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ABSTRACT

Many point-based 3D detectors adopt point-feature sampling strategies to drop
some points for efficient inference. These strategies are typically based on fixed
and handcrafted rules, making it difficult to handle complicated scenes. Different
from them, we propose a Dynamic Ball Query (DBQ) network to adaptively select
a subset of input points according to the input features, and assign the feature
transform with a suitable receptive field for each selected point. It can be embedded
into some state-of-the-art 3D detectors and trained in an end-to-end manner, which
significantly reduces the computational cost. Extensive experiments demonstrate
that our method can increase the inference speed by 30%-100% on KITTI, Waymo,
and ONCE datasets. Specifically, the inference speed of our detector can reach
162 FPS on KITTI scene, and 30 FPS on Waymo and ONCE scenes without
performance degradation. Due to skipping the redundant points, some evaluation
metrics show significant improvements.

1 INTRODUCTION

3D object detection, as a fundamental task in the 3D scene, has made significant progress. It aims
to recognize and localize objects from point clouds and paves the way for several real applications
like autonomous driving (Geiger et al., 2012), robotic system(Yang et al., 2020b), and augmented
reality (Park et al., 2008).

The structure of point clouds is sparse, unordered, and semantically deficient, making it difficult to
encode point features like highly structured image features. To eliminate this barrier, voxel-based
methods are proposed to organize the overall point cloud as neatly distributed voxels. Therefore,
the naive 3D convolution or its efficient variant, i.e., 3D sparse convolution (Yan et al., 2018), can
be used to extract voxel features like image processing manner. Although the voxel-based methods
bring convenience to the processing of point cloud, they are prone to drop detail information, making
it inescapable to suffer from suboptimal performance. Another stream of methods are point-based
methods (Yang et al., 2020b; Chen et al., 2022; Zhang et al., 2022) inspired from PointNet++ (Qi et al.,
2017). They employ a series of operations, i.e., farthest point sample (FPS), query, and grouping, to
directly extract informative features from the naive point cloud. However, the straightforward pipeline
is cumbersome and costly. 3D-SSD (Yang et al., 2020b) first propose a single stage architecture,
i.e., using encoder-only architecture, which replaces the geometric Distance-based FPS (D-FPS)
with the Feature similarity-based FPS (F-FPS) to recall more foreground point features and further
discard feature propagation (FP) layers for reducing latency. Although eliminating the overhead of
FP layer, F-FPS operations still occupy vast latency. IA-SSD (Zhang et al., 2022) further proposes a
contextual centroid prediction module to replace F-FPS, which directly predicts the classification
scores of each point and adopts efficient top-k operation to further recall more foreground, and further
cut computation overhead.

The current advanced designs mainly credit to efficient foreground recall, but they may still have
redundancy in the other parts like the background points or the network structure. In this paper, we
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conduct several empirical analyses of IA-SSD (Zhang et al., 2022) on two representative benchmarks,
i.e., KITTI (Geiger et al., 2012) and Waymo (Sun et al., 2020), to uncover the full picture of its
inference speed bottleneck. We first calculate the latency distribution of all detector modules to figure
out which parts are the main speed bottlenecks. Then we count the ratio of background points and the
scale distribution of all objects to further explore potential redundancy clues over the cumbersome
modules. Our study reveals three valuable points: (1) MLP network occupies over half latency. (2)
Tremendous spatial redundancy exists in background point features that appear in each stage of the
detector. (3) The size of each object is varying, making it unusable to align each receptive field of the
conventional multi-scale grouping (MSG) and suffering from branch redundancy in MSG.

The above valuable finding motivates us to further build a more efficient detector with higher speed
by reducing the redundant background points and blocking useless MSG branches. As shown in
Fig. 2, we propose Dynamic Ball Query (DBQ) to replace the vanilla ball querying module, where
the vanilla ball querying means the sampling technique proposed by PointNet++ (Qi et al., 2017).
It dynamically activates useful and compact point features, and blocks redundant background point
features for each branch of MSG. For each point feature sampled by FPS or top-k classification score,
we design a dynamic query multiplexer to determine which branch to go through. Specifically, we
apply a light-weight MLP network for point features to predict N masks corresponding to N branches
of MSG, where the value of the mask is {0, 1} corresponding to blocking and activating states. The
overall dynamic router procedure is data-driven so that the point features are adaptively activated or
blocked with a suitable combination among all receptive fields of MSG. Ultimately, we introduce a
resource budget loss for DBQ to learn a trade-off between latency and performance.

To verify the efficiency of our method, we conduct extensive experiments on three typical datasets,
i.e., KITTI (Geiger et al., 2012), Waymo (Sun et al., 2020), ONCE (Mao et al., 2021b). Our Dynamic
Ball Query enables the 3D detector to cut the latency from 9.85 ms (102 FPS) to 6.172 ms (162
FPS) on KITTI scene and speed up the inference speed from 20 FPS to 30 FPS on Waymo and
ONCE scene while keeping the comparable performance. In particular, some evaluation metrics show
significant improvements.

2 RELATED WORK

2.1 3D DETECTORS

The task of 3D detection is to predict 3D bounding boxes and class labels for each object in a point
cloud scene. The detection algorithms can be split into voxel-based (Zhou & Tuzel, 2018; Yan
et al., 2018; Lang et al., 2019; He et al., 2020) and point-based (Shi et al., 2019; Yang et al., 2020b;
Chen et al., 2022; Zhang et al., 2022) methods. Voxel-based methods convert the point cloud into
regular voxels or pillars, making it natural to apply 3D convolution or its sparse variant (Yan et al.,
2018) for feature extraction. This regular partition method may lead to detailed information lost, so
point-based methods are proposed to directly process vanilla point cloud. Inspired by PointNet++ (Qi
et al., 2017) and Faster R-CNN (Ren et al., 2015), PointRCNN (Shi et al., 2019) employs SA and
FP layers to extract feature for each point and designs a region proposal network (RPN) to produce
proposals, and utilizes an extra stage of the module to predict bounding boxes and class labels. In
addition, PV-RCNN (Shi et al., 2020a) integrates voxel and point features to the RPN for generating
higher-quality proposals. Pyramid R-CNN (Mao et al., 2021a) introduces a pyramid Rol head with
learnable radii to boost accuracy at the expense of latency overhead. In contrast, our method aims to
achieve more efficient inference by adaptively selecting the network branches for each input point.
Other efforts are similar to single-stage 2D detectors (Lin et al., 2017; Tian et al., 2019; Wang et al.,
2021; Song et al., 2019b; Zhang et al., 2019). 3DSSD (Yang et al., 2020b) and IA-SSD (Zhang et al.,
2022) discard the region proposal network and use encoder-only architecture to localize 3D objects.
Our work focus on dynamically dropping the redundant background point features for single-stage
point-based detector, which is rarely researched in previous works. Our method endows the detector
with super inference speed.

2.2 EFFICIENT 3D POINT-BASED DETECTORS

The point-based methods need to process large-scale vanilla point features, which requires to build
cumbersome models and suffers expensive computation costs. Therefore, several works (Yang et al.,
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Figure 1: Statistics of latency, background ratio, and size distribution on both KITTI val (Geiger
et al., 2012) and Waymo val (Sun et al., 2020) sets. (a) reveals that the MLP network occupies the
largest latency. "Q & G" means query and grouping operation. (b) reflects that redundant background
points significantly dominate the input points of each stage. (c) means the distribution on varying

object sizes (measuring in v/ volume, where volume is the volume of ground truth).

2020b; Chen et al., 2022; Zhang et al., 2022) aim at designing a lightweight and effective point-based
detector. 3DSSD (Yang et al., 2020b) proposes a feature-based fastest point sampling (F-FPS) strategy
by measuring the similarity of point features to replace the geometric distance of D-FPS (Qi et al.,
2017). The policy makes it reasonable to discard FP layers since F-FPS can recall more foreground
points instead of compensating for foreground information by cumbersome FP layers. Even so, the
F-FPS operation suffers from high complexity bottleneck. IA-SSD introduces a contextual centroid
prediction module for replacing the F-FPS operation to efficiently recall more foreground points. It
predicts the classification score for each point feature and applies the efficient top-k operation to all
points ordered by category independent scores. Instead of focusing on the foreground part by efficient
sampling policies, we explore the spatial redundancy of background points. We introduce a dynamic
network mechanism to adaptively reduce useless background points in a data-dependent regime.

2.3 DYNAMIC NETWORK

Dynamic networks target to adaptively change the structure of networks and parameters in a data-
driven manner. In the field of model automation designing, dynamic network mechanism is used to
drop blocks (Wu et al., 2018; Huang et al., 2017; Mullapudi et al., 2018; Wang et al., 2018), pruning
channels (Lin et al., 2018; You et al., 2019; Jiang et al., 2018), adjusting layer-level scales (Li et al.,
2020b; Yang et al., 2020a) and changing spatial typologies (Song et al., 2019a; 2020b). DRNet (Li
et al., 2020b) aims at learning an automatic scale transformation for a feature pyramid network in
the semantic segmentation scene. Switch Transformer (Fedus et al., 2021) employs the Mixture
of Experts (MoE) (Shazeer et al., 2017) model to choose different parameters for each input data.
Deformable convolution (Dai et al., 2017) learns a convolution of arbitrary shapes by predicting
an offset for each parameter. Dynamic Grained Encoder (Song et al., 2021) adopts a dynamic gate
mechanism to select the spatial granularity of input query in the transformer network. Dynamic
Convolution (Verelst & Tuytelaars, 2020), Dynamic Head (Song et al., 2020a) focus on learning
a sparse mask for network to discard redundant image features. In this paper, we focus on 3D
detection on point cloud scenes and aim at designing a point-wise dynamic network to drop redundant
background points.

3 ANALYSIS AND MOTIVATION

To explore what hampers the higher speed for 3D detection task, we conduct several experiments on
both KITTI val and Waymo val sets with the state-of-the-art point-based 3D-detector (Zhang et al.,
2022). To establish a strong baseline, we split the point cloud into four parallel parts to speed up the
first FPS operation. We first measure the latency on each detector module. As shown in Fig. 1(a), the
MLP network occupies the major part of the overall time overhead, i.e., 6.44 ms (65.4%) and 28.56
ms (56.5%) on KITTI and Waymo scenes, respectively. Therefore, optimizing the cumbersome and
costly MLP network is a top priority for building an efficient detector.

Decreasing the input scale of points or network parameters is a natural and empirical manner for
reducing the latency but the policies are prone to damage the performance. To avoid both notorious
drawbacks, we attempt to analyze the redundancy of background points in each backbone stage. As
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Figure 2: The pipeline of dynamic ball query in a set abstraction layer. ‘NS’ indicates the nearest
sampling, which samples the query features from the input features. The query multiplexer generates
gating masks to adaptively select a subset of input queries for each group. The remap operator is used
to map the sparse features to the dense form.

shown in Fig. 1(b), it indicates that the number of background points (point features) dominates the
proportion of over 70% at any network level. The phenomenon reveals that significant redundancy
exists in background points which may be discarded for speeding up the detection procedure.

Going one step further, we point out that the conventional multi-scale grouping (MSG) operation (Qi
et al., 2017) of the set abstraction (SA) layer may be also redundant. As shown in Fig. 1(c), it reflects
that the size of each object varies in either KITTI or Waymo scenes. Therefore, the given receptive
field of MSG may not entirely align with the size of objects. In this regime, some grouping branches
of MSG are useless. The valuable observation motivates us to choose optimal grouping branches,
which can further make the detector efficient.

4 DYNAMIC BALL QUERYING

Our DBQ-SSD framework is established on the efficient IA-SSD framework, which adopts set
abstraction (SA) layers to encode point features. To achieve a better balance between effectiveness and
efficiency, we introduce the dynamic network mechanism into the IA-SSD framework. Specifically,
we propose Dynamic Ball Querying (DBQ) to replace the vanilla ball querying in each set of
abstraction layer, which is shown in Fig. 2. It is able to adaptively select a subset of input points
as queries and extract local features in a suitable spatial radius. Dynamic ball querying is a generic
module which can be easily embedded into the encoder blocks in mainstream point-based 3D
detection frameworks.

Given an input point sequence x, € R™*3 with the corresponding features x; € RV*¢, N denotes
the length of sequence and C' indicates the number of feature channels. Besides, the coordinate
sequence of input queries is denoted as . € R™«*3, where N, is the number of queries. For
efficiency, most previous point-based methods (Yang et al., 2020b; Zhang et al., 2022) use Farthest
Point Sampling (FPS) or its variants (e.g., dividing point cloud by multiple parallel parts to reduce
computational complexity) to generate the query points. For each query, the vanilla ball querying
samples a predefined number of local points within a specific spatial radius. Since different object
instances require different receptive fields, in a set abstraction layer, the previous 3D detectors (Yang
et al., 2020b; Zhang et al., 2022) typically adopt multiple groups of vanilla ball querying with different
radii to increase feature diversity.

Specifically, for one set abstraction layer, we define the set of predefined radii as R = {rj }* and the
number of sampling points as ® = {¢;, }*, where K indicates the number of groups. Based on these,
we establish a set of K vanilla ball querying blocks. As shown in Fig. 2, our dynamic ball querying
is made up of a query multiplexer and a set of vanilla ball querying blocks. Similar to the gate-based
dynamic networks (Song et al., 2021; Wang et al., 2018; Li et al., 2020b), the query multiplexer
adopts a fine-grained routing process to select a suitable combination of vanilla ball querying blocks
for each query.

4.1 INFERENCE

For an input query ¢ € {1,2, ..., N,} with coordinate qc(¢), we first obtain the corresponding query
feature according to its coordinate for the query multiplexer. The query feature can be used as the
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basis for dynamic decisions. Specifically, we adopt the nearest sampling technique to obtain its
representation from the features of input points. Albeit the sampling process with more sample points,
e.g., top-k sampling, and ball gathering, can lead to a slight performance gain, it causes a significant
decrease in efficiency. The top-k sampling indicates choosing a set of points with the smallest distance
under a specific metric. Additionally, ball gathering means sampling and concatenating features
according to the coordinates of points. The previous variants of ball querying employ heuristic and
hand-designed rules. Different from them, the routing process of our query multiplexer is performed
in a data-dependent way. To achieve it, we aggregate input features for each query from the nearest
input point and predict the gating logits for each query by a linear projection:

h(i) = x¢(arg min [|qe () — xc () )W + b € RV, 1
J
where W € RE*K and b € R X denotes the weight and bias, respectively. Moreover, the binary
gating masks for the i-th query and the k-th group are generated by quantizing the gating logits:

1, ifh(i, k) >0
0, if otherwise

m(i, k) = step(h(i, k)), where step(h(i, k)) = { )
The gating masks control which ball querying group is enabled, i.e., the group with a positive mask
value is enabled and vice versa. Based on this, we can adaptively reduce the number of queries and
obtain the coordinates of sparse queries for each group:

de(k) = {qe(d)|m(i, k) #0,Vi € 1,2, ..., N, },Vk € {1,2, ..., K}, A3)

Furthermore, the sparse coordinates are used to guide the vanilla ball querying with corresponding
settings to generate the sparse query features. Following the conventional protocols in the PointNet-
like methods, the sparse query features are then transformed by the predefined MLP layers and max
pooling operator:

Z(k) = MaxPool(MLPy, (VanillaBallQuery(dc(k); Xc, X¢, 7k, 9k))), )]

To fuse the sparse transformed features in different groups, we remap them into the dense form
according to the gating mask. The remap operator is similar to the unpooling process, which projects
each enabled feature to the original position and fills zero to the disabled positions. The output feature
of the SA layer are then blended by summation:

e = Z z(k), where z(k) = Aggregation, (Remap(z(k); h)), %)

where the Aggregation, is a linear layer, which is used to transform the features in different groups
into the same dimension.

4.2 TRAINING

Since the sparse selection in Eq. 3 is non-differentiable, it is nontrivial for the dynamic ball querying
to enable fully end-to-end training. To achieve it, we replace the determined decisions in Eq. 3 with a
stochastic sampling process. Concretely, we consider the gating logits unnormalized log probabilities
under the Bernoulli distribution. To this end, with noise samples g and ¢’ drawn from a standard
Gumbel distribution (Gumbel, 1954), a discrete gating mask can be yielded:

m(i, k) = step(h(i, k) + g — ¢'), where g, g" ~ Gumbel(0, 1). (6)

To enable end-to-end training, motivated by the previous dynamic networks, we use the Gumbel-
Sigmoid technique (Gumbel, 1954) to give a differentiable approximation for the Eq. 6 by replacing
the hard step function with the soft sigmoid function. The likelihood of the i-th query in k-th group

being selected is:
wih) — —ep(bGk) +0)/7)
T (B, k) + 9)/7) + explg'/7)
where T is the temperature coefficient. In the training phase, we use the Eq. 6 as the gating mask

to select the sparse queries and employ a straight-through estimator (Bengio et al., 2013; Verelst &
Tuytelaars, 2020) to obtain the gradients of gating logits:

N ZkK z(i, k) forward
ye(D) = { ZkK (i, k) - z(i, k) backward ®

€ [0,1], (7N
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4.3 LATENCY CONSTRAINT

Without latency constraint, dynamic ball querying typically enables more queries for each group
to obtain high accuracy. To achieve a better balance between effectiveness and efficiency, we
introduce the latency constraint as a training target to reduce the inference time. Different from the
computational complexity employed in many previous dynamic networks (Song et al., 2021; Wang
et al., 2018; Li et al., 2020b), the latency can represent the actual runtime in specific devices. To this
end, we first establish a latency map for each group in each SA layer, which records the latency with
regard to the number of queries. Based on this, we can calculate the latency ratio of all the SA layers
with dynamic ball querying:

U — 2100y Yuk(X0;, m' (i, k)))
2k V(N

where V; ;, indicates the latency map of k-th group in I-th layer. Finally, the latency is constrained by
using the Euclidean distance to design a budget loss, thus the total loss is:

C))

L = Liasks + )\‘Cbudge‘w where Ebudget = |\I] - '7| (10)

For simplicity, the objective latency budget -y is set to 0 in all experiments. The hyper-parameter A
is used to scale the budget loss. In addition, if the input is batched format, W needs to be averaged
along the batch dimension to estimate the average overhead of the network.

5 EXPERIMENT

5.1 SETTING

Dataset We evaluate our detector on two representative datasets: KITTI dataset (Geiger et al., 2012)
and Waymo dataset (Sun et al., 2020). KITTTI dataset includes 7,481 training point clouds/images
and 7,518 test point clouds/images. The KITTI scene contains three classes, i.e., Car, Pedestrian,
and Cyclist. Waymo scene contains 798 training, 202 validation, and 150 testing sequences with
three classes of Vehicle, Pedestrian, and Cyclist. Each sequence includes nearly 200 frames with a
360-degree lidar point cloud.

Evaluation metrics. For KITTI scene, we report the performance of all classes by measuring
the average precision (AP) metric. Follow most of state-of-the-art methods, we adopt 0.7, 0.5, and
0.5 of the IoU thresholds for Car, Pedestrian, and Cyclist, respectively. In addition, three levels
of difficulty (“Easy”, “Moderate”, and “Hard”) are also reported. To evaluate Waymo, we use the
official metrics, Average Precision (AP) and Average Precision weighted by Heading (APH), and
report the performance on LEVEL 1 (L1) and LEVEL 2 (L2) difficulty levels.

Implementation Details Following the stream of single-stage point-based methods, we use encoder-
only architecture like (Yang et al., 2020b; Chen et al., 2022; Zhang et al., 2022). Specially, we split
the point features into four parallel fan parts to speed up D-FPS of the first sampling layer, which
will be acted as the “Efficient Baseline”. Other sampling layers follow the default setting of (Zhang
et al., 2022). We employ two groups of each MSG with different radius ([0.2, 0.8], [0.8, 1.6], [1.6,
4.8], [4.8, 6.4]) to aggregate point features. We set the temperature 7 = 1 for all the experiments. All
experiments are implemented by OpenPCDet ' framework.

5.2 EVALUATION ON KITTI DATASET

We randomly sample 16,384 points from the overall point cloud per single view frame. We train our
model by ADAM (Kingma & Ba, 2014) optimizer with onecycle learning strategy (Smith & Topin,
2019). The batch size is set to 16 with 8 GPUs. The initial learning rate is 0.01 and is decayed by 0.1
at 35 and 45 epochs.

'https://github.com/open-mmlab/OpenPCDet
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Figure 3: Illustration of the effects on Dynamic Ball Query. All experiments are evaluated on KITTI
val set. X is the scale parameter of resource budget loss in Eq. 10. Latency here is evaluated by a
single RTX2080Ti GPU with a batch size of 16. (a) reports the comparison on both accuracies of
Car class and overall latency distribution. (b) indicates the latency reduction of query & grouping
operation and MLP network in different SA layers. (c) reflects the activation distribution of point
features in different SA layers. (d) shows the proportion of point features go through different
groups of MSG. "Small" and "Large" means activating on group branches with small and large radii
respectively. "Kill" represents blocking all groups, while "Small & Large" means going through all
scales of groups.

Table 1: Performance of dynamic gating with different routing manners on KITTI val set. The scale
parameter A is set to 0.1. “Layer” indicates controlling an entire SA layer. “Share” means whether to
share masks to all groups. “Point” indicates using point-wise routing instead of layer-wise routing.

Dynamic Routing 3D Car (IoU=0.7) 3D Pedestrian (IoU=0.5) 3D Cyclist (IoU=0.5) Latency
Y Layer Share Point | Easy Moderate Hard | Easy Moderate Hard | Easy Moderate Hard (FPS)
X |- | 8889  79.17 7796 | 61.01  58.11 5262 | 8483 6929 6572 | 102
v 89.19 79.33 78.31 | 61.32 58.60 52.75 | 85.81 70.77 66.04 120
v 4 v | 87.28 71.34 76.29 | 60.43 56.79 51.45 | 84.83 68.88 65.12 165
v | 89.60 79.56 78.51 | 61.57 58.82 53.11 | 85.92 71.03 66.33 162

Dynamic vs Static To verify the efficiency of our method, we first report the performance and
latency on KITTI scene. As shown in Fig. 3(a), our detector achieves super speed while maintaining
comparable performance with other detectors. When ) is set to 0.1, the performance surpasses the
efficient baseline. Therefore, we set the scale parameter to 0.1 for all experiments by default. As
increasing the supervision of resource budget loss, the speed is further improved to 223 FPS. The
impressive results show that our method endows point-based 3D detector with efficient detection
capability. Going one step further, we report the reduction of latency on two revenue modules,
i.e., query & grouping operation, and MLP network. As shown in Fig. 3(b), our method cut the
considerable overhead of both in different SA layers. It verifies that adaptively turning off useless
points by DBQ can speed up the computation of both modules.
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Figure 4: Visualization results on KITTI val set. The 3D boxes in the figures are the prediction boxes.
Green, cyan, and yellow represent Car, Pedestrian, and Cyclist. Red and white points represent
activation and blocking points, respectively. "Small" and "Large" means the scale of group in MSG,
and the digital in parentheses is the index of SA layer.

Activation and Blocking Points To explore which points are activated or blocked, we conduct
quantitative and qualitative experiments using visualization and statistics respectively. Fig. 3(c)
counts the activation ratios of point features in different layers. It indicates that a considerable
large part of points is discarded. Next, we dip into visualization results to figure out the reason
for the quantitative results. As shown in Fig. 4, the deeper the network goes, the blocking point
ratio is larger. This is because it learns rich semantic information to judge useful foreground and
redundant background points when going deeper into the network. As for the early layer, high-level
semantic knowledge is difficult to extract. Therefore, the model is hard to make decisions to block
out background points. In general, it reflects clearly that the most activating points (red points) in the
deeper layer are distributed around objects, while other points away from the objects are blocked. It
reveals that our method discards most redundant background points which may be useless for the
localization and classification of objects, making it reasonable for the detector to speed up inference.
The remaining foreground points and surrounding points are used to support the structure of objects
and enrich context information. Therefore, our method does not damage the performance of detection.
It echoes our analysis in Sec. 3.

Routing Manner and Branch Redundancy Tab. 1 compares the effectiveness between layer-wise
and point-wise routing manner. During inference, the layer-wise routing manner only speeds up by
18 FPS with small performance gains, while our point-wise manner not only achieves significant
performance improvement but also reduces considerable latency. In addition, the contrast on whether
to predict split mask or share identity mask for each group of MSG indicates that the former is the
optimal policy. Generating two masks for different scales of group allow each point to reach an
optimal combination of the receptive field. Corresponding statistical and visualization results can be
seen in Fig. 3(d) and Fig. 4, which reveals that more points go through both groups in early layers
while most points are only keen on a single branch or even be killed. The phenomenon agrees well
with the empirical analysis in Sec. 3.

Main Results As illustrated in Tab. 2, our method outperforms the efficient baseline on all cate-
gories, while achieving higher inference speed (162 vs 102). It verifies that our method can not only
drop redundant points for speeding up inference, but extract more useful information for localization
and classification. By comparing with other state-of-the-art methods, our detector outperforms their
speed with a large margin while maintains comparable accuracy.

5.3 EVALUATION ON WAYMO DATASET

To verify the generalization of our method, we further evaluate the performance on Waymo (Sun
et al., 2020) dataset. Because Waymo scene is made up of the 360-degree point cloud whose scale is
larger than KITTI scene, we increase the input number of points by sampling from 16,384 to 65,536.
The batch size is set to 2 for each GPU. We train 30 epochs with 8 GPUs. Other settings are the same
as the experiments of KITTI scene.
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Table 2: Comparison with the state-of-the-art methods on the KITTBI fest set. Bold font is used to
indicate the best performance. The speed is tested on a single GPU with with batch size of 16 and
measured by FPS.

3D Car (IoU=0.7) 3D Ped. (IoU=0.5) 3D Cyc. (IoU=0.5)

Method ‘ Type ‘ Easy Mod. Hard | Easy Mod. Hard | Easy Mod. Hard Speed
Voxel-based Methods
VoxelNet (Zhou & Tuzel, 2018) 1-stage | 77.47 65.11 57.73 | 39.48 33.69 315 | 61.22 4836 44.37 4.5
SECOND (Yan et al., 2018) 1-stage | 84.65 7596 68.71 | 4531 35.52 33.14 | 75.83 60.82 53.67 20
PointPillars (Lang et al., 2019) I-stage | 82.58 7431 68.99 | 51.45 4192 38.89 | 77.10 58.65 5192 | 424
3D IoU Loss (Zhou et al., 2019) 1-stage | 86.16 76.50 71.39 - - - - - - 12.5
Associate-3Ddet (Du et al., 2020) 1-stage | 85.99 77.40 70.53 - - - - - - 20
SA-SSD He et al. (2020) 1-stage | 88.75 79.79 74.16 - - - - - - 25
CIA-SSD (Zheng et al., 2020) 1-stage | 89.59 80.28 72.87 - - - - - - 32
TANet Liu et al. (2020) 2-stage | 84.39 7594 68.82 | 53.72 44.34 4049 | 75,70 59.44 5253 | 285
Part-A2 2-stage | 87.81 78.49 73.51 | 53.10 43.35 40.06 | 79.17 63.52 5693 | 12.5
Point-Voxel Methods
Fast Point R-CNN Chen et al. (2019) | 2-stage | 89.29 77.40 70.24 - - - - - - 16.7
STD (Yang et al., 2019) 2-stage | 87.95 79.71 75.09 | 53.29 4247 38.35 | 78.69 61.59 5530 | 125
PV-RCNN (Shi et al., 2020a) I-stage | 90.25 81.43 76.82 | 52.17 4329 40.29 | 78.60 63.71 57.65 | 125
VIC-Net (Jiang et al., 2021) I-stage | 88.25 80.61 75.83 | 43.82 37.18 3535 | 7829 63.65 57.27 17
HVPR (Noh et al., 2021) 1-stage | 86.38 77.92 73.04 | 5247 4396 40.64 - - - 36.1
Point-based Methods
PointRCNN (Shi et al., 2019) 2-stage | 86.96 75.64 70.70 | 47.98 39.37 36.01 | 7496 5882 52.53 10
3D IoU-Net (Li et al., 2020a) 2-stage | 87.96 79.03 72.78 - - - - - - 10
Point-GNN (Shi & Rajkumar, 2020) | 1-stage | 88.33 79.47 7229 | 51.92 4377 40.14 | 78.60 63.48 57.08 1.6
3DSSD (Yang et al., 2020b) 1-stage | 88.36  79.57 74.55 | 54.64 4427 40.23 | 8248 64.10 56.90 25
IA-SSD (Zhang et al., 2022) I-stage | 88.34 80.13 75.04 | 46.51 39.03 35.60 | 7835 61.94 55.70 83
IA-SSD (Reproduced) 1-stage | 87.67 79.40 74.22 | 46.16 3829 35.61 | 7826 61.53 5548 83

DBQ-SSD

I-stage | 87.93 7939 74.40 | 47.59 38.08 35.61 | 78.18 62.80 5570 | 162

Table 3: Comparison with the state-of-the-art methods on the Waymo val set. The bold font is used to
indicate best performance. The speed is tested on a single GPU with batch size of 16 and measured
by FPS.

Vehicle (LEVEL 1) | Vehicle (LEVEL 2) | Ped. (LEVEL 1) | Ped. (LEVEL 2) | Cyc. (LEVEL 1) | Cyc. (LEVEL 2)

Method mAP  mAPH | mAP  mAPH | mAP mAPH | mAP mAPH | mAP mAPH | mAP mAPH | SPe°d
PointPollars (Lang et al., 2019) | 60.67  59.79 | 5278 5201 | 4349 2351 | 3732 20.17 | 3594 2834 | 3460 27.29
SECOND (Yan et al., 2018) 68.03 6744 | 5957 5904 |6l.14 5033 |53.00 4356 | 5466 5331 | 5267 5137

Part-A2 (Shi et al., 2020b) 7182 7129 | 6433 6382 | 6315 5496 | 5424 4711 | 6523 6392 | 6261 6135
PV-RCNN (Shietal., 2020a) | 74.06 7338 | 6499 6438 | 62.66 52.68 | 5380 4514 | 6332 6171 | 6072 59.18 -
IA-SSD (Zhang etal., 2022) | 7053  69.67 | 6155  60.80 | 69.38 5847 | 60.30 5073 | 67.67 6530 | 6498 6271 14
Efficient Baseline 7115 7030 | 6249 6173 | 6838 5821 [59.75 50.80 | 68.64 6623 | 6609 6378 | 20
DBQ-SSD (A\=0.1) 7056  69.82 | 6181 6115 | 6889 5807 |60.15 50.60 | 66.58 6398 | 6422 61.66 | 30
DBQ-SSD (1=0.05) 7158 7103 | 6413  63.61 | 69.18 5847 | 6022 50.81 | 6829 6601 | 66.09 6386 | 27

As shown in Tab 3, we report the performance and inference speed of our DBQ-SSD. As carrying
out suitable supervision (i.e., A = 0.05) for the detector, it achieves impressive performance in all
classes. Especially, some categories achieve state-of-the-art accuracy in evaluation metrics or levels of
difficulty. Meanwhile, it also improves the inference speed of the efficient baseline from 20 FPS to 27
FPS. The results show that adaptively blocking redundant point features and activating high-quality
point features are the key to endow our detector with efficient performance. When conducting a larger
scale of supervision for DBQ-SSD, it is capable of detecting objects with real-time speed (30 FPS)
and achieves comparable accuracy. It can provide flexible configuration for practical applications to
realize the best trade-off between accuracy and overhead cost.

6 CONCLUSION

In this paper, we point out the existing spatial redundancy on background points and useless receptive
field groups in MSG. This redundancy impedes the inference efficiency improvement of point-based
3D detectors. To eliminate the dilemma, we propose a dynamic ball query, which can dynamically
generate gate masks for each group of MSG to process useful points and block redundant background
points. The extensive experiments demonstrate our analysis and show the effectiveness of our method.
In short, we launch a new view to focus on redundant background points instead of the limited
foreground part, which further deepens the understanding of the sparsity of point cloud. We hope this
work can shed the light to the research of efficient point-based models and inspire future works.
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A LIMITATION AND FUTURE WORK

With increasing the supervision on resource budget (increasing the value of \.), the performance will
decrease accordingly. We suspect that dropping too many point clouds may eliminate the part of the
useful point cloud. Therefore, this paper targets to achieve a better trade-off between accuracy and
inference speed, which maintaining or even achieving gain in accuracy, and significantly speeding
up inference. In this paper, we can not specifying what point to drop but our detector equips strong
ability to eliminate redundancy. Therefore, we look forward to inspire future works for focusing on
dropping more redundant point cloud without performance degradation.

Table 4: Illustration of the architecture of DBQ-SSD. npoint denotes the number of sampled points,
[radii] denotes the grouping radii, [nquery] denotes the number of grouping points, [dimension]
denotes the feature dimensions. Aggregation indicates aggregation operation and MLP size.

Module | npoint | [radii] | [nquery] | [dimension] ‘ Aggregation

SA layer 4096 | [0.2,0.8] | [16,32] [[16, 16, 32], [32, 32, 64]] MLP (32 — 64) + MLP (64 — 64)
SA layer 1024 | [0.8,1.6] | [16,32] [[64, 64, 128], [64, 96, 128]] MLP (128 — 128) + MLP (128 — 128)
SA layer 512 [1.6,4.8] | [16,32] | [[128, 128, 256], [128, 256, 256]] | MLP (256 — 256) + MLP (256 — 256)

Vote layer | 256 - - - MLP (256 — 128 — 3)
SA layer 256 [4.8,6.4] | [16,32] | [[256,256,512], [256,512,1024]] | MLP (512— 512) + MLP (1024 — 512)

B DETAILED DETECTOR ARCHITECTURE

We report the detailed architecture of our DBQ-SSD. DBQ-SSD is a single-stage point-based detector
that consists of three Set Abstraction (SA) layers for extracting point features, and one SA layer
for aggregating centroid-based instances. Each SA layer has two different groups for the spherical
neighbor query. In addition, a vote layer is used to generate candidate points. A light-weight head is
attached to the backbone to predict final results. The detailed architecture for KITTI is reported in
Tab. 4.

The head consists of two parallel branches, i.e., classification and regression branches. The corre-
sponding architecture:

Classification branch: FC(512) — FC(256) — FC(256) — FC(3)
Regression branch: FC(512) — FC(256) — FC(256) — FC(30)

where the classification branch predicts 3 classes, while the regression branch predicts 12 classes
of equally angle bins and their corresponding angle offsets, and the distance (d,, d,,d;) to its
corresponding instance, as well as the size (d;, d,, d ). For Waymo scene, we use the same model
setting and just adjust the scale of input point cloud to 16,384, 4,096, 2,048 and 1,024.

C EXPERIMENTS ON TITTI val AND ONCE val SET

To verify the generalization, we evaluate our method on both KITTI fest set and ONCE val set.

KITTI val set. As shown in Tab. 5, our DBQ-SSD achieves comparable performance compared
with IA-SSD, while showing super inference speed nearly two times than IA-SSD.

ONCE val set. Because the official configuration file of IA-SSD is not released with respect to
ONCE dataset, we reproduce the results according to the paper. As shown in Tab. 6, our method
significantly improves the inference speed to 33 FPS (2.4x speedup), while maintaining compara-
ble performance with IA-SSD. When adjusting the ~ to 0.1, our method achieves nearly 1 mAP
performance improvement while gaining 1.7x speedup.
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Table 5: Comparison with the state-of-the-art methods on the KITTI val set. The average precision is
measured with 11 recall positions. The bold font is used to indicate the best performance. The speed
is tested on a single GPU with a batch size of 16 and measured by FPS.

. . Car Mod. | Pedestrian Mod. | Cyclist Mod. | Speed

Method References ‘ Type (IoU=0.7) (I0U=0.5) ‘ {IoU=0.5) (FPS)
VoxelNet (Zhou & Tuzel, 2018) CVPR 2018 1-stage 65.46 53.42 47.65 4.5
SECOND (Yan et al., 2018) SENSORS 2018 | 1-stage 76.48 - - 20
PointPillars (Lang et al., 2019) CVPR 2019 1-stage 77.98 - - 42.4
TANet (Liu et al., 2020) AAAI 2020 1-stage 77.85 63.45 64.95 28.5
Associate-3Ddet (Du et al., 2020) CVPR 2020 1-stage 79.17 - - 20
SA-SSD (He et al., 2020) CVPR 2020 1-stage 79.91 - - 25
CIA-SSD (Zheng et al., 2020) AAAT 2021 1-stage 79.81 - - 32
Part-A? (Shi et al., 2020b) TPAMI 2020 2-stage 79.47 63.84 73.07 12.5
Fast Point R-CNN (Chen et al., 2019) ICCV 2019 2-stage 79.00 - - 16.7
STD (Yang et al., 2019) ICCV 2019 2-stage 79.80 - - 12.5
PV-RCNN (Shi et al., 2020a) CVPR 2020 2-stage 83.90 - - 12.5
VIC-Net (Jiang et al., 2021) ICRA 2021 1-stage 79.25 - - 17
PointRCNN (Shi et al., 2019) CVPR 2019 2-stage 78.63 - - 10
3D IoU-Net (Li et al., 2020a) Arxiv 2020 2-stage 79.26 - - 10
Point-GNN (Shi & Rajkumar, 2020) CVPR 2020 1-stage 78.34 - - 1.6
3DSSD (Yang et al., 2020b) CVPR 2020 1-stage 79.45 - - 25
IA-SSD (Zhang et al., 2022) CVPR 2022 1-stage 79.57 5891 71.24 83
Efficient Baseline ICLR 2023 1-stage 79.17 58.11 69.29 102
DBQ-SSD ICLR 2023 ‘ 1-stage ‘ 79.56 ‘ 58.82 ‘ 71.03 ‘ 162

Table 6: Comparison with the state-of-the-art methods on the ONCE val set. Bold font is used
to indicate the best performance. The speed is tested on a single GPU with batch size of 16 and
measured by FPS.

Vehicle Pedestrian Cyclist

Method Overall 0-30m  30-50m  >50m | Overall 0-30m  30-50m >50m | Overall 0-30m 30-50m >50m ‘ mAP ‘ Speed
PointPollars 6857 8086 6207 4704 | 1763 1974 1515 1023 | 4681 5833 4032 2586 | 4434
SECOND 7019 8404 6302 4725 | 2644 2933 2405 1805 | 5804 6996 5243 3461 | 5189
PV-RCNN 7777 8939 7255 58.64 | 2350 2561 2284 1727 | 5937 7166 5258 3617 | 5355
Poin(RCNN 5200 7445 4089 1681 | 428 617 240 091 | 2084 4603 2094 546 | 2874 | -
TA-SSD 7030 8301 6284 4701 | 39.82 4745 3275 1899 | 6217 7378 5631 3953 | 5743 | 14
TA-SSD (Reproduced) | 7048 8416 6377 4927 | 3822 4414 3310 2041 | 6190 73.94 5544 3837 | 5687 | 14
DBQ-SSD (\=0.05) | 7206 8463 6466 5013 | 3832 4335 3297 2122 | 6216 7394 5665 3820 | 5751 | 23
DBQSSD (\=0.10) | 72.14 8481 6427 5022 | 3783 4388 3218 2029 | 6299 75.13 5665 3891 | 57.65 | 24
DBQ-SSD (\=020) | 7163 8438 6406 4982 | 3727 4190 3359 2095 | 6277 7494 514 3847 | 5722 | 27
DBQ-SSD (\=030) | 7066 8328 6366 4888 | 3746 4235 3204 2221 | 6251 7446 5665 3801 | 5688 | 33

D VISUALIZATION

As shown in Fig. 5, Fig. 6, and Fig. 7, we provide the detailed visualization of predicted results
for Waymo val set and KITTI val set. The conclusion is the same as KITTI scene. As the network
depth increases, the foreground points are retained for classification and regression, while redundant
background points are dropped. It reveals that our method can adaptively discard useless points for
speeding up inference. It’s worth noting that the discarding behavior of point clouds significantly
differs between KITTI and Waymo scenes, which verifies that our method equips generalization.
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Figure 5: Visualization results on Waymo val set. The red and green 3D boxes in figures are ground
truth and prediction boxes. Green, cyan, and yellow represent Car, Pedestrian, and Cyclist. Red and
white points represent activation and blocking points, respectively. "Small" and "Large" means the
scale of group in MSG, and the digital in parentheses is the index of SA layer.
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Figure 6: Another visualization results on Waymo val set.
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Figure 7: Detail visualization results on KITTI val set. The red and green 3D boxes in figures are
ground truth and prediction boxes. Green, cyan, and yellow represent Car, Pedestrian, and Cyclist.
Red and white points represent activation and blocking points, respectively. "Small" and "Large"
means the scale of group in MSG, and the digital in parentheses is the index of SA layer.
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