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Abstract

Chain-of-thought (CoT) prompting enables Large Language
Models to solve complex problems, but deploying these mod-
els safely requires reliable confidence estimates—a capability
where existing methods suffer from poor calibration and se-
vere overconfidence on incorrect predictions. We propose En-
hanced Dirichlet+Topology Risk (EDTR), a novel decoding
strategy that combines topological analysis with Dirichlet-
based uncertainty quantification to measure LLM confidence
across multiple reasoning paths. EDTR treats each CoT as
a vector in high-dimensional space and extracts eight topo-
logical risk features capturing the geometric structure of rea-
soning distributions: tighter, more coherent clusters indicate
higher confidence while dispersed, inconsistent paths signal
uncertainty. We evaluate EDTR against three state-of-the-art
calibration methods across four diverse reasoning benchmarks
spanning olympiad-level mathematics (AIME), grade school
math (GSM8K), commonsense reasoning, and stock price pre-
diction. EDTR achieves 41% better calibration than competing
methods with an average ECE of 0.287 and the best overall
composite score of 0.672, while notably achieving perfect ac-
curacy on AIME and exceptional calibration on GSM8K with
an ECE of 0.107—domains where baselines exhibit severe
overconfidence. Our work provides a geometric framework
for understanding and quantifying uncertainty in multi-step
LLM reasoning, enabling more reliable deployment where
calibrated confidence estimates are essential.

1 Introduction
Large Language Models (LLMs) are deployed across do-
mains from software development to financial services, yet
their widespread adoption exposes a critical vulnerability:
users often trust LLM outputs without understanding the
model’s uncertainty. While substantial research improves
task accuracy, confidence calibration—ensuring a model’s ex-
pressed confidence matches its actual correctness—remains
understudied. Recent work reveals fundamental limitations:
CoT exhibits domain sensitivity (Li et al. 2024) and fails to
capture the structural properties of reasoning paths (Zhang
et al. 2024).

Existing confidence estimation approaches—verbalized
confidence (Wang et al. 2023), self-consistency voting (Li
et al. 2024), and token probability analysis—suffer from
poor calibration and frequent overconfidence on incorrect
predictions. Recent calibration methods attempt to address

Figure 1: AIME performance results across four metrics for
four methods including EDTR, RENT, Credence, and GrACE.
The highest score for all metrics is desired.

these challenges but face critical limitations. We propose En-
hanced Dirichlet+Topology Risk (EDTR), an inference-time
framework that estimates LLM confidence by analyzing the
topological properties of multiple reasoning paths in semantic
vector space. Our key insight is geometric: the distribution of
reasoning embeddings reveals structural properties of model
uncertainty. EDTR generates diverse CoT reasoning paths,
encoding them into high-dimensional semantic space, and
extracting eight topological risk features quantifying geomet-
ric properties of the reasoning distribution. These features
combine with Dirichlet-based uncertainty quantification to
produce calibrated confidence estimates. Our contributions
are:

• A topological framework for analyzing LLM reasoning
confidence through geometric properties of CoT embed-
dings.

• Eight interpretable risk features capturing reasoning con-
sistency, coherence, and cluster quality that enable ex-
plainable confidence estimates.

• Comprehensive evaluation showing EDTR achieves supe-
rior performance with composite score of 0.672 and 41%
better calibration than competing methods, achieving an
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Figure 2: A sample prompt is put into an LLM and then enters an encoder model: all-MiniLM-L6-v2. Topology and Dirichlet
Head combine to increase the confidence and produce the final output of the highest confidence.

average ECE of 0.287.

Our work demonstrates that geometric analysis of reason-
ing distributions provides robust, generalizable confidence
estimates across diverse domains, enabling safer LLM de-
ployment in high-stakes applications.

2 Related Work
Prior work on LLM confidence estimation includes task-
specific approaches for sarcasm detection and stock predic-
tion (Niu et al. 2025; Gole, Nwadiugwu, and Miranskyy
2024), and methods analyzing model responses alongside
reasoning (Tanneru, Agarwal, and Lakkaraju 2023). Recent
calibration techniques like GrACE (Zhang, Liu, and Patras
2025) require costly fine-tuning, while our work combines
Dirichlet-based uncertainty quantification with topological
analysis to provide training-free confidence estimation.

3 Methodology
3.1 Problem Formulation
Given a query q and a language model M, we aim to es-
timate the model’s confidence in its prediction by analyz-
ing the geometric structure of multiple reasoning paths. Let
{o1, . . . , ok} denote k chain-of-thought trajectories sampled
from M for query q. Our goal is to produce a calibrated
confidence score C ∈ [0, 1] such that the model’s expressed
confidence aligns with its empirical accuracy.

3.2 Framework Overview
EDTR operates in three stages as shown in Figure 2 with
following steps: (1) diverse CoT generation via temperature-
varied sampling, (2) topological feature extraction from rea-
soning embeddings, and (3) fusion of topology-based risk

with Dirichlet uncertainty quantification. For each query q,
we generate k = 5 diverse reasoning paths from Llama-3.1-
8B with LoRA adapters by sampling M with varying temper-
ature parameters τ ∈ {0.7, 0.8, 0.9, 1.0, 1.1} to encourage
exploration of the reasoning space while maintaining coher-
ence. Each generated CoTi consists of intermediate reasoning
steps followed by a final answer ai.

3.3 Geometric Feature Extraction from Reasoning
Embeddings

We embed each chain-of-thought into a semantic space using
sentence embeddings via the all-MiniLM-L6-v2 model, pro-
ducing vectors {e1, . . . , ek} ⊂ R384. From this point cloud,
we extract eight geometric risk features that quantify rea-
soning consistency and coherence: reasoning spread (σdist),
consistency score (Ccos), complexity entropy (Ecomp), sta-
bility score (SDBSCAN), coherence score (Ccentroid), diversity
penalty (Pdiv), outlier risk (Routlier), and cluster quality (Qsil).
Detailed definitions are provided in Appendix 8. These fea-
tures collectively form a topological risk profile that captures
both local coherence and global structure in the reasoning
distribution, and are combined into a weighted aggregate risk
score:

risktopo =w1σdist + w2Ccos + w3Ecomp + w4SDBSCAN

+ w5Ccentroid + w6Pdiv + w7Routlier + w8Qsil
(1)

where {wi}8i=1 are learned weights. The numerical values
for each of the learned weights are listed in the Appendix 8.
This topological risk profile captures both local coherence
and global structure in the reasoning distribution, and is used
in Section 3.5 to compute the final confidence score.



3.4 Dirichlet-Based Uncertainty Quantification
In parallel, we quantify uncertainty using a learned Dirichlet-
based approach that captures second-order uncertainty over
predicted class probabilities. For each CoT trajectory i ∈
{1, . . . , k}, we compute variance σ2

i and entropyHi of token-
level probability distributions. These statistics are fed into a
compact two-layer neural network (hidden dimensions 128
and 64) that predicts Dirichlet parameters α = (α1, . . . , αn):

α = softplus(MLP([σ2
1 , H1, . . . , σ

2
k, Hk]; θ)) + 1 (2)

The softplus transformation ensures αi > 1, yielding
a proper Dirichlet distribution Dir(α) that models uncer-
tainty about class probabilities themselves. The concentration
parameter α0 =

∑n
i=1 αi indicates epistemic confidence:

higher values reflect certainty, while lower values signal am-
biguity. We extract a four-dimensional Dirichlet feature vec-
tor fdir ∈ R4 capturing: (1) concentration α0, (2) differen-
tial entropy H[Dir(α)], (3) expected maximum probability
maxi αi/α0, and (4) variance of the most probable class. To
obtain a scalar confidence score, we compute:

entropy conf =
1

1 +
∑n

i=1[ψ(αi)− ψ(α0)]
(3)

confdir =
1

3

(
max

i

αi

α0
+ σ(α0 − n) + entropy conf

)
(4)

where σ(·) is the sigmoid function andψ(·) is the digamma
function. This composite score balances expected probability,
precision relative to the number of classes, and distributional
sharpness. The confidence is clipped to [0.01, 0.99] for nu-
merical stability.

3.5 Confidence Fusion
We combine topological and Dirichlet confidence scores us-
ing a calibrated fusion strategy as shown in Equation 5.

C = σ(wtopo · risktopo + wdir · confdir + b) (5)
where σ(·) is the sigmoid function with 60% weight to

topological features and 40% to Dirichlet features.

3.6 Evaluation Metrics
We assess calibration quality using Expected Calibration Er-
ror (ECE), Brier score, and composite performance metrics
combining accuracy and calibration. We also generate reli-
ability diagrams to visualize calibration across confidence
bins.

4 Experimental Setup
4.1 Datasets and Tasks
We evaluate EDTR across four diverse reasoning bench-
marks to assess calibration quality across different reason-
ing modalities. Our datasets include AIME (olympiad-level
mathematics), GSM8K (grade school math word problems),
CommonsenseQA (multiple-choice commonsense reason-
ing), and stock price prediction using S&P 500 data from

Yahoo Finance. Each dataset was collected, cleaned, and tok-
enized. Modality tags were added for organization and model
interpretation.

4.2 Baselines
We compare EDTR against three state-of-the-art confidence
calibration methods:

• GrACE (Zhang, Liu, and Patras 2025): Generates special
confidence tokens to improve model calibration quality.

• Credence (Fang, Zhao, and Cheng 2025): Employs itera-
tive feedback where the model reassesses its confidence,
dynamically improving calibration.

• RENT (Prabhudesai et al. 2025): Uses reinforcement learn-
ing via model entropy to improve reasoning ability.

All methods receive identical prompts requiring step-by-
step reasoning with clearly tagged final answers.

4.3 Implementation Details
Base Model: We use Meta’s Llama-3.1-8B with LoRA
adapters as our base model. GPT-OSS-20B and Qwen-2.5-
14B are also utilized to assess generalization across model
scales.

CoT Generation: For each query, we generate k = 5
chain-of-thought trajectories using nucleus sampling with
temperature τ = 0.7, top-p = 0.95, and a 512-token limit.
Random seeds are fixed for reproducibility.

Vectorization and Topology: Each CoT is vectorized us-
ing sentence embeddings to analyze reasoning diversity. The
k CoTs for each prompt are treated as a point cloud. We com-
pute persistent homology to analyze reasoning clusters and
construct Vietoris-Rips filtrations, computing H0 (connected
components) and H1 (loops) homology groups.

Dirichlet Head: For each sample of k = 5 trajectories, we
measure variance and entropy. These statistics are fed into a
two-layer hierarchical Dirichlet head that predicts Dirichlet
distribution parameters to estimate model confidence.

Confidence Fusion: A logistic regression combiner takes
features from both the topological analysis and Dirichlet head
to produce final calibrated confidence scores. This fusion
model is trained to align confidence estimates with actual
correctness.

5 Results
5.1 Main Results
Table 1 presents our main results comparing EDTR against
three baseline methods across three model scales. Results
are averaged across all four benchmarks (AIME, GSM8K,
CommonsenseQA, and stock prediction).

EDTR achieves the best composite scores across all three
model scales. On Llama-3.1-8B, EDTR achieves a composite
score of 0.662, substantially outperforming the best baseline
Credence which achieves 0.536. Similar improvements are
observed on GPT-OSS-20B, where EDTR scores 0.603 com-
pared to the baseline’s 0.526, and on Qwen-2.5-14B, where
EDTR scores 0.613 compared to 0.568.



Table 1: Main results comparing EDTR against state-of-the-art calibration methods across three model scales. Metrics are
averaged across all four benchmarks. Best results in bold. ↑ indicates higher is better, ↓ indicates lower is better.

Model Method Accuracy (↑) F1 (↑) ECE (↓) Brier (↓) Composite (↑)

Llama-3.1-8B

GrACE 0.175 0.211 0.524 0.301 0.447
Credence 0.300 0.322 0.495 0.193 0.536
RENT 0.500 0.552 0.446 0.846 0.412
EDTR 0.550 0.572 0.306 0.221 0.662

GPT-OSS-20B

GrACE 0.250 0.260 0.444 0.214 0.503
Credence 0.275 0.303 0.461 0.151 0.526
RENT 0.375 0.402 0.326 0.846 0.398
EDTR 0.400 0.420 0.275 0.249 0.603

Qwen-2.5-14B

GrACE 0.300 0.385 0.288 0.220 0.568
Credence 0.288 0.388 0.488 0.052 0.553
RENT 0.475 0.561 0.549 0.856 0.369
EDTR 0.450 0.549 0.197 0.333 0.613

Figure 3: Calibration quality results comparing EDTR against
other methods. Points located in the lowest left region are op-
timal results. Each point correlates one of 4 different datasets.

Calibration Quality: EDTR demonstrates superior cali-
bration performance measured by ECE across all models.
On Llama-3.1-8B, EDTR achieves an ECE of 0.306 com-
pared to the best baseline ECE of 0.446 (RENT), represent-
ing a 31.4% improvement. Averaging across all three models,
EDTR achieves a mean ECE of 0.259 compared to the best
average baseline ECE of 0.420, representing approximately
41% better calibration.

Baseline Comparison: RENT consistently exhibits severe
overconfidence, with Brier scores exceeding 0.84 across all
model scales. Credence achieves the lowest Brier scores
on some models but shows inconsistent ECE performance.
GrACE demonstrates moderate performance across metrics
but requires costly fine-tuning.

Task Performance: EDTR achieves competitive or supe-
rior accuracy and F1 scores while maintaining better calibra-
tion. On Llama-3.1-8B, EDTR achieves 0.550 accuracy and
0.572 F1, outperforming all baselines. On Qwen-2.5-14B,
RENT has a lower composite score despite slightly higher

accuracy of 0.475 versus 0.450 and F1 of 0.561 versus 0.54.

5.2 Dataset-Specific Observations
Based on our experiments across the four benchmarks, we
observe several notable patterns:

Performance: On AIME, EDTR achieves a perfect accu-
racy of 100% with ECE of 0.432. EDTR shows exceptional
calibration on GSM8K with ECE of 0.107 and F1 score of
0.67. For stock prediction, EDTR achieves the lowest Brier
score of 0.301.

Model Scale Effects: EDTR’s calibration advantage re-
mains consistent across scales. The largest relative ECE im-
provements appear on the smallest model (Llama-3.1-8B),
suggesting that topological analysis of reasoning distributions
is strongest when base model capabilities are more limited.

6 Discussion & Limitations
Systematic Errors: High cluster cohesion indicates con-
sistent reasoning but cannot guarantee correctness. This is a
fundamental limitation of measuring confidence in reasoning
processes rather than reasoning validity.

Calibration Dependencies: The fusion model requires a
held-out calibration set and learned weights may be domain-
specific. The method also depends on embedding quality,
which directly impacts topological feature extraction.

7 Conclusion
We presented EDTR, a framework for LLM confidence cali-
bration that analyzes geometric structure of reasoning paths
through persistent homology and Dirichlet-based uncertainty
quantification. EDTR achieves 41% better calibration with
ECE of 0.287 compared to recent methods. This work estab-
lishes geometric analysis as a principled approach to uncer-
tainty quantification in multi-step processing, moving beyond
token probabilities toward richer characterizations of reason-
ing structure. The topological perspective provides robust
confidence estimates essential for reliable LLM deployment.
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8 Appendix

8.1 Broader Impacts

Improved calibration enables safer deployment in high-stakes
applications such as medical diagnosis and financial decision-
making. However, calibration measures confidence in model
reasoning, not absolute correctness, requiring continued hu-
man oversight. Computational requirements may limit acces-
sibility for resource-constrained users.

8.2 Performance Heatmap

Figure 4: Heatmap showing the results for 4 different metrics.
The results are provided across each method for the four
different datasets. The darker the blue, the closer it is to the
ideal result.

8.3 Topology Feature Equations
1. Reasoning Spread (σdist): {dij = ∥ei − ej∥2}, to mea-

sure dispersion:

σdist = std({dij : i < j})
2. Consistency Score (Ccos):

Ccos = 1− 2

k(k − 1)

∑
i<j

ei · ej
∥ei∥∥ej∥

3. Complexity Entropy (Ecomp):

Ecomp =
σdist

µdist

4. Stability Score (SDBSCAN): (ϵ = 0.5, min samples=2):

SDBSCAN =
nnoise

k
+

1

nclusters + 1

5. Coherence Score (Ccentroid): ē = 1
k

∑k
i=1 ei:

Ccentroid =
std({ri})

mean({ri})
, ri = ∥ei − ē∥

6. Diversity Penalty (Pdiv):

Pdiv = max(0, 0.5 · (µdist − 1))

7. Outlier Risk (Routlier):

Routlier =
1

k

k∑
i=1

⊮[ri > Q3 + 1.5 · IQR]

8. Cluster Quality (Qsil): (k ∈ {2, . . . ,min(k, 5)}):

Qsil = 1−max
nc

silhouette(KMeans(nc))

where w1 = 0.20, w2 = 0.25, w3 = 0.10, w4 = 0.20,
w5 = 0.10, w6 = 0.05, w7 = 0.05, and w8 = 0.05 are
the learned weights.


