborhood vectors as input,
• ProbOnly: solely inputs classifier output vectors,

as well as the non-learnable baseline Trust Score.

Figure 5 demonstrates the comparison results of the ablation study on seven tabular datasets. Results using
other base classifiers and other metrics are listed in Appendix I.
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Detected mislabeled example questions
What is the past tense of past tense?
What is the difference between a fusion and a restaurant?
What are the new product for agent project?
Which protagonist from a video game have you most related to?
Do I have to appear for IMU CET again even if I get a good rank in it if I’m appearing for improvement of HSC board exam?
What are some important things/steps when starting a film production company in Netherlands?
What astrological combinations are needed to obtain a scholarship for studies?
What advice would you give a person intending to buy a Nissan note, in terms of performance
i.e. traction, fuel economy, maintenance and resale?

Table 3: Mislabeled samples detected in QuoraInsQ by our NeighborAgg-CMD. These questions are labeled as
insincere but are actually sincere.

We note that our NeighborAgg consistently outperforms ProbOnly and NeighOnly across all datasets,
especially on SensorLessDrive with 8.83% gain and on BankMarketing with 3% gain, which indicates that
both vectors make non-negligible contributions to the final trustworthiness score, and that considering either
of them alone is insufficient. It supports the claim that the neighborhood and the predictive output of the
classifier complement one another in determining the trustworthiness score.

Moreover, the comparison between NeighOnly and Trust Score suggests that considering a set of neighborhood
rather than solely class-wise nearest neighbors contributes to the performance gain; by inspecting those
neighborhoods, NeighborAgg can utilize richer information and flexibly choose its receptive field, i.e.,
how many neighbors are necessary to determine the trustworthiness score. It also empowers the model to
adaptively capture intra-class relations (i.e. different proximity of a sample’s neighbors) and inter-class
relations, e.g., some classes may be more closely related as compared to other classes.

4.5 Mislabel Detection: A Case Study

This section demonstrates the usefulness of our NeighborAgg-CMD algorithm by presenting mislabeled
samples in real-world datasets. We use a dataset named QuoraInsQ from the Kaggle competition “Quora
Insincere Questions Classification” that aims to improve online environment by detecting toxic questions. The
dataset consists of 1,306,122 questions which are manually categorized as sincere or insincere. The definition
of an insincere question is one that intends to make a statement instead of eliciting helpful responses. In
order to estimate the mislabeling rate, we manually relabel 500 randomly selected questions and utilize the
fraction of incorrectly labeled samples as the mislabeling rate.

Firstly, we use the model of the top-ranking team from the leaderboard as our base classifier and use
NeighborAgg-CMD to compute the reliability score for each sample. The mislabeling rate p is estimated
as 0.03. Then, we run NeighborAgg-CMD with the confidence level α = 5% and obtain the detected
mislabeled results. Then we showcase some of the detected example questions with the lowest reliability
scores in Table 3. We find that all of them were labeled as ‘insincere’ in the original dataset, but none of
them breach the four rules that signify a question as insincere. More experiments can be found in Appendix J.

5 Related Work

In this section, we overview our problem of trustworthiness prediction and two other research topics that are
closely related but targeted at different goals.

Trustworthiness Prediction. Trustworthiness prediction, also known as “failure prediction” and “mis-
classification detection” in the literature, aims to assign a discriminative score to every prediction given by a
base classifier, indicating whether we can trust this prediction or not. This has received increasing attention
in recent times. Hendrycks & Gimpel (2017) suggests using confidence score and calibration to tackle this
problem. Monte-Carlo dropout (Gal & Ghahramani, 2016) and Deep-Ensemble (Lakshminarayanan et al.,
2017) compute the output variance of multiple trials to detect incorrect predictions, while these ensemble-based
methods are quite computationally expensive. Trust Score (Jiang et al., 2018) proposes a score which is
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a fixed, non-learnable function of the neighborhood of a sample, and hence suffers from limited functional
space. Corbière et al. (2019) proposes a regression method to fit the ground truth label’s corresponding
softmax score and uses it as a proxy for trustworthiness. However, this relies on the assumption that the base
classifier is always over-confident, which is not always the case (e.g. graph neural networks were found to be
under-confident in Wang et al. (2021)). Malinin & Gales (2018); Malinin et al. (2020); Sensoy et al. (2018);
Charpentier et al. (2020) assume the classifier outputs are sampled from a latent Dirichlet distribution and
treat low-likelihood samples as misclassified samples. These methods typically involve modified architectures
that need to be trained from scratch, and in some cases can involve the trade-off between classification
accuracy and the performance of trustworthiness prediction. In contrast, our proposed NeighborAgg keeps
the base classifier intact and uses auxiliary information for simple estimation. In our work, we aim to measure
trustworthiness by adaptively utilizing the classifier’s predictive output and neighborhood information via a
flexible mapping that combines the best of both worlds.

Relations to Confidence Calibration. Confidence calibration (Naeini et al., 2015; Guo et al., 2017;
Kull et al., 2019; Gupta & Ramdas, 2021) aims to align the confidence score (i.e. the max softmax output)
of a classifier to the overall accuracy. It alleviates the confidence score’s over-confidence issue (Guo et al.,
2017; Naeini et al., 2015), but is still not suitable for trustworthiness prediction because it usually requires to
preserve the output ranking, even for misclassified samples. That is, even if the predicted class is incorrect,
it is still the most confident class because calibration can only change the softmax output value but will
maintain the score ranking of different classes. A trustworthiness predictor, however, should change the
ranking of different classes and assign much lower scores to the predictions of these misclassified samples.
Hence, neither confidence score nor calibration methods are suitable for trustworthiness prediction.

Relations to Out-of-distribution Detection. The goal of out-of-distribution (OoD) detection (Hendrycks
& Gimpel, 2017; Malinin & Gales, 2018) is to identify input data that has a different ground truth label
compared to the label set of the training dataset. We would like to emphasize that our goal aims to evaluate
the reliability of a classifier (focusing on p(y|x)), and to answer the question of whether the prediction made
by a classifier can be trusted; whereas OoD detection aims to detect input samples from outside the training
distribution (focusing on p(x)), which is orthogonal to our goal and hence beyond the scope of this paper. It
is worth mentioning that an out-of-distribution detection algorithm can also be applied to filter out those
OoD samples before applying a trustworthiness prediction algorithm.

6 Conclusions and Discussion

Conclusion Knowing when to trust a classifier is essential for safe deployment of present machine learning
algorithms. To solve the problem, we devise a model-agnostic post-hoc trustworthiness prediction algorithm
NeighborAgg which leverages information from the neighborhood and the classifier to predict the trust-
worthiness of predictions given by a classifier. By theoretically demonstrating that NeighborAgg is a
generalized one-hop GCN aggregating information from the neighborhood and the sample itself, we provide
a better understanding of how our approach works. The working mechanism is also revealed by empirical
studies, which show that our approach can utilize the classifier output and neighborhood information in a
complementary manner, and capture diverse similarities within different neighborhoods. On several tabular
and image benchmarks, the effectiveness of NeighborAgg is empirically validated via comparison with other
state-of-the-art methods and ablation studies. Of independent interest, an extension of NeighborAgg to
mislabel detection is also introduced with a noise-robust coverage guarantee for bounding the false negative
predictions.

Discussion The current study assesses a classifier’s trustworthiness by utilizing each sample’s neighborhood,
comparing each sample’s prediction to its neighbors’ ground truth labels. Besides that, it would be interesting
to explore alternative information associated with the trustworthiness of the classifier. The model explanation
generated by explainable approaches, for example, can be used to determine trustworthiness. A prediction
with implausible explaining logic is likely wrong. Moreover, going beyond unstructured data, we believe
NeighborAgg is also promising for measuring trustworthiness of graph-structured data, which can be an
interesting and nontrivial extension to this work.
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